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Abstract

This thesis covers two main topics in quantum computing: universal quan-

tum computation and quantum search. We first demonstrate how a quan-

tum harmonic oscillator can be used to implement the universal set of quan-

tum gates and thereby serve as one possible building block for a universal

quantum computer. We then address the core and primary focus of this

thesis, the theoretical construction of a machine that can compute every

computable function, that is, a universal (i.e.programmable) quantum com-

puter. We thereby settle the questions that have been raised over the years

regarding the validity of the UQTM proposed by Deutsch in 1985. We then

demonstrate how to interface the universal quantum computer to external

quantum devices by developing programs that implement well-known oracle

based algorithms, including the well-known Grover search algorithm, using

networked quantum oracle devices. Finally, we develop a partial search

oracle and explore symmetry based partial search algorithms utilizing this

oracle.
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1

Introduction

1.1 Theoretical Foundation of Quantum Computation

Quantum computing has been and continues to be an active research area [1]. As

best exemplified by Shor’s factorization algorithm [2], quantum computing algorithms

have the potential to achieve significant speed-ups over their classical counterparts. In

fact, some have gone as far as suggesting that quantum computability can potentially

surpass classical computability by solving problems such as the famous halting problem

[3].

It is not yet clearly understood what quantum properties give rise to speed-ups in

quantum algorithms. At first glance, it would appear that the quantum properties of

superposition and entanglement are responsible and they may very well be. However,

superposition can also be realized in classical optical systems (see [4] for an example

of a classical optical implementation of Grover’s search algorithm [5] using lasers) and

entanglement is far from being well understood. In fact, the theory of entanglement

is an active research area in and of itself. In any case, whether entanglement plays a

crucial role in quantum computing is still not clear (see [6] and [7] or [8] for example).

The popular quantum gate array (QGA) model [9] has been shown to be universal

in the sense that any function can be implemented using a set of single-qubit gates (X,

Y, Z, and the T or π
8 gate) and the two-qubit CNOT gate much as the two-bit NAND

gate is universal for classical Boolean circuits (see [1] for example). This is a crucial

result because it means that quantum computers can compute any function that can

be computed by classical computers and in some cases with a significant speed-up. In

1



1. INTRODUCTION

this thesis, we explore this gate level aspect of universality by demonstrating how a

quantum harmonic oscillator can be used to implement the universal set of quantum

gates. A quantum harmonic oscillator can serve as the building block to implement a

universal quantum computer like the one that we construct in this thesis to resolve the

long-standing “halting problem” of quantum computers.

Perhaps due to the nascent nature of the field, there are many models or frameworks

of quantum computing and more are still being introduced. In addition to the popular

QGA model, other proposed models of quantum computation include the Quantum

Adiabatic Computing (QAC) [10], Ground State Quantum Computation (GSQC) [11],

Holonomic Quantum Computation (HQC) [12], Measurement-Based Quantum Com-

putation [13], and Quantum Walks [14] just to name a few.

The basic idea behind QAC is as follows. One first defines an initial Hamiltonian,

call it H0, with a well defined ground state. A “problem” Hamiltonian, call it HP ,

is then defined whose ground state (that is both unique and guaranteed to exist) cor-

responds to the computational problem that is to be solved. Stated differently, HP

encodes the problem to be solved. The Hamiltonian is then evolved adiabatically from

H0 to HP . By the quantum adiabatic theorem, if the system starts out in the ground

state of H0, the evolution is slow enough, and the energy levels are finitely spaced (i.e.

there are non-zero energy gaps between energy levels) throughout the evolution, then

at the end of the evolution, the system will be very close to the ground state of HP . In

other words, the system will be in the “solution” state for the problem to be solved. A

measurement of the final state then provides the solution to the problem at hand.

The QAC model has been shown to be computationally equivalent to the QGA

model [15] [16]. That is, a QAC algorithm can emulate a QGA algorithm in polynomial

time. As such, it can be said to be a universal model of quantum computing. Moreover,

it has been highlighted that QAC can be speeded up by tuning the evolution path and

by increasing the energy of the system [17]. It should be noted that because quantum

computation is necessarily reversible (due to the unitarity of quantum evolution), in

principle, it involves no energy dissipation or power consumption. Hence, the increased

amount of energy to speed up the evolution remains in the system and can, in principle,

be recovered after the computation has been completed. Of course, in practice, some

energy will be lost in various physical processes associated with running the quantum
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1.1 Theoretical Foundation of Quantum Computation

computer but the point is that the computation itself does not consume the increased

energy. The increased energy simply enables a speed up of the evolution.

Classical computing science complexity analysis considers space (e.g. circuit or

memory size) and time (e.g. number of gate stages or operations) resource usage to

characterize algorithmic complexity. QGA algorithms are generally characterized and

analyzed in terms of the number of quantum gates stages as a function of the problem

size. For example, the Grover search algorithm is characterized by the number of oracle

calls. QAC algorithms are usually characterized by the evolution time as a function

of the problem size. However, since quantum computation can be arbitrarily speeded

up by using energy, it needs to be treated on the same footing that space and time

resources are treated in classical computing complexity analysis. The role that energy

plays in speeding up algorithms appears to have been noticed relatively recently (see

[17] for example) but has been restricted to the QAC framework. Yet, energy can speed

up QGA algorithms and, in fact, any quantum computer based on quantum evolution.

Not all proposed models for quantum computation rely on time evolution of quits,

however. GSQC is such an example. The basic idea behind GSQC is to produce a

ground state that spatially encodes the entire temporal trajectory of the algorithm

and the steps in the computation correspond to the development of the ground state

between parts of the Hilbert space instead of between time points. This model requires

a larger number of quits and thus exchanges space complexity in exchange for increased

robustness against decoherence.

The HQC model is based on Berry’s discovery [18] that the wave function of a

quantum system retains the memory of its evolution in its complex phase. Apart from

the contribution due to the dynamical evolution, this complex phase only depends on

the geometry of the traversed path in Hilbert space. This geometric phase is resilient

to certain types of errors and thus the idea is to exploit this inherent robustness as

a means of constructing fault-tolerant quantum computing components. In the HQC

model, the Hamiltonian of the system is varied adiabatically in parameter space to

generate arbitrary unitary operations. What is unique about this evolution is that the

computational subspace remains degenerate throughout the computation.

Measurement-Based Quantum Computation models were devised to utilize unique

features of quantum mechanics, namely entanglement and teleportation. The basic idea

behind these models is to use a special entangled state to realize the controlled-NOT
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gate via teleportation. One-way quantum computation (1WQC) [19], for example, is

based on these ideas. The computation begins by preparation of a special entangled

state called a cluster state. The cluster state is essentially a matrix of gates that acts

as the computation gates and controls the information flow. The computation steps

proceed by making single quit measurements. This model is considered to be simpler

to realize in practice. 1WQC has also been shown to be universal [20].

As mentioned above, all these models of quantum computing have been shown to be

“universal” in the sense that a machine can be constructed to compute any given com-

putable function but this notion is different from the classical computer science notion

of universality. In computer science, universality refers to the fact that every com-

putable function can be computed by a Universal Turing Machine (UTM). According

to the Church-Turing Thesis, all finitely realized computing machines can be simulated

by a single machine, the UTM. Modern computers, while highly sophisticated, are fun-

damentally UTM implementations. Thus, universality is extremely important because

programmability follows from universality.

The QGA computing model is not universal in this sense because it is not pro-

grammable. A single QGA computer cannot simulate every other quantum computer.

Each QGA computer must be purpose built or configured to implement a particular

algorithm. Even QAC is not strictly programmable in this sense because the time

dependent Hamiltonian must be individually tailored for each given problem. In this

sense, currently envisioned quantum computers more closely resemble FPGAs (Field

Programmable Gate Arrays) rather than CPUs (Central Processing Units), to draw an

analogy with classical computers.

In one of the founding papers of quantum computation [21], Deutsch defined a

Quantum Turing Machine (QTM) and further claimed that there exists a Universal

Quantum Turing Machine (UQTM). These were both quantum generalizations of their

classical counterparts. The UQTM was defined to be a QTM for which there exists a

program as part of its input state that has the effect of applying a unitary transforma-

tion on an arbitrary number of qubits arbitrarily close to any desired transformation.

That is, the UQTM could simulate, up to arbitrary accuracy, the operation of any

given QTM. As its classical counterpart, a QTM contains a halt qubit that is used to

indicate whether the computation has been completed. Thus, the UQTM is truly uni-
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1.1 Theoretical Foundation of Quantum Computation

versal in the computer scientific sense in that it is programmable and able to simulate

the operation of every QTM.

Unfortunately, since its original proposal, several questions were raised as to the

validity of the UQTM. In 1997, Myers suggested that the UQTM’s halting scheme was

invalid [22]. He argued that an entanglement between the halt qubit and other qubits

could occur, thereby making it impossible to determine whether the machine has halted

or not. Furthermore, in 2001 Shi pointed out that the UQTM halting scheme was a

special case of the program concatenation scheme that was assumed to be valid in

the original UQTM proposal. But the validity of the program concatenation scheme

itself had not been proven. Shi did not prove or disprove the validity of the program

concatenation scheme and this remained an open question. In short, the fundamental

question of whether a universal (programmable) quantum computer exists was still an

open question until we constructed the Universal Quantum Computer (UQC) presented

in this thesis and published in [23].

It is also still unclear whether quantum computability can surpass classical com-

putability in the sense of being able to compute functions that are not computable

by classical computers (e.g. the famous Turing halting problem). There have been

claims [24] [25] about quantum computability surpassing classical computability (the

so-called hypercomputing) and counterclaims as to its validity (see [3] for a comprehen-

sive summary of a debate along these lines) but this remains an open question because

there is as of yet insufficient theoretical foundation to draw any conclusions. At the

very least, it can be said that we need a universal model of quantum computing to

draw such conclusions, just as a model of universal computation (i.e. the UTM) en-

abled formal analysis and investigation of classical computability and complexity. The

UQC may help shed some light on this question and we briefly explore this question by

attempting to determine the physical basis for the halting problem.

Following the construction of a standalone universal quantum computer, the next

natural next step is to consider the networking of such machines. Quantum networks

that connect quantum systems and can transmit quantum information have been exten-

sively discussed [26]. Quantum connectivity provides a means of overcoming size-scaling

and error-correction problems, and has significant advantages over classical connectiv-

ity. Furthermore, networks of quantum computers have also been proposed [27] where

information can be exchanged between nodes via quantum and classical channels. A
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general question arises as to how such quantum computers can communicate and ex-

change information. In the simplest case a quantum computer may download data sets

from other nodes over the quantum network, but in more complex cases it might use the

network to call subroutines, or concatenate programs from other quantum computers.

We address this question of how a universal quantum computer can access an ex-

ternal oracle, which may be regarded as a “black box” quantum device, possibly over

a quantum network but in any case as a separate and external quantum system to the

universal quantum computer itself. In fact, the oracle may be a program running on a

remote universal quantum computer. We demonstrate how to interface external/remote

quantum devices with the UQC by implementing well known oracle based algorithms,

namely the Deutsch, Deutsch-Jozsa, and the Grover search algorithms, using black-

box quantum oracle devices that are external/remote to the UQC. We thereby show

how the UQC can utilize networked quantum information resources to carry out local

computations. This work was published in [28].

Fast search algorithms are extremely important and thus it is no surprise that

the two best known quantum algorithms are Grover search and Shor’s factorization

algorithms. These two algorithms are significantly faster than all currently known

classical counterparts. Unlike Shor’s algorithm, Grover search and its variants can at

best accomplish a quadratic speedup over the fastest known classical search algorithms.

There are well established lower bounds that show that the Grover search algorithm

and variants thereof are optimal. However, these bounds are based on the premises

that the algorithm consists of a sequence of unitary operations of a particular form and

using a particular form of an oracle. As such, these lower bounds do not necessarily

apply if non-unitary operations such as projections are introduced or if different oracles

are utilized. We thus explore a partial search scheme in the hope of escaping the Grover

bound [29]. We develop a partial search oracle based on the standard Grover search

oracle and invoking symmetry projections and explore two partial search algorithms

based on it. We further find that if non-linear quantum processes are ever observed,

and if non-linearity were to provide a way to copy quantum states and deterministically

superimpose them in a particular manner, it would be possible to realize exponentially

fast search algorithms that surpass all currently known search algorithms.
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1.2 Organization of this Thesis

This thesis consists of the following chapters.

1. Introduction

2. Quantum Computation Using The Harmonic Oscillator

Quantum computation is typically based on implementing qubits using spin-1/2

particles because they lend themselves naturally to encoding binary states. We

demonstrate a way to achieve universal quantum computation based on the energy

eigenstates of the quantum harmonic oscillator by implementing a universal set

of quantum gates using the quantum harmonic oscillator. The motivation for this

chapter is to present a possible building block for the construction of a universal

quantum computer that is covered in the next chapter.

3. Universal Quantum Computer

This chapter comprises the core of this thesis and describes the construction of the

UQC following Deutsch’s original proposal of a Universal Quantum Turing Ma-

chine. We begin by presenting a summary of the original UQTM and the problems

raised against it, define the architecture of the UQC, define its instruction set,

define the evolution operators that govern the operation of the machine, define

some primitive programs that can be used as building blocks for the creation of

more sophisticated programs, discuss the program concatenation scheme. Finally,

we explore the Church-Turing Thesis and the halting problem in the context of

the UQC.

4. Oracle Based Algorithms On A Universal Quantum Computer

We demonstrate how to interface external/remote quantum devices with the

UQC by implementing well known oracle based algorithms, namely the Deutsch,

Deutsch-Jozsa, and the Grover search algorithms, using black-box quantum oracle

devices that are external/remote to the UQC. We thereby show how the UQC can

utilize networked quantum information resources to carry out local computations.

5. Symmetry Based Partial Search

We explore the possibility to escape the lower bound on the number of required

oracle calls to perform a partial search of an unstructured database by allowing

7



1. INTRODUCTION

for the use of projections, thereby using a non-unitary scheme. We first develop a

partial search oracle based on symmetry projections. We then explore two partial

search algorithms based on this partial search oracle.

8



2

Quantum Computation Using

The Harmonic Oscillator

2.1 Introduction

Quantum computation is typically based on implementing qubits using spin-1
2 particles

because they lend themselves naturally to encoding binary states. That is, the unit of

information used for computation is the qubit with orthonormal basis states |0〉 def= | ↑〉
and |1〉 def= | ↓〉. This is a natural extension of classical Boolean circuits so it seems

natural that most of the research work in quantum computing would be based on this

scheme. The harmonic oscillator is very well understood and it has been widely applied

in many areas of quantum physics. Yet attempts to harness the harmonic oscillator

for quantum computation purposes are relatively recent (see [30] for example). The

motivation for this chapter is to establish the quantum harmonic oscillator as a potential

building block for constructing the universal quantum computer in the next chapter.

Universal computation (in the sense of being able to implement any quantum al-

gorithm, not in the programmable sense) can be implemented based on the energy

eigenstates of the quantum harmonic oscillator. Beyond its academic interest, har-

monic oscillators possess several properties that could have advantages over their spin-
1
2 counterparts. Firstly, the quantum harmonic oscillator is well understood and is

relatively easy to work with from the standpoint of theoretical analysis. Secondly,

the energy eigenstates of a harmonic oscillator are equally spaced and non-overlapping

which could be harnessed to achieve a level of tolerance to external perturbations or

9



2. QUANTUM COMPUTATION USING THE HARMONIC
OSCILLATOR

interactions with its external environment. Finally, the harmonic oscillator eigenstates

span an infinite Hilbert space. We can conjecture about the possibility to harness the

countably infinite states to surpass finite state computing. As discussed in [31], the

resources required to achieve hypercomputation essentially boil down to the use of an

infinite number (distinct from arbitrarily large number) of resources such as memory,

processor states, computational steps, etc. and being able to use these in a finite

amount of time. As a concrete example, the energy eigenstates of the quantum har-

monic oscillator encode all the natural numbers (i.e. N̂ |n〉 = n|n〉). Given any function

f of the natural numbers and a natural number n, if f(N̂) were observable, then this

would provide a way to compute f(n) in constant time. In other words, the quantum

harmonic oscillator could be used as a glorified lookup table. This suggests that there

are no physical observables that correspond to such functions.

In order to realize universal computation using a harmonic oscillator, we need to

devise a way to implement a qubit and to construct a universal gate set that will allow

us to implement any algorithm developed for the QGA framework.

2.2 Implementing The Qubit

We first define a qubit using the first two energy eigenstates of the quantum harmonic

oscillator. That is, we define |0〉 def= |n = 0〉 and |1〉 def= |n = 1〉 where n denotes the

energy level of the harmonic oscillator:

En =
(
n+

1
2

)
~ω,

where En is the energy of the n-th eigenstate with ~ denoting Planck’s constant and ω

denoting the frequency. The energy eigenstates also form a number states basis where

N̂ |n〉 = n|n〉, n = 0, 1, 2, ....

N̂ is the number operator and N̂ = aa† where a and a† are the energy lowering and

raising operators, respectively.

2.3 Constructing a Universal Gate Set

In order to construct a universal gate set, it suffices to construct the so-called Pauli

gates, the Hadamard gate, the T or π
8 gate, and the CNOT gate [1]. We first construct

10



2.3 Constructing a Universal Gate Set

the Pauli gates. Recall that the Pauli gates must act on a qubit as follows. The “σx”

or X gate needs to act as

X|0〉 = |1〉,
X|1〉 = |0〉.

The “σy” or Y gate needs to act as

Y|0〉 = i|1〉,
Y|1〉 = −i|0〉.

The “σz” or Z gate needs to act as

Z|0〉 = |0〉,
Z|1〉 = −|1〉.

Let X = |0〉〈1| + |1〉〈0| +
∞∑
n=2

|n〉〈n|. It can be readily verified that this gate works as

required and is Hermitian. It is also unitary as shown below.

XX†|n〉 =
{

X|(n+ 1) mod 2〉 = |(n+ 2) mod 2〉 = |n〉, n ≤ 1,
X|n〉 = |n〉, n ≥ 2.

Let Y = −i|0〉〈1|+ i|1〉〈0|+
∞∑
n=2

|n〉〈n|. It can be readily verified that this gate also

works as required and is Hermitian. It is also unitary as shown below.

YY†|n〉 =
{

Y(−1)ni|(n+ 1) mod 2〉, n ≤ 1,
Y|n〉, n ≥ 2,

=
{
|(n+ 2) mod 2〉 = |n〉, n ≤ 1,
|n〉, n ≥ 2.

Let Z = |0〉〈0| − |1〉〈1| +
∞∑
n=2

|n〉〈n|. It can be readily verified that this gate also

works as required and is Hermitian. It is also unitary as shown below.

ZZ†|n〉 =
{

Z(−1)n|(n+ 1) mod 2〉, n ≤ 1,
Z|n〉, n ≥ 2,

=
{
|(n+ 2) mod 2〉 = |n〉, n ≤ 1,
|n〉, n ≥ 2.

The Hadamard gate needs to act as

H|0〉 = 1√
2
(|0〉+ |1〉),

H|1〉 = 1√
2
(|0〉 − |1〉).

11
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It is readily verified that H = 1√
2
(X + Z). Since both X and Z are Hermitian and

unitary so is H.

The T gate needs to act as

T|0〉 = |0〉,
T|1〉 = ei

π
4 |1〉.

Therefore, let

T = |0〉〈0|+ ei
π
4 |1〉〈1|+

∞∑
n=2

|n〉〈n|.

It can be readily verified that this gate works as required. Naturally, since this gate

only affects the phase, it is not observable and hence is not Hermitian. It is, however,

unitary.

TT†|n〉 =
{

Te−i
π
4
n|n〉 = |n〉, n ≤ 1,

T|n〉 = |n〉, n ≥ 2.

Finally, we need a CNOT gate that acts as follows.

CNOT|c〉|d〉 = |c〉|d⊕ c〉,

where the c qubit is considered the control and d the data qubit. Let

CNOT = (|0〉〈0|)c⊗(|0〉〈0|+|1〉〈1|)d+(|1〉〈1|)c⊗(|1〉〈0|+|0〉〈1|)d+
∞∑

m,n=2

(|m〉〈m|)c ⊗ (|n〉〈n|)t

It can be readily verified that this gate works as required and that it is Hermitian. It

is also unitary.

CNOT · CNOT†|c〉|d〉 =
{

CNOT|c〉|d⊕ c〉, c, d ≤ 1,
CNOT|c〉|d〉, c, d ≥ 2.

=
{
|c〉|d⊕ c⊕ c〉 = |c〉|d〉, c, d ≤ 1,
|c〉|d〉, c, d ≥ 2.

Thus, it is possible to define a set of gates that are universal and hence harmonic

oscillator based quantum computation is universal. All QGA algorithms (e.g. Grover

search) can be directly implemented without any modifications because those algo-

rithms can be implemented using the universal gate set.

In fact, it has been shown that a higher-dimensional version of a qubit, the so-

called qudit, can be encoded using the harmonic oscillator [30]. This makes it possible

to exploit the entire accessible Hilbert space. This could have practical advantages in

realizing workable quantum computers because it provides for a more efficient encoding

than qubit based computing which should result in fewer interacting components in a

physically realized quantum computer.
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2.4 Discussion

We have shown that the harmonic oscillator can be used to implement a universal set

of quantum gates. This can be used as the basis for a physical construction of the

UQC that will be constructed in the next chapter. Moreover, as mentioned earlier,

the harmonic oscillator energy eigenstates span an infinite dimensional Hilbert space

unlike spin-1
2 systems. It is conceivable that the infinite dimensional Hilbert space

could result in some useful properties that are absent in spin-1
2 systems. However,

this is beyond the scope of this thesis and rather than pursuing yet another model

of quantum computation, we will now turn our attention to the primary focus of this

thesis, the construction of the UQC.

13
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3

Universal Quantum Computer

In one of the founding papers of quantum computation, Deutsch [21] defined a Quantum

Turing Machine (QTM) and further claimed that there exists a Universal Quantum

Turing Machine (UQTM) that is a natural quantum generalization of the classical

UTM, both of which are quantum generalizations of their classical counterparts. The

UQTM was defined to be a QTM for which there exists a program as part of its

input state that has the effect of applying a unitary transformation on an arbitrary

number of qubits arbitrarily close to any desired transformation. That is, the UQTM

could simulate, up to arbitrary accuracy, the operation of any given QTM. As its

classical counterpart, a QTM contains a halt qubit that is used to indicate whether the

computation has been completed. Thus, the UQTM is universal in the sense in that

it is programmable and able to simulate the operation of every possible QTM. The

theoretical existence of such a machine is important because it would establish whether

a programmable quantum computer can be constructed in principle.

Since the original proposal, several questions have been raised as to whether the

UQTM, as defined by Deutsch, was indeed valid. In 1997, Myers [22] argued that the

UQTM’s halting scheme was invalid. In 2001 Shi [32] showed that the validity of the

halting scheme ultimately rested on whether the program concatenation scheme was

valid. If the concatenation scheme were valid, the halting scheme would be valid, and

Myer’s question could be resolved by Ozawa’s [33] non-demolition measurements of the

halting qubit subject to the requirement that the halting scheme be implemented in

a way whereby the state of the memory tape ceases to change once the halt qubit is

15
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set. The question of whether the concatenation scheme is valid and hence whether a

UQTM exists, has remained an open question.

In the following sections, we first review the QTM and UQTM as defined by Deutsch

and then present an explicit construction of a universal quantum computer to demon-

strate that a universal (programmable) quantum computer exists and that program

concatenation is valid. The machine supports programmatic execution basic instruc-

tions that include the universal set of unitary operations as well as a conditional branch

instruction. Like Deutsch’s UQTM, our machine consists of a memory tape and pro-

cessor. The internal architecture of our machine is very similar to that of a classic

microcontroller and contains a data address register, program counter, status flag, in-

struction fetch buffer register, and a memory read/write head. In addition, our machine

contains a halt qubit that signifies whether program execution has completed and a flow

control register and history buffer address register that are used to store program ex-

ecution history information. The flow control and history buffer address registers are

used to store a sufficient amount of information such that, in principle, the operation

of any program can be reversed at any given time, consistent with unitarity. This

theoretical construction will be useful to analyze other aspects of quantum computa-

tion, such as complexity analysis of algorithms, analysis of the halting problem (in the

Church-Turing Thesis sense), etc. in an analogous way that a UTM is used in classical

computer science.

Sections 3.1 and 3.2 provide brief descriptions of Deutsch’s QTM and UQTM, re-

spectively. In 3.3 we describe several problems that were raised about the QTM halting

scheme and the fact that it relies on the validity of program concatenation, something

that Deutsch did not prove. In 3.4 we present an explicit construction of a universal

quantum computer and describe the internal architecture, instruction set, and the time

evolution operator associated with the machine. In 3.5 we define a set of basic programs

in order to demonstrate the classical universal nature of our machine by constructing a

program that computes the NAND function. In 3.6 we discuss program concatenation,

and present a program concatenation operator for our machine thus demonstrating that

program concatenation is valid for quantum computers.
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3.1 The Quantum Turing Machine

3.1 The Quantum Turing Machine

As defined by Deutsch, a QTM consists of two components: a finite processor and an

infinite tape (external memory), of which only a finite portion is ever used. The finite

processor consists of N qubits and the infinite tape consists of an infinite sequence of

qubits, of which only a finite portion is ever used. The currently scanned tape location

is specified by x which denotes the ‘address’ number of the tape. Thus, the state of a

QTM is a unit vector in the Hilbert space spanned by the basis states |x〉|n〉|m〉, where

|n〉 def= |n0, n1, n2, ..., nN−1〉, and |m〉 def= |...,m−2,m−1,m0,m1,m2...〉.
The operation or dynamics of the machine is defined by a fixed unitary operator

U whose only non-trivial matrix elements are 〈x ± 1; n′;m′x,my 6=x|U |x; n;mx,my 6=x〉.
That is, only one tape qubit, the x-th, participates in any given computational step and

at each step, the position of the head cannot change by more than one unit, forward

or backward, or both in the case that the position of the tape is a superposition of

|x±1〉. Each different U corresponds to a different QTM. Stated differently, each QTM

corresponds to a specific algorithm in the same way that each quantum gate array circuit

is an implementation of a specific algorithm. To signal whether the computation has

been completed, the processor contains a special internal qubit, |n0
def= h〉, known as the

halt qubit, that is initialized to 0 and is set to 1 upon completion of the computation.

Thus, an external operator (or classical computer) may periodically observe |h〉 to

determine whether the computation has been completed. The evolution of the QTM

can thus be described as

|ψ(s∆T )〉 = U s|ψ(0)〉,

where |ψ(0)〉 is the initial state, s is the number of computation steps, and ∆T is the

time duration of each computational step.

3.2 The Universal Quantum Turing Machine

As Shi [32] pointed out, a UQTM state may be defined as |Q,D,P,Σ〉, where Q is

the state of the processor, including the head position x, D is the state of the data

register, and P is the program state. D and P are each parts of the tape and Σ is the

remaining part of the tape that is not used during the computation. Note that this

does not deviate from the original definition of the UQTM by Deutsch in [21], as the
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corresponding basis elements of |m〉 can be appropriately mapped to the corresponding

basis elements of D, P , and Σ.

Deutsch claimed that there is a UQTM with which is associated a special unitary

transformation U that when applied a positive integer number of times can come

arbitrarily close to applying any desired unitary transformation on a finite number of

data qubits. Stated differently, the claim was that there exists a UQTM, i.e. a special

U, so that for an arbitrary accuracy ε and arbitrary unitary transformation U which

changes D to UD, there is always a program state P (D,U , ε) and a positive integer

s = s(D,U , ε), such that

U s|Q,D,P,Σ〉 = |Q′, D′, P ′,Σ〉,

where D′ is arbitrarily close to UD, i.e. ‖D′ − UD‖2 < ε. Finally, like the QTM, the

UQTM contains a special internal halt qubit |h〉 that is monitored to determine whether

the computation has completed.

3.3 Is The Halting Scheme Valid?

In 1997 Myers [22] suggested that the UQTM’s halting scheme was invalid. He argued

that an entanglement between the halt qubit and other qubits could occur, thereby

making it impossible to determine whether the machine has halted or not. His reasoning

was as follows: Suppose that two computations, A and B, halt after NA and NB steps,

respectively, and without loss of generality, that NB > NA. Then for a computation

that is a superposition of computations A and B, after N steps of the UQTM with

NA < N < NB, the halt qubit will be in a superposition of halted and not halted states

due to the linearity of the quantum evolution.

Because the computation time is unknown a priori, measurement of the halt qubit

would collapse the state of the machine to that corresponding to the intermediate com-

putation state of B (with |h〉 = |0〉) or to the completed computation state of A (with

|h〉 = |1〉). Myers argued that this was a conflict between being universal and “being

fully quantum,” i.e. that the UQTM halting scheme was incompatible with superpo-

sition and hence the machine would need to operate on classic states. Conceptually,

one could argue that this is not really a problem because any program will ultimately

generate a single result. The case of superposed programs corresponds to the classical
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case of running a program with random data. The computation result depends on the

data. In the superposed quantum computer case, the result obtained depends on the

final measurement probabilities for obtaining each of the superposed program results.

In 1998 Ozawa [33] showed that monitoring |h〉 is a quantum non-demolition mea-

surement, that is, periodic measurement of |h〉 while the computation is in progress

does not alter the final measurement of the memory tape contents, which store the

result of the computation. This is true even if |h〉 becomes entangled with other qubits

during the computation. The crucial aspect of this proof is that the probabilities of ob-

taining each of the possible superposed results is not altered by periodic measurement

of the halt qubit. The periodic measurement could be said to collapse the machine to

one of the many superposed branches of computation as Myers aptly highlighted, but

the probability of measuring that particular computational branch is no different than

if the measurement is postponed until after the program has completed execution. The

key assumption or requirement in Ozawa’s proof is that the state of the memory tape

remain unchanged once the halt qubit is set.

Furthermore, in 2001 Shi [32] also highlighted that universality and “being fully

quantum” does not require the entire UQTM to evolve from a superposition. The

superposition need only be on the data state. For example, if the data state is |D〉 =

|A〉 + |B〉, the state of the total system starts at |Q,A + B,P (A + B,U , ε),Σ〉, rather

than at |Q,A, P (A,U , ε),Σ〉+ |Q,B, P (B,U , ε),Σ〉.
However, the scenario highlighted by Myer would arise if one were to require that

the program be only dependent on the desired transformation U and the accuracy ε, but

independent of the initial data state. In this case, a computation on data state D = A+

B would need to start at |Q,A+B,P (U , ε),Σ〉, or |Q,A, P (U , ε),Σ〉+|Q,B, P (U , ε),Σ〉.
Hence in this case entanglement between the halt qubit and the rest of the system would

occur if the execution times for A and B were different, which would be generally the

case. However, the requirement for a data state independent program is unnecessary

and the halt qubit entanglement problem could thus be avoided. And if we require the

programs to be data state independent and the halt qubit becomes entangled, Ozawa’s

proof applies and periodic measurements of the halt qubit do not affect the outcome of

the computation.

However, Shi also pointed out that the halting scheme is a special case of the

program concatenation scheme that was assumed to be valid in the original UQTM
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proposal. The original definition of the UQTM is based on the assumption that if there

is a program whose effect is to apply U on the data state |D〉, then there exists a unitary

operator whose effect is |h = 1〉〈h = 0| ⊗ U on |h = 0〉|D〉. This assumption was not

proven and the validity of program concatenation has not been addressed in other work

(see section 8.3 in [34], for example) that relies upon the QTM defined by Bernstein and

Vazirani [35] in 1997; this version of the QTM not only requires a halting scheme like

Deutsch’s but also requires that every computational path reach a final configuration

simultaneously, and thus every computational path must be somehow synchronized.

The problem with synchronizing every computational path is that, in general, it is

not known a priori how long a program will take to halt or if it will halt at all because

program execution times can depend on the data that the program operates upon. This

problem was highlighted by several authors, including Iriyama, Miyadera, and Ohya as

recently as 2008 [36]. Thus, it is not always possible to find an upper bound T on the

time needed for all branches to halt and thereby equip each branch of a computation

with a counter that increments at each time step and halts once it reaches some upper

bound T . In essence, such a synchronization scheme is well suited for dealing with

sequential programs that are guaranteed to halt but not for programs that may never

halt due to conditional branches or loops.

We address these open questions by constructing a theoretical universal quantum

computer with valid and explicit halting and program concatenation schemes, and

which also supports conditional branching and does not require synchronization of

all computational paths. This machine serves as a prototypical model for a general-

purpose programmable quantum computer that will be useful in the development and

analysis of new quantum algorithms, complexity analysis of quantum algorithms, and

investigation of the physical basis of the Turing halting problem.

3.4 A Universal Quantum Computer

Our goal is to devise a quantum computer that can compute any computable function.

The machine itself is to be fixed and each different function is to be computed by

providing the machine with a suitable set of input data and program. Any unitary

operation can be approximated to any desired accuracy using the set of {H,CNOT,T}
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gates (see Nielsen & Chuang [1] chapter 4, for example), where

H def=
X + Z√

2
=

1√
2
{(|0〉+ |1〉)〈0|+ (|0〉 − |1〉)〈1|} ,

CNOT def= |00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|,

T def= |0〉〈0|+ eiπ/4|1〉〈1|.

This set is universal in the sense that any function (i.e. unitary operation) that can be

computed by a quantum computer can be implemented using a combination of these

gates. Thus, to create a universal quantum computer in the programmable sense, it

suffices to devise one that can implement these operations on a specified set of qubits

under the control of a quantum program. The quantum computer described below and

illustrated in Figure 3.1 is an instance of such a machine.

Following Deutsch [21], our machine UQC consists of two primary parts: a processor

Q that implements the universal set of unitary operations and an infinite tape that acts

as the machine’s external memory. The tape consists of an infinite sequence of qubits,

|M〉 = {|mi〉}, i ∈ Z, with only a finite subset of them ever being used for any given

program. This corresponds to a classical computer’s memory and external storage

which, while finite, can be arbitrarily large. With the tape is associated an observable

x̂ in the processor that has the whole of Z as its spectrum and that acts as the address

number of the currently scanned tape location. Addressing different tape locations can

be realized either by a movable head over a static tape or by a movable tape under a

static head. Since either scheme is identical for the purposes of constructing UQC, we

assume the latter as that allows for Q to be fixed in space, and movement of the tape

is accomplished by a sliding ‘bin’ of qubits that moves under Q’s control.

As part of its internal state machine, Q also contains two additional observables,

D̂ and P̂ , that act as the data address and program counter, respectively. D̂ is used

to address individual data qubits on the tape and to specify the branch destination

address and P̂ is used to keep track of the program instruction that is to be executed.

As with classical computers, D̂ and P̂ need not have an infinite spectrum as they need

only be as ‘wide’ as required to address the finite subset of the infinite tape that would

ever be used. However, for the purpose of the most general construction, we do not

restrict UQC to have a particular address range and thus treat D̂ and P̂ (and x̂) as

having an infinite spectrum.
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x

Q

M(x)

UQC

State Machine

s h

M

P D I H F

Figure 3.1: Universal Quantum Computer - Architecture of the universal quantum
computer UQC, showing the memory tapeM , processorQ, address of tape head |x〉, scratch
qubit |s〉, instruction register |I〉, program address register |P 〉, data address register |D〉,
history address register |H〉, flow control register |F 〉, halt qubit |h〉, and the qubits that
are measured (|M〉 and |h〉).
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Q also contains a 4-qubit register Î to load the instruction to be executed. In order

to perform the two-qubit CNOT operation, Q contains a ‘scratch’ qubit |s〉 that is used

as the control qubit. Like Deutsch’s UQTM, UQC also contains a dedicated observable

qubit |h〉 that indicates whether the program execution has completed (i.e. the halt

qubit). Q also contains a 2-qubit register F̂ that is used to control the execution flow

(i.e. whether the program should loop on the current instruction, proceed to the next

instruction, or branch to a new instruction). Finally, UQC contains a register Ĥ with

the same spectrum as x̂, D̂, and P̂ . The purpose (and naming) of the Ĥ register

is described later. For notational simplicity, we drop the ˆ notation hereafter when

referring to UQC registers, e.g. D refers to the observable D̂ whose corresponding state

is |D〉.
The overall state of UQC, then, is given by |h, x,D, P, F,H, s, I,M〉, where

|h,D, P, F,H, s, I〉 corresponds to Deutsch’s |n〉 with |h〉 def= |n0〉.
Each program consists of a finite sequence of 4 qubit instruction words. Self-

modifying code is to be avoided because modifying program instructions during pro-

gram execution can lead to unpredictable results. For example, the processor fetches

instructions to be executed from the memory tape into the temporary internal buffer

register I by swapping the contents of the memory tape and the I register (and swap-

ping back the two when the instruction has been executed). Because I is initialized

to |0〉, the swapped contents of the memory tape temporarily become |0〉 while the

instruction is being executed. This means that if the program attempts to modify the

location of the instruction being executed, it would be modifying |0〉 and not the actual

instruction (that is temporarily held in the I register). This can lead to unintended

and unpredictable behavior.

The instruction set of UQC is as follows. As mentioned earlier, we implement a

universal set of unitary operations, namely {H,CNOT,T}, in order to ensure that UQC
is universal. In order to enable the programmer to address any qubit on the memory

tape and thus apply the universal set of operations to any qubit, we implement three

instructions: An instruction to set D to 0, an instruction to increment D by 1, and an

instruction to decrement D by 1. Because the CNOT operation requires two operands

(control and data), we implement a swap instruction to enable the programmer to swap

the qubit on the memory tape pointed to by D with the machine’s s qubit, thereby

enabling any qubit on the memory tape to be used as the control qubit. While not
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strictly necessary for universality, we implement a branching scheme in UQC because

firstly, this is not explicitly possible in other popular quantum computing frameworks

such as the gate array framework and secondly, because it is a common operation in

classical computers. Branching is essentially implemented by allowing the programmer

to swap the data register and program counter register contents, thereby allowing the

program to branch to any instruction on the memory tape. We also implement an

instruction to effectively clear s by swapping its contents with the next available 0 slot

on the negative portion of the memory tape (pointed to by H). The clear s instruction

provides for a simple and convenient way for the programmer to load s with 0 without

having to hunt around the memory tape looking for a 0 data qubit slot. Finally, we

implement an instruction to set the halt qubit to 1 but because we also want the memory

tape to remain unchanged once the halt qubit is set, we implement an accompanying

instruction (NOP) to follow the halt instruction that will accomplish this.

The instruction set of UQC, then, consists of 11 instructions, whose operations and

encodings are defined in Table 4.1. The single qubit operations H and T act on the

qubit at tape location M(D), denoted |M〉D, and the two qubit operations SWAP and

NAND act on |M〉D and the scratch qubit |s〉, the latter being used as the control qubit

for the NAND operation.

Table 3.1: UQC Instruction Set

Label Encoding Description

|NOP〉 |0000〉 No operation
|D→ 0〉 |0001〉 D → 0
|D + 1〉 |0010〉 D → D + 1
|D− 1〉 |0011〉 D → D − 1
|H〉 |0100〉 Apply Hadamard operation to |M〉D
|T〉 |0101〉 Apply T operation to |M〉D
|SWAP〉 |0110〉 |M〉D ↔ |s〉
|CNOT〉 |0111〉 CNOT of |M〉D and |s〉 (|s〉: control)
|D↔ P〉 |1000〉 |D〉 ↔ |P 〉 (branch) iff s = 0
|CLS〉 |1001〉 Clear s
|h→ 1〉 |1111〉 |h〉 → |1〉 (set halt qubit)

The operation of UQC proceeds as follows:
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1. An external operator (or classical computer) initializes the state of M at t = 0

with the desired data and program. Data qubit i, i ∈ Z+, is placed on tape

location M(5i−1) and program instruction j, j ∈ Z+, is placed on tape locations

M(5j − 2 : 5(j − 1)), i.e. data is placed at M(4), M(9), M(14), ..., and program

instructions are placed at M(3 : 0), M(8 : 5), M(18 : 15), .... The negative

portions of the tape are initialized to |0〉, as illustrated in 3.2.

2. The processor’s H register is initialized to | − 1〉 and all other registers are ini-

tialized to |0〉. This is the so-called “reset state” of Q.

3. An external operator starts Q by releasing it from its reset state.

4. Q fetches the program instruction at tape location M(P ) into register I.

5. Q executes the operation specified by I.

6. If the halt qubit |h〉 becomes set, Q halts execution (strictly speaking, because

UQC is a quantum system, Q continues to evolve but the evolution of the memory

tape becomes trivial – i.e. U = 11 – after the halt qubit has been set) and awaits

an external measurement of the results. Otherwise, Q continues execution of the

program by loading the next program instruction.

7. An external operator periodically performs a measurement on the halt qubit.

8. If measurement of the halt qubit yields |1〉, the program has completed execution.

The results are obtained by measuring the contents of M . Otherwise, Q is allowed

to continue program execution.

M
0 1 2 3-1-2-3
P1 P2 P3 P4

. . .

Program and Data QubitsScratch and Unused Qubits

4
D10 0 0 P5 P6 P7 P8 D2

5 6 7 8 9
P9 P10 P11 P12 D3

10 1112 13 14

. . .

-4-5-6
0 0 0

-7-8
0 0

Figure 3.2: Memory Tape Diagram - Initial memory tape contents. The negative
qubit slots are used as scratch qubits and the non-negative qubit slots are initialized with
interleaved program instruction and data qubits.
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The operation of Q is governed by the state machine depicted in Figure 3.3.

3.4.1 The Evolution of Q

We now define the unitary evolution operators associated with the Q state transitions.

In the equations below, subscripts on projectors denote the qubit(s) on which the

projector acts, e.g. |i〉〈i|k acts on qubit k, and unspecified qubits are understood to

be operated on by an implicit identity operator, e.g. |i〉〈j|k ⊗ |l〉〈m|n is short hand

for |i〉〈j|k ⊗ |l〉〈m|n ⊗ 11 6=k,n which acts on qubits k and n and leaves all other qubits

unaffected. |ψ〉R denotes
∏
i

|ψ(i)〉R(i), where R is a multiple qubit register (e.g. D)

with R =
∏
i

R(i) and ψ =
∏
i

ψ(i). Moreover, for notational simplicity in the rest of

this paper, we define 4 primitive unitary operations, SWAP, DEC, INC, and CNOT as

follows:

1. Swap contents of registers a and b

SWAPa,b
def=
∑
i,j

|i〉〈j|a ⊗ |j〉〈i|b (3.1)

2. Decrement the contents of register a

DECa
def=
∑
i

|i− 1〉〈i|a (3.2)

3. Increment the contents of register a

INCa
def=
∑
i

|i+ 1〉〈i|a (3.3)

4. CNOT operation using qubit a as the control and qubit b as the data

CNOTa,b
def= (|00〉〈00|+ |01〉〈01|+ |11〉〈10|+ |10〉〈11|)a,b (3.4)

The operators, UIF,UXD, UEX, UUD, UUF, URI, UUP, UCF, that govern the Q state

transitions, then, are defined as follows.

26



3.4 A Universal Quantum Computer

IF

XD

RESET

M(x+3:x) I(3:0) Point To Next Instruction And
Fetch Instruction From Memory

x D

Update Control Flow RegisterUF

Point To Data Qubit

EX

x D

Execute Instruction
(NOP if h=1)

UD Update Data Register

RI

F F’

x P

x x’
M(x) M’(x)

s s’
h h’

UP

CF

x x+4
x P

M(x+3:x) I(3:0) Point To Fetched Instruction And
Restore Instruction To Memory

x P

x x-4
x P

Update Program Address RegisterP P’

Clear Control Flow RegisterF 0

Figure 3.3: State Machine Diagram - Q state machine diagram that corresponds to
the evolution of the universal quantum computer. The overall evolution is determined by
eight unitary transformations.
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1. Fetch next instruction at M(P )

UIF
def= DEC4

P · SWAPx,P ·
( 0∏
i=3

INCx · SWAPM(x),I(i)

)
· SWAPx,P (3.5)

This operator fetches the next program instruction by ‘swapping’ the next pro-

gram instruction qubits on the memory tape with the contents of the I register.

As stated earlier, because I is initialized to |0〉, the instruction slot on the mem-

ory tape becomes temporarily |0〉 while the instruction is being executed but is

restored to its original state once the instruction has been executed. Note that

P will be pointing back to the fetched instruction address after this operator

is applied because the update of the program counter is deferred until UUP is

applied.

2. Move tape head to M(D)

UXD
def= SWAPx,D (3.6)

UXD points the memory tape head to the qubit addressed by the data register D.

3. Execute instruction

UEX
def= |NOP〉〈NOP|I

+|D→ 0〉〈D→ 0|I ⊗DECx

+|D + 1〉〈D + 1|I ⊗ INCx

+|D− 1〉〈D− 1|I ⊗DECx

+|H〉〈H|I ⊗HM(x)

+|T〉〈T|I ⊗ TM(x)

+|SWAP〉〈SWAP|I ⊗ SWAPM(x),s

+|CNOT〉〈CNOT|I ⊗ CNOTs,M(x)

+|D↔ P〉〈D↔ P|I
+|CLS〉〈CLS|I ⊗ SWAPx,H ·DECx · SWAPM(x),s · SWAPx,H
+|h→ 1〉〈h→ 1|I ⊗

(
|1〉〈0|+ |0〉〈1|

)
h

+
4∑
i=0

|Ri〉〈Ri|I

(3.7)

UEX applies the appropriate transformation associated with the instruction being

executed. The transformations associated with the NOP, D + 1, D− 1, H, T,

SWAP, CNOT, and reserved instructions are self evident but those associated

with the D→ 0, D↔ P, CLS, and h→ 1 instructions warrant some explanation.
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The D→ 0 instruction works as follows. D is decremented by one by UEX and P

is left unchanged by UUP (see equation (3.11)) until D = 0. Leaving the program

counter unchanged has the effect of keeping P pointing to the D→ 0 instruction

such that it is re-fetched in the next iteration. Thus, Q continues to fetch and

execute the same D → 0 instruction until D = 0. In other words, it will loop

on the D → 0 instruction, decrementing D until it reaches 0. Once D = 0, P is

incremented by 5 such that it points to the next instruction, thus completing the

loop.

It is important to note that this scheme relies on the assumption that D > 0 when

the D → 0 instruction is encountered. Therefore, the programmer must ensure

that D > 0 when Q fetches the D→ 0 instruction. This can be accomplished by

preceding the D→ 0 instruction with a D + 1 instruction since, in the absence of

programming error, D will always be positive. If the programmer fails to meet

this requirement Q could loop forever stepping through the negative portions of

the memory tape.

The transformation associated with the D↔ P operation is the identity operation

here because its execution is deferred until later. Deferring the actual swapping

of the D and P register contents is necessary in order to keep the address of the

D↔ P instruction unchanged so that we can restore the branch instruction back

to its original slot on the memory tape and only then update the program counter

to point to the next instruction in the program execution flow.

The CLS instruction first points the memory tape head to the address contained

in the H register (the next slot on the negative portion of the memory tape

that contains |0〉), swaps the contents of the s qubit with the contents of the

memory tape slot (|0〉) thereby clearing s (but leaving the previous value of s

on the memory tape making the operation reversible in principle), decrements H

such that it points to the next |0〉 slot on the memory tape, and then points the

memory tape head back to where it was.

The NOP instruction plays a key role in the UQC halting scheme. In our imple-

mentation, the halting scheme requires the halt instruction |h→ 1〉 to be followed

by a |NOP〉 instruction. In other words, the ‘true’ halt instruction is effectively

|h → 1〉|NOP〉 or |11110000〉 using the presently defined instruction encodings.
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This is such that after the halt qubit is set, Q will continue to fetch the next

instruction following |h → 1〉 which being |NOP〉 will guarantee that Q loops

forever doing nothing, thereby effectively halting program execution (but not

quantum evolution). The fact that the encoding of the NOP instruction is |0000〉
is also intentional. This ensures that the contents of the memory tape remain

unchanged after the halt qubit is set because swapping the instruction slot on the

memory tape with the contents of the I register leaves the state of the memory

tape unchanged. The halting scheme relies on all halt instructions in any given

program being followed by a NOP instruction and stopping the program counter

from changing when a NOP instruction is executed such that P will continue to

point at the NOP instruction following the instruction that caused the halt qubit

to be set.

The halting scheme is thus effectively a two step process: the first step is to set

the halt qubit using the h→ 1 instruction to alert an external observer that the

program has halted and the second step is to loop forever on the NOP instruction.

In this sense, the NOP instruction is really a ”loop forever” trap instruction. As

such, the NOP instruction must only be used following a halt instruction. If it is

inadvertently placed anywhere else in the program, program execution will halt

but the halt qubit will not be set so the external observer will not know that the

program has halted.

An improved halting scheme that does not require all instances of the halt in-

struction in a program to be followed by a NOP instruction may be possible and

is an area for future investigation.

4. Update contents of D register

UUD
def= SWAPx,D (3.8)

UUD updates the D register with the results of executing the instruction since x

will contain any changes to D after UEX has been applied.

5. Update control flow register with instruction flow information

UUF
def=
(
|D→ 0〉〈D→ 0|I ⊗ (11− |0〉〈0|)D + |NOP〉〈NOP|I

)
+|D↔ P〉〈D↔ P|I ⊗ |0〉〈0|s ⊗ INC2

F

+
(
11− |D→ 0〉〈D→ 0|I ⊗ (11− |0〉〈0|)D − |NOP〉〈NOP|I
−|D↔ P〉〈D↔ P|I ⊗ |0〉〈0|s

)
⊗ INCF

(3.9)
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Table 3.2: F Encodings

Label Encoding Description

|LOOP〉 |00〉 Loop (P → P )
|NEXT〉 |01〉 Next Sequential Instruction (P → P + 5)
|BR2D〉 |10〉 Branch to D (P → D)
|R0〉 |11〉 Unused

UUF updates F whose value is later used to update P to point to the address of the

next instruction to be executed. Note that F is initialized to |0〉 and the evolution

of UQC is designed to ensure that F = 0 when UUF is applied (F is effectively

”cleared” by UCF by swapping its contents with the infinite supply of |0〉 slots

on the negative portion of the memory tape as we describe later). As explained

earlier, if the instruction is D→ 0 and D 6= 0 or if the instruction is NOP, P

will be left unchanged to effectively loop on the instruction. If the instruction

is D↔ P and s = 0 then P will be swapped with D to effectively branch to D.

Otherwise, P is set to point to the instruction following the instruction that was

just executed (i.e. P → P + 5). The encodings of F are defined in Table 3.2.

6. Restore executed instruction back to the memory tape location from where it was

fetched

URI
def= U †IF (3.10)

URI restores the instruction that was just executed back to its original slot on the

memory tape. Recall that the P update has been deferred and will be controlled

by the state of the F register. Thus, the only operator that has affected P thus

far has been UIF so U †IF suffices to undo the fetch. In essence, F is a temporary

place holder to store the information necessary to determine the next instruction

location after restoring the instruction back to the memory tape and hence losing

knowledge of how to update P otherwise.

7. Update program counter to the address of the next instruction to be executed

UUP
def= |LOOP〉〈LOOP|F

+|NEXT〉〈NEXT|F ⊗ INC5
P

+|BR2D〉〈BR2D|F ⊗ SWAPD,P
+|R0〉〈R0|F

(3.11)
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UUP updates P to the address of the next instruction to be executed according

to the state of F .

8. Clear flow control register such that it can be used again in the next cycle

UCF
def= SWAPx,H ·

( 0∏
i=1

DECx · SWAPM(x),F (i)

)
· SWAPx,H (3.12)

UCF first swaps the contents of the x and H registers. The H register contains

the address of the next slot on the negative portion of the tape that contains

|00〉. These ‘0’ slots are used to clear the F register back to |0〉 each cycle. Since

the sequence of F values effectively contains the information about the program

execution flow, in essence the negative portion of the tape contains the ‘history’

of instructions that UQC has executed and is a side-effect of the need for all UQC
programs to be reversible.

In other words, the negative portion of M is used to store the ancillary garbage

data that would be required to reverse the operation of the program. The number

of |0〉 slots required for any given program is equal to the number of instructions

that are executed by the program. UCF clears F by swapping its contents with the

contents of the next |0〉 slot on the negative portion of the tape. After application

of UCF, H points to the next |0〉 slot on the tape and the previous F value is

contained on the slot to the right of the first |0〉 slot on the negative portion of

the tape.

At this point, Q has completed processing the instruction and is ready to fetch

the next instruction in the execution flow.

These operators are all readily verified to be unitary and to have the desired effects

of implementing the state machine shown in Figure 3.3. The overall evolution of UQC,
then, is governed by the unitary operator,

U = UCFUUPURIUUFUUDUEXUXDUIF. (3.13)

Unlike Deutsch’s original UQTM, the memory tape (or tape head) of UQC is not

restricted to move at most one position to the left or to the right (x → x ± 1) in any

given step. This is most obvious in the case of the branch instruction where the tape

head will jump by an arbitrarily large amount in a single step. However, the evolution

of UQC is still unitary and hence physically possible in principle.
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3.4.2 Illustration of program execution

Since the overall evolution of U is moderately complex, we illustrate how U operates by

stepping through a simple program that swaps the first two data qubits on the memory

tape (qubits D(1) and D(2)) in Appendix A. As can be seen in the execution trace,

once the halt qubit has been set, the state of the memory tape is the desired result with

the first two data qubits swapped and all other data qubits on the tape unchanged and

no further changes to the memory tape occur. Strictly speaking, even after the halt

qubit has been set, the scratch qubits on the tape will be forever swapped with the

contents of the I register but because the I register contains the NOP whose encoding

is 0 and the scratch qubits are initialized to |0〉, the net effect is that the state of the

qubits on the memory tape will remain unchanged once the halt qubit has been set.

3.5 Some Primitive Programs

In this section we describe a set of primitive programs or operations to demonstrate

the universal nature of UQC. These routines serve as building blocks for devising and

analyzing more complicated and useful programs.

The first set of primitive programs, {|D+i〉, |D−i〉, |Di〉, |Si,s〉, |Si,j〉, |Bi〉}, that we

define perform basic functions to manipulate the data address register, swap qubits,

and conditionally branch to an arbitrary address. The superscripts on the programs

denote the operation performed by the program and the subscripts indicate the qubits

on which the program operates. For notational simplicity, |Ph〉 denotes the program

that causes UQC to halt, i.e. |Ph〉
def= |h→ 1〉|NOP〉.

1. |D+i〉: Increment D by i

|D+i〉
def=


i∏

k=1

|D + 1〉, if i ≥ 1

11, otherwise

(3.14)

2. |D−i〉: Decrement D by i

|D−i〉
def=


i∏

k=1

|D− 1〉, if i ≥ 1

11, otherwise

(3.15)
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3. |Di〉: Set D to i, i > 0

|Di〉
def= |D + 1〉|D→ 0〉|D+i〉 (3.16)

Recall from the discussion of UEX, that we are preceding the D→ 0 instruction

with a D + 1 instruction to ensure that D > 0 when the D→ 0 instruction is

executed.

4. |Si,s〉: Swap data qubits D(i) and s

|Si,s〉
def= |D5i−1〉|SWAP〉 (3.17)

5. |Si,j〉: Swap data qubits D(i) and D(j)

|Si,j〉
def= |S5i−1,s〉|S5j−1,s〉|S5i−1,s〉 (3.18)

6. Branch to the i-th instruction (i.e. instruction at M(5(i− 1)), where i ∈ Z+

|Bi〉
def= |D5(i−1)〉|D↔ P〉 (3.19)

Note that, as defined, this instruction will have no effect unless |s〉 = |0〉 so this

operation is only useful following non-trivial operations on the |s〉 qubit.

Next we describe a set of programs, {|PH
i 〉, |PH

i,j〉, |PT
i 〉, |PC

i,j〉}, to apply the H, T,

and CNOT operations on arbitrary qubits i and j on the memory tape, where i and

j ∈ Z. These comprise a universal set of unitary operations from which any arbitrary

unitary operation can be constructed.

1. |PH
i 〉: Apply H to data qubit D(i)

|PH
i 〉

def= |D5i−1〉|H〉 (3.20)

2. |PH
i,j〉: Apply H to data qubits D(i : j), where i ≥ j

|PH
i,j〉

def=
i∏

k=j

|PH
k 〉 (3.21)

One could implement this program using a loop but that would require first

implementing binary addition of M qubits. Binary addition is possible because
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one can implement a binary adder such as a Carry Lookahead Adder (CLA) [37]

using the NAND program that we define later in this section. However, since we

are only interested in a polynomial order (in the number of qubits) multiple qubit

Hadamard transformation program, we define |PH
i,j〉 as a sequential ‘unrolled’ loop

program.

3. |PT
i 〉: Apply T to data qubit D(i)

|PT
i 〉

def= |D5i−1〉|T〉 (3.22)

4. |PC
i,j〉: Apply CNOT to data qubits D(i) and D(j) with D(i) as the control qubit

|PC
i,j〉

def= |Si,s〉|D5j−1〉|CNOT〉|Si,s〉 (3.23)

Using the sets of primitive programs defined above, we can now define the set of

programs, {|PX
i 〉, |P S

i 〉, |PT†
i 〉}, that apply the Pauli X, Phase (S), and T† operations

on data qubit i ∈ Z+. These operations are often used in quantum algorithms so it

is useful to identify the programs that implement them. A constant subscript on a

program denotes that some suitable qubit on the memory tape has been prepared with

the appropriate value. For example, |P1〉 is shorthand for |Pk〉 where M(k), for some

suitable k, has been prepared with the value |1〉.

1. |PX
i 〉: Apply σx to qubit M(i)

|PX
i 〉 = |PC

1,i〉. (3.24)

|PX
i 〉: |1〉j |ψ〉i → |1〉j |1⊕ ψ〉i = |1〉j |ψ〉i = |1〉jσx|ψ〉i.

2. |P S
i 〉: Apply phase (S) to qubit M(i)

Noting that S = T2, the following program implements the phase operation.

|P S
i 〉 = |PT

i 〉|PT
i 〉 (3.25)

|P S
i 〉: |ψ〉i → T2|ψ〉i = S|ψ〉i.
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3. |PT†
i 〉: Apply T† (reverse T) to qubit M(i)

This operation is used to define the Toffoli operation in a later section so we

define it here. Noting that S = T2 and that S4 = 11, T† = T†S4 = T†T2S3 = TS3,

the following program implements the T† operation.

|PT†
i 〉 = |P S

i 〉|P S
i 〉|P S

i 〉|PT
i 〉 (3.26)

Although not specifically shown here, other useful quantum gates such as σy, σz,

entanglement gate, etc. can be similarly implemented. These enable us to implement

any algorithm from the quantum gate array framework on UQC by appropriate com-

binations of the programs we have just defined and adding |Ph〉 as the last step in

the combined program to halt UQC upon completion. Since the quantum gate array

framework is universal (see [1] chapter 4, for example), this means that UQC is also

quantum computationally universal with the additional advantage that UQC provides

a fixed and programmable machine to implement the algorithms unlike the quantum

gate array framework.

The two bit NAND operation is universal for classical computation. That is, the

NAND operation can be used to implement any Boolean function. Hence it is useful

to define a program that emulates the NAND operation on two qubits as this could

be used as the basis for emulating classical functions on UQC. For this purpose, we

first define a program that implements the Toffoli operation which itself is a universal

classical gate [1]. The Toffoli program, |PToff
i,j,k 〉, applies the Toffoli operation to qubits

D(i), D(j), and D(k), where D(i) and D(j) are the control qubits and D(k) is the

target qubit.

Armed with the Toffoli program, implementing a program that takes the NAND

of qubits D(i) and D(j) and storing the result in qubit D(c) is a simple matter of

executing the program |PNAND
i,j,c 〉 = |PToff

i,j,1 〉.

|PToff
i,j,k 〉 = |PH

k 〉|PC
j,k〉|PT†

k 〉|PC
i,k〉|PT

k 〉|PC
j,k〉|PT†

k 〉|PC
i,k〉|PT

k 〉|PT†
j 〉|PC

i,j〉|PH
k 〉|PT†

j 〉|PC
i,j〉|P S

j 〉|PT
i 〉

(3.27)

The ability to perform a two-qubit NAND operation gives UQC the ability to com-

pute any classically computable function thus demonstrating that it can emulate a

classical universal Turing machine. This is in addition to being a universal quantum
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computer since it can also implement the set of universal quantum operations on ar-

bitrary qubits on its memory tape as shown earlier. UQC can compute any classically

computable function, it can compute any quantum computable function, and it is pro-

grammable. In short, UQC is computationally universal.

3.6 Program Concatenation Scheme

In the process of defining the primitive programs in the preceding section, we have

implicitly used program concatenation whereby we sequentially combined separate pro-

grams to create larger programs. Strictly speaking, the programs that we have thus

far defined are really subroutines since complete programs must include the halting

program, |Ph〉, in order to signal program completion. However, it is readily seen that

all of the primitive subroutines can be converted into full-fledged programs by adding

|Ph〉 as the last instruction.

Sequential programs (programs without branch instructions) can thus be concate-

nated by simply removing the last |Ph〉 step from each constituent program, concate-

nating the resulting subroutines, and appending on |Ph〉 at the end. Suppose that we

have two sequential programs, |PA〉 and |PB〉 that we wish to concatenate to create

a program |PAB〉 whose effect is to execute |PB〉 followed by |PA〉. Since |PA〉 and

|PB〉 are sequential, this means that |Ph〉 is the last step in each program. That is,

|PA〉 = |PA′〉|Ph〉 and |PB〉 = |PB′〉|Ph〉. Thus, to achieve the effect of running |PA〉

followed by |PB〉, we simply construct the program PAB
def= |PA′〉|PB′〉|Ph〉.

The situation is quite different for branching programs. In general, without com-

plete knowledge of the operations of the programs to be concatenated, it is not possible

to concatenate them in the strictest sense of joining the individual programs into a

single larger program. This is not a limitation of UQC but of any computer, be it clas-

sical or quantum. The problem is that the branch destinations in a branching program

can be data dependent and the branching address may also be manipulated as data.

Therefore, it is not sufficient to add an appropriate offset (the number of instructions of

preceding concatenated programs) to all branch instructions because this would have

the adverse effect of potentially adding an offset to the manipulated data and hence

altering the intended computation results.
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The solution, of course, is to first run |PA〉, wait for it to complete, replace |PA〉

with |PB〉, reset the program counter register to 0, leave all other internal registers

and memory tape qubits unchanged, and resume execution to run |PB〉. However,

strictly speaking, this is not program concatenation per se because while the overall

operation has the effect of running |PA〉 followed by |PB〉, the program that is run is

not |PA〉|PB〉. There is the intermediate step of replacing |PA〉 with |PB〉 and restarting

execution, which, strictly speaking, are not program operations. In the context of UQC

this could be achieved by initializing M with |PA〉, running |PA〉 and once the halt

qubit is measured as |1〉, replacing the program portion of M with |PB〉, setting the

program counter register to 0 while leaving all other UQC registers and memory qubits

unchanged, and clearing the halt qubit to resume execution of |PB〉 with the results

of the preceding program(s). This scheme, of course, works not only for branching

programs but also for sequential programs.

Formally, our UQC program concatenation operator, Π(n), is defined as

Π(n) def=

(
n−1∑
i=1

|Pi+1〉〈Pi|M(P ) ⊗ |0〉〈1|h ⊗ SWAPP,P ′(i) ⊗ |1〉〈0|S(i+1)

)

+|P1〉〈0|M(P ) ⊗ |0〉〈0|h ⊗ |1〉〈0|S(1)

+

(
n−1∑
i=1

|Pi〉〈Pi+1|M(P ) ⊗ |1〉〈0|h ⊗ |1〉〈0|S(i)

)

+|Pn〉〈Pn|M(P ) ⊗ |1〉〈1|h ⊗ |1〉〈0|S(n)

+
n∑
i=1

|Pi〉〈Pi|M(P ) ⊗ |0〉〈1|S(i) +
∞∑

i=n+1

|Pi〉〈Pi|M(P ),

(3.28)

where n denotes the number of programs to be concatenated, |Pi〉 denotes the i-th

program in the concatenation sequence (we are assuming that the programs have been

enumerated such that the first n programs are the ones that we wish to concatenate),

M(P ) denotes the program qubits portion of M , h denotes the halt qubit, P denotes

the program counter register, P ′(i) denotes the i-th ancillary program counter register,

and S(i) is the i-th flag denoting that program i has been swapped. Note that some

suitable finite unused subset of M can be used for P ′(i) and S(i) since these are

initialized to 0 and are only used once in the program concatenation operation. The P ′
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and S′ arrays of qubits are required to save intermediate states during program swaps

to ensure unitarity.

In order to concatenate n given programs, then, we simply modify the overall UQC
evolution operator to

U
def= Π(n)UCFUUPURIUUFUUDUEXUXDUIF (3.29)

U then has the net effect of running each program until it halts, swapping each com-

pleted program with the next program in the concatenation sequence, swapping the

program counter register with 0, flipping the halt qubit (and hence starting execution

of the swapped program), and leaving the final result on the tape when the last pro-

gram, |Pn〉, halts. Even if the individual programs are known to halt, the concatenated

program will not necessarily halt because, in general, the input data to the individual

programs will change when run as part of a concatenated program. Hence, whether or

not a concatenated program will halt is independent of whether or not its constituent

programs halt.

The famous Turing halting problem is only relevant in the context of executing

programs that can branch. Non-branching finite programs, by construction, will always

halt so the halting problem is a moot point in that case. This raises a question about

Deutsch’s UQTM. Deutsch did not explicitly consider branching in his original UQTM

proposal and thus it is unclear whether or not his program concatenation scheme rested

on the assumption that UQTM programs were non-branching. If UQTM programs

could involve branching, then without guaranteed halting of the concatenated programs,

the validity of Deutsch’s program concatenation scheme is problematic. Deutsch’s

description of his program concatenation scheme suggests that it was an ‘appending’

scheme rather than a ‘swapping’ scheme as we have defined.

There is still one problem with the program concatenation scheme. As currently

defined, the halt qubit will be flipped several times during the course of executing a

concatenation of programs (assuming that each constituent program halts, of course).

Thus, it may appear that there is no way for an external observer (or classical computer)

to distinguish between the intermediate and final states of the halt qubit. However,

this does not pose a problem so long as the measurement of the halt qubit does not

affect the result that we will ultimately measure on the memory tape in which case we

simply measure the halt qubit, wait the time associated with program swap operations
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(i.e. |Pi+1〉〈Pi|) to be completed, and measure the halt qubit again. If the halt qubit

was in an intermediate set state, we will then find it cleared. If, on the other hand,

the halt qubit was in its final set state, then we will find it still set and we can then

measure the memory tape to find the result. Thus, periodic measurements of the halt

qubit suffice to identify whether the concatenated program has halted. The question,

then, is whether periodic measurements of the halt qubit affect the final measurement

of the memory tape. Ozawa [33] has already proven that periodic measurement of the

halt qubit does not spoil the result of the computation (i.e. the final measurement of

the memory tape contents). That is, the probability of finding the memory tape in

state Mi after N iterations of U with periodic measurements (monitoring) of the halt

qubit and the probability of finding the memory tape in the state Mi after N iterations

of U without periodic measurements of the halt qubit (i.e. one single measurement of

M after N iterations of U) are identical. Thus, periodic measurements of the halt qubit

do not spoil the intermediate computation as Myers argued.

Therefore, we see that concatenation of UQC programs works in the same way as

concatenation of classical computer programs. While the halting question for the resul-

tant program still remains just as it does for classical computers, a valid unitary UQC
program concatenation scheme exists. The programs to be concatenated are sequen-

tially executed without changing the state of internal registers except for the program

counter. Not surprisingly, the concatenation scheme is analogous to the classical case.

3.7 UQC and the Church-Turing Thesis

One of the central foundation tenets of theoretical computer science is the Church-

Turing Thesis [38; 39]. According to Turing [38],

Every ‘function which would be regarded as computable’ can be computed by

the universal Turing machine.

This is an empirical statement though it has thus far survived over 70 years of testing

and analysis.

A computable function is essentially a program or algorithm that can be computed

by a universal Turing machine in finite time. The most representative function that is

not computable is the “halting problem.”
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The “halting problem” is the question of whether or not a given program, labeled

x, halts on the input of x. Formally, the problem is defined as:

h(x) =
{

1, if program x halts on input x
0, if program x does not halt on input x.

This has been proven to be uncomputable by a universal Turing machine. That is,

there exists no algorithmic means for computing the value of the halting function h for

all values of x in finite time.

Many non-trivial and practical problems have been shown to be equivalent to h(x).

In other words, if h(x) were computable so would many other important problems. So

what does this have to do with Physics?

Consider the “halting observable” ĥ [40] defined as

ĥ
def=

∞∑
x=0

h(x)|x〉〈x|, (3.30)

where |x〉 is an orthonormal basis for the state space of some physical system with a

countably infinite dimensional state space. For example, the states |x〉 might be the

number of states of a single mode of the EM field.

ĥ is a valid quantum mechanical observable as it is Hermitian. In light of the

Church-Turing Thesis, then, in principle, we must have either:

(1) It is possible to construct a device that can measure the observable ĥ,

(2) It is not possible to construct a device that can measure the observable ĥ.

If (1) were true, this would violate the Church-Turing Thesis, since one could pre-

pare the system in the state |x〉 and measurement would yield h(x) with probability 1.

If one accepts the Church-Turing Thesis, then, (2) must be true. The analysis in [41]

suggests that (2) must be true.

Namely, only a limited class of observables correspond to physically realizable mea-

surements. It should be noted that there are ample examples of non-computable func-

tions other than h(x) so the limitation on observables is not necessarily trivial and

inconsequential. Similarly, approximate measurements of ĥ, say ĥ′ would allow arbi-

trary approximations of ĥ so they cannot be realizable either.
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This implies that the class of physically realizable (measurable) observables is re-

stricted to those that correspond to computable functions! Computer science would

impose restrictions on physical reality.

How about dynamic evolutions? Consider a function g [40] that is defined as follows:

g(x) =
{

2m− 2, if x is the m-th smallest non-negative integer such that h(x) = 0,
2m− 1, if x is the m-th smallest non-negative integer such that h(x) = 1.

The operator

U
def=

∞∑
x=0

|g(x)〉〈x|,

is unitary.

U †U =

( ∞∑
x=0

|g(x)〉〈x|

)∗ ∞∑
y=0

|g(y)〉〈y|

 =
∑
x,y

|x〉〈g(x)|g(y)〉〈y| =
∑
x

|x〉〈x| = I

Suppose that we prepare a system in the state |x〉, let it evolve according to U , and

then perform a measurement in the |x〉 basis with the result x′. Then x′ is even iff

h(x) = 0 and x′ is odd iff h(x) = 1 so this provides a means to compute the halting

function. Once again, then, one of the following must be true in principle:

(1) It is possible to construct a system whose dynamics are described by U ,

(2) It is not possible to construct a system whose dynamics are described by U .

Again, if we accept the Church-Turing Thesis, it places a restriction on the class of

physically realizable Hamiltonians.

The existence of an explicit construction of a universal quantum computer [23]

enables us to address this question on a concrete quantum mechanical footing. That is,

we can recast the halting problem as a quantum mechanical problem and investigate

whether the halting problem applies to quantum computers.

3.8 The Halting Problem

Let us recast halting problem in the context of UQC’s time evolution as governed by

quantum mechanics. The halting problem in our context can be stated as follows: For

a given initial state (i.e. for a given program and initial data), does UQC ever reach

a state where the halt qubit is in the |1〉 state after applying U , the time evolution
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operator of UQC, a finite number of times (i.e. in finite time)? We are interested in

determining, for a given initial state, whether a measurement of the halt qubit will ever

find it in the |1〉 state.

First of all, recall Ehrenfest’s Theorem (see [42], for example):

d

dt
〈Q〉 = 〈 ∂

∂t
Q̂〉+

i

~
〈[H, Q̂]〉, (3.31)

where 〈Q〉 is the expectation value of some observable Q̂ and H is the Hamiltonian of

the system. Now, consider the halt qubit observable, specifically the spectral projection

of the halt qubit corresponding to the halted state:

Ôh = |1〉〈1|h ⊗ 116=h. (3.32)

Because the halt qubit observable Ôh is time-independent, applying Ehrenfest’s Theo-

rem we get
d

dt
〈Oh〉 =

i

~
〈[H, Ôh]〉, (3.33)

where H denotes the Hamiltonian that generates U . We can immediately conclude

that Ôh must be incompatible with H because UQC programs always start with the

halt qubit in the |0〉 state and if Ôh and H were compatible, no program could ever

halt. Stated differently d
dt〈Oh〉 = 0 for non-halting programs. Conversely, d

dt〈Oh〉 6= 0

implies that a measurement of the halt qubit can find the machine in a halted state

and thus that the program is a halting program. It should be noted that this does

not imply anything about how likely it would be to find the machine and hence the

program in a halted state. The probability may be small but, for our purposes, we are

only interested in whether the program can halt in finite time.

First, we note that [Ôh, U6=EX] = 0 but that [Ôh, U ] 6= 0 because using equation

(3.7) we find that

[Ôh, UEX] = |h→ 1〉〈h→ 1|I ⊗ (|1〉〈0| − |0〉〈1|)h. (3.34)

It is also readily verified using equations (3.5) - (3.7) that

[Ôh, U
†
EX] = [Ôh, UEX], (3.35)

[U †XD, [Ôh, U
†
EX]] = 0, (3.36)
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and that

U †IF[Ôh, U
†
EX]UIF = δM(P ),|h→1〉(|1〉〈0| − |0〉〈1|)h. (3.37)

We thus obtain

U †Ôh = U †IFU
†
XDU

†
EXU

†
UD...U

†
CFÔh (3.38)

= U †IFU
†
XD

(
ÔhU

†
EX − [Ôh, U

†
EX]
)
U †UD...U

†
CF (3.39)

= ÔhU
† − U †IF[Ôh, U

†
EX]U †XDU

†
UD...U

†
CF (3.40)

= ÔhU
† − U †IF[Ôh, U

†
EX]UIFU

†
IFU

†
XDU

†
UD...U

†
CF (3.41)

= ÔhU
† + δM(P ),|h→1〉(|0〉〈1| − |1〉〈0|)h)U−†, (3.42)

where U−† = U †IFU
†
XDU

†
UD...U

†
CF. Note that U− is a unitary operator that has no effect

on the halt qubit since the only component of U † that affects the halt qubit is U †EX

which is absent from U−
†. This yields

[U †, Ôh] = δM(P ),|h→1〉(|0〉〈1| − |1〉〈0|)hU−
†
, (3.43)

which combined with equation (3.33) and the fact that H = i~(∂tU)U † yields

d
dt〈Oh〉 = 〈 i~ [HU, Ôh]U †

+(∂tU)δM(P ),|h→1〉(|0〉〈1| − |1〉〈0|)hU−
†〉.

(3.44)

Recognizing that (|0〉〈1| − |1〉〈0|)h = i(σy)h and that (∂tU) = 1
i~HU , this can be

expressed as

d

dt
〈Oh〉 =

1
~
〈i[HU, Ôh]U † + δM(P ),|h→1〉HU(σy)hU−

†〉. (3.45)

Noting that [(σy)h, U−
†] = 0 since U−† does not interact with the halt qubit, we get

the general result

d

dt
〈Oh〉 =

1
~
〈i[HU, Ôh]U † +HUU−

†(σy)h〉. (3.46)

We now consider the cases where (3.46) is applied to any given program and initial

data state |ψ〉6=h|0〉h
def= |ψ, 0〉. To simplify the derivation and without loss of generality,

we will change the instruction encoding of |H〉 from |0100〉 to |1010〉 (a previously unused

instruction in Table 4.1), make |0100〉 an unused instruction encoding, and require that

all programs have |0100〉 as the first instruction. This effectively causes UEX to act as 11

when it encounters |0100〉 as can be readily verified from (3.7). Hence requiring |0100〉
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as the first instruction in all programs has no effect on program execution and results.

Applying equation (3.46) to an arbitrary program and initial data state we get

d

dt
〈Oh〉ψ =

i

~
〈ψ, 0|[HU, Ôh]U †|ψ, 0〉+

1
~
〈ψ, 0|HUU−†(σy)h|ψ, 0〉, (3.47)

and it can be readily verified using equations (3.5)-(3.12) that U †|ψ, 0〉 = |ψ′, 0〉, so

that
i

~
〈ψ, 0|[HU, Ôh]U †|ψ, 0〉 =

i

~
〈ψ, 0|[HU, Ôh]|ψ′, 0〉 (3.48)

but because Ôh|ψ, 0〉 = 0, for all ψ, this means that

d

dt
〈Oh〉ψ =

1
~
〈ψ, 0|HUU−†(σy)h|ψ, 0〉, (3.49)

and applying (σy)h to |ψ, 0〉, we obtain

d

dt
〈Oh〉ψ =

i

~
〈ψ, 0|HUU−†|ψ, 1〉. (3.50)

We now expand |ψ, 1〉 into the individual components of UQC to make it easier to

follow the evolution as UU−† is applied to |ψ, 1〉:

|ψ, 1〉 = |h, x,D, P, F,H, s, I,M〉 = |1, 0, 0, 0, 0,−1, 0, 0, 0100...〉.

Using equations (3.5)-(3.12), we readily confirm that

U †CF|1, 0, 0, 0, 0,−1, 0, 0, 0100...〉 = |1, 0, 0, 0,NEXT, 1, 0, 0, 0000...〉,
U †UP|1, 0, 0, 0,NEXT, 1, 0, 0, 0000...〉 = |1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉,
U †RI|1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉 = |1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉,
U †UF|1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉 = |1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉,
U †UD|1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉 = |1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉,
U †XD|1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉 = |1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉,
U †IF|1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉 = |1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉,
U |1, 0, 0,−5,NEXT, 1, 0, 0, 0000...〉 = |1, 0, 0, 0, 0,−1, 0, 0, 0100...〉 = |ψ, 1〉.

Thus we obtain the final result:

d

dt
〈Oh〉ψ =

i

~
〈ψ, 0|H|ψ, 1〉. (3.51)

Now, we can expand |ψ, 0〉 and |ψ, 1〉 in terms of the energy eigenstates of the

machine as follows.

|ψ, 0〉 =
∑
i

αi|φi〉, (3.52)

|ψ, 1〉 =
∑
j

βj |φj〉, (3.53)
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where |φn〉 denotes the n-th energy eigenstate of the machine. Then

〈ψ, 0|H|ψ, 1〉 =
∑
i,j

α∗i βjEj〈φi|φj〉 =
∑
i

α∗i βiEi,

and we obtain the final result

d

dt
〈Oh〉ψ =

i

~
∑
i

α∗i βiEi, (3.54)

where the sum is over the energy eigenstates of the starting state of the machine.

We see that d
dt〈Oh〉 is a function of the energy of the machine for the given pro-

gram and initial data. Conceptually, this is to be expected. While a computation is in

progress, UQC is a closed quantum system. Therefore, its energy is conserved. More-

over, because H is time-independent, the states of UQC are stationary states. As such,

the set of energy eigenstates that comprise the initial starting state of the machine does

not change over time. Stated differently, the machine’s evolution is restricted to those

states of the machine that are a linear combination of the initial energy eigenstates.

Therefore, whether a program will halt is ultimately governed by the energy eigenstates

of the initial state of the machine and whether those eigenstates can constitute a halted

state.

Now, if we accept the Church-Turing Thesis then either one or all of αi, βi, and

Ei cannot be determined. The question then is what prevents this? In principle, we

can determine these if we can determine H from U . Yet, there must be an inherent

problem that prevents this for the Church-Turing Thesis to hold. Unfortunately, this

analysis is beyond the scope of this thesis and will require further investigation. What

is important, however, is that the physical basis for the halting problem and hence the

Church-Turing Thesis must be apparent in the Hamiltonian of the UQC.

3.9 Discussion

The quantum computer we have defined is universal in the sense that, under the control

of quantum programs, it can firstly emulate any classical Turing machine by being able

to compute the NAND function and secondly can approximate any unitary operation

to any desired accuracy by being able to apply the set of {H,CNOT,T} operations

on a specified set of qubits. The machine also supports conditional branching and
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hence conditional execution, a feature that is not directly possible in the quantum gate

array circuit framework. The defined halting scheme works in a way that prevents

changes to the memory tape once the program has halted thus satisfying Ozawa’s

proof requirement and allowing for a valid program concatenation scheme. Because of

its universality, UQC serves as a prototypical model for general-purpose programmable

quantum computation and should find uses in the development and analysis of quantum

algorithms and complexity. The UQC should also find applications in the analysis of

fundamental quantum computing questions such as the exploration of the physical basis

of the halting problem that we briefly explored in this chapter.
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4

Oracle Based Algorithms On A

Universal Quantum Computer

4.1 Introduction

Quantum networks which connect quantum systems and can transmit quantum infor-

mation have been extensively discussed [26]. Quantum connectivity provides a means of

overcoming size-scaling and error-correction problems, and has significant advantages

over classical connectivity. Furthermore, networks of quantum computers have also

been proposed [27] where information can be exchanged between nodes via quantum

and classical channels. A general question arises as to how such quantum computers

can communicate and exchange information. In the simplest case a quantum computer

may download data sets from other nodes over the quantum network, but in more

complex cases use the network to call subroutines, or concatenate programs from other

quantum computers.

It is well known that classical principles do not necessarily apply in the realm of

quantum mechanics. The no-cloning theorem (see [43] for example) is a well-known ex-

ample of this as is the ability to halt a programmable quantum computer as discussed

in the previous chapter. Thus, it is imperative to formally show whether a classical

solution or property is applicable (or even relevant) in the realm of quantum mechan-

ics. Assuming that a classical solution to a problem directly applies to a quantum

mechanical system is prone to run into potential complications.

We address here the question of whether and how a universal quantum computer
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can access an external oracle, which may be regarded as a “black box” quantum device,

possibly over a quantum network but in any case as a separate and external quantum

system to the universal quantum computer itself. In fact, the oracle may be a program

running on a remote universal quantum computer. It should be noted that this is

a different problem from that of implementing an oracle “program” on a universal

quantum computer. This is of course possible by virtue of the fact that the computer

is universal. Hence, if a program exists, it can be implemented and executed on a

universal quantum computer. The ability to utilize external quantum devices over a

network connection, however, is a different problem because such devices are external

to the universal quantum computer itself.

Classically, the ability to access devices on a network is a well-known problem with

well-known solutions. However, as stated earlier, we cannot assume that this is nec-

essarily the case for a quantum computer accessing quantum devices on a quantum

network. Our aim is to explicitly show that accessing external quantum devices with

a universal quantum computer is indeed possible by devising universal quantum com-

puter programs to implement well-known oracle based quantum algorithms, namely the

Deutsch, Deutsch-Jozsa, and the Grover algorithms using external black-box quantum

oracle devices.

In the previous chapter we constructed a programmable universal quantum com-

puter UQC that is universal in the sense that it can emulate any classical Turing

machine and can approximate any unitary operation to any desired accuracy. It is pro-

grammable in the sense that the machine’s operations are specified using a sequence of

instructions in the same way as for classical computers. UQC also supports conditional

branching and hence conditional execution, a feature that is not directly possible in

the quantum gate array circuit framework. Moreover, UQC uses a halting scheme that

allows for valid program concatenation, thus resolving issues with the original Universal

Quantum Turing Machine (UQTM) proposed by Deutsch [21].

In order to use information from a quantum network in UQC programs, we need to

devise a means of enabling UQC programs to access such remote information and use

that information for local computations. We assume that remote quantum nodes exist

and treat them as black boxes without any assumptions as to their internal structure

or operational details. Without loss of generality, we assume that such devices accept a

finite number of input qubits and generate a finite number of output qubits. The input
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and output qubits may be shared, which is the case if the remote device functions

in such a way as to alter the input qubits based on its function. We also assume,

without loss of generality, that quantum network nodes have an “enable” qubit, |en〉,
that controls when access is to begin, in order to let the device know when the input

data has been prepared and is valid. We further assume, without loss of generality,

that the nodes of the network generate their output data in less time than the time

associated with a single iteration of UQC. If the query time were longer than a single

iteration of UQC or were data-dependent, one could simply write the UQC program

to wait for the appropriate number of cycles before using the result of the network

access. Alternatively, the nodes could provide an “access completed” status flag qubit

such that the UQC program could poll this status flag qubit before using the result of

a network access.

4.2 Accessing Networked Quantum Resources With UQC

Recall from the previous chapter that UQC consists of a memory tape M with an

infinite number of qubits, of which only a finite portion is ever used, and a processor that

contains observables that play the roles of several registers, including a data register D,

a program counter register P , a scratch qubit s, and the halt qubit h. The processor

executes programs stored on the memory tape using data that is also stored on the

memory tape. A program of UQC consists of a sequence of qubits whose states encode

instructions of the instruction set defined in the previous chapter and reproduced in

Table 4.1 below.

The single qubit operations H and T act on the qubit at tape location M(D),

denoted |M〉D, and the two qubit operations SWAP and NAND act on |M〉D and the

scratch qubit |s〉, the latter being used as the control qubit for the NAND operation.

The instruction set includes a set of operations that can approximate any unitary

operation to any desired accuracy. Thus, it is quantum computationally universal. In

the previous chapter we constructed a UQC program that can compute the NAND

function, thereby showing that the machine can compute any classically computable

function. Because of UQC’s universality, any algorithm that can be implemented in

the quantum gate array framework can be mapped to an equivalent UQC program by

virtue of the fact that gate array circuits can be decomposed into circuits of gates with
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Table 4.1: UQC Instruction Set

Label Encoding Description

|NOP〉 |0000〉 No operation
|D → 0〉 |0001〉 D → 0
|D + 1〉 |0010〉 D → D + 1
|D − 1〉 |0011〉 D → D − 1
|H〉 |0100〉 Apply Hadamard operation to |M〉D
|T〉 |0101〉 Apply π/8 operation to |M〉D
|SWAP〉 |0110〉 |M〉D ↔ |s〉
|CNOT〉 |0111〉 CNOT of |M〉D and |s〉 (|s〉: control)
|D ↔ P 〉 |1000〉 |D〉 ↔ |P 〉 (branch) iff s = 0
|CLS〉 |1001〉 Clear s
|h→ 1〉 |1111〉 |h〉 → |1〉 (set halt qubit)

the same universal set of unitary operations {H,T,CNOT} that are implemented in

the UQC instruction set. Each of the qubits in a quantum circuit (i.e. lines connecting

gates) can be mapped to a suitable memory tape data qubit and each of the unitary

operations (i.e. quantum gates) can be mapped to a suitable UQC subroutine. It is

possible therefore to map quantum gate array implementations of algorithms such as

the quantum Fourier transform, quantum phase estimation, quantum order-finding,

quantum factoring discussed in [1] (Chapter 5) onto UQC.

Modifying UQC to use networked quantum devices, then, is a matter of connecting

the qubits comprising the interface (input, output, enable, and optionally access com-

plete) qubits of those devices to a finite subset of the data portion of M , which is the

quantum analog of a classical computer’s memory-mapped I/O and allows UQC pro-

grams to access remote devices using the M qubits that are connected to those devices.

The UQC programs prepare the appropriate input data qubits, set the correspond-

ing access enable qubits to perform an access, and utilize the corresponding output

data qubits of M . It should be noted that a remote quantum device could be an-

other instance of UQC which would enable distributed quantum computing. However,

the scheme to access data from remote devices, be they simple devices or full-fledged

quantum computers, would work in the same way.
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4.3 Primitive Programs

Using the primitive programs defined in the previous chapter, we define |PX
i 〉 as the

program that applies the σx (X) operation on data qubit i ∈ Z+. Noting that a CNOT

operation with the control qubit in the |1〉 state is equivalent to the X operation, we

deduce the equivalence

|PX
i 〉 ≡ |PC

|1〉,i〉, (4.1)

where the subscript |1〉 denotes that some suitable data qubit on the memory tape has

been prepared in the state |1〉. Similarly, we define |PZ
i 〉 as the program that applies

the σz (Z) operation on data qubit i ∈ Z+. Noting that HXH = Z, we deduce

|PZ
i 〉 ≡ |PH

i 〉|PX
i 〉|PH

i 〉. (4.2)

Finally, we define a program |PCZ
i,j 〉 that conditionally applies the Z operation on data

qubit i ∈ Z+ and data qubit j ∈ Z+. Since CNOT is the conditional X operation, we

have

|PCZ
i,j 〉 ≡ |PH

j 〉|PC
i,j〉|PH

j 〉. (4.3)

4.4 UQC Algorithms Using Networked Quantum Oracle

Devices

With the notable exception of Shor’s factorization algorithm [2], several well known

quantum algorithms that achieve a speed-up over their fastest known classical counter-

parts rely on the use of an oracle, the best known examples being the Deutsch, Deutsch-

Jozsa, and Grover algorithms (see Nielsen and Chuang [1], for example). The Deutsch

algorithm can determine a global property of a function f(x), namely f(0)⊕f(1), using

only one evaluation of f(x) whereas the fastest classical algorithm requires at least two

evaluations of f(x). The Deutsch-Jozsa algorithm can determine whether a two-valued

(0 or 1) function f(x) is constant or balanced with only one evaluation of f(x) whereas

the fastest classical algorithm requires 2n−1 + 1 evaluations, where n denotes the num-

ber of bits required to encode the possible values of f(x). Grover’s algorithm [5] can

find a marked item in an unstructured database of N elements in O(
√
N) operations

whereas the fastest classical algorithm requires O(N) operations. Thus, these quantum

algorithms all achieve at least a quadratic speedup over their classical counterparts.
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These algorithms are well suited to illustrate the use of networked quantum re-

sources with the UQC because they rely on black-box quantum devices that generate

some output based on the given input. They thus serve as prototypical examples of

a networked quantum node, whose internal implementation details are unknown; only

the interface protocol need be known. Here, we assume the simplest protocol, which is

that the output is valid one “clock cycle” after making a request.

4.4.1 Deutsch and Deutsch-Jozsa Algorithms on UQC

We now illustrate the use of a networked quantum device in a UQC program by first im-

plementing the simplest known oracle based quantum algorithm, Deutsch’s algorithm.

The Deutsch oracle works as follows:

|x, y〉 →
{
|x, y ⊕ f(x)〉 if |en〉 = |1〉,
|x, y〉 otherwise,

where f is some function and |en〉 denotes the oracle query enable flag. The memory

tape is prepared with D(0) = |0〉 and D(1) = |1〉 where D(0) and D(1) take the roles

of x and y, respectively. We assume without loss of generality that D(2) takes the role

of |en〉 and is prepared as |0〉, and D(3) is initially prepared as |1〉.
The program that executes the Deutsch algorithm is

|PD〉
def= |PH

1,0〉|S2,3〉|S2,3〉|PH
0 〉|Ph〉, (4.4)

where |PH
1,0〉 applies the Hadamard transform to the data qubits corresponding to x

and y. |S2,3〉|S2,3〉 swap qubits D(2) and D(3) thereby setting the oracle’s |en〉 qubit

(recall that D(2) is connected to |en〉 and that D(2) = |0〉 and D(3) = |1〉 initially) for a

single UQC cycle and then clears it, returning the state of D(3 : 2) back to the original

state. At this point, the oracle has generated the output state |D(0), D(0) ⊕ D(1)〉.
|PH

0 〉 then applies the Hadamard transform to the x output of the oracle and |Ph〉 halts

the program thus yielding the following on the memory tape:

|D(0), D(1)〉 = ±|f(0)⊕ f(1)〉
[
|0〉 − |1〉√

2

]
.

Measuring D(0) yields the result that we were interested in, f(0) ⊕ f(1). This is a

specific mapping of the gate array implementation of the algorithm (see [1] Figure 1.19,

for example) onto the instruction set of UQC.
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We can similarly implement the Deutsch-Jozsa algorithm by mapping a gate array

implementation such as the one shown in [1], Figure 1.20. In this case, data qubits

D(0 : n−1) take the role of x, D(n) takes the role of y, and we use D(n+1) as the |en〉
qubit. As before, D(0 : n− 1) are prepared in the |0〉 state, D(n) is prepared in the |1〉
state, D(n + 1) is prepared in the |0〉 state and D(n + 2) is prepared in the |1〉 state.

The Deutsch-Jozsa oracle works like the Deutsch oracle with the only difference being

that x is n qubits wide. The resulting UQC program that computes the Deutsch-Jozsa

algorithm is therefore

|PDJ〉
def= |PH

n−1,0〉|Sn+1,n+2〉|Sn+1,n+2〉|PH
n−1,0〉|Ph〉, (4.5)

which is again a direct mapping of the gate array implementation onto the UQC in-

struction set.

4.4.2 Grover’s Algorithm on UQC

We now use the techniques developed in the previous section to implement the Grover

unstructured database search algorithm. We assume that the database has only one

marked solution as can be determined by using the quantum counting algorithm (see

[1] Chapter 6, for example). We denote the query data qubits as |q〉 and the query

enable flag as |en〉. The Grover oracle works as follows:

|q〉 →
{

(−1)f(q)|q〉 if |en〉 = |1〉,
|q〉 otherwise

where f(q) = 1 if q is a solution to the search problem and f(q) = 0 otherwise. More

concisely, the oracle performs the unitary transformation

Um
def= 11− 2|m〉〈m|, (4.6)

where |m〉 denotes the marked solution. In other words, the oracle flips the phase of the

solution state but leaves non-solution states unchanged. Grover’s algorithm prepares

an initial query state as the equal superposition of all elements in the database, followed

by O(
√

2n) iterations of G, where

G
def= (2|s〉〈s| − 11)Um, (4.7)
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and

|s〉 =
1√
2n

2n−1∑
i=0

|i〉 (4.8)

denotes the equal superposition of all database elements.

Thus, the first step in the program is to create a superposition of all database

items in D(n : 1) where D(i) = M(5i − 1), i ∈ Z+, as the first query input. This

is accomplished by the multiple qubit Hadamard primitive program |PH
n,1〉 defined in

Eq. (3.21). The next step is to perform an oracle query. The following program performs

an oracle call with query data prepared in D(n : 1):

|Pm〉
def= |Sn+1,n+2〉|Sn+1,n+2〉, (4.9)

where D(n+ 1) is used as the oracle query enable qubit and D(n+ 2) is initialized to

|1〉. D(n + 1) is assumed to be initialized to |0〉 (i.e. the oracle query data is disabled

at start-up). This program simply sets the query enable qubit for a single UQC cycle

and then clears it, returning the state of D(n + 2 : n + 1) back to the original state.

Thus, upon running |Pm〉, the result of the oracle call is in D(n : 1), i.e. this program

is functionally equivalent to Um.

The next step is to implement a program |Ps〉 that performs the reflection of a given

state about the superposition of all basis states |s〉. This requires a conditional-phase

operation that works as follows:

|x〉 →
{

|x〉 if x = 0,
−|x〉 otherwise

where |x〉 is n qubits wide. Up to a global phase, this can be implemented using the

following procedure:

1. Apply the σx operation to all n qubits.

2. Apply a controlled-Z operation using n − 1 qubits as control qubits and the

remaining qubit as the data qubit.

3. Apply the σx operation to all n qubits.

We can construct a multiple qubit controlled-Z program |PCZ
i,j,k〉 where qubits i through

j are the control qubits and qubit k is the data qubit, with the |PCZ
i,j 〉 program defined in

Eq. (4.3) and the Toffoli program |PToff
i,j,k 〉 that we defined in Chapter 5 using a procedure
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analogous to that described in [1], Chapter 4. Armed with |PCZ
i,j,k〉, we construct |Ps〉

as follows:

|Ps〉
def= |PH

n,1〉|PX
n,1〉|PCZ

2,n,1〉|PX
n,1〉|PH

n,1〉. (4.10)

It can be readily verified that this is functionally equivalent to the 2|s〉〈s|− 11 operator.

Thus, a program that performs a single Grover iteration is

|PG〉
def= |Pm〉|Ps〉. (4.11)

In summary, the complete program to search a database of 2n items with a single

marked solution is

|G〉 def= |PH
n,1〉 (|PG〉)

NG |Ph〉, (4.12)

where NG =
⌈
π
4

√
2n
⌉

is the number of Grover iterations that can be pre-computed

based on the database size, or that UQC can compute from the database size using

a classical algorithm. Upon execution of |G〉, a measurement of D(n : 1) reveals the

solution |m〉. Because there are no oracle queries associated with |PH
n,1〉 and |Ph〉, we

immediately identify the complexity (as a measure of the number of oracle queries) of

|G〉 as NG. Of course, this is identical to the number of oracle queries associated with

an implementation in the gate array framework.

4.5 Discussion

We have presented a scheme to enable the universal quantum computer to utilize net-

worked quantum resources. We have illustrated the scheme by describing UQC pro-

grams that implement the well-known oracle based Deutsch, Deutsch-Jozsa, and Grover

algorithms using networked quantum oracle devices. We have therefore demonstrated

how universal quantum computers can access networked quantum devices in a way

analogous to that by which classical computers access network resources.
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5

Symmetry Based Partial Search

5.1 Introduction

The Grover quantum search algorithm achieves a quadratic speedup over classical un-

structured database search algorithms [5]. It has been shown that the Grover search

algorithm is theoretically optimal assuming the use of the standard Grover oracle (see

[29] for example). In some applications, however, a full search of an unstructured

database is not necessary and a partial search suffices and would be expected to be

faster because less information is required.

A partial search is practical when one does not need to find the exact item but

those items that might have some property in common. For example, one might be

interested in finding the people that live in a given suburb of some city. Intuitively,

this is essentially the problem of searching a database of N
b elements, where N is the

number of elements in the database and b is the ‘bin’ or ‘group’ size. The bin size can

also be considered as the ‘fuzziness’ or granularity of the search result. For the purpose

of this paper, we will assume that the database of size N is divided into K blocks of

equal size b = N
K . Without loss of generality, we may further assume that N and K are

chosen such that N = 2n, and K = 2k, giving b = 2n−k. The goal is to find an item

that is in the same bin as the target item.

Several ways of achieving fast partial searches have been proposed [44] [45] [46] [47]

[48] [49] [50]. The GRK algorithm presented in [51] is the fastest known partial search

algorithm but there is no proof that this is optimal, see [48] for comparisons with other

combinations of global and local iterations, and requires O(
√
N − R

√
b) oracle calls,

59
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where R is a positive coefficient which may be maximized by a combination of local

and global Grover iterations. By comparison, a full Grover search requires O(
√
N)

oracle calls. If b is an order of magnitude smaller than N , the speedup of such a partial

search compared to a full search is not significant. Moreover, according to [51], the

lower bound for the number of oracle queries in any quantum partial search algorithm

is π
4

(
1− 1√

K

)√
N .

It is important to note that the optimal lower bounds associated with Grover search

algorithms apply only to unitary search algorithms. That is, the optimal bounds are

all derived based on the assumption that the algorithms proceed by performing a se-

quence of unitary operations essentially of the form
k∏
i=1

(UiG), where Ui is some unitary

operator, G is the Grover oracle, and k is the number of iterations required to achieve

a successful search. As such, these lower bounds do not necessarily apply if we were to

replace Ui with non-unitary operators, such as projections, or replace G with different

oracles, particularly non-unitary ones. Our hope, then, is to escape the lower bound

by allowing for projections and assuming the use of the standard Grover oracle. In

this chapter we explore a quantum partial search algorithm based on projections in an

attempt to achieve a complexity of O(
√

N
b ), which is the theoretical limit for a full

Grover search of N
b elements assuming the existence of an oracle which identifies the

correct bin. This is conceptually the limit for an oracle with the property that it marks

the bin with the target item.

In the process, we will devise a partial oracle using the standard Grover oracle that

marks the bin containing the target item. This oracle will give rise to a symmetry based

partial search algorithm but implementing the corresponding quantum circuit would

require deterministically copying quantum states. If quantum states could be copied,

the algorithm would lead to exponentially fast full searches, something that cannot be

realized unless non-linear quantum processes are ever observed. Based on the general

form of this oracle, we explore two realizable algorithms that involve the application of

a symmetrization operator either at every iteration step or in the last iteration step.

Both algorithms involve a well defined number of oracle calls but are not viable because

the probabilities of measuring the target bin at the end turn out to be small in both

cases.
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5.2 Symmetry Based Partial Search

As stated earlier, we assume that the database of size N will be divided into K bins,

each containing b = N
K elements. In our case, however, the membership of bins will not

be contiguous. Items |0〉, |K〉, |2K〉, . . ., |N −K〉 will be in one bin. Items |1〉, |K+ 1〉,
|2K + 1〉, . . ., |N − K + 1〉 will be in the next bin, etc., with the last bin containing

|K−1〉, |2K−1〉, . . ., |N −1〉. Thus a given item |x〉 is in the same bin as all the items

that have index |x mod K〉.

When our search is executed, all items with index |t mod K〉, where |t〉 is the

target item, will be treated as equivalent targets. We will achieve this by creating a

partial search oracle using the standard Grover oracle such that it marks (inverts the

probability amplitude) all states |t mod K〉, and not just |t〉. We avoid making any

changes to the standard Grover oracle itself in order to avoid making any assumptions

about the inner workings of the oracle. Moreover, this will enable us to characterize the

complexity of our algorithm in terms of the number of standard Grover oracle calls thus

allowing for a meaningful characterization of our algorithm’s complexity. Our overall

algorithm, then, is to run a global Grover search but using our partial oracle instead

of the standard Grover oracle.

5.3 The Partial Search Oracle

We begin by defining a shift operator SK which takes a state |x〉 and shifts it by K

positions to the left. If x < K, then SK wraps around to the corresponding state with

index ≥ N−K. That is, SK |x〉 = |x−K mod N〉. For notational simplicity, we define

|x〉y
def= |x mod y〉. Formally,

SK =
N−1∑
i=0

|i〉 N 〈i+K|. (5.1)

It is readily verified that SK is unitary, that S†K = S−K , and that S`K = S `
K , where `

is some integer.

Therefore, to create an oracle that marks a state of the form |t〉K , i.e. |t + `K〉N ,

where 0 ≤ ` ≤ b−1, we shift the state to |t〉, we apply the standard Grover oracle, which

flips it to −|t〉, and we then shift it back to −|t+ `K〉N . To confirm this we note that
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the standard Grover oracle that marks the state |t〉 can be expressed as Ot = 11−2|t〉〈t|.
Therefore, our shifted oracle is

Ot+K
def= S†KOtSK = 11− 2|t+K〉N N 〈t+K|.

We next modify our shifted oracle such that it marks all of the moduloK solutions at

once. As in a standard Grover search, our starting state will be the equal superposition

of all database items. A superposition is then formed over every shift of `K positions,

with a shift to the left summed over values of `. We thus have a sum over b states,

where in each term of the summation, the state is shifted such that every modulo K

solution is in the position of the target. Hence when the standard oracle is applied, each

modulo solution is marked. We then undo the shifts with summed shifts to the right,

restoring the modulo targets back to their original positions. In this way, we produce

a state in which every modulo K target has been marked whereas the non-modulo K

items remain unchanged. Formally, the un-normalized operator that achieves this is

given by
b−1∑
`=0

S †`KOtS`K .

After this operator has been applied, each non-modulo K position is the sum of b

of the initial states, none of which is the target, and thus has an amplitude ∼ b. Each

modulo K target state, however, is the sum of b − 1 states which are not the target,

and therefore has a positive amplitude, and one state which is the target, and therefore

has equal but negative amplitude. Thus these states have amplitudes ∼ (b − 2). This

is not quite the desired state, however. We need to return the non-target positions

to the amplitudes that they had before the oracle call. In essence they need to be

‘untouched,’ as in the standard Grover. We also need to drop the modulo K targets

back to an equal but negative amplitude. To be precise, they will be flipped, relative

to their initial values. Finally, we need to re-normalize the state. Thus, we define our

unitary partial search oracle that accomplishes this as

OtK
def= (1− b)11 +

b−1∑
`=0

S†`KOtS`K , (5.2)

where tK denotes t mod K, signifying that this oracle marks all modulo K target

items.
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Now we will explicitly check that this operator does, in fact, have the desired effect,

and that it is unitary. We have S†`K |t〉 = |t+ `K〉N , and so

S†`KOtS`K = 11− |t+ `K〉N N 〈t+ `K|

for each ` = 0, . . . b− 1. By summing over ` and using the definition (5.2) we obtain

OtK = 11− 2
b−1∑
`=0

|t+ `K〉N N 〈t+ `K|. (5.3)

The oracle OtK therefore marks any item of the form |t+ `K〉N , i.e. we have OtK |x〉 =

−|x〉 for all elements |x〉 in the target bin, and OtK |x〉 = |x〉 for all other elements.

OtK is also unitary and Hermitian, and so satisfies (OtK)2 = 11. We can clearly see that

this is an oracle that marks any solution of the form |t+ `K〉, that is to say, an oracle

that marks all modulo K targets. It is also readily verified to be unitary. The idea is

to substitute our oracle for the one in the standard Grover algorithm, such that after

∼ π
4

√
N
b = π

4

√
K iterations, we hope to achieve a high probability of measuring one of

the modulo K solutions. Namely, our partial search iteration would be GK
def= AOtK ,

where A is the inversion about the average operator, formally defined as

A = 2|σ〉〈σ| − 11, (5.4)

with |σ〉 denoting the superposition over all basis states.

Unfortunately, as is evident from (5.2) each call to OtK involves multiple calls to

the standard Grover oracle Ot. This would defeat any savings and, in fact, would be

less efficient than a standard full Grover search because the complexity of a partial

search based on this oracle would have a lower bound of O(
√
bN) standard oracle calls.

One way to reduce this overhead is restrict the partial search oracle to the subspace of

symmetric states that will be defined in the following section.

5.4 Symmetric States

OtK can be optimized to eliminate the initial shift symmetrization at the expense of

unitarity. This is possible because the starting state is the superposition of all basis

states and hence applying the shift operator has no effect, i.e. S`K |σ〉 = |σ〉 for all `.

We have therefore

OtK |σ〉 =
[
(1− b)11 + bPKOt

]
|σ〉, (5.5)
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where

PK
def=

1
b

b−1∑
`=0

S†`K . (5.6)

Since S†K = S−K we have PK = P †K , and from SbK
† = 11 it follows that PKS

†
K = PK =

S†KPK . Hence PKS
†
`K = PK for all integers ` and therefore P 2

K = PK . We also have

SKPK = PKSK = PK .

It is convenient to change from the basis {|i〉} to a basis consisting of the eigenstates

|ψ〉 of the projection operator PK . Since PK and SK commute we may simultaneously

diagonalize PK and SK . SK is unitary and therefore has complex eigenvalues of unit

modulus, specifically SK |ψ〉 = eiθ|ψ〉 where eiθ is a b-th root of unity, i.e. θ takes values

2π`/b for ` = 0, 1 . . . b − 1. The eigenspace of SK for each such ` has dimension K.

The relation PKSK = PK implies eiθPK |ψ〉 = PK |ψ〉, so if θ 6= 0 the corresponding

eigenstate |ψ〉 lies in the nullspace of PK . If θ = 0 we have SK |ψ〉 = |ψ〉 and hence, from

the definition (5.6), PK |ψ〉 = |ψ〉. The K eigenstates |ψ〉 of SK with unit eigenvalue

may be determined explicitly by expanding |ψ〉 in terms of the basis {|i〉} and are given

by

|sα〉
def=

1√
b

b−1∑
`=0

|α+ `K〉N , (5.7)

for α = 0, 1, . . .K− 1. Each state |sα〉 is the symmetric combination of all states in the

bin α. Let us denote the linear span of the states {|sα〉} by S, comprising the range of

PK , and denote its orthogonal complement by S⊥, the N −K dimensional nullspace

of PK . This space is spanned by the orthonormal set {|s⊥β 〉} for β = 0, 1 . . . N −K − 1,

where |s⊥β 〉 is an eigenstate of SK corresponding to an eigenvalue not equal to unity,

however we do not require the explicit form of these states. We refer to the elements

|s〉 of S as symmetric states, and the elements |s⊥〉 of S⊥ as nonsymmetric states.

5.4.1 Construction of OtK Using Symmetric States

We note that

|σ〉 =
1√
K

K−1∑
α=0

|sα〉, (5.8)

hence PK |σ〉 = |σ〉 and therefore PKA = A + 11 − PK = APK . For all states |s〉 in S,

in which case PK |s〉 = |s〉, we have from (5.2)

OtK|s〉 = (1− b)|s〉+ bPKOt|s〉 (5.9)
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and hence

GK |s〉 = (1− b)A|s〉+ bPKAOt|s〉. (5.10)

We do not expect OtK to be expressible in the form P ′Ot, where P ′ is some projection

operator because that would lead to a contradiction of the aforementioned established

lower bounds for partial search algorithms based on the Grover oracle.

Since PKGK |s〉 = GK |s〉 we see that GK |s〉 is a symmetric state provided that |s〉 is

a symmetric state, i.e. if the domain of GK is restricted to S then the range of GK also

lies in S. The state AOt|s〉 is a superposition of symmetric and nonsymmetric states

but the nonsymmetric components are projected out by PK . Hence we may iterate GK
any number of times and the resultant states are all elements of S, provided only that

the starting state lies in S. In effect GK acts like a Grover operator, except that it acts

on the K bins as represented by the states |sα〉, not on the individual database elements

|i〉, and rotates the initial state to the target state with nK =
⌈
π
4

√
K
⌉

iterations.

The operation of OtK on |σ〉 according to (5.9) is depicted in Figure 5.1. The initial

state |σ〉 is shown in a), with all N qubits having equal amplitude measured in units

of 1/
√
N , and Ot|σ〉 is shown in b) with a flipped target item. The state bPKOt|σ〉 is

shown in c), where bPK acts on b) according to the sum (5.6), shifting all elements by

`K units to the left to create b terms which are summed over `. The state (1 − b)|σ〉
is shown in d) and is added to c) to produce OtK|σ〉 in e). Hence OtK creates a target

bin and flips the sign of all items in that bin, leaving other items unchanged. This

completes the construction of a partial search oracle using the standard Grover oracle.

5.4.2 Implementation of OtK and Discussion

At first glance, OtK appears to involve just a single standard oracle call. However, we

will now show that such is not the case. Firstly, we define the operator

UK
def= 11− 2PK = 11− 2

K−1∑
α=0

|sα〉〈sα|,

which is both Hermitian and unitary and hence satisfies U2
K = 11. This operator leaves

nonsymmetric states unchanged and satisfies UKA = −A− 11− UK = AUK . Then we

write (5.10) in the form

GK |s〉 = (1− b)A|s〉+
b

2
AOt|s〉 −

b

2
UKAOt|s〉. (5.11)
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Figure 5.1: Partial Measurement Based Partial Search Oracle -
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Given an input state |ψ〉, this operator generates the normalized superposition N−1|φ〉

where

|φ〉 = (1− b)A|ψ〉+
b

2
AOt|ψ〉 −

b

2
UKAOt|ψ〉

and N =
√
〈φ |φ〉. This operator involves a constant number of oracle calls at each

iteration, independent of the bin size. Of course, as stated earlier, GK is only unitary in

the symmetric subspace so it only works when the starting state is symmetric and it is

unstable with respect to quantum noise, essentially because the space of nonsymmetric

states S⊥ is much larger than S, for large bin sizes b. A general state of the system

has the form |ψ〉 = α|s〉+ ε|s⊥〉 where α2 + ε2 = 1, and if this is an input at any given

iteration for very small ε, then the output state of that iteration has the form

N−1(α′|s′〉+ ε(1− b)|s⊥〉),

where N 2 = (α′)2 + (1 − b)2ε2, and |s′〉 is a symmetric state. Hence the operator

amplifies any quantum noise, specifically it amplifies the ratio of nonsymmetric to

symmetric components by a factor of b− 1, assuming that α, α′ are of the same order

of magnitude.

Although this instability can be controlled by means of suitable error-correcting

codes (see [1] Chapter 10, for example), we propose that periodic measurement with

the Hermitean operator PK can also be used to maintain stability. The eigenvalues 0, 1

of PK can be regarded as comprising a “symmetry” qubit. If the state of the system

has a very small nonsymmetric component then a nondemolition measurement of PK

yields 1 with near unit probability, and projects out this nonsymmetric component;

the computation now proceeds correctly. If measurement of PK happens to yield 0

then the system has been projected into a nonsymmetric state and the search must

be restarted. Properties of the symmetry qubit are similar to those of the halt qubit

used to determine whether a universal quantum computer has halted execution, see the

discussion in [23].

In summary, the partial search algorithm performs π
4

√
K iterations of GK , begin-

ning with |σ〉 as the starting state, and concludes with a full measurement which finds

one of the modulo K solutions and hence determines the target bin with nK = O(
√
K)

standard oracle calls.
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5.4.3 Implications and Problems With GK

A sequence of partial searches using GK can lead to much faster searches than currently

known algorithms. The strategy would be to perform a sequence of partial searches,

each comprising a completed quantum computation, which trap the target item in

successively smaller bins. Eventually the target bin would be sufficiently small that

we either find the target item quickly with a single Grover search or else, in order to

minimize the number of oracle calls, reduce the target bin further to a single item.

There would be a trade-off between the number of measurements, i.e. the number of

partial searches, and the total number of oracle calls. In each partial search there is

a less than unit probability of measuring the correct target bin, however the Grover

algorithm and hence the partial search can be modified to ensure that the target bin

is identified with full certainty at each stage, as discussed in [50].

Let us consider for example a 2-stage search in which the database of size N is

divided into K =
√
N equal blocks each of bin size b =

√
N . We first perform a partial

search on the full database, which identifies the bin of size
√
N in which the target item

is located using O(
√
K) = O(N1/4) oracle calls. Then we perform a full Grover search

on this bin, which locates the target itself and also takes O(N1/4) oracle calls. The full

search is completed therefore with two measurements and O(N1/4) oracle calls. An m-

stage search following this strategy requires m measurements and O(mN1/(2m)) oracle

calls, with the number of blocks at each stage given by K = N1/m. This search strategy

applies when the number of measurements is set to a fixed number m, independent of

N .

We can conduct a much faster full search by applying sufficient partial searches

to reduce the target bin to a single item. After m successive partial searches of the

database of size N = 2n, each with fixed K = 2k independent of N , the target bin is

reduced in size to b = 2n−mk. This requires mnK oracle calls and m measurements.

Each measurement, being a classical operation, is much slower than an oracle call. Let

us suppose that a measurement is equivalent in speed to M oracle calls where M is

independent of N , then we have a total of m(nK +M) equivalent oracle calls, and since

nK = O(
√
K) we can optimize the search by choosing K = O(M2) so that the total

number of equivalent oracle calls becomes O(mM).
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Taking now m = n/k, where k is independent of n, we require therefore O(logN)

equivalent oracle calls in order to isolate the target, representing an exponential speedup

over a full Grover search. This speedup arises because at each stage the partial search

algorithm eliminates N − b items from the database, a number which is proportional

to N , whereas K and hence the number O(
√
K) of oracle calls is independent of N .

If this sounds too remarkable to be true, it is because there is a fundamental prob-

lem with GK . To see this, let |ψ〉 be any normalized input state and we re-write

equation (5.11) as

|φ〉 = (1− b)|ψ1〉+
b

2
|ψ2〉 −

b

2
|ψ3〉.

In order to compute GK |ψ〉 with only two oracle calls, we would need to carry out a

sequence of operations that involve calculating the nonorthogonal, normalized states

|ψ1〉 = A|ψ〉, |ψ2〉 = AOt|ψ〉 and |ψ3〉 = UKAOt|ψ〉, all of which are functions of the

normalized input state |ψ〉. Thus, we would need three copies of |ψ〉 and a way to

deterministically superimpose them in the same subspace. This is not possible in linear

Quantum Mechanics and thus cannot realize an exponentially fast search algorithm

based on this scheme unless non-linear quantum processes are ever observed. If non-

linearity were to provide a way to copy quantum states, it might be possible to use

such processes to realize the scheme we developed and thereby realize exponentially

fast search algorithms. In fact, non-linear quantum processes would likely give rise to

many superior quantum algorithms such as discussed in [52].

5.5 Two Partial Search Algorithms

In order to avoid the above discussed problem, we consider two algorithms based on the

partial search oracle developed here whereby the number of oracle calls is well defined

and copying of states is not required. First of all, consider the generalized form of the

OtK operator that we defined in (5.2)

OtK = α11 + βPKOt. (5.12)

In (5.9), we set α = (1−b) and β = b. Now, even if we avoid the copying of intermediate

states, a problem arises from the first term α being non-zero as this forces the normal-

ization constant N that was discussed earlier to be a function of the oracle operator

Ot if the input or intermediate states contain non-symmetric components. Therefore,
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we can set α = 0 and β = 1 such that the number of oracle calls is well defined and is

one per OtK call. We thus obtain the non-unitary oracle

OtK = PKOt. (5.13)

This gives rise to a partial search algorithm where we perform n = O(
√
K) iterations

of AOtK . Noting that [PK , A] = 0, AOtK = PKAOt ≡ PKG, so we will refer to this as

the (PKG)n algorithm.

5.5.1 (PKG)n Algorithm

For notational simplicity, we redefine GK
def= PKG, where G def= AOt. It can be readily

verified that GK |si〉 and GK |st〉K can both be expressed as linear combinations of |si〉
and |st〉K . Therefore, we assume that

GnK |σ〉 = αn

K−1∑
i=0

|si〉+ βn|st〉K . (5.14)

The initial conditions require α0 = 1√
K

and β0 = 0. Then

Gn+1
K |σ〉 = αn

∑
i

GK |si〉+ βnGK |st〉K

= αn
∑
i

A

(
|si〉 −

2
b
δi,tK |st〉K

)
+ βn

(
1− 2

b

)
A|st〉K

= αn
∑
i

 2
K

∑
j

|sj〉 − |si〉

− 2αn
b
A|st〉K + βn

(
1− 2

b

)
A|st〉K

=
2αn
K

∑
i,j

|sj〉 − αn
∑
i

|si〉 −
(

2αn
b
−
(

1− 2
b

)
βn

) 2
K

∑
j

|sj〉 − |st〉K


=

(
αn −

(
2αn
b
−
(

1− 2
b

)
βn

)
2
K

)∑
i

|si〉+
(

2αn
b
−
(

1− 2
b

)
βn

)
|st〉K .

Thus, proving by induction that (5.14) is true. We can now solve for αn and βn using

the recurrence relations

αn+1 =
(

1− 4
N

)
αn +

(
1− 2

b

)
2
K
βn,

βn+1 =
(

1− 2
b

)
βn −

2αn
b
.
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Using these equations, we obtain the characteristic equation

αn+2 −
(

2− 2
b
− 4
N

)
αn+1 +

(
1− 2

b

)
αn = 0.

Solving this, we get the solution

αn = d1γ
n
1 + d2γ

n
2 ,

βn =
K
2 (αn+1 − αn) + 2αn

b(
1− 2

b

) ,

where

γ1 = 1− 2
N
− 1
b
−

√
4
N

(
1
N

+
1
b
− 1
)

+
1
b2
,

γ2 = 1− 2
N
− 1
b

+

√
4
N

(
1
N

+
1
b
− 1
)

+
1
b2
,

d1 =
1

2
√
K

+
2b−N

2
√
N(N2

b + 4N − 4bN + 4b)
,

d2 =
1

2
√
K
− 2b−N

2
√
N(N2

b + 4N − 4bN + 4b)
,

It can be readily confirmed that this solution satisfies the initial conditions of α0 = 1√
K

and β0 = 0.

Now, we define the probability of success as the probability of measuring the target

bin as a function of the number of iterations n and the bin size b as

Psuccess(n, b)
def= |K〈st|GnK |σ〉|

2 ,

and using (5.14) we obtain

Psuccess(n, b) = |αn + βn|2 .

While the number of oracle calls is now well defined, it can be readily verified that

Psuccess =
b

N

(
1− 2

b

)2n

+O

(
1
N2

)
(5.15)

Thus, Psuccess is extremely low for any practical choices of N and b because it

decreases exponentially with n (recall that N = 2n) .
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Conceptually, the pitfall with this algorithm is that at each iteration we need to

restart from scratch if PK measures a non-symmetric state. Moreover, even if PK

measures a symmetric state, it may be a non-target bin state |s6=t〉K . In either case,

the probability of measuring the target bin at the end is significantly reduced.

5.5.2 PKGn Algorithm

This suggests another algorithm whereby we defer the application of the PK operator

until the very end. That is, we will perform n iterations of the standard full Grover

search G to avoid the risk of measuring a non-symmetric or non-target bin at each iter-

ation and instead apply PK as the last search step. Deferring measurement operations

in quantum computations is known to be possible (see [1], for example). However, we

will see that while it is possible to defer measurements, the operations (i.e. the quan-

tum circuit) prior to the deferred measurement cannot, in general, be identical in both

cases. That is, measurements can indeed be deferred but the intermediate operations

generally require modifications in order to do so. Conceptually, one can think of this

as deferring a conditional operation in the middle of an algorithm. This is certainly

possible to do but requires maintaining two branches of calculations until the deferred

conditional operation is performed at the end.

In this algorithm, we apply a full Grover search for n iterations and then apply

the symmetrization operator PK as the last step. The hope is that this will give a

reasonable probability of measuring the target bin |st〉K .

It can be readily verified that

G|σ〉 =
(

1− 4
N

)
|σ〉+

2√
N
|t〉

and that

G|t〉 = − 2√
N
|σ〉+ |t〉.

Thus, both G|σ〉 and G|t〉 can be expressed as linear combinations of |σ〉 and |t〉.

Therefore, we assume that

Gn|σ〉 = an|σ〉+ bn|t〉. (5.16)
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The initial conditions require a1 =
(
1− 4

N

)
and b1 = 2√

N
, and note that a1 + b21 = 1.

Now, we let

Gn+1|σ〉 = anG|σ〉+ bnG|t〉

= (ana1 − bnb1)|σ〉+ (anb1 + bn)|t〉.

Thus, proving by induction that (5.16) is true. We can now solve for an and bn using

the recurrence relations

an+1 = ana1 − bnb1,

bn+1 = anb1 + bn.

Using these equations, we obtain the characteristic equation

an+2 − (a1 + 1)an+1 + an = 0.

Solving this, we get the following solution to the recurrence relations

an = c1α
n
1 + c2α

n
2 ,

bn =
ana1 − an+1

b1
,

where

α1 = 1− 2
N

(
1− i

√
N − 1

)
,

α2 = 1− 2
N

(
1 + i

√
N − 1

)
,

c1 =
1−N − i

√
N − 1

2− 2N
,

c2 =
1−N + i

√
N − 1

2− 2N
.

It can be readily confirmed that this solution satisfies the initial conditions of a1 =(
1− 4

N

)
and b1 = 2√

N
.

As before, we define the probability of success as the probability of measuring the

target bin as a function of the number of iterations n and the bin size b as follows.

Psuccess(n, b)
def= |K〈st|PKGn|σ〉|2 .

Noting that PK |σ〉 = |σ〉, it can be readily verified that

PKG
n|σ〉 = an|σ〉+ bnPK |t〉,
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and applying PK to |t〉 yields

PKG
n|σ〉 = an|σ〉+

bn√
b
|st〉K .

Therefore,

Psuccess(n, b) =
∣∣∣∣ an√K +

bn√
b

∣∣∣∣2 .
It can be shown that

Psuccess =
(b+ 2n)2

Nb
+O

(
1
N2

)
. (5.17)

Hence, this algorithm also has a very low probability of success for any practical choices

of N and b because it again decreases exponentially with n.

Conceptually, this is because the deferred PK essentially “spreads” out the prob-

ability amplitude of the target state |t〉 across the members of the target bin |st〉K
and since we are doing less than the optimal number of full Grover search iterations

(O(
√
K) vs. O(

√
N)) the probability of measuring the target bin becomes very small

for K � 1. Even if we carried out a full Grover search with n = O(
√
N) iterations,

the probability of measuring the target bin with PK would be O( 1
K ) since we would be

“spreading” the probability amplitude of |t〉 to the K members of |st〉K .

By comparing PKG2|σ〉 and (PKG)2|σ〉 we immediately see that the two algorithms

are not equivalent. This means that PK cannot be deferred without also modifying

the operations prior to the deferred measurement. Thus, PKGn and (PKG)n are not

equivalent algorithms.

5.6 Discussion

We have explored a partial search algorithm based on partial measurements of sym-

metric states. We have created a partial search oracle based on the standard Grover

oracle and involving symmetry projections. When restricted to the subspace of sym-

metric states, this oracle has a much simpler form that involves a simple product of

the standard Grover oracle. Furthermore, this oracle acts entirely within the subspace

of symmetric states. This oracle gives rise to a symmetry based partial search scheme,

GK , but difficulties in implementing a quantum circuit prevents its realization. This is

not surprising because if such a quantum circuit could be implemented, it would give
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rise to an exponentially fast search algorithm that would violate well known bounds for

Grover search algorithms. We have also explored two closely related algorithms that

lend themselves to quantum circuit implementations but these deliver no improvement

over existing search algorithms.

It should be noted that the difficulty in implementing GK and the fact that the two

algorithms considered here do not yield fast results does not necessarily preclude the

existence of a fast partial search algorithm based on the idea of the symmetrization or

partial measurement operator. However, it would likely require a more sophisticated

“guided” operator based on partial measurements at each iteration of the algorithm.

In other words, a partial measurement scheme similar to the UQC’s non-demolition

measurement of the halt qubit may allow for a more efficient partial search algorithm.

Furthermore, if non-linear quantum processes are ever observed, and if non-linearity

were to provide a way to copy quantum states and deterministically superimpose them

in the required manner, it would be possible to use such processes to implement the

scheme we developed to realize exponentially fast search algorithms.
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6

Conclusions And Discussion

In this thesis, we have explored two core areas of quantum computing: universal quan-

tum computation and quantum search algorithms. The primary results are a) the

construction of a universal quantum computer, b) implementation of well-known ora-

cle based algorithms using this universal quantum computer with externally connected

quantum oracle devices, c) the construction of a partial search oracle based on sym-

metric states and the standard Grover search oracle, and d) implementation of partial

search algorithms based on this partial search oracle.

Quantum computation ultimately rests on the foundation that Deutsch laid when

he devised the UQTM. After all, the power of computation, whether it be classical

or otherwise, arises from programmability. Thus, the existence of a class of machines

that can compute any computable algorithm as efficiently as any other machine is of

utmost importance. It turned out, however, that there were fundamental and unan-

swered questions regarding the validity of the UQTM. While the quantum computing

community at large may have deemed the raised objections as technicalities that would

be eventually resolved, it nevertheless left an unpalatable gap in the foundation of

quantum computation. This is the core problem that we have resolved in this thesis.

We have shown by construction the existence of a universal quantum computer, UQC,
in the spirit of the UQTM.

The quantum computer that we have defined is universal in the sense that the

same machine, under the control of quantum programs, can firstly emulate any clas-

sical Turing machine by being able to compute the NAND function and secondly can

approximate any unitary operation to any desired accuracy by being able to apply the

77



6. CONCLUSIONS AND DISCUSSION

set of {H,CNOT,T} operations on a specified set of qubits. The machine also supports

conditional branching and hence conditional execution, a feature that is not directly

possible in the quantum gate array circuit framework. The halting scheme that we have

defined works in a way that prevents changes to the memory tape once the program

has halted thus satisfying Ozawa’s proof requirement and allowing for a valid program

concatenation scheme. Because of its universality, UQC serves as a prototypical model

for general-purpose programmable quantum computation and should find uses in the

development and analysis of quantum algorithms and complexity. The UQC should

also find applications in the analysis of fundamental quantum computing questions

such as the exploration of the physical basis of the halting problem that we have briefly

explored in this thesis.

The UQC is a theoretical construction. As such, we have not specified how one would

go about physically implementing an actual instance of it. However, in this thesis we

have also shown that the harmonic oscillator can be used to implement a universal set

of quantum gates and thus could be used as the basis for a physical construction of

the UQC. The harmonic oscillator has intrinsic properties that could have advantages

over spin-1
2 systems in real implementations that would need to take practical issues

into account. Moreover, the harmonic oscillator energy eigenstates span an infinite

dimensional Hilbert space unlike spin-1
2 systems. Although we did not explore this

aspect in this thesis, it is conceivable that the infinite dimensional Hilbert space could

result in some useful properties that are absent in spin-1
2 systems.

Quantum networks which connect quantum systems and can transmit quantum

information are actively being investigated. Quantum connectivity provides a means of

overcoming size-scaling and error-correction problems, and has significant advantages

over classical connectivity. Furthermore, networks of quantum computers have also

been proposed where information can be exchanged between nodes via quantum and

classical channels. A general question arises as to how such quantum computers can

communicate and exchange information. In the simplest case a quantum computer may

download data sets from other nodes over the quantum network, but in more complex

cases use the network to call subroutines, or concatenate programs from other quantum

computers.

We have explored this area by means of a practical application of the UQC whereby

we have implemented a scheme to enable it to utilize networked quantum resources. We
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have illustrated the scheme by constructing UQC programs that implement the well-

known oracle based Deutsch, Deutsch-Jozsa, and Grover algorithms using networked

quantum oracle devices. We therefore have demonstrated how universal quantum com-

puters can access networked quantum devices in a way analogous to that by which

classical computers access network resources. At the same time, we have illustrated

how to implement practical and useful algorithms on the UQC.
Algorithms to search an unstructured database are extremely important because

many difficult problems can be mapped to the problem of finding a specific item from

a large number of possible items. In fact, if a quantum algorithm to search an un-

structured database that is exponentially faster than the fastest known classical search

algorithm were to exist, it would mean that quantum computability exceeds classical

computability. The existence of such an algorithm would allow a quantum computer

to compute the class of NP problems in polynomial time.

We have explored a partial search algorithm based on partial measurements of

symmetric states. We have created a partial search oracle based on the standard

Grover oracle and involving symmetry projections. When restricted to the subspace of

symmetric states, this oracle has a much simpler form that involves a simple product of

the standard Grover oracle. Furthermore, this oracle acts entirely within the subspace

of symmetric states. This oracle gives rise to a symmetry based partial search scheme,

GK , but difficulties in implementing a quantum circuit prevents its realization. This is

not surprising because if such a quantum circuit could be implemented, it would give

rise to an exponentially fast search algorithm that would violate well known bounds for

Grover search algorithms. We have also explored two closely related algorithms that

lend themselves to quantum circuit implementations but these deliver no improvement

over existing search algorithms.

It should be noted that the difficulty in implementing GK and the fact that the two

algorithms considered here do not yield fast results does not necessarily preclude the

existence of a fast partial search algorithm based on the idea of the symmetrization or

partial measurement operator. However, it would likely require a more sophisticated

“guided” operator based on partial measurements at each iteration of the algorithm.

In other words, a partial measurement scheme similar to the UQC’s non-demolition

measurement of the halt qubit may allow for a more efficient partial search algorithm.

Furthermore, if non-linear quantum processes are ever observed, and if non-linearity
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were to provide a way to copy quantum states and deterministically superimpose them

in the required manner, it would be possible to use such processes to implement the

scheme we developed to realize exponentially fast search algorithms. Research into this

area is beyond the scope of this thesis and is a possible area for future consideration.
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Appendix A

UQC Sample Program Execution

Trace

The following table traces the state of the universal quantum computer as it executes

a program that swaps the first two data qubits on the memory tape (qubits D(1) and

D(2)) of the UQC presented in Chapter 5. We denote the program that achieves this

as |S1,2〉. |S1,2〉 is the sequence of instructions:

|D+1〉|D→ 0〉|D+1〉4|SWAP〉|D + 1〉5|SWAP〉|D→ 0〉|D + 1〉4|SWAP〉|h→ 1〉|NOP〉.

The evolution of U for program |S1,2〉 is governed by equation (3.13) and proceeds

as shown in Table A.1. Note that the ”Operator” column denotes the transformation

that is applied to the previous row. Stated differently, the columns for a given row

are the results of applying the operator in that step to the state of the previous step.

For example, Step 1 is the result of applying UIF to the state of U in Step 0. Also

note that even though the encoding for the NOP instruction is 0, the NOP instruction

label is only used where it is interpreted as a program instruction. Thus, the state of

the I register in the initialized, RI, UP, and CF states is shown as ”0” instead of as

NOP. The same applies to unused memory tape qubits. In the interest of keeping the

table uncluttered, we omit the program instructions because they are unafftected by

the evolution of U and only show the non-zero history and data qubits used by the

program. These will be denoted |M〉H , |D〉1, and |D〉2, respectively. Blank table cells

indicate that there are no changes from the previous value. Finally, we use |N〉 and |L〉
to denote the F register NEXT and LOOP states, respectively.
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A. UQC SAMPLE PROGRAM EXECUTION TRACE
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A. UQC SAMPLE PROGRAM EXECUTION TRACE

[*] Note that even though some registers and qubits appear stationary at operator

application boundaries, in actuality they may make intermediate state transitions. For

example, in this particular case, |x〉 undergoes the transitions |0〉 → |5〉 → |6〉 →
|7〉 → |8〉 → |9〉 → |0〉 when UIF is applied due to the |x〉 ↔ |P 〉 swaps and the INCx

transformations.
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Construction of a universal quantum computer

Antonio A. Lagana,* M. A. Lohe, and Lorenz von Smekal
Department of Physics, University of Adelaide, South Australia 5005, Australia
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We construct a universal quantum computer following Deutsch’s original proposal of a universal quantum
Turing machine !UQTM". Like Deutsch’s UQTM, our machine can emulate any classical Turing machine and
can execute any algorithm that can be implemented in the quantum gate array framework but under the control
of a quantum program, and hence is universal. We present the architecture of the machine, which consists of
a memory tape and a processor and describe the observables that comprise the registers of the processor and
the instruction set, which includes a set of operations that can approximate any unitary operation to any desired
accuracy and hence is quantum computationally universal. We present the unitary evolution operators that act
on the machine to achieve universal computation and discuss each of them in detail and specify and discuss
explicit program halting and concatenation schemes. We define and describe a set of primitive programs in
order to demonstrate the universal nature of the machine. These primitive programs facilitate the implemen-
tation of more complex algorithms and we demonstrate their use by presenting a program that computes the
NAND function, thereby also showing that the machine can compute any classically computable function.

DOI: 10.1103/PhysRevA.79.052322 PACS number!s": 03.67.Lx

I. INTRODUCTION

As best exemplified by Shor’s factorization algorithm #1$,
quantum computing algorithms have the potential to achieve
significant speed-ups over classical computing algorithms. In
fact, it has even been suggested #2$ that quantum comput-
ability can potentially surpass classical computability by
solving problems such as the famous halting problem.

The gate array model of quantum computing that Deutsch
#3$ formulated has been shown to be universal in the sense
that any unitary operation can be implemented using a set of
single-qubit gates !H and the T or !

8 gate" and the two-qubit
controlled-NOT !CNOT" gate much as the two-bit NAND gate is
universal for classical logical circuits !see Nielsen and
Chuang #4$ chapter 4, for example". This means that a quan-
tum computer can compute any function that can be com-
puted by a classical computer and in certain cases, most no-
tably unstructured database search #5$ and integer
factorization #1$, with a speed-up over the best known clas-
sical algorithms. However, this universality is distinct from
the notion of universality in the sense that every computable
function can be computed by a universal Turing machine
!UTM". According to the Church-Turing thesis, all finitely
realized computing machines can be simulated by a single
machine, the UTM. Modern computers are fundamentally
UTM implementations. Thus, universality is important be-
cause programmability follows from it.

The quantum gate array computing model is not universal
in this sense because it is not programmable. A single quan-
tum gate array computer cannot simulate every other quan-
tum computer. Each quantum gate array computer must be
purpose built or configured to implement a particular algo-
rithm. Even the recently proposed quantum adiabatic com-
puting framework #6$ is not strictly programmable in this
sense because the time-dependent Hamiltonian must be indi-

vidually tailored for each given problem. In this sense, cur-
rently envisioned quantum computers more closely resemble
special purpose processors rather than general-purpose pro-
cessors, to draw an analogy with classical computers.

In one of the founding papers of quantum computation,
Deutsch #7$ defined a quantum Turing machine !QTM" and
further claimed that there exists a universal quantum Turing
machine !UQTM" that is a natural quantum generalization of
the classical UTM, both of which are quantum generaliza-
tions of their classical counterparts. The UQTM was defined
to be a QTM for which there exists a program as part of its
input state that has the effect of applying a unitary transfor-
mation on an arbitrary number of qubits arbitrarily close to
any desired transformation. That is, the UQTM could simu-
late, up to arbitrary accuracy, the operation of any given
QTM. As its classical counterpart, a QTM contains a halt
qubit that is used to indicate whether the computation has
been completed. Thus, the UQTM is universal in the sense in
that it is programmable and able to simulate the operation of
every possible QTM. The theoretical existence of such a ma-
chine is important because it would establish whether a pro-
grammable quantum computer can be constructed in prin-
ciple.

Since the original proposal, several questions have been
raised as to whether the UQTM, as defined by Deutsch, was
indeed valid. In 1997, Myers #8$ argued that the UQTM’s
halting scheme was invalid. In 2001 Shi #9$ showed that the
validity of the halting scheme ultimately rested on whether
the program concatenation scheme was valid. If the concat-
enation scheme were valid, the halting scheme would be
valid, and Myer’s question could be resolved by Ozawa’s
#10$ nondemolition measurements of the halting qubit sub-
ject to the requirement that the halting scheme be imple-
mented in a way whereby the state of the memory tape
ceases to change once the halt qubit is set. The question of
whether the concatenation scheme is valid and hence
whether a UQTM exists has remained an open question.

In the following sections, we first review the QTM and
UQTM as defined by Deutsch and then present an explicit*antonio.lagana@adelaide.edu.au
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construction of a universal quantum computer to demonstrate
that a universal !programmable" quantum computer exists
and that program concatenation is valid. The machine sup-
ports programmatic execution basic instructions that include
the universal set of unitary operations as well as a condi-
tional branch instruction. Like Deutsch’s UQTM, our ma-
chine consists of a memory tape and processor. The internal
architecture of our machine is very similar to that of a classic
microcontroller and contains a data address register, program
counter, status flag, instruction fetch buffer register, and a
memory read-and-write head. In addition, our machine con-
tains a halt qubit that signifies whether program execution
has completed and a flow control register and history buffer
address register that are used to store program execution his-
tory information. The flow control and history buffer address
registers are used to store a sufficient amount of information
such that, in principle, the operation of any program can be
reversed at any given time, consistent with unitarity. This
theoretical construction will be useful to analyze other as-
pects of quantum computation, such as complexity analysis
of algorithms, analysis of the halting problem !in the
Church-Turing thesis sense", etc., in an analogous way that a
UTM is used in classical computer science.

Sections II and III provide brief descriptions of Deutsch’s
QTM and UQTM, respectively. In Sec. IV we describe sev-
eral problems that were raised about the QTM halting
scheme and the fact that it relies on the validity of program
concatenation, something that Deutsch did not prove. In Sec.
V we present an explicit construction of a universal quantum
computer and describe the internal architecture, instruction
set, and the time evolution operator associated with the ma-
chine. In Sec. VI we define a set of basic programs in order
to demonstrate the classical universal nature of our machine
by constructing a program that computes the NAND function.
In Sec. VII we discuss program concatenation and present a
program concatenation operator for our machine thus dem-
onstrating that program concatenation is valid for quantum
computers.

II. QUANTUM TURING MACHINE

As defined by Deutsch, a QTM consists of two compo-
nents: a finite processor and an infinite tape !external
memory", of which only a finite portion is ever used. The
finite processor consists of N qubits and the infinite tape
consists of an infinite sequence of qubits, of which only
a finite portion is ever used. The currently scanned tape
location is specified by x which denotes the “address”
number of the tape. Thus, the state of a QTM is a unit vector
in the Hilbert space spanned by the basis states %x&%n&%m&,

where %n& =
def

%n0 ,n1 ,n2 , . . . ,nN−1&, and %m& =
def

%. . . ,m−2 ,m−1 ,
m0 ,m1 ,m2. . .&.

The operation or dynamics of the machine is defined by a
fixed unitary operator U whose only nontrivial matrix ele-
ments are 'x"1;n! ;mx! ,my!x%U%x ;n ;mx ,my!x&. That is, only
one tape qubit, the xth, participates in any given computa-
tional step and at each step, the position of the head cannot
change by more than one unit, forward or backward, or both

in the case that the position of the tape is a superposition of
%x"1&. Each different U corresponds to a different QTM.
Stated differently, each QTM corresponds to a specific algo-
rithm in the same way that each quantum gate array circuit is
an implementation of a specific algorithm. To signal whether
the computation has been completed, the processor contains

a special internal qubit, %n0 =
def

h&, known as the halt qubit, that
is initialized to 0 and is set to 1 upon completion of the
computation. Thus, an external operator !or classical com-
puter" may periodically observe %h& to determine whether the
computation has been completed. The evolution of the QTM
can thus be described as

%#!s$T"& = Us%#!0"& ,

where %#!0"& is the initial state, s is the number of computa-
tion steps, and $T is the time duration of each computational
step.

III. UNIVERSAL QUANTUM TURING MACHINE

As Shi #9$ pointed out, a UQTM state may be defined as
%Q ,D , P ,%&, where Q is the state of the processor, including
the head position x, D is the state of the data register, and P
is the program state. D and P are each parts of the tape and
% is the remaining part of the tape that is not used during the
computation. Note that this does not deviate from the origi-
nal definition of the UQTM by Deutsch in #7$, as the corre-
sponding basis elements of %m& can be appropriately mapped
to the corresponding basis elements of D, P, and %.

Deutsch claimed that there is a UQTM with which is as-
sociated a special unitary transformation U that when applied
a positive integer number of times can come arbitrarily close
to applying any desired unitary transformation on a finite
number of data qubits. Stated differently, the claim was that
there exists a UQTM, i.e., a special U, so that for an arbitrary
accuracy & and arbitrary unitary transformation U which
changes D to UD, there is always a program state P!D ,U ,&"
and a positive integer s=s!D ,U ,&", such that

Us%Q,D,P,%& = %Q!,D!,P!,%& ,

where D! is arbitrarily close to UD, i.e., (D!−UD(2'&. Fi-
nally, like the QTM, the UQTM contains a special internal
halt qubit %h& that is monitored to determine whether the
computation has completed.

IV. IS THE HALTING SCHEME VALID?

In 1997 Myers #8$ suggested that the UQTM’s halting
scheme was invalid. He argued that an entanglement be-
tween the halt qubit and other qubits could occur, thereby
making it impossible to determine whether the machine has
halted or not. His reasoning was as follows: suppose that two
computations, A and B, halt after NA and NB steps, respec-
tively, and without loss of generality, that NB(NA. Then for
a computation that is a superposition of computations A and
B, after N steps of the UQTM with NA'N'NB, the halt
qubit will be in a superposition of halted and not halted states
due to the linearity of the quantum evolution.
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Because the computation time is unknown a priori, mea-
surement of the halt qubit would collapse the state of the
machine to that corresponding to the intermediate computa-
tion state of B !with %h&= %0&" or to the completed computa-
tion state of A !with %h&= %1&". Myers argued that this was a
conflict between being universal and “being fully quantum,”
i.e., that the UQTM halting scheme was incompatible with
superposition and hence the machine would need to operate
on classic states. Conceptually, one could argue that this is
not really a problem because any program will ultimately
generate a single result. The case of superposed programs
corresponds to the classical case of running a program with
random data. The computation result depends on the data. In
the superposed quantum computer case, the result obtained
depends on the final measurement probabilities for obtaining
each of the superposed program results.

In 1998 Ozawa #10$ showed that monitoring %h& is a quan-
tum nondemolition measurement, that is, periodic measure-
ment of %h& while the computation is in progress does not
alter the final measurement of the memory tape contents,
which store the result of the computation. This is true even if
%h& becomes entangled with other qubits during the compu-
tation. The crucial aspect of this proof is that the probabili-
ties of obtaining each of the possible superposed results are
not altered by periodic measurement of the halt qubit. The
periodic measurement could be said to collapse the machine
to one of the many superposed branches of computation as
Myers aptly highlighted, but the probability of measuring
that particular computational branch is no different than if
the measurement is postponed until after the program has
completed execution. The key assumption or requirement in
Ozawa’s proof is that the state of the memory tape remains
unchanged once the halt qubit is set.

Furthermore, in 2001 Shi #9$ also highlighted that univer-
sality and “being fully quantum” does not require the entire
UQTM to evolve from a superposition. The superposition
need only be on the data state. For example, if the data state
is %D&= %A&+ %B&, the state of the total system starts at
%Q ,A+B , P!A+B ,U ,&" ,%&, rather than at
%Q ,A , P!A ,U ,&" ,%&+ %Q ,B , P!B ,U ,&" ,%&.

However, the scenario highlighted by Myer would arise if
one were to require that the program be only dependent on
the desired transformation U and the accuracy &, but inde-
pendent of the initial data state. In this case, a computation
on data state D=A+B would need to start at
%Q ,A+B , P!U ,&" ,%&, or %Q ,A , P!U ,&" ,%&
+ %Q ,B , P!U ,&" ,%&. Hence in this case entanglement between
the halt qubit and the rest of the system would occur if the
execution times for A and B were different, which would be
generally the case. However, the requirement for a data state
independent program is unnecessary and the halt qubit en-
tanglement problem could thus be avoided. Also if we re-
quire the programs to be data state independent and the halt
qubit becomes entangled, Ozawa’s proof applies and peri-
odic measurements of the halt qubit do not affect the out-
come of the computation.

However, Shi also pointed out that the halting scheme is a
special case of the program concatenation scheme that was
assumed to be valid in the original UQTM proposal. The
original definition of the UQTM is based on the assumption

that if there is a program whose effect is to apply U on the
data state %D&, then there exists a unitary operator whose
effect is %h=1&'h=0% ! U on %h=0&%D&. This assumption was
not proven and the validity of program concatenation has not
been addressed in other work !see Sec. 8.3 in #11$, for ex-
ample" that relies upon the QTM defined by Bernstein and
Vazirani #12$ in 1997; this version of the QTM not only
requires a halting scheme like Deutsch’s but also requires
that every computational path reach a final configuration si-
multaneously, and thus every computational path must be
somehow synchronized.

The problem with synchronizing every computational
path is that, in general, it is not known a priori how long a
program will take to halt or if it will halt at all because
program execution times can depend on the data that the
program operates upon. This problem was highlighted by
several authors, including Iriyama, Miyadera, and Ohya as
recently as 2008 #13$. Thus, it is not always possible to find
an upper bound T on the time needed for all branches to halt
and thereby equip each branch of a computation with a
counter that increments at each time step and halts once it
reaches some upper bound T. In essence, such a synchroni-
zation scheme is well suited for dealing with sequential pro-
grams that are guaranteed to halt but not for programs that
may never halt due to conditional branches or loops.

We address these open questions by constructing a theo-
retical universal quantum computer with valid and explicit
halting and program concatenation schemes, and which also
supports conditional branching and does not require synchro-
nization of all computational paths. This machine serves as a
prototypical model for a general-purpose programmable
quantum computer that will be useful in the development and
analysis of new quantum algorithms, complexity analysis of
quantum algorithms, and investigation of the physical basis
of the Turing halting problem.

V. UNIVERSAL QUANTUM COMPUTER

Our goal is to devise a quantum computer that can
compute any computable function. The machine itself
is to be fixed and each different function is to be computed
by providing the machine with a suitable set of input
data and program. Any unitary operation can be
approximated to any desired accuracy using the set of
)H,CNOT,T* gates !see Nielsen and Chuang #4$, Chap. 4, for

example", where H =
def

1
+2 )!%0&+ %1&"'0%+ !%0&− %1&"'1%*,

CNOT =
def

%00&'00%+ %01&'01%+ %11&'10%+ %10&'11%, and T =
def

%0&'0%
+ei!/4%1&'1%. This set is universal in the sense that any func-
tion !i.e., unitary operation" that can be computed by a quan-
tum computer can be implemented using a combination of
these gates. Thus, to create a universal quantum computer in
the programmable sense, it suffices to devise one that can
implement these operations on a specified set of qubits under
the control of a quantum program. The quantum computer
described below and illustrated in Fig. 1 is an instance of
such a machine.

Following Deutsch #7$, our machine UQC consists of two
primary parts: a processor Q that implements the universal
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set of unitary operations and an infinite tape that acts as the
machine’s external memory. The tape consists of an infinite
sequence of qubits, %M&= )%mi&* , i!Z, with only a finite sub-
set of them ever being used for any given program. This
corresponds to a classical computer’s memory and external
storage which, while finite, can be arbitrarily large. With the
tape is associated an observable x̂ in the processor that has
the whole of Z as its spectrum and that acts as the address
number of the currently scanned tape location. Addressing
different tape locations can be realized either by a movable
head over a static tape or by a movable tape under a static
head. Since either scheme is identical for the purposes of
constructing UQC, we assume the latter as that allows for Q
to be fixed in space, and movement of the tape is accom-
plished by a sliding “bin” of qubits that moves under Q’s
control.

As part of its internal state machine, Q also contains two
additional observables, D̂ and P̂, that act as the data address
and program counter, respectively. D̂ is used to address indi-
vidual data qubits on the tape and to specify the branch des-
tination address and P̂ is used to keep track of the program
instruction that is to be executed. As with classical comput-
ers, D̂ and P̂ need not have an infinite spectrum as they need
only be as “wide” as required to address the finite subset of
the infinite tape that would ever be used. However, for the
purpose of the most general construction, we do not restrict
UQC to have a particular address range and thus treat D̂ and
P̂ !and x̂" as having an infinite spectrum.

Q also contains a four-qubit register Î to load the instruc-
tion to be executed. In order to perform the two-qubit CNOT
operation, Q contains a “scratch” qubit %s& that is used as the
control qubit. Like Deutsch’s UQTM, UQC also contains a
dedicated observable qubit %h& that indicates whether the pro-
gram execution has completed !i.e., the halt qubit". Q also
contains a two-qubit register F̂ that is used to control the

execution flow !i.e., whether the program should loop on the
current instruction, proceed to the next instruction, or branch
to a new instruction". Finally, UQC contains a register Ĥ with
the same spectrum as x̂, D̂, and P̂. The purpose !and naming"
of the Ĥ register is described later. For notational simplicity,
we drop the ˆ notation hereafter when referring to UQC reg-
isters, e.g., D refers to the observable D̂ whose correspond-
ing state is %D&.

The overall state of UQC, then, is given by
%h ,x ,D , P ,F ,H ,s , I ,M&, where %h ,D , P ,F ,H ,s , I&

corresponds to Deutsch’s %n& with %h& =
def

%n0&.
Each program consists of a finite sequence of four qubit

instruction words. Self-modifying code is to be avoided be-
cause modifying program instructions during program ex-
ecution can lead to unpredictable results. For example, the
processor fetches instructions to be executed from the
memory tape into the temporary internal buffer register I by
swapping the contents of the memory tape and the I register
!and swapping back the two when the instruction has been
executed". Because I is initialized to %0&, the swapped con-
tents of the memory tape temporarily become %0& while the
instruction is being executed. This means that if the program
attempts to modify the location of the instruction being ex-
ecuted, it would be modifying %0& and not the actual instruc-
tion !that is temporarily held in the I register". This can lead
to unintended and unpredictable behavior.

The instruction set of UQC is as follows. As mentioned
earlier, we implement a universal set of unitary operations,
namely )H,CNOT,T*, in order to ensure that UQC is universal.
In order to enable the programmer to address any qubit on
the memory tape and thus apply the universal set of opera-
tions to any qubit, we implement three instructions: an in-
struction to set D to 0, an instruction to increment D by 1,
and an instruction to decrement D by 1. Because the CNOT
operation requires two operands !control and data", we
implement a swap instruction to enable the programmer to
swap the qubit on the memory tape pointed to by D with the
machine’s s qubit, thereby enabling any qubit on the memory
tape to be used as the control qubit. While not strictly nec-
essary for universality, we implement a branching scheme in
UQC because first, this is not explicitly possible in other
popular quantum computing frameworks such as the gate
array framework and second, because it is a common opera-
tion in classical computers. Branching is essentially imple-
mented by allowing the programmer to swap the data register
and program counter register contents, thereby allowing the
program to branch to any instruction on the memory tape.
We also implement an instruction to effectively clear s by
swapping its contents with the next available 0 slot on the
negative portion of the memory tape !pointed to by H". The
clear s instruction provides for a simple and convenient way
for the programmer to load s with 0 without having to hunt
around the memory tape looking for a 0 data qubit slot. Fi-
nally, we implement an instruction to set the halt qubit to 1
but because we also want the memory tape to remain un-
changed once the halt qubit is set, we implement an accom-
panying instruction !NOP" to follow the halt instruction that
will accomplish this.

x

Q

M(x)

UQC

State Machine

s h

M

P D I H F

FIG. 1. Architecture of the universal quantum computer UQC,
showing the memory tape M, processor Q, address of tape head %x&,
scratch qubit %s&, instruction register %I&, program address register
%P&, data address register %D&, history address register %H&, flow
control register %F&, halt qubit %h&, and the qubits that are measured
!%M& and %h&".
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The instruction set of UQC, then, consists of 11 instruc-
tions, whose operations and encodings are defined in Table I.
The single qubit operations H and T act on the qubit at tape
location M!D", denoted %M&D, and the two qubit operations
SWAP and NAND act on %M&D and the scratch qubit %s&, the
latter being used as the control qubit for the NAND operation.

The operation of UQC proceeds as follows:
!1" An external operator !or classical computer" initializes

the state of M at t=0 with the desired data and program.
Data qubit i, i!Z+, is placed on tape location M!5i−1" and
program instruction j, j!Z+, is placed on tape locations
M#5j−2:5!j−1"$, i.e., data are placed at
M!4" ,M!9" ,M!14" , . . . , and program instructions are placed
at M!3:0" ,M!8:5" ,M!18:15" , . . .. The negative portions of
the tape are initialized to %0&, as illustrated in Fig. 2.

!2" The processor registers are all initialized to %0&.
!3" An external operator starts Q by releasing it from the

reset state.
!4" Q fetches the program instruction at tape location

M!P" into register I.
!5" Q executes the operation specified by I.
!6" If the halt qubit %h& becomes set, Q halts execution

!strictly speaking, because UQC is a quantum system, Q
continues to evolve but the evolution of the memory tape
becomes trivial—i.e., U=1—after the halt qubit has been set"
and awaits an external measurement of the results. Other-
wise, Q continues execution of the program by loading the
next program instruction.

!7" An external operator periodically performs a measure-
ment on the halt qubit.

!8" If measurement of the halt qubit yields %1&, the pro-
gram has completed execution. The results are obtained by
measuring the contents of M. Otherwise, Q is allowed to
continue program execution.

The operation of Q is governed by the state machine de-
picted in Fig. 3.

A. Evolution of Q

We now define the unitary evolution operators associated
with the Q state transitions. In the equations below, sub-
scripts on projectors denote the qubit!s" on which the projec-
tor acts, e.g., %i&'i%k acts on qubit k, and unspecified qubits are
understood to be operated on by an implicit identity operator,
e.g., %i&'j%k ! %l&'m%n is short hand for %i&'j%k ! %l&'m%n ! 1!k,n
which acts on qubits k and n and leaves all other qubits
unaffected. %#&R denotes ,i%#!i"&R!i", where R is a multiple
qubit register !e.g., D" with R=,iR!i" and #=,i#!i". More-
over, for notational simplicity in the rest of this paper, we
define four primitive unitary operations, SWAP, DEC, INC, and
NAND as follows:

!1" Swap contents of registers a and b,

SWAPa,b =
def

-
i,j

%i&'j%a ! %j&'i%b. !1"

!2" Decrement the contents of register a,

DECa =
def

-
i

%i − 1&'i%a. !2"

!3" Increment the contents of register a,

INCa =
def

-
i

%i + 1&'i%a. !3"

TABLE I. UQC instruction set.

Label Encoding Description

%NOP& %0000& No operation
%D→0& %0001& D→0
%D+1& %0010& D→D+1
%D−1& %0011& D→D−1
%H& %0100& Apply Hadamard operation to %M&D

%T& %0101& Apply T operation to %M&D

%SWAP& %0110& %M&D↔ %s&
%CNOT& %0111& CNOT of %M&D and %s& !%s&: control"
%D↔P& %1000& %D&↔ %P& !branch" if s=0
%CLS& %1001& Clear s
%R0& %1010& Unused
%R1& %1100& Unused
%R2& %1101& Unused
%R3& %1110& Unused
%h→1& %1111& %h&→ %1& !set halt qubit"

M
0 1 2 3-1-2-3
P1 P2 P3 P4 . . .

Program and Data QubitsScratch and Unused Qubits

4
D10 0 0 P5 P6 P7 P8 D2
5 6 7 8 9

P9 P10 P11 P12 D3
10 1112 13 14

. . .
-4-5-6

0 0 0
-7-8

0 0

FIG. 2. Initial memory tape contents. The negative qubit slots
are used as scratch qubits and the non-negative qubit slots are ini-
tialized with interleaved program instruction and data qubits.

IF

XD

RESET

M(x+3:x) I(3:0) Point To Next Instruction And
Fetch Instruction From Memory

x D

Update Control Flow RegisterUF

Point To Data Qubit

EX

x D

Execute Instruction
(NOP if h=1)

UD Update Data Register

RI

F F’

x P

x x’
M(x) M’(x)s s’
h h’

UP

CF

x x+4
x P

M(x+3:x) I(3:0) Point To Fetched Instruction And
Restore Instruction To Memory

x P
x x-4
x P

Update Program Address RegisterP P’

Clear Control Flow RegisterF 0

FIG. 3. Q state machine diagram that corresponds to the evolu-
tion of the universal quantum computer. The overall evolution is
determined by eight unitary transformations.
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!4" CNOT operation using qubit a as the control and qubit
b as the data,

CNOTa,b =
def

!%00&'00% + %01&'01% + %11&'10% + %10&'11%"a,b.

!4"

The operators, UIF, UXD, UEX, UUD, UUF, URI, UUP, and
UCF, which govern the Q state transitions, then, are defined
as follows.

!1" Fetch next instruction at M!P",

UIF =
def

DECP
4 · SWAPx,P · .,

i=3

0

INCx · SWAPM!x",I!i"/SWAPx,P.

!5"

This operator fetches the next program instruction by “swap-
ping” the next program instruction qubits on the memory
tape with the contents of the I register. As stated earlier,
because I is initialized to %0&, the instruction slot on the
memory tape becomes temporarily %0& while the instruction
is being executed but is restored to its original state once the
instruction has been executed. Note that P will be pointing
back to the fetched instruction address after this operator is
applied because the update of the program counter is de-
ferred until UUP is applied.

!2" Move tape head to M!D",

UXD =
def

SWAPx,D
. !6"

UXD points the memory tape head to the qubit addressed
by the data register D.

!3" Execute instruction

UEX =
def

%NOP&'NOP%I + %D → 0&'D → 0%I ! DECx

+ %D + 1&'D + 1%I ! INCx + %D − 1&'D − 1%I ! DECx

+ %H&'H%I ! HM!x" + %T&'T%I ! TM!x"

+ %SWAP&'SWAP%I ! SWAPM!x",s

+ %CNOT&'CNOT%I ! CNOTs,M!x"

+ %D ↔ P&'D ↔ P%I + %CLS&'CLS%I
! SWAPx,H · DECx · SWAPM!x",s · SWAPx,H

+ %h → 1&'h → 1%I ! !%1&'0% + %0&'1%"h + -
i=0

4

%Ri&'Ri%I.

!7"

UEX applies the appropriate transformation associated with
the instruction being executed. The transformations associ-
ated with the NOP, D+1, D−1, H, T, SWAP, CNOT, and re-
served instructions are self-evident but those associated with
the D→0, D↔P, CLS, and h→1 instructions warrant some
explanation.

The D→0 instruction works as follows. D is decremented
by one by UEX and P is left unchanged by UUP #see Eq. !11"$
until D=0. Leaving the program counter unchanged has the
effect of keeping P pointing to the D→0 instruction such

that it is refetched in the next iteration. Thus, Q continues to
fetch and execute the same D→0 instruction until D=0. In
other words, it will loop on the D→0 instruction, decrement-
ing D until it reaches 0. Once D=0, P is incremented by 5
such that it points to the next instruction, thus completing the
loop.

It is important to note that this scheme relies on the as-
sumption that D(0 when the D→0 instruction is encoun-
tered. Therefore, the programmer must ensure that D(0
when Q fetches the D→0 instruction. This can be accom-
plished by preceding the D→0 instruction with a D+1 in-
struction since, in the absence of programming error, D will
always be positive. If the programmer fails to meet this re-
quirement Q could loop forever stepping through the nega-
tive portions of the memory tape.

The transformation associated with the D↔P operation is
the identity operation here because its execution is deferred
until later. Deferring the actual swapping of the D and P
register contents is necessary in order to keep the address of
the D↔P instruction unchanged so that we can restore the
branch instruction back to its original slot on the memory
tape and only then update the program counter to point to the
next instruction in the program execution flow.

The CLS instruction first points the memory tape head to
the address contained in the H register !the next slot on the
negative portion of the memory tape that contains %0&", swaps
the contents of the s qubit with the contents of the memory
tape slot !%0&" thereby clearing s !but leaving the previous
value of s on the memory tape making the operation revers-
ible in principle", decrements H such that it points to the next
%0& slot on the memory tape, and then points the memory
tape head back to where it was.

The NOP instruction plays a key role in the UQC halting
scheme. In our implementation, the halting scheme requires
the halt instruction %h→1& to be followed by a %NOP& in-
struction. In other words, the “true” halt instruction is effec-
tively %h→1&%NOP& or %11110000& using the presently de-
fined instruction encodings. This is such that after the halt
qubit is set, Q will continue to fetch the next instruction
following %h→1& which being %NOP& will guarantee that Q
loops forever doing nothing, thereby effectively halting pro-
gram execution !but not quantum evolution". The fact that
the encoding of the NOP instruction is %0000& is also inten-
tional. This ensures that the contents of the memory tape
remain unchanged after the halt qubit is set because swap-
ping the instruction slot on the memory tape with the con-
tents of the I register leaves the state of the memory tape
unchanged. The halting scheme relies on all halt instructions
in any given program being followed by a NOP instruction
and stopping the program counter from changing when a NOP
instruction is executed such that P will continue to point at
the NOP instruction following the instruction that caused the
halt qubit to be set.

The halting scheme is thus effectively a two step process:
the first step is to set the halt qubit using the h→1 instruc-
tion to alert an external observer that the program has halted
and the second step is to loop forever on the NOP instruction.
In this sense, the NOP instruction is really a “loop forever”
trap instruction. As such, the NOP instruction must only be
used following a halt instruction. If it is inadvertently placed
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anywhere else in the program, program execution will halt
but the halt qubit will not be set so the external observer will
not know that the program has halted.

An improved halting scheme that does not require all in-
stances of the halt instruction in a program to be followed by
a NOP instruction may be possible and is an area for future
investigation.

!4" Update contents of D register,

UUD =
def

SWAPx,D
. !8"

UUD updates the D register with the results of executing
the instruction since x will contain any changes to D after
UEX has been applied.

!5" Update control flow register with instruction flow in-
formation

UUF =
def

#%D → 0&'D → 0%I ! !1 − %0&'0%"D + %NOP&'NOP%I$

+ %D ↔ P&'D ↔ P%I ! %0&'0%s ! INCF
2

+ #1 − %D → 0&'D → 0%I ! !1 − %0&'0%"D − %NOP&'NOP%I
− %D ↔ P&'D ↔ P%I ! %0&'0%s$ ! INCF !9"

UUF updates F whose value is later used to update P to
point to the address of the next instruction to be executed.
Note that F is initialized to %0& and the evolution of UQC is
designed to ensure that F=0 when UUF is applied !F is ef-
fectively “cleared” by UCF by swapping its contents with the
infinite supply of %0& slots on the negative portion of the
memory tape as we describe later". As explained earlier, if
the instruction is D→0 and D!0 or if the instruction is NOP,
P will be left unchanged to effectively loop on the instruc-
tion. If the instruction is D↔P and s=0 then P will be
swapped with D to effectively branch to D. Otherwise, P is
set to point to the instruction following the instruction that
was just executed !i.e., P→P+5". The encodings of F are
defined in Table II.

!6" Restore executed instruction back to the memory tape
location from where it was fetched,

URI =
def

UIF
† . !10"

URI restores the instruction that was just executed back to
its original slot on the memory tape. Recall that the P update
has been deferred and will be controlled by the state of the F
register. Thus, the only operator that has affected P thus far
has been UIF so UIF

† suffices to undo the fetch. In essence, F
is a temporary place holder to store the information neces-

sary to determine the next instruction location after restoring
the instruction back to the memory tape and hence losing
knowledge of how to update P otherwise.

!7" Update program counter to the address of the next
instruction to be executed,

UUP =
def

%LOOP&'LOOP%F + %NEXT&'NEXT%F ! INCP
5

+ %BR2D&'BR2D%F ! SWAPD,P + %R0&'R0%F. !11"

UUP updates P to the address of the next instruction to be
executed according to the state of F.

!8" Clear flow control register such that it can be used
again in the next cycle,

UCF =
def

SWAPx,H.,
i=1

0

DECx · SWAPM!x",F!i"/SWAPx,H . !12"

UCF first swaps the contents of the x and H registers. The
H register contains the address of the next slot on the nega-
tive portion of the tape that contains %00&. These “0” slots are
used to clear the F register back to %0& each cycle. Since the
sequence of F values effectively contains the information
about the program execution flow, in essence the negative
portion of the tape contains the “history” of instructions that
UQC has executed and is a side effect of the need for all
UQC programs to be reversible.

In other words, the negative portion of M is used to store
the ancillary garbage data that would be required to reverse
the operation of the program. The number of %0& slots re-
quired for any given program is equal to the number of in-
structions that are executed by the program. UCF clears F by
swapping its contents with the contents of the next %0& slot on
the negative portion of the tape. After application of UCF, H
points to the next %0& slot on the tape and the previous F
value is contained on the slot to the right of the first %0& slot
on the negative portion of the tape. At this point, Q has
completed processing the instruction and is ready to fetch the
next instruction in the execution flow.

These operators are all readily verified to be unitary and
to have the desired effects of implementing the state machine
shown in Fig. 3. The overall evolution of UQC, then, is gov-
erned by the unitary operator,

U = UCFUUPURIUUFUUDUEXUXDUIF. !13"

Unlike Deutsch’s original UQTM, the memory tape !or
tape head" of UQC is not restricted to move at most one
position to the left or to the right !x→x"1" in any given
step. This is most obvious in the case of the branch instruc-
tion where the tape head will jump by an arbitrarily large
amount in a single step. However, the evolution of UQC is
still unitary and hence physically possible in principle.

VI. SOME PRIMITIVE PROGRAMS

In this section we describe a set of primitive programs or
operations to demonstrate the universal nature of UQC.
These routines serve as building blocks for devising and ana-
lyzing more complicated and useful programs.

TABLE II. F encodings.

Label Encoding Description

%LOOP& %00& Loop !P→P"
%NEXT& %01& Next sequential instruction !P→P+5"
%BR2D& %10& Branch to D !P→D"
%R0& %11& Unused
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The first set of primitive programs,
)%D+i& , %D−i& , %Di& , %Si,s& , %Si,j& , %Bi&*, that we define perform
basic functions to manipulate the data address register, swap
qubits, and conditionally branch to an arbitrary address. The
superscripts on the programs denote the operation performed
by the program and the subscripts indicate the qubits on
which the program operates. For notational simplicity,
%Ph& denotes the program that causes UQC to halt, i.e.,

%Ph& =
def

%h→1&%NOP& .
!1" %D+i&: Increment D by i,

%D+i& =
def0,

k=1

i

%D + 1&, if i ) 1

1, otherwise.
1 !14"

!2" %D−i&: Decrement D by i,

%D−i& =
def 0,

k=1

i

%D − 1&, if i ) 1

1, otherwise.
1 !15"

!3" %Di&: Set D to i, i(0,

%Di& =
def

%D + 1&%D → 0&%D+i& . !16"

Recall from the discussion of UEX that we are preceding the
D→0 instruction with a D+1 instruction to ensure that D
(0 when the D→0 instruction is executed.

!4" %Si,s&: Swap data qubits D!i" and s,

%Si,s& =
def

%D5i−1&%SWAP& . !17"

!5" %Si,j&: Swap data qubits D!i" and D!j",

%Si,j& =
def

%S5i−1,s&%S5j−1,s&%S5i−1,s& . !18"

!6" Branch to the ith instruction #i.e., instruction at
M!5!i−1""$, where i!Z+,

%Bi& =
def

%D5!i−1"&%D ↔ P& . !19"

Note that, as defined, this instruction will have no effect
unless %s&= %0& so this operation is only useful following non-
trivial operations on the %s& qubit.

Next we describe a set of programs,
)%Pi

H& , %Pi,j
H & , %Pi

T& , %Pi,j
C &*, to apply the H, T, and CNOT opera-

tions on arbitrary qubits i and j on the memory tape, where i
and j!Z. These comprise a universal set of unitary opera-
tions from which any arbitrary unitary operation can be con-
structed.

!1" %Pi
H&: Apply H to data qubit D!i",

%Pi
H& =

def

%D5i−1&%H& . !20"

!2" %Pi,j
H &: Apply H to data qubits D!i : j", where i) j,

%Pi,j
H & =

def

,
k=j

i

%Pk
H& . !21"

One could implement this program using a loop but that
would require first implementing binary addition of M qu-
bits. Binary addition is possible because one can implement
a binary adder such as a Carry Lookahead Adder #14$ using
the NAND program that we define later in this section. How-
ever, since we are only interested in a polynomial order !in
the number of qubits" multiple qubit Hadamard transforma-
tion program, we define %Pi,j

H & as a sequential “unrolled” loop
program.

!3" %Pi
T&: Apply T to data qubit D!i",

%Pi
T& =

def

%D5i−1&%T& . !22"

!4" %Pi,j
C &: Apply CNOT to data qubits D!i" and D!j" with D!i"

as the control qubit,

%Pi,j
C & =

def

%Si,s&%D5j−1&%CNOT&%Si,s& . !23"

Using the sets of primitive programs defined above, we
can now define the set of programs, )%Pi

X& , %Pi
S& , %Pi

T†
&*, that

apply the Pauli X, Phase !S", and T† operations on data qubit
i!Z+. These operations are often used in quantum algo-
rithms so it is useful to identify the programs that implement
them. A constant subscript on a program denotes that some
suitable qubit on the memory tape has been prepared with
the appropriate value. For example, %P1& is shorthand for %Pk&
where M!k", for some suitable k, has been prepared with the
value %1&.

!1" %Pi
X&: Apply *x to qubit M!i",

%Pi
X& = %P1,i

C & ,

%Pi
X&:%1& j%#&i → %1& j%1 " #&i = %1& j%#̄&i = %1& j*x%#&i. !24"

!2" %Pi
S&: Apply phase !S" to qubit M!i".

Noting that S=T2, the following program implements the
phase operation.

%Pi
S& = %Pi

T&%Pi
T&

%Pi
S&:%#&i → T2%#&i = S%#&i. !25"

!3" %Pi
T†

&: Apply T† !reverse T" to qubit M!i",
This operation is used to define the Toffoli operation in a

later section so we define it here. Noting that S=T2 and that
S4=1, T†=T†S4=T†T2S3=TS3, the following program
implements the T† operation:

%Pi
T†

& = %Pi
S&%Pi

S&%Pi
S&%Pi

T& . !26"

Although not specifically shown here, other useful quan-
tum gates such as *y, *z, entanglement gate, etc. can be
similarly implemented. These enable us to implement any
algorithm from the quantum gate array framework on UQC
by appropriate combinations of the programs we have just
defined and adding %Ph& as the last step in the combined
program to halt UQC upon completion. Since the quantum
gate array framework is universal !see #4$, Chap. 4, for ex-
ample", this means that UQC is also quantum computation-
ally universal with the additional advantage that UQC pro-
vides a fixed and programmable machine to implement the
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algorithms unlike the quantum gate array framework.
The two-bit NAND operation is universal for classical

computation. That is, the NAND operation can be used to
implement any Boolean function. Hence it is useful to define
a program that emulates the NAND operation on two qubits as
this could be used as the basis for emulating classical func-
tions on UQC. For this purpose, we first define a program
that implements the Toffoli operation which itself is a uni-
versal classical gate #4$. The Toffoli program, %Pi,j,k

Toff&, applies
the Toffoli operation to qubits D!i", D!j", and D!k", where
D!i" and D!j" are the control qubits and D!k" is the target
qubit.

Armed with the Toffoli program, implementing a program
that takes the NAND of qubits D!i" and D!j" and storing the
result in qubit D!c" is a simple matter of executing the pro-
gram %Pi,j,c

NAND&= %Pi,j,1
Toff&,

%Pi,j,k
Toff& = %Pk

H&%Pj,k
C &%Pk

T†
&%Pi,k

C &%Pk
T&%Pj,k

C &%Pk
T†

&%Pi,k
C &%Pk

T&%Pj
T†

&%Pi,j
C &

+%Pk
H&%Pj

T†
&%Pi,j

C &%Pj
S&%Pi

T& . !27"

The ability to perform a two-qubit NAND operation gives
UQC the ability to compute any classically computable func-
tion thus demonstrating that it can emulate a classical uni-
versal Turing machine. This is in addition to being a univer-
sal quantum computer since it can also implement the set of
universal quantum operations on arbitrary qubits on its
memory tape as shown earlier. UQC can compute any clas-
sically computable function, it can compute any quantum
computable function, and it is programmable. In short, UQC
is computationally universal.

VII. PROGRAM CONCATENATION SCHEME

In the process of defining the primitive programs in the
preceding section, we have implicitly used program concat-
enation whereby we sequentially combined separate pro-
grams to create larger programs. Strictly speaking, the pro-
grams that we have thus far defined are really subroutines
since complete programs must include the halting program,
%Ph&, in order to signal program completion. However, it is
readily seen that all of the primitive subroutines can be con-
verted into full-fledged programs by adding %Ph& as the last
instruction.

Sequential programs !programs without branch instruc-
tions" can thus be concatenated by simply removing the last
%Ph& step from each constituent program, concatenating the
resulting subroutines, and appending on %Ph& at the end. Sup-
pose that we have two sequential programs, %PA& and %PB&,
that we wish to concatenate to create a program %PAB& whose
effect is to execute %PB& followed by %PA&. Since %PA& and
%PB& are sequential, this means that %Ph& is the last step in
each program. That is, %PA&= %PA!&%Ph& and %PB&= %PB!&%Ph&.
Thus, to achieve the effect of running %PA& followed by

%PB&, we simply construct the program PAB =
def

%PA!&%PB!&%Ph&.
The situation is quite different for branching programs. In

general, without complete knowledge of the operations of the
programs to be concatenated, it is not possible to concatenate
them in the strictest sense of joining the individual programs
into a single larger program. This is not a limitation of UQC
but of any computer, be it classical or quantum. The problem
is that the branch destinations in a branching program can be
data dependent and the branching address may also be ma-
nipulated as data. Therefore, it is not sufficient to add an
appropriate offset !the number of instructions of preceding
concatenated programs" to all branch instructions because
this would have the adverse effect of potentially adding an
offset to the manipulated data and hence altering the in-
tended computation results.

The solution, of course, is to first run %PA&, wait for it to
complete, replace %PA& with %PB&, reset the program counter
register to 0, leave all other internal registers and memory
tape qubits unchanged, and resume execution to run %PB&.
However, strictly speaking, this is not program concatenation
per se because while the overall operation has the effect of
running %PA& followed by %PB&, the program that is run is not
%PA&%PB&. There is the intermediate step of replacing %PA&
with %PB& and restarting execution, which, strictly speaking,
are not program operations. In the context of UQC this could
be achieved by initializing M with %PA&, running %PA& and
once the halt qubit is measured as %1&, replacing the program
portion of M with %PB&, setting the program counter register
to 0 while leaving all other UQC registers and memory qu-
bits unchanged, and clearing the halt qubit to resume execu-
tion of %PB& with the results of the preceding program!s".
This scheme, of course, works not only for branching pro-
grams but also for sequential programs.

Formally, our UQC program concatenation operator, ,!n",
is defined as

,!n" =
def.-

i=1

n−1

%Pi+1&'Pi%M!P" ! %0&'1%h ! SWAPP,P!!i" ! %1&'0%S!i+1"/ + %P1&'0%M!P" ! %0&'0%h ! %1&'0%S!1"

+ .-
i=1

n−1

%Pi&'Pi+1%M!P" ! %1&'0%h ! %1&'0%S!i"/ + %Pn&'Pn%M!P" ! %1&'1%h ! %1&'0%S!n"

+ -
i=1

n

%Pi&'Pi%M!P" ! %0&'1%S!i" + -
i=n+1

-

%Pi&'Pi%M!P", !28"
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where n denotes the number of programs to be concatenated,
%Pi& denotes the ith program in the concatenation sequence
!we are assuming that the programs have been enumerated
such that the first n programs are the ones that we wish to
concatenate", M!P" denotes the program qubits portion of M,
h denotes the halt qubit, P denotes the program counter reg-
ister, P!!i" denotes the ith ancillary program counter register,
and S!i" is the ith flag denoting that program i has been
swapped. Note that some suitable finite unused subset of M
can be used for P!!i" and S!i" since these are initialized to 0
and are only used once in the program concatenation opera-
tion. The P! and S! arrays of qubits are required to save
intermediate states during program swaps to ensure unitarity.

In order to concatenate n given programs, then, we simply
modify the overall UQC evolution operator to

U =
def

,!n"UCFUUPURIUUFUUDUEXUXDUIF. !29"

U then has the net effect of running each program until it
halts, swapping each completed program with the next pro-
gram in the concatenation sequence, swapping the program
counter register with 0, flipping the halt qubit !and hence
starting execution of the swapped program", and leaving the
final result on the tape when the last program, %Pn&, halts.
Even if the individual programs are known to halt, the con-
catenated program will not necessarily halt because, in gen-
eral, the input data to the individual programs will change
when run as part of a concatenated program. Hence, whether
or not a concatenated program will halt is independent of
whether or not its constituent programs halt.

The famous Turing halting problem is only relevant in the
context of executing programs that can branch. Nonbranch-
ing finite programs, by construction, will always halt so the
halting problem is a moot point in that case. This raises a
question about Deutsch’s UQTM. Deutsch did not explicitly
consider branching in his original UQTM proposal and thus
it is unclear whether or not his program concatenation
scheme rested on the assumption that UQTM programs were
nonbranching. If UQTM programs could involve branching,
then without guaranteed halting of the concatenated pro-
grams, the validity of Deutsch’s program concatenation
scheme is problematic. Deutsch’s description of his program
concatenation scheme suggests that it was an “appending”
scheme rather than a “swapping” scheme as we have defined.

There is still one problem with the program concatenation
scheme. As currently defined, the halt qubit will be flipped
several times during the course of executing a concatenation
of programs !assuming that each constituent program halts,
of course". Thus, it may appear that there is no way for an
external observer !or classical computer" to distinguish be-
tween the intermediate and final states of the halt qubit.
However, this does not pose a problem so long as the mea-
surement of the halt qubit does not affect the result that we

will ultimately measure on the memory tape in which case
we simply measure the halt qubit, wait the time associated
with program swap operations !i.e., %Pi+1&'Pi%" to be com-
pleted, and measure the halt qubit again. If the halt qubit was
in an intermediate set state, we will then find it cleared. If, on
the other hand, the halt qubit was in its final set state, then
we will find it still set and we can then measure the memory
tape to find the result. Thus, periodic measurements of the
halt qubit suffice to identify whether the concatenated pro-
gram has halted. The question, then, is whether periodic
measurements of the halt qubit affect the final measurement
of the memory tape. Ozawa #10$ has already proven that
periodic measurement of the halt qubit does not spoil the
result of the computation !i.e., the final measurement of the
memory tape contents". That is, the probability of finding the
memory tape in state Mi after N iterations of U with periodic
measurements !monitoring" of the halt qubit and the prob-
ability of finding the memory tape in the state Mi after N
iterations of U without periodic measurements of the halt
qubit !i.e., one single measurement of M after N iterations of
U" are identical. Thus, periodic measurements of the halt
qubit do not spoil the intermediate computation as Myers
argued.

Therefore, we see that concatenation of UQC programs
works in the same way as concatenation of classical com-
puter programs. While the halting question for the resultant
program still remains just as it does for classical computers,
a valid unitary UQC program concatenation scheme exists.
The programs to be concatenated are sequentially executed
without changing the state of internal registers except for the
program counter. Not surprisingly, the concatenation scheme
is analogous to the classical case.

VIII. CONCLUSION

The quantum computer we have defined is universal in
the sense that, under the control of quantum programs, it can
first emulate any classical Turing machine by being able to
compute the NAND function and second can approximate any
unitary operation to any desired accuracy by being able to
apply the set of )H,CNOT,T* operations on a specified set of
qubits. The machine also supports conditional branching and
hence conditional execution, a feature that is not directly
possible in the quantum gate array circuit framework. The
defined halting scheme works in a way that prevents changes
to the memory tape once the program has halted thus satis-
fying Ozawa’s proof requirement and allowing for a valid
program concatenation scheme. Because of its universality,
UQC serves as a prototypical model for general-purpose pro-
grammable quantum computation and should find uses in the
development and analysis of quantum algorithms and com-
plexity. Work in progress using the UQC includes a demon-
stration of how to implement oracle based algorithms such as
the Grover search algorithm.
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Introduction

Quantum networks which connect quantum systems and can
transmit quantum information have been extensively discussed
[1]. Quantum connectivity provides a means of overcoming size-
scaling and error-correction problems, and has significant
advantages over classical connectivity. Furthermore, networks of
quantum computers have also been proposed [2] where
information can be exchanged between nodes via quantum and
classical channels. A general question arises as to whether and how
such quantum computers can communicate and exchange
information. In the simplest case a quantum computer may
download data sets from other nodes over the quantum network,
but in more complex cases use the network to call subroutines, or
concatenate programs from other quantum computers.

It is well known that classical principles do not necessarily
apply in the realm of quantum mechanics. The no-cloning
theorem (see [3] for example) is a well-known example of this. In
the field of quantum computing, the ability to halt a
programmable quantum computer was such an example. The
original Universal Quantum Turing Machine proposal [4] made
the tacit assumption that a quantum turing machine could be
halted in a classical manner. This turned out to be problematic
(see [5] for a discussion of the issues associated with the original
proposal) due to properties of quantum mechanics. Thus, it is
imperative to formally show whether a classical solution or
property is applicable (or even relevant) in the realm of quantum
mechanics. Assuming that a classical solution to a problem
directly applies to a quantum mechanical system is prone to run
into potential complications.

We address here the question of how a universal quantum
computer can access an external oracle, which may be regarded as
a ‘‘black box’’ quantum device, possibly over a quantum network

but in any case as a separate and external quantum system to the
universal quantum computer itself. In fact, the oracle may be a
program running on a remote universal quantum computer. It
should be noted that this is a different problem from that of
implementing an oracle ‘‘program’’ on a universal quantum
computer. This is of course possible by virtue of the fact that the
computer is universal. Hence, if such a program exists, it can be
implemented and executed on a universal quantum computer.
Strictly speaking, however, the ability to utilize external quantum
devices over a network connection is a different problem because
such devices are external to the universal quantum computer itself.

Classically, the ability to access devices on a network is a well-
known problem with well-known solutions. However, as stated
earlier, we cannot assume that this is necessarily the case for a
quantum computer accessing quantum devices on a quantum
network. Our aim is to explicitly show that accessing external
quantum devices with a universal quantum computer is indeed
possible by devising universal quantum computer programs that
implement well-known oracle based quantum algorithms, namely
the Deutsch, Deutsch-Jozsa, and the Grover algorithms using
external black-box quantum oracle devices.

In [5] we constructed a programmable universal quantum
computer UQC that is universal in the sense that it can emulate
any classical Turing machine and can approximate any unitary
operation to any desired accuracy. It is programmable in the sense
that the machine’s operations are specified using a sequence of
instructions in the same way as for classical computers. UQC also
supports conditional branching and hence conditional execution, a
feature that is not directly possible in the quantum gate array
circuit framework. Moreover, UQC uses a halting scheme that
allows for valid program concatenation, thus resolving issues with
the original Universal Quantum Turing Machine (UQTM)
proposed by Deutsch [4].
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In order to use information from a quantum network in UQC
programs, we need to devise a means of enabling UQC programs
to access such remote information and use that information for
local computations. We assume that remote quantum nodes exist
and treat them as black boxes without any assumptions as to their
internal structure or operational details. Without loss of generality,
we assume that such devices accept a finite number of input qubits
and generate a finite number of output qubits. The input and
output qubits may be shared, which is the case if the remote device
functions in such a way as to alter the input qubits based on its
function. We also assume, without loss of generality, that quantum
network nodes have an ‘‘enable’’ qubit, jenT, that controls when
an access is to begin, in order to let the device know when the
input data has been prepared and is valid. We further assume,
without loss of generality, that the nodes of the network generate
their output data in less time than the time associated with a single
iteration of UQC. If the query time were longer than a single
iteration of UQC or were data-dependent, one could simply write
the UQC program to wait for the appropriate number of cycles
before using the result of the network access. Alternatively, the
nodes could provide an ‘‘access completed’’ status flag qubit such
that the UQC program could poll this status flag qubit before
using the result of a network access.

Results

Recall from [5] that UQC consists of a memory tape M with an
infinite number of qubits, of which only a finite portion is ever
used, and a processor that contains observables that play the roles
of several registers, including a data register D, a program counter
register P, a scratch qubit s, and the halt qubit h. The processor
executes programs stored on the memory tape using data that is
also stored on the memory tape. A program of UQC consists of a
sequence of qubits whose states encode instructions of the
instruction set defined in [5] and reproduced in Table 1 at the
end of this paper.

The single qubit operations H and T act on the qubit at tape
location M(D), denoted jMTD, and the two qubit operations
SWAP and NAND act on jMTD and the scratch qubit jsT, the
latter being used as the control qubit for the NAND operation.

The instruction set includes a set of operations that can
approximate any unitary operation to any desired accuracy. Thus,
it is quantum computationally universal. In [5] we constructed a
UQC program that can compute the NAND function, thereby

showing that the machine can compute any classically computable
function. Because of UQC’s universality, any algorithm that can
be implemented in the quantum gate array framework can be
mapped to an equivalent UQC program by virtue of the fact that
gate array circuits can be decomposed into circuits of gates with
the same universal set of unitary operations fH,T,CNOTg that
are implemented in the UQC instruction set. Each of the qubits in
a quantum circuit (i.e. lines connecting gates) can be mapped to a
suitable memory tape data qubit and each of the unitary
operations (i.e. quantum gates) can be mapped to a suitable
UQC subroutine. It is possible therefore to map quantum gate
array implementations of algorithms such as the quantum Fourier
transform, quantum phase estimation, quantum order finding,
quantum factoring discussed in [6] (Chapter 5) onto UQC.

Accessing Networked Quantum Resources With UQC
Modifying UQC to use networked quantum devices, then, is a

matter of connecting the qubits comprising the interface (input,
output, enable, and optionally access complete) qubits of those
devices to a finite subset of the data portion of M, which is the
quantum analog of a classical computer’s memory-mapped I/O
and allows UQC programs to access remote devices using the M
qubits that are connected to those devices. The UQC programs
prepare the appropriate input data qubits, set the corresponding
access enable qubits to perform an access, and utilize the
corresponding output data qubits of M. It should be noted that a
remote quantum device could be another instance of UQC which
would enable distributed quantum computing. However, the
scheme to access data from remote devices, be they simple devices
or full-fledged quantum computers, would work in the same way.

Primitive Programs
In [5] we defined several primitive programs and subroutines

that serve as building blocks for devising and analyzing more
complicated and useful programs. We reproduce here only those
that we specifically require for constructing the algorithms that are
the focus of this work. By considering the quantum gate array
framework implementations of the algorithms, we identify that we
need programs that perform the operations H, sx, and CNOT.
We also need to swap qubits for several operations such as
enabling or disabling the remote networked quantum device, and
the ability to address individual qubits on the memory tape to
perform operations on them. Finally, we need a primitive program
to halt the overall program.

In the equations that follow, superscripts on programs denote
the operation specified by the program and subscripts indicate the
qubits on which the program specifies the processor to operate
upon. For notational simplicity, jPhT denotes the program that
halts UQC, i.e. jPhT ~

def jh?1TjNOPT.
The first set of primitive programs, fjDziT,jDiT,jSi,sT,jSi,jTg, is

a subset of those defined in [5]:
1. jDziT: Increment D by i,

jDziT~
def Pi

k~1jDz1T if i § 1,

I otherwise:

(

ð1Þ

2. jDiT: Set D to i, iw0,

jDiT ~
def jDz1TjD?0TjDziT: ð2Þ

Table 1. UQC Instruction Set.

Label Encoding Description

jNOPT j0000T No operation

jD?0T j0001T D?0

jDz1T j0010T D?Dz1

jD{1T j0011T D?D{1

jHT j0100T Apply Hadamard operation to jMTD

jTT j0101T Apply p=8 operation to jMTD

jSWAPT j0110T jMTD<jsT

jCNOTT j0111T CNOT of jMTD and jsT (jsT: control)

jD<PT j1000T jDT<jPT (branch) iff s~0

jCLST j1001T Clear s

jh?1T j1111T jhT?j1T (set halt qubit)

doi:10.1371/journal.pone.0029417.t001
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Recall from the discussion of UEX in [5], that we precede the
D?0 instruction with a Dz1 instruction to ensure that Dw0
when the D?0 instruction is executed.

3. jSi,sT: Swap data qubits D(i) and s,

jSi,sT~
def jD5i{1TjSWAPT: ð3Þ

4. jSi,jT: Swap data qubits D(i) and D(j),

jSi,jT ~
def jS5i{1,sTjS5j{1,sTjS5i{1,sT: ð4Þ

We also describe the set of programs fjPH
i T,jPH

i,jT,jPC
i,jTg which

apply the single- and multiple-qubit H and CNOT operations on
arbitrary qubits on the memory tape, where i and j[Z:

1. jPH
i T: Apply H to data qubit D(i),

jPH
i T ~

def jD5i{1TjHT: ð5Þ

2. jPH
i,jT: Apply H to data qubits D(i : j), where i§j,

jPH
i,jT ~

def
Pi

k~j jP
H
k T: ð6Þ

One could implement this program using a loop but that would
require first implementing binary addition of M qubits. Binary
addition is possible because one can implement a binary adder
such as a Carry Lookahead Adder (CLA) [7] using the NAND
program that we defined in [5]. However, since we are only
interested in a polynomial order (in the number of qubits) multiple
qubit Hadamard transformation program, we define jPH

i,jT as a
sequential ‘‘unrolled’’ loop program.

3. jPC
i,jT: Apply CNOT to data qubits D(i) and D(j) with D(i) as

the control qubit,

jPC
i,jT ~

def jSi,sTjD5j{1TjCNOTTjSi,sT: ð7Þ

Using the primitive programs defined above, we define jPX
i T as

the program that applies the sx (X) operation on data qubit i[Zz.
Noting that a CNOT operation with the control qubit in the j1T
state is equivalent to the X operation, we deduce the equivalence

jPX
i T:jPC

j1T,iT, ð8Þ

where the subscript j1T denotes that some suitable data qubit on
the memory tape has been prepared in the state j1T. Similarly, we

define jPZ
i T as the program that applies the sz (Z) operation on

data qubit i[Zz. Noting that HXH~Z, we deduce

jPZ
i T:jPH

i TjPX
i TjPH

i T: ð9Þ

Finally, we define a program jPCZ
i,j T that conditionally applies the

Z operation on data qubit i[Zz and data qubit j[Zz. Since
CNOT is the conditional X operation, we have

jPCZ
i,j T:jPH

j TjPC
i,jTjP

H
j T: ð10Þ

UQC Algorithms Using Networked Quantum Oracle Devices
With the notable exception of Shor’s factorization algorithm

[8], several well known quantum algorithms that achieve a speed-
up over their fastest known classical counterparts rely on the use of
an oracle, the best known examples being the Deutsch, Deutsch-
Jozsa, and Grover algorithms (see Nielsen and Chuang [6], for
example). The Deutsch algorithm can determine a global property
of a function f (x), namely f (0)+f (1), using only one evaluation of
f (x) whereas the fastest classical algorithm requires at least two
evaluations of f (x). The Deutsch-Jozsa algorithm can determine
whether a two-valued (0 or 1) function f (x) is constant or balanced
with only one evaluation of f (x) whereas the fastest classical
algorithm requires 2n{1z1 evaluations, where n denotes the
number of bits required to encode the possible values of f (x).
Grover’s algorithm [9] can find a marked item in an unstructured
database of N elements in O(

ffiffiffiffiffi
N
p

) operations whereas the fastest
classical algorithm requires O(N) operations. Thus, these
quantum algorithms all achieve at least a quadratic speedup over
their classical counterparts.

These algorithms are well suited to illustrate the use of
networked quantum resources with the UQC because they rely
on black-box quantum devices that generate some output based on
the given input. They thus serve as prototypical examples of a
networked quantum node, whose internal implementation details
are unknown; only the interface protocol need be known. Here, we
assume the simplest protocol, which is that the output is valid one
‘‘clock cycle’’ after making a request.

Deutsch and Deutsch-Jozsa Algorithms on UQC. We now
illustrate the use of a networked quantum device in a UQC
program by first implementing the simplest known oracle based
quantum algorithm, Deutsch’s algorithm. The Deutsch oracle
works as follows:

jx,yT?
jx,y+f (x)T if jenT ~ j1T ,

jx,yT otherwise ,

"

where f is some function and jenT denotes the oracle query enable
flag. The memory tape is prepared with D(0)~j0T and D(1)~j1T
where D(0) and D(1) take the roles of x and y, respectively. We
assume without loss of generality that D(2) takes the role of jenT
and is prepared as j0T, and D(3) is initially prepared as j1T.

The program that executes the Deutsch algorithm is

jPDT ~
def jPH

1,0TjS2,3TjS2,3TjPH
0 TjPhT, ð11Þ

where jPH
1,0T applies the Hadamard transform to the data qubits

corresponding to x and y. jS2,3TjS2,3T swap qubits D(2) and D(3)
thereby setting the oracle’s jenT qubit (recall that D(2) is
connected to jenT and that D(2)~j0T and D(3)~j1T initially) for
a single UQC cycle and then clears it, returning the state of
D(3 : 2) back to the original state. At this point, the oracle has

generated the output state jD(0),D(0)+D(1)T. jPH
0 T then applies

the Hadamard transform to the x output of the oracle and jPhT
halts the program thus yielding the following on the memory
tape:
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jD(0),D(1)T~+jf (0)+f (1)T
j0T{j1Tffiffiffi

2
p

# $
:

Measuring D(0) yields the result that we were interested in,
f (0)+f (1). This is a specific mapping of the gate array
implementation of the algorithm (see [6] Figure 1.19, for example)
onto the instruction set of UQC.

We can similarly implement the Deutsch-Jozsa algorithm by
mapping a gate array implementation such as the one shown in
[6], Figure 1.20. In this case, data qubits D(0 : n{1) take the role
of x, D(n) takes the role of y, and we use D(nz1) as the jenT
qubit. As before, D(0 : n{1) are prepared in the j0T state, D(n) is
prepared in the j1T state, D(nz1) is prepared in the j0T state and
D(nz2) is prepared in the j1T state. The Deutsch-Jozsa oracle
works like the Deutsch oracle with the only difference being that x
is n qubits wide. The resulting UQC program that computes the
Deutsch-Jozsa algorithm is therefore

jPDJT ~
def jPH

n{1,0TjSnz1,nz2TjSnz1,nz2TjPH
n{1,0TjPhT, ð12Þ

which is again a direct mapping of the gate array implementation
onto the UQC instruction set.

Grover’s Algorithm on UQC. We now use the techniques
developed in the previous section to implement the Grover
unstructured database search algorithm. We assume that the
database has only one marked solution as can be determined by
using the quantum counting algorithm (see [6] Chapter 6, for
example). We denote the query data qubits as jqT and the query
enable flag as jenT. The Grover oracle works as follows:

jqT?
({1)f (q)jqT if jenT ~ j1T ,

jqT otherwise

(

where f (q)~1 if q is a solution to the search problem and f (q)~0
otherwise. More concisely, the oracle performs the unitary
transformation

Um ~
def

I{2jmTSmj, ð13Þ

where jmT denotes the marked solution. In other words, the oracle
flips the phase of the solution state but leaves non-solution states
unchanged. Grover’s algorithm prepares an initial query state as
the equal superposition of all elements in the database, followed by

O(
ffiffiffiffiffi
2n
p

) iterations of G, where

G ~
def

(2jsTSsj{I)Um, ð14Þ

and

jsT~
1ffiffiffiffiffi
2n
p

X2n{1

i~0

jiT ð15Þ

denotes the equal superposition of all database elements.
Thus, the first step in the program is to create a superposition of

all database items in D(n : 1) where D(i)~M(5i{1), i[Zz, as

the first query input. This is accomplished by the multiple qubit
Hadamard primitive program jPH

n,1T defined in Eq. (6). The next
step is to perform an oracle query. The following program
performs an oracle call with query data prepared in D(n : 1):

jPmT ~
def jSnz1,nz2TjSnz1,nz2T, ð16Þ

where D(nz1) is used as the oracle query enable qubit and
D(nz2) is initialized to j1T. D(nz1) is assumed to be initialized
to j0T (i.e. the oracle query data is disabled at start-up). This
program simply sets the query enable qubit for a single UQC cycle
and then clears it, returning the state of D(nz2 : nz1) back to
the original state. Thus, upon running jPmT, the result of the
oracle call is in D(n : 1), i.e. this program is functionally equivalent
to Um.

The next step is to implement a program jPsT that performs the
reflection of a given state about the superposition of all basis states
jsT. This requires a conditional-phase operation that works as
follows:

jxT?
jxT if x~0,

{jxT otherwise

"

where jxT is n qubits wide. Up to a global phase, this can be
implemented using the following procedure:

1. Apply the sx operation to all n qubits.
2. Apply a controlled-Z operation using n{1 qubits as control

qubits and the remaining qubit as the data qubit.
3. Apply the sx operation to all n qubits.
We can construct a multiple qubit controlled-Z program jPCZ

i,j,kT
where qubits i through j are the control qubits and qubit k is the
data qubit, with the jPCZ

i,j T program defined in Eq. (10) and the
Toffoli program jPToff

i,j,k T that we defined in [5] using a procedure
analogous to that described in [6], Chapter 4. Armed with jPCZ

i,j,kT,
we construct jPsT as follows:

jPsT ~
def jPH

n,1TjP
X
n,1TjP

CZ
2,n,1TjP

X
n,1TjP

H
n,1T: ð17Þ

It can be readily verified that this is functionally equivalent to the
2jsTSsj{I operator. Thus, a program that performs a single
Grover iteration is

jPGT ~
def jPmTjPsT: ð18Þ

In summary, the complete program to search a database of 2n

items with a single marked solution is

jGT ~
def jPH

n,1T jPGTð ÞNG jPhT, ð19Þ

where NG~
p

4

ffiffiffiffiffi
2n
p

is the number of Grover iterations that can be

pre-computed based on the database size, or that UQC can
compute from the database size using a classical algorithm. Upon
execution of jGT, a measurement of D(n : 1) reveals the solution

jmT. Because there are no oracle queries associated with jPH
n,1T

and jPhT, we immediately identify the complexity (as a measure of
the number of oracle queries) of jGT as NG . As is to be expected,
this complexity is identical to the number of oracle queries
associated with an implementation in the gate array framework.
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Discussion

We have presented a scheme to allow universal quantum
computers to utilize networked quantum resources. We have
illustrated the scheme by devising UQC programs that implement
the well-known oracle based Deutsch, Deutsch-Jozsa, and Grover
algorithms using networked quantum oracle devices. We have
therefore demonstrated that universal quantum computers can
access networked quantum devices in a way analogous to that by

which classical computers access network resources. The method
that we used to map quantum algorithms onto UQC can be
applied to implement and analyze other quantum algorithms.
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