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Lattice calculations could boost our understanding of Deep Inelastic Scattering by evaluating mo-

ments of the Nucleon Structure Functions. To this end we study the product of electromagnetic

currents between quark states. The Operator Product Expansion (OPE) decomposes it into ma-

trix elements of local operators (depending on the quark momenta) and Wilson coefficients (as

functions of the larger photon momenta). For consistency with the matrix elements, we evaluate

a set of Wilson coefficients non-perturbatively, based on propagators for numerous momentum

sources, on a 243 � 48 lattice. The use of overlap quarks suppresses unwanted operator mixing

and lattice artifacts. Results for the leading Wilson coefficients are extracted by means of Singular

Value Decomposition.
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Nucleon structure in terms of OPE with non-perturbative Wilson coefficients W. Bietenholz

1. Motivation

The computation of moments of the nucleon structure functions is a fascinating challenge: it
is known to be difficult, but it is a point where lattice results could contribute much to the under-
standing and interpretation of phenomenological data from Deep Inelastic Scattering.

The continuum formulation of hadron structure functions is plagued by renormalon ambigui-
ties, i.e. power-like IR contributions, see e.g. Refs. [1]. Here we refer to the lattice regularisation,
where a general moment of the nucleon structure function can be expanded as���

q2 ��� c � 2 � � aq � A2
�
a �	� c � 4 � � aq � 1

q2 A4
�
a �
������� higher twists � � (1.1)

It depends on the transfer momentum q, while a is the lattice spacing, c � 2 � , c � 4 � ��� are Wilson coef-
ficients (where the superscript is the twist), and A2, A4

��� are reduced matrix elements (“reduced”
in the sense that the Lorentz structure is factored out).

For the evaluation of A2 there is an established procedure, which employs the ratio between
two-point and three-point correlation functions [2]. On the other hand, the Wilson coefficients
have usually been evaluated in continuum perturbation theory. However, we need a cancellation
of singularities in the terms c � 2 ��� A4 ∝ 1 � a2, which are again a facet of the renormalon problem.
This requires a strictly consistent treatment [3]. Therefore we evaluate the Wilson coefficients
non-perturbatively as well. This method is particularly suitable for disentangling higher twist con-
tributions. The use of overlap quarks suppresses undesired operator mixings.

In this report we present new numerical results for c � 2 � . For earlier results with Wilson
fermions we refer to Ref. [4]. In a previous study with overlap quarks on a 163 � 32 lattice [5]
some problems persisted, which motivated us to enlarge the lattice to the size 243 � 48.

2. Operator Product Expansion on the lattice

To be explicit, we apply the Operator Product Expansion (OPE) to a product of electromag-
netic currents Jµ between quark states �ψ � p �� ,

Wµν
�
p � q ����� ψ � p � � Jµ

�
q � J†

ν
�
q � �ψ � p ��� ∑

m
C � m �µν � i � µ1 � � � µn

�
q ��� ψ � p � ��� � m �i � µ1 � � � µn

�ψ � p ���� (2.1)

The lower line is a decomposition in terms of local operators � � m � , which characterise the nucleon
structure. The index i � 1 ��� 16 specifies the Dirac structure, µ1

��� µn indicate the momentum
components involved, and m distinguishes operators with the same symmetry. Note that the corre-
sponding Wilson coefficients C� m � depend solely on the transfer momentum q.

A truncation of this expansion at some low operator dimension requires the following scale
separation,

p2 � q2 �! π
a " 2 � (2.2)

So far we have been using periodic boundary conditions for the gauge field. Thus a sizable lattice is
required to have a set of small momenta p2 available. If this scale separation is realised, it justifies
a truncation of the OPE (2.1), which cuts off operators with high derivatives, i.e. high powers of p.
Here we consider quark bilinears with up to 3 derivatives,

ψ̄ Γiψ � ψ̄ ΓiDµ1ψ � ψ̄ ΓiDµ1Dµ2ψ � ψ̄ ΓiDµ1Dµ2Dµ3ψ � (2.3)
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where Γi runs over a basis of the Clifford algebra. This still amounts to an apparently frightening
set of 16 � ∑3

d � 0 4d � 1360 operators. However, we choose the isotropic transfer momenta

qa
� π

4a

�
1 � 1 � 1 � 1 � � � qa � � 4 � 1 GeV � �

qb
� π

3a

�
1 � 1 � 1 � 1 � � � qb � � 5 � 5 GeV ��� (2.4)

In this case the symmetry reduces the set of operators to only 67 equivalence classes [5]. We denote
them as C1

��� C67, which refer to an ascending number of derivatives:

C1 : no derivative � vanishes in the chiral limit � multiplies ψ̄11ψ
C2
��� C6 : one derivative � Bjorken scaling ∝ 1 � q2

C7
��� C16 : two derivatives � vanish in the chiral limit

C17
��� C67 : three derivatives � Bjorken scaling ∝ 1 � � q2 � 2 �

The coefficients of terms with an even number of derivatives vanish at quark mass m � 0 due
to chiral symmetry. In the Bjorken limit of large q2 the coefficients of terms with one (three)
derivative(s) are expected to scale as Cm ∝ 1 � q2 (Cm ∝ 1 � � q2 � 2 � . Some explicit terms are given in
Ref. [5]; for a comprehensive description we refer to Ref. [6].

To separate the scales even better, we have now implemented twisted boundary conditions:
thus very small p2 become accessible, which enables us to use q2 further below the momentum
cutoff squared [6]. This allows us to consider for instance q � π

6a

�
1 � 1 � 1 � 1 � .

3. Results for the Wilson coefficients

In our numerical study we analysed configurations that were generated in the quenched ap-
proximation with the Lüscher-Weisz gauge action in a volume V � 243 � 48, with a physical lattice
spacing a � 0 � 075 fm. To provide finite OPE matrix elements, as they occur in eq. (2.1), we fixed
the lattice Landau gauge; this is also favourable to reduce the statistical noise.

For the valence quarks we used overlap fermions with the parameter ρ � 1 � 4 (negative mass
of the Wilson kernel) at a bare quark mass of 0 � 028 in lattice units, which corresponds to about
73 MeV. The application of chiral lattice fermions suppresses undesired operator mixings, as well
as O

�
a � lattice artifacts.

We denote the number of p-sources as M, and the number of Wilson coefficients to be con-
sidered as C1

��� CN , with N � 67 in our case. So far we evaluated Wµν off-shell for M � 25
p-momentum sources at transfer momentum qa (on different configurations), and for M � 10 p-
momentum sources at qb. In each case this yields a system constraining the Wilson coefficients,������

�
W � p1 ����
W � pM �

�������
	 �

�������
�
� � p1 �

1
� � � � � p1 �

N� � � � �� � � � �� � � � �� � pM �
1

� � � � � pM �
N

��������
	

����
�

C1��
CN

�����
	 (3.1)

where the elements W � pi � and � � pi �
k are 4 � 4 matrices.
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Figure 1: The convergence of the Wilson coefficients as the number of the n most powerful constraints is
increased. We show the residues as a function of n for the transfer momentum qa with 25 p-sources (upper
plot), and for qb with 10 p-sources (lower plot). In both cases we see a convincing convergence before n
reaches the deterministic number 67, which confirms that the extracted Wilson coefficients are trustworthy.

In both cases the system is over-determined since 16M � N. We apply Singular Value Decom-
position as an established method to analyse such systems [7]. Roughly speaking, this methods
selects the n � N conditions with the “maximal impact” on the solution C1

� ��� � CN . A rapid con-
vergence for increasing n approves a reliable result (i.e. the remaining conditions are negligible).
With 12 singular values (analogues of eigenvalues in rectangular matrices [7]) we do observe this
feature. As an example Figure 1 shows the convergence in n for the Wilson coefficients under con-
sideration, which saturates around n � 50 for qa and for qb. In the latter case, the total number of
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constraints is lower, hence it is easier to satisfy them to a good precision. Therefore the residues1

are smaller, but the result is less reliable. Note also that q2
a
� 1

4

�
π � a � 2 is more promising than

q2
b
� 4

9

�
π � a � 2 in view of the required scale separation (2.2).
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Figure 2: The Wilson coefficients evaluated at momentum transfer qa (upper plot) and qb (lower plot). The
results are compared to the corresponding tree level values (with the same overlap Dirac operator). We
observe the same pattern, but a significant non-perturbative correction. In the chiral limit C1 and C7 ����� C16

vanish. The small values that we obtain (with light quarks) for these coefficients provide a consistent picture.

1The residue is the norm of the difference between the two sides of eq. (3.1) in the given approximation.
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There are a number of discrete rotations and reflections which leave our isotropic q-momenta
(2.4) invariant. For example this allows us to exchange W33 with W44. As a consequence, specific
pairs of Wilson coefficients belonging to different operators have to coincide; for instance the co-
efficient of � i � 33 in W33 is equal to the coefficient of � i � 44 in W44. We implemented this property in
combined fits, which have of course somewhat larger residues, see Figure 1.

We now proceed to the actual results for the Wilson coefficients obtained from W33 and W44.
The best results emerge from combined fits. They are shown in Figure 2, which also displays the
corresponding tree level values for comparison.

In the limit of zero quark mass the coefficients C1 and C7
��� C16 vanish due to chiral symmetry,

as we anticipated in Section 2. Since we are dealing with light quarks represented by chiral lattice
fermions, we are fairly close to chirality. Therefore it is a stringent consistency test that we do
obtain particularly small values for these coefficients. That property had not been observed with
Wilson fermions [4].

Finally we also test the Bjorken scaling property, which we mentioned in Section 2. We show
again the Cm obtained at qa. We compare them to the Wilson coefficients evaluated at qb, where
C2
��� C6 are enhanced with a factor q2

b � q2
a
� 16 � 9, and C17

��� C67 are amplified with the square
of this factor. The Bjorken re-scaled results are confronted in Figure 3, and we see an impressive
similarity, in particular for cases with relatively large �Cm � .
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1 derivative 3 derivatives

qa : fit for W33 and W44
qb : with Bjorken re-scaling

Figure 3: The Wilson coefficients evaluated at momentum transfer qa and qb, where in the latter case
the coefficients of terms with one or three derivatives are amplified according to the expected scaling in
the Bjorken limit. In fact the Cm are now in the same range, and we observe a very satisfactory level of
agreement.
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4. Conclusions and outlook

Our method to evaluate the Wilson coefficients non-perturbatively works successfully. We ar-
rived at conclusive non-perturbative results for a considerable set of Wilson coefficients. We are
continuing to evaluate constraints for additional q and p momenta to further tighten the control
over possible artifacts. The use of twisted boundary conditions enables us now to achieve an even
better scale separation.

In a final step, the nucleon structure function
�

is obtained by Nachtmann integration [8]
over Wµν . For instance, for the second moment this integral takes the form�

2
�
q � � 3q2�

4π � 2 � dΩq nµ �Wµν
�
q ��� 1

4
δµνWρρ � nν

� � 1

0
dx � F2

�
x � q2 �
� 1

6
FL
�
x � q2 � � � (4.1)

where the Bjorken limit is taken in the lower line. The projection vector has length n2 � 1. For a
different projection one obtains � 1

0 dx � F2
� 3

2 FL � instead. Thus the combination of different projec-
tions determines the longitudinal structure function FL

� F2
� 2xF1.

With completed data, we will obtain a fully non-perturbative and consistent evaluation of the
Nucleon Structure Functions [6].
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