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Nucleon structure functions can be observed in Deep InelSsattering experiments, but it is
an outstanding challenge to confront them with fully nomteative QCD results. For this pur-
pose we investigate the product of electromagnetic cus(grith large photon momenta) between
quark states (of low momenta). By means of an Operator Ptdéiyzansion the structure func-
tion can be decomposed into matrix elements of local opesatmd Wilson coefficients. For
consistency both have to be computed non-perturbativedye /e present precision results for
a set of Wilson coefficients. They are evaluated from profmagdor numerous quark momenta
on the lattice, where the use of chiral fermions suppressedesired operator mixing. This over-
determines the Wilson coefficients, but reliable results lva extracted by means of a Singular
Value Decomposition.
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1. Deep Inelastic Scattering

Historically, Deep Inelastic Scattering gave first evidetitat quarks are in fact physical ob-
jects. More generally it provides insight into the hadroruature functions, and thus into the
distribution of energy and spin among the hadron constitugsee Ref. [1] for a recent review).

Here we focus on thaucleon structure functionsyhich can be observed for instance by hard
leptonic scattering dominated by one-photon exchangekedsted below. This type of scattering
only involves one quark, hence chirality is conserved.

Nucleon Nucleon

Despite the high energy in this process, perturbative QGE3 dot lead to fully satisfactory results.
In particular, power-like IR divergences occur, which igngie notorious renormalon ambiguities
[2]. A consistent evaluation of the nucleon structure fioxcfrom first principles of QCD has to
be fully non-perturbative. Hence it is a challenge for tatstudies, and the goal of our project.

2. Nucleon structure functions on the lattice

We start from the general ansatz for moments of a latticesmmctructure function,

(@) = c? (ag)Aa(@) + C(4);fq)A4(a) + ... {higher twist§ , 2.1)

wherea is the lattice spacingy is the photon momentum being transferred) are Wilson coeffi-
cients andA, are matrix elements (their Lorentz structure is factoret). ofraditionally the latter
are computed by lattice simulations, whereas the coeftic@H are evaluated perturbatively, since
they only depend on the large photon momentum. Howeverjstensy strictly requires the non-
perturbative evaluation of both factors [3]. Here we préggracise numerical results which are
relevant forc(? . Further steps in this project, leading.w (¢?), are reported in Refs. [4, 5].

3. Lattice technicalities

We used configurations that were generated quenched withidaher-Weisz gauge action on
a lattice of size 2%x 48 atf3 = 8.45. Based omg = 0.5 fm, the lattice spacing has been determined
asa = 0.0951) fm [6].} We fixed the lattice Landau gauge, which is essential forioipig finite
values for the matrix elements; moreover gauge fixing isfbktp reduce the statistical noise.

Our analysis involves two flavours of degenerate valencekguavhich are represented by
overlap fermions (we apply an overlap Dirac operator coietd with a Wilson kernel and a

1The error will be ignored in the following. An alternative thed based off; yieldeda ~ 0.105 fm [7].
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negative mass shift g = 1.4). The use of chiral quarks suppres€¥s,) lattice artifacts, as well
as undesired operator mixing. The latter virtue is pardidylimportant in this project; for instance
it is essential to disentangle the contributions of highastt, cf. eq. (2.1).

Our study includes two bare masses for the degenerate qasokif,

Mg =0.011~29 MeV — my;~ 280 MeV and mq=0.028~ 73 MeV — my~ 440 MeV.

4. OPE on the lattice

We use standard lattice electromagnetic currépit would be computationally expensive to
work with currents, which are conserved in the frameworkwafrtap quarks). Thus one renormal-
isation constant4,) will be needed [4, 5]. The Operator Product Expansion (OfREEpmposes
the product of two such currents between quark states asvigll

OPE

Waw = (@(p) 3 (@I @ W(P) =T Cli (@ (@(R)ET Jw(p)  (4)
m,1,n

c(™ : Wilson coefficients, independent of the target and theeetd the quark momentum

0™ - local operators, relevant to describe the nucleon structure

Y;j : momentum componerg,; appears in the operator

i=1...16: Clifford index , m: index for operators with the same symmetries.

A truncation of the OPE in eq. (4.1), and small lattice actifarequire thecale separation

p? < f < (m/a)? . (4.2)
Assuming this separation to hold, we consider quark bilimeg toO(|p|3),

yry, ¢rog,y, ¢rogDyy, @rbyDy,Duy . (4.3)

The symboll” captures the full Clifford structure, hence this set inelsi@ frightening number of
16- 23:04" = 1360 operators. However, we choose specific photon mométtia diagonal form
q O (1,1,1,1), which implies a high level of symmetry. To be explicit, wensaler three photon
momenta,
aq = 7_6T’ gP|~22GeV, aq? = IZT, q?|~33GeV, adq) = 7—;, 19®| ~ 4.4 GeV.
For g? andq® we implement standard boundary conditions (b.c.),dititis applied along with
twisted b.c. for the quark fields: in addition to the Euclide@ne direction, also two of the spatial
directions are antiperiodic. This gives access to smalsromenta, which are needed in view of
condition (4.2), sincégY| is not that large.

Thanks to our diagonal choice qgfthe set of operators reduces to onlyegjuivalence classes
[8]. We classify the corresponding Wilson coefficients adawg to the number of derivatives in
the operators that they multiply:
C; : no derivative, multipliesp1ly C,...Cs : one derivative, Bjorken scaling 1/¢?
C;...Cy6: two derivatives C17...Cs7: three derivatives, Bjorken scalirg1/(q?)°.
The coefficients of operators with an even number of devigatvanish atmq = 0 due to chiral
symmetry.
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In each case, our evaluation @f .. .Cg7 involves numerous quark momenga, ..., pv, See
Table 1.
q q@ q®
my=0011} 15| 14 | 31| 10 | 31| 10
mg=0.028 | 15| 12 | 32 8 |31 8

Table 1: The numbeM of quark momenta, an8\4,: of Singular Values (see below) that we used for the
determination of the Wilson coefficients in each casefor each quark mass and photon momentum.
Forq, i.e. with twisted b.c., there are legsmomenta with smalp?, hence lesp-momenta
are needed for converging results. Thus we measyre— given in eq. (4.1) — off-shell foM =
15...32 quark momentum sources to determine the Wilson coeffgten ..Cg7. Schematically
they are given as (the elemekt$P) and @Ep‘) are 4x 4 matrices capturing the spin components)

w(pr) o .o c
1
- . ' (4.4)
WP ol . glow | N7

Since 16/ > 67 in all our cases, the system is strongly over-determitézhce we apply
a Singular Value Decomposition: it selects & 67 conditions with “maximal impact” on the
solutionC; ...Cgs7. We order the corresponding Singular Values (SV, analoguesgenvalues)
hierarchically. If their magnitude drops rapidly one hasfarable conditions to extract a reliable
result. Fig. 1 illustrates that this is in fact the behavithat we observed.

T T _ T I(l) T N T T T T _I T (2)
& mg=0.011, ¢, W3i;:i ¥ " mg =0.011, g(s) :
100 | combined fit o 100 ¢ mq=0028. ¢ 1
] %]
3 [
3 Ei
S @
> =
s =
2 3
2 [=))
= £
» n
0.01 L L L 1 1 1
0 10 20 30 40 50 60 70
n n

Figure 1: Examples for the rapidly dropping magnitudes of the SV. Duetlection and rotation symmetries
some Wilson coefficients coincide theoreticatlyy.the coefficients ot; 33 in Waz, and ofJ; 44 in Was. We
determine the corresponding SV separately, and by a comhfitnevhich implements this identity. Left:
separate and combined SV fog = 0.011,q'Y). Right: combined SV for both quark masses affd, .

As our next criterion, Fig. 2 shows how the squared residues.i(4.4) decrease as the number
of SV involved rises froom=1...67.
5. Results for the Wilson coefficients

Solving eq. (4.4) foC; ...Cgs7 employs the inverse SV, so including all of them is not optima
the tiny SV, with large relative noise, tend to distort theule Therefore we computed the Wilson
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Figure 2: Squared residue®? for the operatoyyDy (as an example) against the numhef conditions
(corresponding to the SV). The plots above show results pérsee and combined fits (as in Fig. 1), for
q® andmg = 0.011 (left), andmg = 0.028 (right). The plot below on the left shows the normalis&dor
combined fits am = 0.028. The final plateau value (at= 67) is compared in the plot below on the right:
its decrease for increasing is roughly linear, so that the relative error remains appnaely constant.

coefficients with a gradually increasing number of 8% 1...67; an example is shown in Fig. 3
(left). It displays the most important coefficienig. those of operators witbnederivative. The
only common plateau occurs in the range of. 23 SV included. To check if this plateau holds
for all 67 coefficients, we compare the full set obtained witli0 and 13 SV in Fig. 3 (right). We
observe a striking confirmation of this plateau. The redolt& similar for othermy andq. The
optimal number of SV in each case, considering also the itrgrae# [5], is displayed in Table 1.

Next we verify if our number of quark momenta is sufficient: efeeck if the results change
significantly as we omit part of them. Fig. 4 shows (with exéespthat this is not the case here:
convergence for an increasing numbepahomenta is well confirmed.

In Fig. 5 (plots above) we compare our results for the Wilsoefiicients aig® to the cor-
responding values at tree level. As we mentioned in Sectj@ 4which multiplies 11y) and
Cy...Cy (attached to operator§™ with y, ;) vanish at tree level in the chiral limit. We mea-
sured consistently small values for these coefficientsclvimdicates that approximate chirality
and operator mixing are indeed under control, in contraptagious studies with Wilson fermions
[9]. Generally the measured Wilson coefficients follow tlaeng pattern as their counterparts on
tree level, though with significantly reduced absolute galu

Fig. 5 (plots below) show the commonly applied Wilson cogdfits ratiosC,/Cl'ee 'evél The
dependence on the quark mass is weak, which approves agsim @proximate chirality. On the
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Figure 3: Results for the Wilson coefficients i, = 0.011 andq® as a varying number of SV is included.
Left: the coefficients to the 1-derivative operators fioe 1...67 reveal a single plateau for=7...13.
Right: the full seC; ...Cg7 agrees very well fon = 7, 10 and 13, confirming this plateau generally.
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Figure 4: The Wilson coefficients determined from a varying numberhef quark momenta. We show
results formg = 0.028, atq¥ with 11, 13 or 15p-momenta (left) and aj® with 19, 26 or 32p-momenta
(right). This hardly changes the results for the Wilson Goigints, hence their convergence appears safe.

other hand, we observe a strong dependence on the photonnuomg as expected. Ref. [5]
discusses the detailed comparison with the theoreticalheeted Bjorken scaling behaviour (cf.
Section 4).

6. Conclusions and outlook

We have evaluated a set of Wilson coefficients non-pertivddgt(partial result were antici-
pated in Refs. [8]). They refer to twist 2; for the photon maraethat we used, contributions by
higher twists are suppressed [9]. The application of clétiice quarks has been crucial to control
the operator mixing. We demonstrated in detail that ourltesue reliable regarding the number
of SV and quark momenta included in the evaluation. The nredsilson coefficients follow the
pattern of their counterparts at tree level, though withllnabsolute values.

The structure functionZ (in eq. (2.1)) is now obtained by means of Nachtmann integrat
overW,, (cf. eq. (4.1)). This is worked out for a single quark in Ref].[ The final step to a
fully non-perturbative moment of the nucleon structurection — given by products between the
matrix elements [10] and the Wilson coefficients presentze k- is carried out in Refs. [5, 11].
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Figure 5: Above: measured Wilson coefficients compared to their &eel values fog?. Coefficients for
operators with an even number of derivatives take congigtemall values. Below: the ratiag,/Ctree leve!
(for non-vanishing denominators). They depend only mitithythe quark mass.
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