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A large number of fundamental hadron structure observablesare defined in the limit of vanish-

ing momentum transfer, but at the same time cannot be directly extracted from forward matrix

elements. This is a challenge for current lattice QCD simulations, where volumes and lattice

spacings are such that the lowest accessible non-zero momentum transfers are∼ 0.15 GeV2 and

larger, making in general model-dependent extrapolationsto the forward limit necessary. Twisted

boundary conditions for the valence quarks provide the opportunity to study hadronic matrix el-

ements in dynamical lattice QCD calculations for almost arbitrary hadron momenta. We present

preliminary results for the Dirac- and Pauli form factors and the form factors of the energy mo-

mentum tensor for the nucleon very close to the forward limit, using partially twisted boundary

conditions. The calculations are based on gauge configurations generated with two flavors of

clover-improved Wilson fermions.
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1. Introduction

Form factors (FFs) and generalized form factors (GFFs), i.e. moments of generalized par-
ton distributions, play a central role in our attempt to unravel the inner structure of hadrons1.
They give direct access to a number of fundamental observables, forexample charge radii,〈r2

i 〉 ∝
d

dQ2 Fi(Q2)|Q2=0, anomalous magnetic moments,κ = F2(Q2 = 0), quadrupole moments of hadrons
with spin > 1/2, and angular momentum contributions to the nucleon spin [2],J = (A20(t =

0) + B20(t = 0))/2, which are all defined at zero momentum transfer, but require for theirnu-
merical analysis smallnon-zerovalues oft = q2 = −Q2. We note in particular that the nucleon
(G)FFsF2(Q2), B20(t) andC20(t) appear in the parametrization of matrix elements of local quark
operators always together with prefactors of∆ = q = P′−P and therefore cannot be extracted in
the forward limit,P′ = P. For example we have

〈N(P′)|Tµν
q |N(P)〉 = U(P′)

{

γ{µP
ν}

Aq
20(t)+

iP
{µσν}ρ∆ρ

2mN
Bq

20(t)+
∆µ∆ν

mN
Cq

20(t)

}

U(P) ,(1.1)

whereTµν
q is the QCD energy momentum tensor of quarks and{· · ·} denotes symmetrization.

Momenta in lattice simulations are discrete,~p = (2π/(aL))~n, and typical lowest non-zero momen-
tum components for spatial lattice extentsL and lattice spacingsa of current simulations arep =

2π/(aL) ∼ 0.3−0.5 GeV, leading to rather large minimal momentum transfers of|t| 6=0
min ∼ 0.15−

0.4 GeV2. Hence lattice studies of many important observables require extrapolationsto t = 0,
which depend in general on the chosen ansatz for thet-dependence, e.g. a monopole or dipole form,
introducing additional systematic uncertainties. Furthermore, chiral extrapolations of lattice results
based on chiral perturbation theory (ChPT) predictions for the simultaneous dependence onmπ and
t (see, e.g., [3,4]) can only be safely performed for small values of the pion massandthe momentum
transfer. Finally, due to the discrete lattice momenta, neighboring values oft are often separated
by large gaps of up to∼ 0.5 GeV2, amplifying the dependence on the parametrizations of the form

Figure 1: Illustration of pTBCs.

factors to interpolate between the lattice data points. All this
provides strong motivation for the use of partially twisted
boundary conditions (pTBCs), introduced by Sachrajda and
Villadoro [5] and Bedaque and Chen [6], in unquenched
lattice QCD studies. Twisted spatial boundary conditions
for the valence quarks,qf ,i(~x+ L~ej) = exp(i(~θ f ,i) j)qf ,i(~x)
with (~θ f ,i) j = 0, . . . ,2π, j = 1,2,3, as illustrated in Fig. 1,
provide in principle access to arbitrary values of the ini-
tial, ~pi , and final,~pf , momenta and thereby the momentum transfer by tuning of the twist-
ing angles~θ f ,i . For, e.g., zero Fourier momenta,~pF

f ,i = (2π/(aL))~nf ,i = 0, one hastTBC =

(ETBC(~θ f )−ETBC(~θi))
2 − (~θ f −~θi)

2/(aL)2, whereETBC(~θ)2 = m2 +~θ 2/(aL)2. It was shown
in [5,6] that finite volume effects in partially twisted QCD are in general exponentially suppressed,
i.e. ∝ exp(−mπL). Partially TBCs were studied for the pion in the framework of partially quenched
ChPT in [7] for general kinematics where isospin symmetry breaking effects are present, which can
however be avoided by working in the Breit frame,~θ f = −~θi , as shown in [8]. In either case, finite

1For an overview of recent progress in hadron structure calculations inlattice QCD, see [1].
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Figure 2: Dirac form factorF1 of the nucleon in the isovector channel formπ ∼ 630 MeV. The gray error
band represents a fit to the filled data points obtained for periodic boundary conditions. A fit to all data
points with|t| ≤ 1 GeV2 is represented by the blue error band.

volume effects are predicted to be small for the pion form factor in currentlattice QCD simulations
with pTBCs. Finite volume corrections from pTBCs for the nucleon isovectormagnetic moment
κu−d = Fu−d

2 (0) have been studied in partially quenched ChPT in [9], where effects as large as
∼ 20% were found for small twisting angles, at pion masses of∼ 350 MeV and in volumes of
∼ (2.5 fm)2. Since these ChPT results are only valid at low pion masses, we unfortunately cannot
directly use them to identify and correct for possible finite volume errors in our preliminary com-
putations ofF2 at a pion mass of∼ 630 MeV that will be presented below, but we have to keep in
mind that these effects may represent a significant source of uncertainty. On the upside, within its
region of applicability, ChPT allows for a model-independent, quantitative study of the finite size
effects without introducing any additional low energy constants and may therefore be of great help
in the analysis of nucleon isovector FFs in future lattice calculations. We note that pTBCs have
already been successfully employed in lattice studies of theK → π semileptonic form factor and
the pion form factor [10–12].

We have performed lattice calculations of nucleon FFs and GFFs with pTBCs inthe framework
of simulations withnf = 2 flavors of non-perturbatively clover-improved Wilson fermions and
Wilson glue. The QCDSF/UKQCD collaborations have generated configurations for four different
couplingsβ = 5.20, 5.25, 5.29, 5.40 with up to six differentκ = κseavalues perβ , corresponding
to lattice spacings as small as∼ 0.07 fm and pion masses as low as∼ 260 MeV. The nucleon
mass was employed to set the scale, and a chirally extrapolatedr0/a was used to transform results
from lattice to physical units. In this contribution, we will show preliminary results obtained for an
ensemble withβ = 5.29 andκ = 0.13590, corresponding to a lattice spacing of∼ 0.075 fm, a pion
mass ofmπ ≈ 630 MeV, and a spatial volumeV = L3 with mπL≈ 5.7. The lattice operators that are
required for the analysis of the GFFsA20,B20 andC20 were non-perturbatively renormalized [13],
and the results have been transformed to theMS scheme at a scale ofµ = 2 GeV. Some details
about the simulations and the extraction of the nucleon FFs and GFFs in lattice QCD can be found
in, e.g., [14–17]. We have implemented the TBCs for the valence quark fieldsby using modified

3
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Figure 3: Pauli form factorF2 of the nucleon in the isovector channel formπ ∼ 630 MeV. For an explanation
of the error bands see caption of Fig. 2.

link variables in the calculation of the quark propagators, as described in [18].

2. Simulation results for the Dirac and Pauli form factors

Figure 2 displays results for the Dirac form factors of the nucleon in the isovector channel.
The smaller number of filled squares represent results obtained for standard periodic boundary
conditions in the sea and valence quark sectors. Lattice data points obtainedfor pTBCs are given
by the open squares. The twisting angles were tuned such that a very smallnon-zerot =−Q2 could
be accessed, in this case|t| 6=0

min ≈ 0.01 GeV2, and that the gaps between thet-values corresponding
to the Fourier-momenta~pF = (2π/(aL))~n could be approximately evenly filled. A linear fit,F(t) =

F(0)+ 〈r2
1〉t/6, to the four lattice data points with|t| ≤ 0.1 GeV2 gives a mean square radius of

〈r2
1〉= 0.164(24) fm2, a value that is rather small and shows a comparatively large error> 10%. In

an alternative approach, the filled data points, and the combined filled and open data points were
fitted separately using a dipole ansatz,

F(t) =
F(0)

(

1− t/m2
D

)2 , (2.1)

with free parametersF(0) andmD, as represented by the solid lines and shaded bands in Fig. 2.
From such fits to the lattice data in the range|t| = 0, . . . ,1 GeV2, we find a mean square radius
of 〈r2

1〉
u−d = 12/m2

D = 0.191(2) fm2 for the combined lattice data points, compared to〈r2
1〉

u−d =

0.191(5) fm2 for the Fourier momentum (periodic BCs) based results. This indicates that pTBCs
could help to substantially reduce the error in the lattice determination of such a fundamental
observable. We note, however, that individual groups of pTBC data points, e.g. in the region
t = −0.15, . . . ,−0.35 GeV2, seem to be systematically lower than the average trend represented
by the error bands. This may indicate the presence of discretization errorsand/or finite volume
effects due to the pTBCs. Corresponding results for the Pauli form factor are shown in Fig. 3. At

4
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Figure 4: Generalized form factorA20 of the nucleon in the isovector channel formπ ∼ 630 MeV. For an
explanation of the error bands see caption of Fig. 2.

the lowest accessible non-zerot, we find a value ofκu−d ≈ Fu−d
2 (t ≈ −0.01 GeV2) = 2.88(21).

Although it is quite remarkable that a value with a statistical error below 10% could be obtained for
a nearly vanishing momentum transfer using pTBCs, it should be noted that the three data points
at−t ≈ 0.01,0.04 and 0.08 GeV2 seem to lie systematically below the average trend, as indicated
by the error bands obtained from dipole fits to the lattice data for|t| ≤ 1 GeV2. As before, this may
be an indication for systematic uncertainties related to, e.g., finite size effects,which are not yet
under control. From the dipole fits, we obtain〈r2

2〉
u−d = 0.259(10) fm2 and an anomalous magnetic

moment ofκu−d = 3.101(64) for the combined lattice data, compared to〈r2
2〉

u−d = 0.272(26) fm2

andκu−d = 3.158(160) from the fit excluding the pTBC results (represented by the open squares).
Clearly, pTBCs offer a more accurate and statistically precise determination of, e.g., the anomalous
magnetic momentκu−d, which cannot be extracted directly att = 0, however possible systematic
uncertainties must be studied in some more detail before solid conclusions canbe reached.

3. Simulation results for the form factors of the energy momentum tensor

We now turn to a brief discussion of the form factors of the energy momentumtensor, Eq. (1.1),
in the isovector channel. Thet-dependences of the GFFsAu−d

20 ,Bu−d
20 andCu−d

20 are shown in Figs. 4,
5 and 6, where the filled squares represent results obtained for periodic BCs, while the open
squares correspond to values oft that could be reached using pTBCs. Dipole fits, Eq. (2.1), re-
stricted to|t| ≤ 1 GeV2, were performed to the combined (filled and open squares) and the Fourier
momentum results separately, and are represented by the lines and error bands. Results forAu−d

20

obtained with pTBCs in Fig. 4 show some scatter but are overall compatible with the results from
periodic BCs. Of particular interest with respect to the nucleon spin structure is the direct determi-
nation ofBu−d

20 (t) in Fig. 5 at very small momentum transfer,t ≈ −0.02 GeV2, giving a value of
Bu−d

20 (−0.02 GeV2) = 0.402(39). It is very promising that a precision of∼ 10% could be achieved
so close to the forward limit. The dipole fits give somewhat larger values ofBu−d

20 (0) = 0.440(19)
andBu−d

20 (0) = 0.432(35), for the cases of the combined and the Fourier momentum lattice data,

5
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Figure 5: Generalized form factorB20 of the nucleon in the isovector channel formπ ∼ 630 MeV. For an
explanation of the error bands see caption of Fig. 2.

respectively. Figure 6 shows that the inclusion of the pTBCs data points in the fit does not nec-
essarily improve the statistical precision, but still may lead to a more accurate description of the
t-dependence. While the filled squares are mostly compatible with zero in this case, the pTBCs
results point towards small negative values ofC20 for |t| ≤ 1 GeV2. Accordingly, the dipole fit to
the full set of data points tends to negative values in the forward limit, though with rather large
statistical uncertainty.

4. Conclusions

Employing partially twisted boundary conditions, we have performed a first direct calculation
of the nucleon form factorsF1 and F2 and of the form factors of the energy momentum tensor
A20,B20 andC20 in the isovector channel at very small non-zero values of the momentum transfer
squared,|t| ' 0.01 GeV2. For the given ensemble withmπ ≈ 630 MeV andmπL ≈ 5.7, we were
able to achieve a good statistical precision of/ 10% for Fu−d

2 (t) andBu−d
20 (t) very close to the

forward limit at−t ≈ 0.01− 0.02 GeV2. Lattice data points obtained for pTBCs show in some
cases more scatter and possible systematic deviations from the average trends, which may be an
indication for discretization and finite volume effects [9]. These will have to be investigated further
before firm conclusions can be drawn from our results concerning thestructure of the nucleon at
very low momentum transfer.
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