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Abstract

A process for optimal design of a room temperature Whispering Gallery mode sapphire resonator

has been developed. In particular, design rules were determined to enable choice of the optimum

azimuthal mode number and resonator radius for a given resonance frequency. The coupling

probe design was investigated and it was found that straight antenna probes aligned radially

and positioned in the mid-plane of the resonator gave the highest unloaded Q-factors due to

minimized probe losses. We noted that when coupling through this technique (as compared with a

perpendicular-positioned probe) the mode standing wave pattern would lock to some asymmetry

in the crystal resonator itself and not to the probe. This was confirmed by noting that the coupling

could be altered over a significant range by mere rotation of the resonator. Following these optimal

design rules we were able to measure the Q-factors of quasi-TE and quasi-TM modes with high

precision in four cylindrical sapphire resonators at room temperature. The highest attainable

Q-factor was (2.1± 0.1)× 105 at 9 GHz in a quasi-TM mode.

Keywords: sapphire resonator, Q-factor, Whispering Gallery modes, coupling probes

∗Electronic address: john.hartnett@adelaide.edu.au

1



I. INTRODUCTION

Low phase noise oscillators are crucial for modern radar and telecommunication systems.

Extremely low phase noise of the order of -160 dBc/Hz in the microwave regime at Fourier

frequencies near 1 kHz has been demonstrated by [1, 2] with advanced phase noise reduction

techniques using interferometric carrier suppression. The high quality-factor of Whispering

Gallery (WG) sapphire resonators (Q > 105 at room temperature) was the essential element

of this achievement. Nonetheless, at low Fourier frequencies (below 1 Hz), the best quartz

oscillators still demonstrate superior phase noise performance over the sapphire devices [3, 4].

In contrast, at cryogenic temperatures the sapphire devices can show extremely high

Q-factors together with low frequency-temperature coefficients, and thus it is possible to

obtain much improved phase noise at these low Fourier frequencies (∼ 1Hz offset from the

carrier) [5, 6]. Nonetheless, the simplicity of the room temperature oscillators demands

that one consider whether it is possible to improve the close-in-to-the-carrier phase noise by

optimizing the quality-factor of the dielectric resonator [7–12]. The highest Q-factor yet

reported in a sapphire dielectric resonator near room temperature (269K) was 2.3×105 [3, 13]

and in this paper, we report on the processes necessary to achieve this performance.

II. SAPPHIRE RESONATORS

The microwave losses in four different cylindrical sapphire samples were measured using

the Whispering Gallery mode method [14, 15] and the loss tangent results reported [16].

Two of the resonators were manufactured by Crystal Systems (CS) with dimensions 24× 22

(diameter [mm] × height [mm] respectively) and 50×20−24. The latter had a tapered height

ranging from 24.50 mm in the center down to 20.27 mm at the diameter. One resonator

was manufactured by Union Carbide (UC) with dimensions 45 × 30 and the fourth was

Russian grown with dimensions 40 × 20. We measured the properties of the fundamental

WGHm,0,0 mode and WGEm,0,0 mode families in all four resonators at room temperature.

In the Russian grown sapphire the WGHm,0,0 mode family was also measured at 274 K. In

addition theWGH9,0,0 and theWGE7,0,0 modes were measured as a function of temperature.

The resonators losses, coupling and mode frequency were analyzed in reflection with

a coupling factor set to be significantly less than 1. The measurement setup is shown
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FIG. 1: The measurement setup, shown here for measurement of resonance modes in reflection

using a loop probe through the side shield. Straight antenna probes were also used from the side

as well as through the top shield.

in Fig. 1. A stable swept microwave probe signal was created by mixing the output of

an HP 8673G synthesizer with a Marconi 2030 synthesizer (Microwave source in Fig 1).

Custom designed software controlled the sweep and fitted a Lorentzian to the resonance

line shape of the reflected signal [17] to produce an automated measurement procedure.

The resonance frequencies were determined by the frequency at minimum reflection, and

the loaded Q-factor was calculated from the bandwidth determined by the Lorentzian fit.

Once the resonator reached temperature equilibrium, the program was left to repetitively

measure the frequency, Q-factor and coupling. All synthesizers were phase-locked to an

external high-stability reference source. The coupling (β) was determined from,

β =
1−

√

Pon/Poff

1 +
√

Pon/Poff

, (1)

provided undercoupled. Here Pon and Poff represent the power on and off resonance, re-

spectively, which were determined with a tunnel diode detector operating in a low power

regime, well below saturation.

In the case where temperature control was necessary, the resonator was housed in a

vacuum chamber thermally contacted to a thermoelectric (Peltier) module. One side of

Peltier element was contacted to the cavity, while the other was heat sunk to the outside.

The temperature was measured using a lock-in amplifier to sense the imbalance signal from
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FIG. 2: The unloaded Q-factor of the WGHm,0,0 mode measured in 4 different sapphire samples at

296 K, normalized to a frequency of 9 GHz for each mode of azimuthal mode number, m, according

to Eq. (1). The smooth fitted lines are a guide to the eye only.
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FIG. 3: The unloaded Q-factor of the WGEm,0,0 mode measured in 4 different sapphire samples at

296 K, normalized to a frequency of 9 GHz for each mode of azimuthal mode number, m, according

to Eq. (1). The smooth fitted lines are a guide to the eye only.

a custom-designed ac-bridge which used a thermistor in one arm. The output of the locking

amplifier was sent to a PID controller and then onto a thermoelectric element. The desired

temperature was set by a variable resistor in the ac-bridge. When the set point was varied

the resonator was allowed to come to equilibrium before the frequency, Q-factor, coupling

and temperature were measured. Any thermal gradients were monitored and determined

using a calibrated thermistor connected to the opposite side of the cavity from the Peltier

and control thermistor.
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III. Q-FACTOR OF SAPPHIRE

The unloaded quality factor was measured at room temperature for each mode in the

whispering gallery WGHm,0,0 (quasi-TM) and WGEm,0,0 (quasi-TE) mode families. This

data is displayed on Figs 2 and 3 respectively where we have normalized to 9 GHz according

to the following,

Q(9 GHz) = Q0 ×
f0
9
, (2)

where Q0 and f0 are, respectively, the unloaded Q-factor and the frequency (in GHz) of the

measured resonance mode.

This normalization is equivalent to keeping the aspect ratio of the resonator constant and

varying the diameter until the frequency of the chosen mode with a given azimuthal number

(m) is 9 GHz. From this it was determined that the maximum Q-factor attainable in sapphire

at 9 GHz and 296 K in a WGHm,0,0 mode is (2.1 ± 0.1) × 105 and in a WGEm,0,0 mode is

(1.3 ± 0.1) × 105, which is set by the respective dielectric losses parallel and perpendicular

to the crystal axis [14–16].

The normalization shown in Figs 2 and 3 help us see when the optimal Q-factor is reached

as a function of azimuthal mode number (m) for a chosen mode frequency (f0). This occurs

when a maximum value is reached. This is equivalent to the Q0 × f0 product becoming a

constant and therefore the unloaded Q-factor of the resonator becomes inversely proportional

to mode frequency and is limited predominantly by dielectric losses.

The additional losses seen in Figs 2 and 3 for low azimuthal mode numbers are the result of

the quality factor being partially limited by shield losses. At m ≤ 6 shield surface resistance

becomes particularly important. In one resonator the Q-factor was measured to be 1.9×105

with a polished silver-plated shield while after some time exposed to the environment in the

lab, and the silver tarnishes in air affecting the surface resistivity of the shield, the measured

Q-factor degraded to 6.6×104. Only at sufficiently high values of the azimuthal mode index

m do wall losses become insignificant allowing the Q-factor to be limited by pure dielectric

losses. The errors we have quoted in the maximal Q-factors are derived from the scatter

between results obtained in the different resonators. The measurements themselves have a

random error of around 10%, which was determined by comparison between our technique

and the results derived from a vector network analyzer when the cavity was extremely

under-coupled.
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FIG. 4: A family of curves predicting the Q-factor of the WGHm,0,0 mode family in the 24×22mm

shielded sapphire resonator as a function of shield radius. Also shown is the measurements we have

made on the 20.4mm diameter resonator. The smooth fitted lines are a guide to the eye only.
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FIG. 5: The Q-factor of the WGHm,0,0 mode family in the Russian-grown 40 × 20mm shielded

sapphire resonator at both 296 K and 274 K. The smooth fitted lines are a guide to the eye only.

IV. OPTIMUM AZIMUTHAL MODE NUMBER

Using the experimentally determined loss tangent values measured at 296 K, finite element

calculations were used to predict the Q-factor of a shielded sapphire resonator with dimension

24× 22mm as a function of shield radius. Figure 4 shows these predictions along with a set

of measurements which are in close agreement with the modeling. The solid square data are

the measured Q values for the WGHm,0,0 mode family measured in the 24 × 22 resonator,

which had a shield radius of 20.4 mm. For m ≥ 7 the effects of the wall losses are clearly

negligible at 296 K as the resulting Q-factor becomes independent of the resonator diameter.

The decreasing Q factor at higher mode-numbers is associated with the increase in the loss

tangent as the frequency increases [16].

The Q-factors of theWGHm,0,0 mode family were compared at two different temperatures,
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296 K and 274 K in the Russian grown 40×20 resonator (see Fig. 5). At 274 K the maximum

Q-factor of (3.0 ± 0.2) × 105 occurs at m = 7 and 7.44 GHz. At 9.00 GHz with m = 9 the

Q-factor was measured to be (2.7± 0.2)× 105, which is 17% higher than cited in [13].

V. DESIGN RULE

In order to facilitate construction of an optimized resonator we have developed a number

of design rules. First one should choose an operational frequency which determines the

resonator size given a minimum azimuthal mode number. If one also has constraints on

shield size then it is possible to predict the maximum Q-factor before construction.

Figure 6 shows the linear relationship between the resonator’s diameter and the azimuthal

mode number at constant frequency, where we have chosen 9 GHz as the desired frequency.

The slight deviations from the line are the result of the different aspect radios of the four

resonators measured. If one chooses a sufficiently high mode number then the Q-factor

will not be dependent on wall losses, which in turn means that the mode frequency will

be minimally dependent on the position and surface reactance of the shield. One predicts

that the resonator will thus be less sensitive to external vibrations, which can modulate the

spacing between the resonator and the shield and probe. In this case, m = 8 means the

diameter of the resonator should be 35 mm (indicated by broken lines in Fig. 6). Choosing

a higher mode-number results in a larger resonator which will be more prone to vibration

and cost more without any net benefit to the Q-factor. If one wishes to design a resonator

with a different mode-frequency then it is possible to linearly scale the curve shown in Fig.

6 i.e. for a 4.5 GHz mode with m = 8 the diameter of the resonator should be 70 mm.

Figure 7 shows the linear dependence for optimum Q-factor on a resonator’s diameter at

constant frequency using the same measured data at 9 GHz. Provided the resonator shield

radius is sufficiently optimized, the Q-factor may be read off as a function of resonator

diameter. Optimized here means that the shield radius is optimally chosen as illustrated in

Fig. 4. For the chosen azimuthal mode number the shield radius is sufficiently large enough

such that contributions from the shield (wall losses) are minimized. This means the Q-factor

Qs = G/Rs due to the shield is large because the Geometric factor (G) is large. Here Rs
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represents the surface resistivity of the shield. The measured Q-factor is related by,

1

Q0

= pǫ||tanδd|| + pǫ⊥tanδd⊥ +
Rs

G
, (3)

where pǫ represents the electric energy filling factors parallel and perpendicular to the crys-

tal/cylinder axis. And tanδd represent the parallel and perpendicular components of the

dielectric loss tangent for the sapphire crystal. For whispering gallery modes pǫ can be

assumed equal to either 1 or 0 depending on the dominant polarization parallel or perpen-

dicular to the cylinder axis [14, 15]. If either G is too small or Rs is too large the third term

in Eq. (3) will dominate over the first two.

The measured data point at diameter of 24 mm indicates a low Q-factor due to a contri-

bution from wall losses, which we can reduce by increasing the shield radius (to at least 26

mm for the WGH mode at 9 GHz with m = 5 as shown in Fig. 4), and hence increasing G,

as indicated by the open circle in Fig. 7. However, for m > 7 as long as the shield radius is

larger than 20 mm then the shield has negligible effect on the Q-factor. For example, at a

diameter of 35 mm (m = 8) from Fig. 7 we predict a Q = 2.17×105 at 296 K. This Q-factor

can be increased even further by cooling the resonator with a thermoelectric cooler. This

means the dielectric losses in Eq. (3) are decreased. Based on the temperature dependence

of the loss tangent [16] we predict this mode will have a Q-factor of 3×105 at 264 K. This is

confirmed by the measurements of the Russian grown crystal at two different temperatures.

In Fig. 5 we see that for m > 7 the unloaded Q as a function of azimuthal mode number

m is only limited by the dielectric losses in the material and hence not limited by the shield

losses.

VI. COUPLING PROBES

We investigated microwave coupling to the resonator using both top and side mounted

probes (Figure 8). In the past it was found that the probe position could be a critical feature

in determining the azimuthal location of the field anti-nodes in the standing wave microwave

mode. Certainly this has been our experience with constructing cryogenic resonators [19].

In circumstances where the field probe was sufficiently weakly coupled to the resonator it is

possible for the mode field to lock itself to some imperfection in the resonator crystal which

break the cylindrical symmetry (i.e. a tilt of the crystal axis or a manufacturing flaw).
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Thus the azimuthal “petal” pattern of field maxima and minima are not determined by the

position of the probe but by some feature in the crystal.

We measured the highest unloaded Q-factor in a WGH-mode by coupling through the

top of the cavity using a straight electric-field antenna probe parallel to the cylinder axis (Ez

probe) to the dominant electric field component (top in Fig. 8). This method introduced

less probe losses than coupling with an antenna probe from the side (Er probe) to the

electric-field component in the azimuthal (φ) direction, which is very weak in a WGH-mode

(side ports 1 and 2 in Fig. 8). We also tried to couple to the resonator using a magnetic-

field sensitive loop probe in the medial plane of the resonator (from the side, see Fig. 1) to

couple to the azimuthal magnetic-field component and noted that this was also 10% below
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FIG. 8: Coupling probes were positioned as shown. The two side ports were at an azimuthal angle

φ = 0 and 180 degs, while the top port was at 90 degs.

the Q-factor measured using the top mounted electric field probe. When examining coupling

to a WGE-mode we found optimal coupling, and minimal probe losses when using a straight

antenna probe that coupled to the Er field in the median plane of the resonator (side port

1 or 2 in Fig. 8).

When coupling to a WGH-mode through only the Ez probe from the top it was possible

to observe that the coupling was periodically modulated between a very small value and

some maximum value as a function of the azimuthal angle of the probe (φ on Fig. 8). This

indicates that the electromagnetic standing wave pattern is locked to some feature of the

crystal and not to the excitation probe. When at least one Er probe was introduced in the

medial plane it was observed that the field pattern locked to the position of that probe. In

fact, for the WGH-mode when the Er probe is positioned at the azimuthal angle (φ) of 90◦

with respect to the Ez probe, then one notes that the Ez probe is at a node in the field for

an even mode-number mode.

On Fig. 9 we demonstrate the effect of this observation. We show the coupling of the

WGH-mode family to the Ez probe. The coupling to this WGH family through a side port

Er probe (set so that it has unity coupling for the WGE-mode family) was about 25 dB

less [18]. Nonetheless, it was observed that the presence of this weakly coupled side probes

presence was sufficient to determine the azimuthal location of the mode-field maxima. We

see that the even-numbered m modes have a small coupling because the Er probe has forced

a node at its location which consequently sets a node at the top coupling port positioned

90◦ degs around the circumference. In the case of odd-numbered m modes, we note that

there must be a field anti-node at the location of the top coupling port which is evidenced

10
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FIG. 10: The resonator coupling measured in reflection from the side port with the perpendicular-

positioned probe for the family of WGEm,0,0 modes at 296 K. The antenna probe in this case is

parallel to the dominant electric field component perpendicular to the crystal axis.

by the fact that the coupling to these modes is much higher. We note that the coupling falls

off for higher mode-numbers because the scale length of the evanescent field is shorter for

these more confined modes.

When coupling to the WGEm,0,0 mode family with a radial electric -field probe in the

medial plane (i.e. coupled to the Er component) it was observed that the electromagnetic

mode was positioned so that there was a field maxima at the position of the exciting probe.

Figure 10 shows that the coupling on this port reduces as a function ofm (or frequency f) due

to the higher confinement of the field for higher mode numbers. We can obtain a scale length

for the field defined as − ln(β)/m, which for this WGEm,0,0 mode data, evaluates as either

1.1 (m ≤ 9) or 1.0 (m ≥ 10). The exponential fall off arises because the evanescent field
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GHz) mode (curves 2 and 3) in the Russian grown 40 × 20 resonator measured as a function of

temperature between 270 K and 350 K. The power law temperature dependence are shown for side

and top coupling ports.

has an exponential dependence on the distance of the probe from the resonator normalized

to the appropriate scale length of the mode. In this case, since the probe distance is fixed

for all modes it leads to an exponential dependence on the scale length itself. The cause of

the offset between m = 9 and 10 was not determined but is potentially associated with a

movement of the field maxima for these higher frequency modes.

The coupling on the side ports to the WGE7,0,0 mode and coupling on the top port to

the WGH9,0,0 mode was measured as a function of temperature between 270 K and 350 K

(see Fig. 11). From a comparison with the unloaded Q-factor data for these modes [16],

within experimental error, the WGE-mode data has the same power law dependence for

coupling (β) and Q. Therefore, the ratio of β/Q is constant leading to the conclusion that

the observed change in coupling is entirely due to the changes in the internal losses in the

resonator. However, for the WGH-mode data this was not observed to be the case. The

coupling has a stronger dependence than the Q-factor and hence, the ratio of β/Q is not

constant. A possible explanation for this is that since the side probes lock the position of

the field pattern, the top coupling probe is not locked exactly to the maxima of the field

energy and as the resonator is cooled the geometry changes slightly and the field pattern

rotates slightly during cooling.
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VII. CONCLUSION

The quality factor of 4 different sapphire resonators have been measured and compared

near room temperature. We have developed simple resonator design rules based on these

measurements. We have also explored optimal coupling architectures and it was found that

straight electric-field antenna probes resulted in lower microwave losses than when magnetic-

field loop probes were used to couple to some mode families. We also examined in detail

which particular features determine the azimuthal location of the field maxima in the mode

pattern. We noted that in some circumstances it was the coupling probes that determined

this location although when we optimally coupled to the mode we discovered that it was

some cylindrical asymmetry in the resonator itself that determined the field pattern. These

explorations have allowed us to determine the optimum Q-factor for a microwave sapphire

resonator at room temperature.
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