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Background
An increasing number of studies suggest that epigenetic 
modifications in certain genes are associated with 
subsequent disease susceptibility later in life, both in 
humans and in animal models [1-4]. For instance, Godfrey 
et al., reported that lower maternal carbohydrate intake in 
early pregnancy was associated with increased methylation 
of retinoid X receptor-α gene in umbilical cord tissue, and 
higher incidence of childhood adiposity at age 9 years 
[5]. Supporting this, Relton et al., showed the association 
between altered DNA methylation patterns in cord blood at 
birth and later adiposity in childhood, with perturbed gene 
expression [6]. Individuals conceived during the “Dutch 
Hunger Winter” famine also had an elevated prevalence 

of obesity, insulin resistance and cardiovascular disease [1], 
with reduced DNA methylation of imprinted gene, insulin-
like growth factor 2 (IGF2), and increased DNA methylation 
of non-imprinted genes leptin and interleukin-10 as adults, 
as compared with their unexposed same-sex siblings  
[7,8]. Whether altered DNA methylation and expression 
of key genes occurs in peripheral insulin sensitive tissues 
is a source of current investigation.

Recent studies have demonstrated increased promoter 
DNA methylation and decreased gene expression of 
peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PPARGC1A) in pancreatic islets [9], in 
skeletal muscle from patients with type 2 diabetes [10], and 
in liver biopsies from individuals with non alcoholic fatty 
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DNA methylation in muscle (P=0.01) as compared with lean individuals. Obese patients with and without type 2 diabetes 
had reduced expression of both genes in subcutaneous adipose tissue (P≤0.04) as compared to lean individuals.
Conclusions: This study showed tissue specific DNA methylation and gene expression of PPARGC1A and IGF2, which may 
also be associated with obesity and type 2 diabetes. Further study of the effects of tissue specific DNA methylation on risk of 
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liver disease [11]. Low birth weight, potentially reflecting 
in utero deprivation, was also associated with increased 
PPARGC1A DNA methylation in skeletal muscle in adults 
at increased risk of diabetes [12]. PPARGC1A is a master 
regulator of mitochondrial biogenesis and oxidative 
phosphorylation [13], and is linked to development of 
insulin resistance and type 2 diabetes [14]. Although reduced 
PPARGC1A expression in adipose tissue has been reported 
in insulin resistance [15-17], whether DNA methylation is 
also altered in this tissue is unknown. Furthermore, whether 
similar methylation changes in peripheral tissues exist in 
obese individuals without type 2 diabetes is also unclear.

IGF2 is a key factor in human growth and development 
and is imprinted through the differentially methylated 
region (DMR), thus only the paternal allele is expressed. 
Aberrant imprinting of IGF2 gene is associated with the 
overgrowth disorder Beckwith-Wiedemann syndrome 
[18] and the growth restriction disorder Silver-Russell 
syndrome [19]. Hypomethylation of IGF2 DMR0 which is 
located 5' to the main IGF2 promoters in humans [20] leads 
to bi-allelic expression of IGF2 [21] and is associated with 
human colorectal cancer, Wilms tumour [21-23], and has 
also been linked to later development of obesity and insulin 
resistance in individuals exposed to famine in utero [1]. To 
date, no studies have examined IGF2 DMR0 methylation 
and gene expression in adipose tissue and skeletal muscle 
from patients with obesity and type 2 diabetes.

The present study aimed to determine the tissue 
specificity of DNA methylation and expression of PPARGC1A 
and IGF2 and their association with obesity, in the presence 
and absence of type 2 diabetes, compared with lean 
individuals, and also, to examine the relationships between 
DNA methylation patterns and gene expression. The data 
showed that DNA methylation and gene expression of 
PPARGC1A and IGF2 occurs in a tissue specific fashion, and 
that altered DNA methylation and expression of both genes 
appears to be associated with obesity and type 2 diabetes. 

Methods
Subjects 
The characteristics of 24 subjects are presented in Table 1. 
Rectus abdominus muscle, subcutaneous adipose tissue and 
omental adipose tissue biopsies were obtained from eight 
obese individuals without type 2 diabetes and eight diet 
controlled obese patients with type 2 diabetes (four females 
and four males for each group) who were undergoing 
gastric bypass surgery for the treatment of morbid obesity. 
Rectus abdominus muscle and abdominal subcutaneous 
adipose tissue were obtained from four lean males who 
were undergoing hernia surgery. Vastus lateralis muscle 
and abdominal subcutaneous adipose tissue were collected 
from four lean female volunteers [24,25]. All tissues were 
snap frozen for later analysis. The study was approved by 
the human research ethics committees of the University of 

Adelaide, Calvary Hospital, and Burnside Hospital. Informed 
consent was obtained from all participants.

DNA and RNA extraction
Genomic DNA and total RNA were extracted from adipose 
tissue (120-150 mg) and muscle tissue (10-30mg) using a 
QIAamp DNA Mini kit (Qiagen, Valencia, CA) and Trizol 
(Invitrogen, USA) respectively following manufacturer’s 
instructions. The concentration and purity of DNA and RNA 
were determined by Nanodrop (Thermo Fisher Scientific, 
California, USA). 

Bisulphite modification 
0.4 - 1μg genomic DNA was bisulphite treated to convert 
unmethylated cytosines to uracil using the MethylEasy™ 
Xceed Rapid DNA Bisulphite Modification Kit (Human 
Genetic Signatures Pty Ltd, NSW, Australia) as per the 
manufacturer’s instructions. All samples were bisulphite 
treated simultaneously to prevent possible batch effects. 
There was insufficient subcutaneous adipose tissue sample 
in one lean and one obese muscle sample for bisulphite 
conversion.

Nested touchdown PCR
A nested touchdown PCR strategy was used to amplify 
bisulphite treated genomic DNA. PCR primers were designed 
to amplify regions containing specific CpG sites using 
Assay Design Software v1.0.6 (Biotage, Uppsala, Sweden).

5 CpG dinucleotides sites in the promoter of the 
PPARGC1A gene were examined (Supplement figure 1). 
The outer primers amplify the region on the minus strand 
of chromosome 4:23892115-23892603 (UCSC BLAT results 
from Assembly Feb 2009 (GRCh37/hg19)) to yield a 489 bp 
product, and the inner primers with biotinylated reverse 
primer and first-round product as template amplify the 
region minus strand chromosome 4:23892285-23892570 
to yield a 286 bp product. The first 4 of these CpG sites 
were previously measured by Ling et al., in human islets 
[9] and Brons et al., in human muscle [12]. The 5th CpG site 
is identical to that measured by Gemma et al., in umbilical 
cord blood [26].

Lean Obese Obese with 
diabetes

P 
value

Age (years) 31 ± 6* 49 ± 3 48 ± 2 0.005

BMI 22.3 ± 0.6* 47.6 ± 1.8 46.3 ± 1.8 <0.001
Fasting Glucose 
(mmol/L) 5.2 ± 0.6 4.9 ± 0.3 8.5 ± 1* 0.007

Total cholesterol 
(mmol/L) 5.1 ± 0.2 5.2 ± 0.3 5.4 ± 0.4 0.76

Triglycerides 
(mmol/L) 1.5 ± 0.2 1.3 ± 0.1 2.6 ± 0.8 0.37

Data are presented as mean ± SEM.  *denotes P<0.01 of the asterisked 
marked group as compared to both other groups.

Table 1. Clinical characteristics of the subjects
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5 CpG sites in the IGF2 DMR0 (chr11:2,126,035-2,126,372 in 
NCBI build 36.1) [27] were also examined (Supplement figure 
1). The outer primers amplify the region on Chromosome 11(+ 
strand): 2169429-2169753 (UCSC BLAT results from Assembly 
Feb 2009 (GRCh37/hg19)) to yield a 325 bp product. The 
inner primers with biotinylated reverse primer and first-
round product as template amplify the region Chromosome 
11:2169452-2169751 to yield a 300 bp product. These sites 
have been previously quantified by others: all 5 on the minus 
strand by Steegers-Theunissen et al. [27], and the first 3 on 
the plus strand by Murrell et al., [23] both in peripheral blood.

All PCR reactions for one tissue were completed 
simultaneously with the ABI 7500 sequence detection 
system using two MicroAmp® fast 96-well reaction plates 
(Applied Biosystems, Foster City, CA). Each PCR reaction also 
included a no template negative control and unmodified 
DNA control (Qiagen, Valencia, CA). Only samples with 
single target size bands without primer dimers were used 
for pyrosequencing. 

Pyrosequencing
Quantification of cytosine methylation percentage was 
carried out on a PyroMark MD Pyrosequencing System 
(Biotage, Uppsala, Sweden) using PyroMark Gold Q96 
CDT Reagents 972824 (Qiagen, Valencia, CA). Specific 
pyrosequencing primers (Supplement table 1) were designed 
using Biotage Assay Design Software v1.0.6 (Biotage, Uppsala, 
Sweden). For both genes, two different pyrosequencing 
assays utilized different forward sequencing primers, with 
the first to sequence the region containing the first 3 CpG’s 
of interest, and the second to analyse the 4th and 5th CpG’s 
of interest. Methylation was quantified using Pyro Q-CpG 
1.0.9 Software (Biotage, Uppsala, Sweden) which calculated 
the percentage of methylated cytosines to total cytosines 
at each CpG site. The mean of five methylated sites was 
calculated for each sample.

Quantitative real-time PCR
cDNA was synthesized from 1μg of each RNA sample in 
20ul reactions using the QuantiTect reverse transcription kit 
(Qiagen, Valencia, CA) consistent with the manufacturer’s 
protocol. Standard control samples (25ng/μl) pooled from 
each cDNA were diluted to create a standard curve. There 
was insufficient subcutaneous adipose tissue sample in 
two obese patients, and one visceral adipose tissue and 
one muscle sample in the obese group.

Quantitative real-time PCR was performed with the 
ABI 7500 sequence detection system (Applied Biosystems, 
Foster City, CA) using TaqMan primers and probes for IGF2 
(Hs00171254_m1), PPARGC1A  (Hs01016719_m1) and Beta-
actin (Hs99999903-ml) (Applied Biosystems) according to 
manufacturer’s instructions. To calculate the normalized 
relative expression levels, the individual expression levels 
of each sample were divided by the expression values of 
the beta-actin gene, which was not different by groups.

Statistics
Quantitative data were presented as mean ± SEM unless 
indicated. Differences between groups were assessed by 
one-way ANOVA followed by a Fisher’s LSD post hoc test. 
The effect of obesity on methylation was investigated by 
linear mixed models, with tissue, individual site methylation, 
group and sex as between factors and age as a covariate, 
Bonferroni post hoc test as appropriate. Correlations were 
calculated using Pearson correlation coefficients for normally 
distributed values and Spearman correlation coefficients 
when normality was rejected. Statistical analyses were 
performed with SPSS 18.0 (SPSS Inc., Chicago, IL, USA). All P 
values were 2-sided, and P≤0.05 was considered significant.

Results
Clinical data
Lean patients were aged between 18-63 years, while obese 
and obese patients with type 2 diabetes were between 41-56 
years of age (Table 1). Obese and obese patients with type 
2 diabetes had higher body mass index (BMI) than those 
who were lean, whereas obese patients with type 2 diabetes 
had increased fasting plasma glucose compared to lean 
and obese patients (Table 1). Plasma lipids, including total 
cholesterol and triglycerides did not vary between groups. 

DNA methylation and gene expression of PPARGC1A 
DNA methylation of PPARGC1A varied significantly between 
tissues, with the highest DNA methylation in subcutaneous 
adipose tissue and lowest in muscle (Figure 1A). We also 
observed the highest expression of PPARGC1A in muscle 
and the lowest expression in subcutaneous adipose tissue, 
consistent with these tissue specific patterns of methylation 
(Figure 1B). Overall, there was also a significant negative 
relationship between average DNA methylation and gene 
expression of PPARGC1A gene in muscle (Figure 1C), but 
not in either visceral or subcutaneous adipose tissue (data 
not shown). DNA methylation of PPARGC1A in muscle was 
negatively correlated with age (Figure 1D).

In subcutaneous adipose tissue, obese patients with type 
2 diabetes had increased DNA methylation of PPARGC1A 
compared with lean individuals (P=0.01, Figure 1E), and 
decreased PPARGC1A expression was also observed in 
obese patients with or without diabetes as compared to 
lean individuals (P=0.001, P=0.04, respectively) (Figure 1F). 
PPARGC1A DNA methylation or gene expression in visceral 
adipose tissue or muscle tissue did not vary between groups 
however (data not shown). 

DNA methylation and gene expression of IGF2 
As expected for an imprinted gene, DNA methylation of 
IGF2 was higher than that of PPARGC1A. IGF2 methylation 
was lowest in subcutaneous adipose tissue as compared 
to visceral adipose tissue or skeletal muscle (Figure 2A). 
The expression of IGF2 was lower in visceral adipose tissue 
than in muscle (P≤0.001) (Figure 2B). IGF2 methylation and 
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Figure 1. PPARGC1A DNA methylation and gene expression in muscle, subcutaneous and visceral adipose tissue. 
(1A) PPARGC1A DNA methylation levels, ** denotes significance between subcutaneous and visceral adipose tissue 
at P=0.001; # denotes significance between muscle and both subcutaneous and visceral adipose tissues at P<0.001; 
(1B) PPARGC1A expression in muscle is significantly higher than subcutaneous and visceral adipose tissue at P<0.001; 
PPARGC1A DNA methylation was negatively related to its expression (1C) and age (1D) in muscle; (1E) Obese 
patients with type 2 diabetes had higher DNA methylation of PPARGC1A in subcutaneous adipose tissue as compared 
to lean and (1F) obese patients with and without diabetes had lower PPARGC1A expression in subcutaneous adipose 
tissue as compared with lean individuals. *P=0.01; **P=0.001; # P<0.001; † P=0.04. AU: arbitrary units.
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expression in muscle were also significantly correlated 
with age (Figure 2C and 2D). In skeletal muscle, obese 
patients with type 2 diabetes had lower DNA methylation 
than lean individuals (59±2% vs 69±2%, P=0.01), but this 
was not significant between obese and lean individuals 
(P=0.1) (Figure 2E).  IGF2 methylation in adipose tissue was 
not different between groups (data not shown), but  IGF2 
expression was lower in subcutaneous adipose tissue in 
obese patients with or without type 2 diabetes as compared 
with lean individuals (Figure 2F). There was no association 
between DNA methylation and expression of IGF2 in any 
tissue examined (data not shown). 

Discussion 
Epigenetic modifications in key genes may be important 
in the development of obesity and type 2 diabetes. In this 
study, we investigated the expression and DNA methylation 
of PPARGC1A and IGF2 in subcutaneous and visceral adipose 
tissues and skeletal muscle from lean, obese and obese 
individuals with type 2 diabetes. Interestingly, we observed 
that PPARGC1A and IGF2 gene had tissue specific differences 
in DNA methylation and expression, and that these may be 
influenced by obesity type 2 diabetes and aging.

DNA methylation plays a key role in regulating gene 
expression via the addition of a methyl group to the 
carbon-5 position of the Cytosine-phosphate-guanine (CpG) 
dinucleotide sequence in promoter regions, which interferes 
with the binding of particular transcription factors to DNA 
[28]. Our results indicate that higher DNA methylation 
was related to lower gene expression of PPARGC1A in a 
tissue specific manner. To our knowledge, this is the first 
study to demonstrate that both subcutaneous and visceral 
adipose tissue had significant higher DNA methylation of 
PPARGC1A compared with muscle in humans. Supporting 
this, our data also show a significant negative correlation 
between average DNA methylation and gene expression 
of PPARGC1A across the whole cohort in muscle, although 
this was not observed in adipose tissue. This is broadly 
consistent with Barres et al., who showed methylation 
levels of PPARGC1A promoter were negatively correlated 
with mRNA expression and mitochondrial DNA in skeletal 
muscle that was collected from patients with or without 
type 2 diabetes [10]. Of interest, Ling et al., observed a similar 
correlation between PPARGC1A promoter methylation and 
mRNA expression in islets from patients with type 2 diabetes 
[9]. It is not clear why this association is also not seen in 
adipose tissue in our study, and may be a reflection of 
tissue specific factors that separately influence expression.

Previous studies have shown increased promoter DNA 
methylation of PPARGC1A in skeletal muscle and islets in 
patients with type 2 diabetes [9,10]. Our data also showed 
this association, but only in subcutaneous adipose tissue. 
This may be related to different CpG sites being selected 
for study and the different DNA methylation detection 
methods employed. We did observe reduced PPARGC1A 

expression in subcutaneous adipose tissue in obese patients 
with type 2 diabetes. Reduced PPARGC1A expression has 
been reported in both visceral and subcutaneous adipose 
tissues as well as muscle from patients with type 2 diabetes 
in many studies previously [10,16,29,30]. It is not clear why 
these associations were not observed in visceral adipose 
tissue, and again may be a reflection of size of cohort or 
other tissue specific factors that influence expression.

We next examined DNA methylation and expression 
patterns of IGF2. Firstly and as expected, we detected 
higher DNA methylation in paternally imprinted IGF2 
gene as compared to the non-imprinted PPARGC1A gene 
[7,9,12,23,31]. We also observed visceral adipose tissue and 
muscle had higher DNA methylation than subcutaneous 
adipose tissue. However the changes in methylation were 
not accompanied by inverse changes in expression of IGF2, 
in that muscle also had higher expression of IGF2. However, 
this is not necessarily contradictory, as shown by Murrell 
et al. [23], who reported that DNA methylation of the IGF2 
DMR0 examined here, may play a role in activation and 
not suppression of gene expression. This relationship is 
complex and still requires further investigation, as the 
expression of the human IGF2 gene is controlled at least 
by 5 promoters [20,32,33].

To date, few studies have examined associations between 
DNA methylation and gene expression of IGF2 in obesity 
and type 2 diabetes. Heijmans et al., showed individuals 
who were prenatally exposed to the Dutch famine had lower 
methylation of IGF2 in blood and increased prevalence of 
obesity, insulin resistance and type 2 diabetes in later life 
[7,34-36]. In our study, patients with type 2 diabetes also 
had lower IGF2 DNA methylation in muscle as compared to 
lean individuals. We also observed lower expression of IGF2 
in subcutaneous adipose tissue in obese and obese patients 
with type 2 diabetes as compared to those who were lean. 
Together these results suggest that DNA methylation and 
gene expression of IGF2 may be associated with obesity 
and type 2 diabetes, but this result needs to be confirmed 
in a larger, age-matched cohort.

Interestingly, our data showed that aging may be 
associated with decreased DNA methylation of both genes 
and increased IGF2 expression in muscle. Supporting this, 
Heijmans et al., demonstrated IGF2 methylation in blood 
cells decreased 4% in 10 years within the age range of 43–70 
years [7]. In contrast, Issa et al., have reported increased 
methylation of the IGF2 promoter which switched from 
monoallelic to biallelic methylation during aging in adult 
human colon, breast and lung tumors [37]. However, Cui 
et al., reported leukocyte IGF2 methylation was stable 
to middle age [38,39]. A recent longitudinal study also 
showed DNA methylation levels in five of eight imprinted 
loci were stable over 2–20 years in blood and buccal cell 
samples [40]. These results indicate tissue specific difference 
with aging in humans. Similarly, genome-wide analysis 
of DNA methylation in rats demonstrated significant 
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Figure 2. IGF2 DNA methylation and gene expression in muscle, subcutaneous and visceral adipose tissue.  
(2A) Lower DNA methylation was observed in subcutaneous adipose tissue than visceral adipose tissue and muscle; (2B) 
Lower IGF2 expression was observed in subcutaneous adipose tissue and visceral adipose tissue versus muscle; (2C-2D) 
Age was negatively correlated with IGF2 DNA methylation (2C) and positively correlated with IGF2 expression (2D) in 
muscle; (2E) Patients with type 2 diabetes had significant lower IGF2 DNA methylation in muscle; (2F) IGF2 expression was 
decreased in obese and obese patients with type 2 diabetes in subcutaneous adipose tissue.  
*P=0.01; **P=0.001; # P<0.001; † P=0.04; §P=0.1. AU: arbitrary units.
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tissue differences and age-related tissue specific changes, 
including hypomethylation in intra-abdominal tissues and 
hypermethylation in liver [41]. However, care should be 
taken when comparing results of these various studies in 
humans, since different assays, tissues, and the examined 
loci varied by study [42]. 

Conclusions
This study demonstrates tissue specific DNA methylation 
and gene expression of PPARGC1A and IGF2, which may be 
related to aging, obesity and type 2 diabetes. The strong 
negative correlation between DNA methylation and gene 
expression of PPARGC1A indicates epigenetic regulation 
may play a key role in expression of this gene, at least in 
muscle. These outcomes provide the rationale for further 
study of a larger cohort and emphasize the importance 
of assessing DNA methylation of these genes at least, in a 
tissue specific manner in humans.
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