# Quantum Computation and a Universal Quantum Computer



Antonio Lagana School of Chemistry and Physics The University of Adelaide

A thesis submitted for the degree of Doctor of Philosophy (Ph.D.)

March 31, 2010

ii

### Contents

| Glossary v |                                                   |                                               |    |  |  |  |
|------------|---------------------------------------------------|-----------------------------------------------|----|--|--|--|
| 1          | Intr                                              | troduction                                    |    |  |  |  |
|            | 1.1                                               | Theoretical Foundation of Quantum Computation | 1  |  |  |  |
|            | 1.2                                               | Organization of this Thesis                   | 7  |  |  |  |
| <b>2</b>   | Quantum Computation Using The Harmonic Oscillator |                                               |    |  |  |  |
|            | 2.1                                               | Introduction                                  | 9  |  |  |  |
|            | 2.2                                               | Implementing The Qubit                        | 10 |  |  |  |
|            | 2.3                                               | Constructing a Universal Gate Set             | 10 |  |  |  |
|            | 2.4                                               | Discussion                                    | 13 |  |  |  |
| 3          | Universal Quantum Computer                        |                                               | 15 |  |  |  |
|            | 3.1                                               | The Quantum Turing Machine                    | 17 |  |  |  |
|            | 3.2                                               | The Universal Quantum Turing Machine          | 17 |  |  |  |
|            | 3.3                                               | Is The Halting Scheme Valid?                  | 18 |  |  |  |
|            | 3.4                                               | A Universal Quantum Computer                  | 20 |  |  |  |
|            |                                                   | 3.4.1 The Evolution of $Q$                    | 26 |  |  |  |
|            |                                                   | 3.4.2 Illustration of program execution       | 33 |  |  |  |
|            | 3.5                                               | Some Primitive Programs                       | 33 |  |  |  |
|            | 3.6                                               | Program Concatenation Scheme                  | 37 |  |  |  |
|            | 3.7                                               | UQC and the Church-Turing Thesis              | 40 |  |  |  |
|            | 3.8                                               | The Halting Problem                           | 42 |  |  |  |
|            | 3.9                                               | Discussion                                    | 46 |  |  |  |

### CONTENTS

| 4            | Oracle Based Algorithms On A Universal Quantum Computer |                                                                               |     |  |  |  |
|--------------|---------------------------------------------------------|-------------------------------------------------------------------------------|-----|--|--|--|
|              | 4.1                                                     | Introduction                                                                  | 49  |  |  |  |
|              | 4.2                                                     | Accessing Networked Quantum Resources With $\mathcal{UQC}$                    | 51  |  |  |  |
|              | 4.3                                                     | .3 Primitive Programs                                                         |     |  |  |  |
|              | 4.4                                                     | $\mathcal{UQC}$ Algorithms Using Networked Quantum Oracle Devices             | 53  |  |  |  |
|              |                                                         | 4.4.1 Deutsch and Deutsch-Jozsa Algorithms on $\mathcal{UQC}$                 | 54  |  |  |  |
|              |                                                         | 4.4.2 Grover's Algorithm on $\mathcal{UQC}$                                   | 55  |  |  |  |
|              | 4.5                                                     | Discussion                                                                    | 57  |  |  |  |
| <b>5</b>     | Syn                                                     | nmetry Based Partial Search                                                   | 59  |  |  |  |
|              | 5.1                                                     | Introduction                                                                  | 59  |  |  |  |
|              | 5.2                                                     | Symmetry Based Partial Search                                                 | 61  |  |  |  |
|              | 5.3                                                     | The Partial Search Oracle                                                     | 61  |  |  |  |
|              | 5.4 Symmetric States                                    |                                                                               |     |  |  |  |
|              |                                                         | 5.4.1 Construction of $O_{t_K}$ Using Symmetric States                        | 64  |  |  |  |
|              |                                                         | 5.4.2 Implementation of $O_{t_K}$ and Discussion                              | 65  |  |  |  |
|              |                                                         | 5.4.3 Implications and Problems With $G_K \ldots \ldots \ldots \ldots \ldots$ | 68  |  |  |  |
|              | 5.5                                                     | Two Partial Search Algorithms                                                 | 69  |  |  |  |
|              |                                                         | 5.5.1 $(P_K G)^n$ Algorithm                                                   | 70  |  |  |  |
|              |                                                         | 5.5.2 $P_K G^n$ Algorithm                                                     | 72  |  |  |  |
|              | 5.6                                                     | Discussion                                                                    | 74  |  |  |  |
| 6            | Cor                                                     | Conclusions And Discussion 7                                                  |     |  |  |  |
| $\mathbf{A}$ | UQC Sample Program Execution Trace 8                    |                                                                               |     |  |  |  |
| в            | Published Work 93                                       |                                                                               |     |  |  |  |
| С            | Puł                                                     | Published Work 10                                                             |     |  |  |  |
| Re           | efere                                                   | nces                                                                          | 115 |  |  |  |

## Glossary

| 1WQC           | One-Way Quantum Computing        |
|----------------|----------------------------------|
| CPU            | Central Processing Unit          |
| EPR            | Einstein Podolsky Rosen          |
| GRK            | Grover Radhakrishnan             |
| GSQC           | Ground State Quantum Computation |
| HQC            | Holonomic Quantum Computing      |
| I/O            | Input Output                     |
| QAC            | Quantum Adiabatic Computing      |
| $\mathbf{QFT}$ | Quantum Fourier Transform        |
| QGA            | Quantum Gate Array               |
| QTM            | Quantum Turing Machine           |
| UQC            | Universal Quantum Computer       |
| UQTM           | Universal Quantum Turing Machine |
| UTM            | Universal Turing Machine         |

#### Abstract

This thesis covers two main topics in quantum computing: universal quantum computation and quantum search. We first demonstrate how a quantum harmonic oscillator can be used to implement the universal set of quantum gates and thereby serve as one possible building block for a universal quantum computer. We then address the core and primary focus of this thesis, the theoretical construction of a machine that can compute every computable function, that is, a universal (i.e.*programmable*) quantum computer. We thereby settle the questions that have been raised over the years regarding the validity of the UQTM proposed by Deutsch in 1985. We then demonstrate how to interface the universal quantum computer to external quantum devices by developing programs that implement well-known oracle based algorithms, including the well-known Grover search algorithm, using networked quantum oracle devices. Finally, we develop a partial search oracle and explore symmetry based partial search algorithms utilizing this oracle.

### Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to myself and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of the published work contained in Appendix B of this thesis resides with the copyright holder(s) of the publishing journal. I also give permission for the digital version of my thesis to be made available on the web, via the Universitys digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

The research work presented in this thesis was conducted from February 2007 to March 2010 under the supervision of Associate Professor Max Lohe, Dr. Lorenz von Smekal, and Professor Anthony Williams.

Antonio A. Lagana March 31, 2010 Adelaide, South Australia, Australia

### Acknowledgements

I would like to thank my supervisors, Associate Professor Max Lohe, Dr. Lorenz von Smekal, and Professor Anthony Williams, for their support, guidance, and constructive criticism of my work. I am grateful that they were always available and willing to help whenever I sought it. I would also like to thank Dr. Rod Crewther for supporting my pursuit of a Ph.D. in theoretical physics. I would also like to thank Dr. Rod Crewther and Dr. Lorenz von Smekal for their excellent courses in quantum mechanics, both of which helped me to acquire the required knowledge and understanding of quantum mechanics to conduct my research. Last but not least, I would like to thank the School of Chemistry and Physics for providing the opportunity and facilities to pursue this work.