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Isospin breaking . . . R. Horsley

1. Introduction

Isospin symmetry was introduced by Heisenberg in the 1930s to explain non-electromagnetic
similarities between the proton and neutron. Nowadays, of course, this is ascribed to the u and
d quarks having similar mass and the same strong – or QCD – interactions. This SU(2) flavour
symmetry is not exact, there are isospin breaking effects, due to

• the md−mu quark mass difference which is a ‘pure’ QCD effect,

• a QED component due to the different quark charges.

As both effects are small then we can set

Mexp = M∗+MQED , (1.1)

where we denote by a ∗ the ‘pure’ QCD component. There is an interplay between effects: electro-
magnetic (EM) effects tend to make p heavier than n, but md−mu works in the opposite direction
and in fact dominates as the neutron is heavier than the proton, (Mn−Mp)

exp = 1.293333(33)MeV,
[2]. Including the s quark then the flavour symmetry group becomes SU(3) and the (pseudoscalar)
mesons and baryons can be arranged in representations of this group. In Fig. 1 we show the lowest
octet baryon and pseudoscalar states. States at the center, for example Λ(uds), Σ0(uds) have the
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Figure 1: The (lowest) octet baryon states, left panel and the octet pseudoscalar states, right panel.

same quark content (quantum numbers) but different wavefunctions and can mix (if isospin is bro-
ken) so we shall only consider states on the ‘outer’ ring here. As well as n – p mass splitting we
now also have mass splittings involving the strange quark, (MΣ− −MΣ+)exp = 8.079(76)MeV and
(MΞ− −MΞ0)exp = 6.85(21)MeV. These are all small differences (compared to the masses of the
states) and the experimental precision is way beyond what we achieve here, but nevertheless we
can qualitatively and reasonably quantitatively describe these splittings, as briefly described in the
next section. For more details see [1].

2. Method

The QCDSF–UKQCD strategy is to develop an SU(3) flavour symmetry breaking expansion,
[3], from the flavour symmetric point down to the physical point. For the baryons on the outer ring
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of the octet we have found up to NNLO

M2(aab) = M2
0 +A1(2δ µa +δ µb)+A2(δ µb−δ µa)

+ 1
6 B0(δm2

u +δm2
d +δm2

s )

+B1(2δ µ
2
a +δ µ

2
b )+B2(δ µ

2
b −δ µ

2
a )+B3(δ µb−δ µa)

2

+C0δmuδmdδms

+[C1(2δ µa +δ µb)+C2(δ µb−δ µa)] (δm2
u +δm2

d +δm2
s )

+C3(δ µa +δ µb)
3 +C4(δ µa +δ µb)

2(δ µa−δ µb)

+C5(δ µa +δ µb)(δ µa−δ µb)
2 +C6(δ µa−δ µb)

3 , (2.1)

while for the pseudoscalar meson octet,

M2(ab) = M2
0π +α(δ µa +δ µb)

+β0
1
6(δm2

u +δm2
d +δm2

s )+β1(δ µ
2
a +δ µ

2
b )+β2(δ µa−δ µb)

2

+ γ0δmuδmdδms + γ1(δ µa +δ µb)(δm2
u +δm2

d +δm2
s )

+ γ2(δ µa +δ µb)
3 + γ3(δ µa +δ µb)(δ µa−δ µb)

2 . (2.2)

We have defined for the sea quarks δmq = mq−m with m = 1
3(mu+md +ms), where q ∈ {a,b, . . .}

so at the SU(3) flavour symmetric point δmq = 0. From this definition this means that δms =

−2δml . All the expansion coefficients are functions of m only. For the baryon or meson valence
quarks we allow partially quenching, PQ, and set δ µq = µq−m (i. e. valence quark masses µq 6=
sea quark masses mq). Of course on the unitary line when the sea and valence quark masses are the
same then δ µq→ δmq. The quarks q = a, b, . . . are from {u,d,s}, so for example M(uud) = Mp,
M(dds) = MΣ− . We shall also need pseudoscalar mass results and the corresponding SU(3) flavour
breaking expansion to determine the physical point: δm∗d , δm∗u and δm∗s (where a ∗ denotes the
physical point).

On the unitary line, singlet quantities have the property that the leading O(δmq) term vanishes.
This allows a relatively simple definition of the scale, as practically we have shown, [3], that
these quantities hardly vary in the interval from the flavour symmetric point down to the physical
point. There are many possibilities for example for octet baryons (which are all stable under strong
interactions), we may consider the ‘centre of mass’ of the octet

X2
N = 1

6(M
2
p +M2

n +M2
Σ+ +M2

Σ−+M2
Ξ0 +M2

Ξ−) = M2
0 +O(δm2

q) , (2.3)

and similarly for the octet of pseudoscalar mesons

X2
π = 1

6(M
2
K+ +M2

K0 +M2
π+ +M2

π−+M2
K0 +M2

K−) = M2
0π +O(δm2

q) . (2.4)

Using this we can form ratios M̃≡M/XS for S =N,π with expansion coefficients Ãi≡ Ai/M2
0 , α̃ ≡

α/M2
0π
, . . . for the SU(3) flavour breaking expansions.

Note that as the coefficients of the SU(3) flavour breaking expansions are just functions of m
alone, so provided m remains constant, the coefficients can be determined by n f = 2+ 1 simula-
tions, when δmu = δmd ≡ δml rather than more expensive n f = 1+ 1+ 1 simulations. Also an
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additional advantage is that computationally cheaper PQ results can help to determine the coeffi-
cients.

Using O(a)-improved clover fermions, [4], at β = 5.50 we have determined the appropriate
point on the SU(3) flavour symmetric line (for the path to the physical point) and then used this
point for PQ determinations of heavier baryon and meson masses (so that m obviously remains
constant). Fitting these masses (and also including unitary data at the same constant m) then allows
determinations of the expansion coefficients. In general these fits are functions of two quark masses
δ µa and δ µb. To avoid a 3–dimensional plot, as an illustration of these fits in Fig. 2 we show
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Figure 2: The mass degenerate results, octet baryon M̃2(aaa) left panel and octet pseudoscalar meson
M̃2(aa) right panel (using 323×64 sized lattices), both graphs versus the PQ quark mass δ µa. Also shown
are the functions given in eq. (2.5).

(M̃2(aaa)− 1)/(3δ µa) (left panel) and (M̃2(aa)− 1)/(2δ µa) (right panel), together with the fit
functions derived from eqs. (2.1) – (2.2) by taking completely degenerate quark masses

M̃2(aaa)−1
3δ µa

= Ã1 + B̃1δ µa +
8
3C̃3δ µ

2
a ,

M̃2(aa)−1
2δ µa

= α̃1 + β̃1δ µa +4γ̃2δ µ
2
a . (2.5)

As another example, we also consider the unitary results (i.e. δ µq→ δmq) from the SU(3) flavour
symmetric point down to the physical point. In Fig. 3 we show the baryon and pseudoscalar octet
‘fan’ plots, where MN ≡ M(lll), MΣ ≡ M(lls), MΞ ≡ M(lss), MNs ≡ M(sss) and Mπ ≡ M(ll),
MK ≡M(ls), Mηs ≡M(ss). The states MNs , Mηs are either not in the octet or are a PQ state and are
not physical, but nevertheless can be used to help determine the expansion coefficients. The vertical
lines are the n f = 2+ 1 pure QCD physical point, with the opaque circles being the determined
pure QCD hadron mass ratios for 2+ 1 quark flavours. For comparison, the stars represent the
average of the squared masses of the appropriate particle on the outer ring of the baryon octet,
Fig. 1, i.e. M∗2

N (lll) = (Mexp 2
n (ddu)+Mexp 2

p (uud))/2, M∗2
Σ
(lls) = (Mexp 2

Σ− (dds)+Mexp 2
Σ+ (uus))/2,

M∗2
Ξ
(ssl) = (Mexp 2

Ξ− (ssd)+Mexp 2
Ξ0 (ssu))/2. One immediate observation of Fig. 3 is that there is

hardly any curvature in the data and that the NLO (i.e. quadratic terms) are sufficient.
Finally note that the x-scales used in Fig. 2 and Fig. 3 are very different |δml| ∼ 0.01� δ µa ∼

0.5. (Indeed δ µa ∼ 0.5 is roughly at the charm quark mass.) The ability to use a large range for
the PQ fits enables a much better determination of the fit coefficients (in particular the NLO terms,
which are poorly determined in the narrow range |δml| ∼ 0.01).

4



P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
2
)
1
3
5

Isospin breaking . . . R. Horsley

−0.010 −0.005 0.000
δml

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

M
N

O

2 /X
N

2  [O
ct

et
]

 pure QCD
N(lll)
Σ(lls)
Ξ(ssl)
Ns(sss)
sym. pt.

−0.010 −0.005 0.000

δm
l

0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
π
O

2

/X
π

2
 [
O

c
te

t]

π(ll)

K(ls)

η
s
(ss)

sym. pt.

Figure 3: The baryon octet ‘fan’ plot, M̃2
NO
≡M2

NO
/X2

N (NO = N, Σ, Ξ, Ns) left panel and the pseudoscalar
meson octet ‘fan’ plot M̃2

πO
≡ M2

πO
/X2

π (πO = π , K, ηs) right panel, both graphs versus δml . The filled
symbols represent mass values from 323× 64 sized lattices while the opaque symbols are from 243× 48
sized lattices (and not used in the fits here). The common symmetric point is the filled circle. The stars (on
the vertical line) are the estimated n f = 2+1 ‘pure’ QCD physical points. The fits are eqs. (2.1) – (2.2).

Of course, we are interested in mass differences here. So for the LO and NLO terms in eq. (2.1)
we have along the unitary line

M̃n− M̃p = M̃(ddu)− M̃(uud)

= (δmd−δmu)
[
Ã′1−2Ã′2 +(B̃′1−2B̃′2)(δmd +δmu)

]
,

M̃Σ−− M̃Σ+ = M̃(dds)− M̃(uus)

= (δmd−δmu)
[
2Ã′1− Ã′2 +(2B̃′1− B̃′2 +3B̃′3)(δmd +δmu)

]
,

M̃Ξ−− M̃Ξ0 = M̃(ssd)− M̃(ssu)

= (δmd−δmu)
[
Ã′1 + Ã′2 +(B̃′1 + B̃′2 +3B̃′3)(δmd +δmu)

]
, (2.6)

where the prime coefficients are simply related to the unprimed ones, [1]. Similarly we may invert
the meson pseudoscalar expansion, eq. (2.2), to give

δmd−δmu =
M̃2

K0− M̃2
K+

α̃

(
1+

2(β̃1 +3β̃2)

3α̃2 ( 1
2(M̃

2
K0 + M̃2

K+)− M̃2
π+)

)
,

δmd +δmu = − 2
3α̃

(
1
2(M̃

2
K0 + M̃2

K+)− M̃2
π+

)
, (2.7)

and then substitute in the baryon expansion eq. (2.6) to give the ‘pure’ QCD result.

3. Results

Performing this substitution gives the numerical results, [1],

M̃n− M̃p = 0.0789(41)(34)
(
M̃2

K0− M̃2
K+

) [
1+0.0817(92)

(
1
2(M̃

2
K0 + M̃2

K+)− M̃2
π+

)]
,

M̃Σ−− M̃Σ+ = 0.2243(35)(92)
(
M̃2

K0− M̃2
K+

) [
1+0.0077(30)

(
1
2(M̃

2
K0 + M̃2

K+)− M̃2
π+

)]
,

M̃Ξ−− M̃Ξ0 = 0.1455(24)(59)
(
M̃2

K0− M̃2
K+

) [
1−0.0324(50)

(
1
2(M̃

2
K0 + M̃2

K+)− M̃2
π+

)]
,(3.1)
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where M̃ = M/XS, S = N, π . We see that the NLO corrections are small from +10% ∼ −5%
indicating that the SU(3) flavour symmetry breaking expansion appears to be a highly convergent
series. (In eq. (3.1) the first error is statistical, the other is the total systematic error.)

Note that eq. (3.1) is a ‘pure’ QCD result, and is the main result of this talk. We must now
discuss what are the ‘pure’ QCD values of M2

K0 , M2
K+ , M2

π+ . We know that EM effects are compa-
rable to effects due to u – d quark mass differences. Dashen’s theorem states that EM effects for
charged mesons K+, π+ are the same and for neutral mesons π0, K0 vanish, Thus we can write
Mexp 2

π+ = M∗2
π+ +µγ , Mexp 2

π0 = M∗2
π0 ≈M∗2

π+ , Mexp 2
K+ = M∗2

K+ +µγ and Mexp 2
K0 = M∗2

K0 where a ∗ denotes
the ‘pure’ QCD ‘physical’ value, or M∗2

K0 −M∗2
K+ =

(
M2

K0−M2
K+

)exp
+ (1+ εγ)

(
M2

π+−M2
π0

)exp
,

where violations to Dashen’s theorem (εγ = 0) are given by a non-zero εγ . We shall regard εγ here
as a possible further systematic error, a typical value for it being εγ = 0.7, [5], giving about a 17%
additional systematic error.

Let us first investigate QED effects. From eq. (3.1), together with the numerical pseudoscalar
meson masses from the previous paragraph we can determine the ‘pure’ QCD values. Then as we
know the experimental values, [2] (as also given on page 2) then from eq. (1.1) we can determine
the QED contribution to the mass splittings. This is shown in the left panel of Fig. 4. Thus this

−4 −3 −2 −1 0 1

MeV

(M
n
 − M

p
)

qed

(M
Σ

− − M
Σ

+)
qed

(M
Ξ

0 − M
Ξ

−)
qed

−1 0 1 2 3 4
MeV

QCDSF−UKQCD [arXiv:1206.3156]

RM123 [arXiv:1110.6294]

Blum et al [arXiv:1006.1311]

NPLQCD [arXiv:hep−lat/0605014]

Figure 4: Left panel: QED contribution to the baryon octet mass splittings, filled circles. Right panel:
comparison of the n – p mass difference of the present result (QCDSF–UKQCD or bottom number) with
NPLQCD, Blum et al., and RM123 [6, 7, 8] respectively (top to bottom). The filled circles use the QED
determination of [9], while the filled square includes the full determination from Blum et al. The vertical
dashed line is the experimental result.

indicates that EM effects have the pattern

n(ddu)− p(uud)≈ Ξ
0(ssd)−Ξ

−(ssu)< 0 , Σ
−(dds)−Σ

+(uus)≈ 0 . (3.2)

Alternatively [9] gives a determination of electromagnetic effects of n – p of −1.30(47)MeV
(to be compared with −1.84(57)MeV here). In the right panel of Fig. 4 we compare our n – p
mass difference including this determination of the QED contribution, (Mn−Mp)

∗+QED, bottom
result with the results of [6, 7, 8] (top to bottom). The filled square includes the full determination
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from that reference. Despite the fact that QED effects are treated slightly differently in each work
good agreement amongst the various determinations and with the experimental result is found.

4. Conclusions

We have introduced a method here to determine ‘pure’ QCD isospin effects in

n− p , Σ
−−Σ

+ , Ξ
−−Ξ

0 , (4.1)

due to differences in u – d quark masses. This method involves developing a SU(3) flavour sym-
metry breaking expansion keeping the average quark mass m constant. Advantages include the
ability to use 2+ 1 simulations, i.e. mu = md = ml and use of computationally cheap PQ results.
This expansion appears to be highly convergent, giving encouraging first results. Clearly the largest
errors are due to unknown QED effects. For more details and numerical results see [1].
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