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ABSTRACT 

 

Material properties of concrete play an important role in the analysis of reinforced 

concrete RC members. One of the most commonly used material properties is the 

compressive stress strain  σ-ε relationship. Uniaxial compression tests on concrete cylinders 

are used to obtain these material properties of concrete in compression. These tests are 

effective up to peak stress, but have limited applicability post-peak stress, primarily due to 

the influence of size. These cause the absence of an accurate material softening stress-strain 

relationship.  Hence, the post-peak softening behavior of a reinforced concrete member is 

not been able to be simulated accurately since there is not an accurate softening σ-ε 

relationship for concrete.  An alternative approach is required.  

Recently, shear friction theory has been used to simulate the softening behavior of 

concrete. Shear friction theory quantifies the relationship between the shear stress, normal 

stress, displacement and separation of the softening concrete in relation to the adjacent (non 

softening) concrete. In this thesis, an approach is presented to extract the shear-friction 

softening properties of concrete from experimental tests on long concrete prisms. Empirical 

mathematical expressions are developed which quantify the relationship between the 

softening stress and the displacement of the softening wedge. These empirical stress-

displacement expressions are then applied to the analysis of eccentrically loaded concrete 

prisms. The theoretical analyses of these eccentrically loaded prisms agree well with the 

experimental results, indicating the applicability of using this approach to extract the 

softening shear-friction properties of concrete, from prism tests, and subsequently using 

these empirical expressions to simulate the post peak response of concrete.  
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Wedge based concrete compression failure in RC 
members 
R. Nurwidayati . M. Haskett . D. J. Oehlers . C. Wu 

 

Abstract It is generally accepted that the ductility of a reinforced concrete member is a very important 
parameter as it governs such things as moment redistribution, moment magnification and the ability to 
absorb energy. Quantifying the ductility of RC members has been an almost intractable problem for a 
number of reasons, one of which is that it is difficult to replicate the behaviour of the compression wedge 
that is formed when concrete softens. A common approach used to quantify the ductility is to use concrete 
softening stress-strain relationships in conjunction with hinge lengths both of which have to be derived 
empirically. However these softening stress-strain relationships, that are derived from cylinder tests, have 
been found to be both size and shape dependent and it has been even more difficult to find empirically 
derived hinge lengths that are generic. An alternative approach is described in this paper in which the 
behaviour of the compression wedges are measured directly from simple tests on uniaxially loaded prisms of 
varying dimensions. It is shown how these prism tests in which there is a uniform strain can be used in the 
analysis of the compression zone of flexural members in which there is a strain gradient and without the 
need for hinge lengths. It is suggested that this may be a useful approach in developing new concrete 
products such as very high strength concrete or fibre concrete, as the effect of the new concrete product on 
the ductility of flexural members of any cross-sectional properties can be ascertained through a relatively 
few simple experimental prism tests.  

 

Keywords Reinforced concrete . Reinforced concrete ductility . Concrete . Concrete softening 

 

1. Introduction 
 

Tests of reinforced concrete members clearly shows that failure of the concrete in 

compression, that is the softening of concrete, is associated with the formation of 

compression wedges [1-3] as in Fig. 1 and researchers have studied this directly through 

tests on eccentrically loaded prisms [4,5]. However, it is common in research practice not 

to quantify concrete compressive failure directly through measuring the behaviour of the 

wedge, but indirectly through the stress-strain relationships from compressive cylinder tests 

whilst softening [6,7,8]. Unfortunately this indirect approach of using softening stress-

strain relationships has been found to be both size and shape dependent [9-13] which limits 

its application. Furthermore, the use of these empirically derived softening stress-strain 
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relationships in the analysis of RC members necessitates the use of empirically derived 

hinge lengths [14-18] which are themselves difficult to quantify [18]. 

To overcome the problems mentioned above that are associated with concrete 

softening, an alternative approach is proposed in this paper for quantifying the softening of 

concrete. It is shown how the behaviour of compression wedges can be measured directly 

from compression tests on axially loaded rectangular prisms of varying dimensions in 

which the deformation or effective strain profile is uniform. Furthermore, it is shown how 

these results can be used to quantify the behaviour of compression wedges in flexural 

members where the deformation or effective strain profile is no longer uniform but varies 

linearly. Hence the effect of the concrete on the ductility, that is the rotation at a hinge, can 

be quantified from a relatively few number of simple prism tests and used to simulate the 

formation of  hinges in RC members of any cross-section. It is suggested that this may be a 

useful approach in the development of new concrete products, such as high strength 

concrete, concrete made from pulverised fly ash or concrete with steel or polymer fibres, if 

the effect of the concrete on the member ductility is important.  

 The fundamental principles that govern this wedge based approach are first 

described for uniformly loaded rectangular sections and it is then shown how it can be 

applied to flexurally loaded members such as in beams. In order to illustrate this approach, 

a series of tests for quantifying the wedge behaviour are then described and the results used 

to analysis the compression region in beams as occurs in eccentrically loaded prisms [4,5]. 

The aim of this paper is not to specifically quantify the behaviour of concrete softening 

wedges but to illustrate how the wedge behaviour can be quantified and the results used in 

flexural members to quantify their rotational capacity. 

   

2. Wedge based model 
 

The wedge based model assumes that the concrete material remains linear elastic, that is it 

has a constant modulus of Ec, and that any non-linearity that might occur is due to micro-

cracking along planes that allows shear deformations associated with shear-friction theory 

[19-22]. The wedge base model is first explained in the context of a prism as in Fig. 2(a) 

where the displacements δa are applied uniformly along the width of the prism 2dw such 
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that the effective strain δa/Ldef is uniform across the prism width. The wedge based model is 

then applied to an eccentrically loaded prism where the displacement δ and effective strain 

δ/Ldef vary linearly as occurs in flexural members. 

 

2.1 Rectangular axially loaded prisms 

 

Consider the prism in Fig. 2(a) of height 2Ldef and width 2dw. Let us assume that the depth 

of the prism into the page is very large so that the behaviour of cross-sections within the 

page are identical which simplifies this to a two-dimensional behaviour. A uniform 

pressure σ is applied to the horizontal surface which induces a contraction 2δa over the 

depth 2Ldef. Each half of the prism behaves identically being subjected to a contraction δa 

over a length Ldef. 

The prism in Fig. 2(a) can be tested to failure and the results plotted as in Fig. 3 

where the abscissa will be referred to as the effective strain εeff which is the measured 

overall contraction over the prism length that is δa/Ldef in Fig. 2(a). On loading in Fig. 3, the 

stress/effective-strain relationship may be considered to follow a linear path O-A, with a 

modulus Ec up to a stress αfp, after which non-linearity occurs in the ascending portion A-

C, where the strength peaks at fp, followed by a descending portion C-D which is often 

referred to as softening. In the wedge based model, this non-linearity is associated with the 

formation of micro-cracks in the region of inclined wedge shaped planes as in Fig. 2(b) 

which allow shearing across the inclined planes to accommodated the non-linearity shown 

in Fig. 3. For example, the plane A-F in Fig. 2(b) which contains both B-C and D-E on 

opposing sides of potential sliding planes, will deform through micro-cracking to allow the 

deformation shown in Fig. 2(c) where sliding of the wedge from B to C shortens the prism 

by Sw such that the effective strain due to sliding Sw/Ldef is the non-linear strain in Fig. 3 

which in the ascending branch is shown as εn-mic-asc and that in the descending branch as εn-

mic-des. It can be seen in Fig. 2(c) that this sliding action must be accommodated by localised 

crushing as shown to allow the wedges to move sideways which is the dilation of the 

member which can be measured [23] but is not the subject of this paper.  

 In summary, the effective strain εeff in Fig. 3 consists of the material strain εmat and 

that due to micro-cracking εmic. Another way of visualizing this behaviour is that the 
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components of the prism A-B, C-D and E-F in Fig. 2(c) when subjected to a stress σn can 

only contract through material contraction δmat by εn-matLdef where εn-mat is σn/Ec and the 

remaining deformation δS can only be accommodated by wedge sliding Sw such that εn-mic is 

equal to Sw/Ldef. Hence the total deformation δ in Fig. 2(c) is the sum of δmat and δS. 

  The prism in Fig. 2(c) consists of four wedges. Let us consider the single wedge in 

the upper right quadrant which is shown in Fig. 4. The distance Ldef is any convenient 

distance that encapsulates the length of the wedge Lw and dw is now the depth of the wedge. 

It can be seen that the uniform displacement δn which imposes a stress σn causes a uniform 

slip along the sliding plane that causes a contraction Sn. It can also be seen that the effects 

of micro-cracking which occurs over a finite region are represented by a sliding action 

along a plane which is referred to as shear-friction theory. The effective strain εn-eff in the 

quadrant in Fig. 4 is δn/Ldef which comprises that due to the elastic deformation εmat that is 

σn/Ec and that due to the contraction due to micro-cracking Sn/Ldef. Hence the contraction 

due to micro-cracking is given by 

 

                                                                          (1) 

 

Equation 1 can be used to convert the effective strains which can be measured 

experimentally, to contractions S due to micro-cracking as in Fig. 5 where Sp is the 

contraction at the peak stress fp. Hence the variation in Fig. 5 can be obtained directly from 

prism tests as in Fig. 2 and used to determine the behaviour of wedges in prisms as in Fig. 4 

where the deformation is uniform. However, in beams the deformation is not uniform 

which is the subject of the following section.  

  

2.2 Flexurally loaded beams 

 

The prism in Fig. 2(a) which is subjected to a concentric load is now subjected to an 

eccentric load as in Fig. 6. Because of the eccentricity of load, the deformation δ is now no 

longer uniform but varies from δL on the left to δR on the right so that there is a linear 

variation in the effective strains δ/Ldef and a rotation θ. Because of the eccentricity of load, a 
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wedge first forms on the loaded side of the prism as shown in which the depth of the wedge 

dw is no longer equal to half the width of the prism d. 

The bottom half of the prism in Fig. 6 is shown rotated by 90o in the clockwise 

direction in Fig. 7(e). The surface of the prism, A-A in Fig. 7(d), is now subjected to a 

compressive deformation at the top δT and a tensile deformation at the bottom δB such that 

there is a linear variation of the effective strain εeff in Fig. 7(c) from δT/Ldef at the top to 

δB/Ldef at the bottom. Micro-cracking starts at a stress αfp in Fig. 3; this stress αfp is shown 

in Fig. 7(b), the  accompanying strain αfp/Ec in Fig. 7(c), and the accompanying 

deformation (αfp/Ec)Ldef in Fig. 7(d) which is shown as line B-B. Hence any deformation 

within the prism that is greater than the deformation of line B-B requires micro-cracking. 

Hence any deformation above point C in Fig. 7(d) requires micro-cracking which, 

therefore, fixes the depth of the wedge dw as shown.    

 Let us first consider the behaviour below point C in Fig. 7(d). The linear 

deformation C-E produces the effective linear strain distribution F-G-H in Fig. 7(c). If the 

concrete cracks in tension at εct at level G, then the strain distribution F-G is a real strain 

distribution, that is it is a material strain distribution. Hence, the stresses in this region F-G 

in Fig. 7(b) can be determined from the concrete modulus. Subsequently, the forces in this 

region can be determined as in Fig. 7(a) where Fel.c is the force in the elastic concrete 

compression region and Fel.t is the force in the elastic tension region. If the concrete cracks 

in tension at level G in Fig. 7(c), then G-H is an effective strain. If reinforcing bars 

intercepted this crack, then the force in the reinforcing bar Fr would depend on both the 

crack width Δr in Fig. 7(d) and the bond-slip properties, which is dealt with elsewhere using 

partial-interaction theory [24-29] as this paper is only dealing with concrete under 

compression. 

 Let us now consider the behaviour in the micro-cracking region in Fig. 3 that is 

above point C in Fig. 7(d). Consider level n where the prism must accommodate the 

deformation H-I. Part of this deformation H-J is accommodated by concrete material 

straining εmat as shown in Fig. 7(c) such that the deformation due to material straining H-J 

is given by (σn/Ec)Ldef and the remaining deformation J-I is due to micro-cracking 

contraction Sn at the wedge interface as shown in Fig. 7(e). It is simple a question of finding 

the stress σn such that the material contraction σnLdef/Ec plus the micro-cracking contraction 
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from Fig. 5, Sn-asc or Sn-des, depending on whether it is in the ascending or descending 

branch, equals the required deformation H-I in Fig. 7(d). From this analysis of the wedge, 

where the depth of which dw is usually divided into segments in which each segmental is 

assumed to have a uniform stress, the resulting force in the wedge and its position Fw in 

Fig. 7(a) can be determined. 

 The resultant of the forces in Fig. 7(a) and its position can now be determined. If the 

eccentrically loaded prism in Fig. 6 is being analysed, then the resultant of the forces in Fig. 

7(a) needs to be in line with P and this can be obtained by pivoting the displacement D-E in 

Fig. 7(d) about D until the resultant force is in line. If a beam were being analysed, then it 

is simply a question of pivoting about D until the resultant force was zero.   

 

3. Rectangular prism tests 
 

These tests [23] were performed simply to illustrate how the wedge properties required for 

the flexural analysis depicted in Fig. 7 could be obtained from prism tests as depicted in 

Fig. 2; as such they are not meant to be a comprehensive quantification of the wedge 

properties.  

Four different sizes of prisms were chosen [23] with a width (2dw in Fig. 2(a)) to 

height (2Ldef) to depth ratio of 1:2:4 as shown in Table 1 and in Fig. 8. Theoretical shear-

friction research on the formation of wedges [19] would suggest that the wedge can be 

contained within prisms of width to height ratio of 1:2 as in Fig. 8(a). If the height were any 

less with respect to the width then the platen restraints at the ends would affect the angle of 

wedge that is α in Fig. 7(e). Wedges form as shown in Fig. 8(a) where the wedge forms into 

the width (2dw) and over the depth of the specimen. However, they also form at the ends 

and into the depth and over the width (2dw) of the specimen. Deep specimens, that is 

specimens as in Fig. 8(b) where the depth was much greater than the width, were chosen so 

that the wedge formation as in Fig. 8(a) would dominate the behaviour so that the 

behaviour could be assumed to be two-dimensional.  

The elastic modulus of the concrete material was derived from standard cylinder 

tests [23]. The contraction of the specimens were measured with transducers [23] so from 

Eq. 1 can be derived the contraction due to wedge slip S. Three or four specimens of each 
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size were tested and the average of the results for each size is plotted in Fig. 9. The average 

peak stress fp and contraction at peak stress Sp are recorded in Table 1 and these were used 

to non-dimensionalise Fig. 9 as shown in Fig. 10. Curve fitting of Fig. 10 gave the 

following expression for micro-cracking displacement S for a given stress � 

 

(2) 

 

where fp had an average value of 43 MPa and sp was found to be a function of depth of 

wedge dw as follows  

 

                                                                             (3)   

   

Equation 2 provided an accurate fit to the experimental results, as shown in Fig. 11. 

 

4. Analysis of eccentrically loaded prism tests 
 

The analysis depicted in Fig. 7 and using the wedge properties in Eqs. 2 and 3 was applied 

to Daniel et al’s test specimens [5]. The specimens as represented in Fig. 6 had a width d of 

300mm, height 2Ldef of 360 mm, depth into the page of 180 mm, an average concrete 

strength of 33 MPa and were tested at eccentricities e of 60, 70 and 85 mm. It may be worth 

noting that the average concrete strength of the prism used to derive Eqs. 2 and 3 was 43 

MPa, hence, the shape of the variations in material properties given by Eqs. 2 and 3 and 

illustrated in Fig. 11 are really only applicable to this strength of concrete. However, to 

illustrate this analysis technique it has been applied to Daniel et al’s specimens which were 

a bit weaker at 33 MPa. 

A typical comparison of the moment-rotations is shown in Fig. 12. Two 

experimental tests were performed at this eccentricity and these are shown as unbroken 

lines; the difference between these tests is a gauge of the scatter that can be expected even 

from supposedly identical specimens and tests. The test results have been compared with 

the results of theoretical analyses with variations in concrete strength from 43 MPa to 
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28MPa and which are shown as broken lines. Bearing in mind the scatter between the test 

results, it is suggested that the shape of the theoretical results compare well with those of 

the tests. It can be seen that this new approach can simulate the moment-rotation softening 

without the need for empirical hinge lengths nor softening stress-strain relationships.     

 The main interest of this research is the non-linearity due to micro-cracking as 

already illustrated in Fig. 5 for prism tests. Dividing the abscissa θ of Fig. 12 by Ldef gives 

the curvature χ. In which case, the initial stiffness or tangent stiffness of the rising branch in 

Fig. 12 would be the elastic flexural rigidity EI and divergence from this would be due to 

flexural cracking and micro-cracking. This divergence due to cracking which is the main 

interest of this research has been plotted in Figs. 13 to 15 for each test specimen in which 

the eccentricities were 60, 70 and 85mm. It is suggested that the results show that the 

model can closely represent softening.  

 The above wedge based analyses have been applied to eccentrically loaded flexural 

members without any reinforcement as illustrated in Fig. 6. As already explained in the 

wedge based analyses depicted in Fig. 7, these analyses could also have been applied to 

reinforced flexural members where the force in the longitudinal reinforcement is a function 

of Δr in Fig. 7(d) [26, 27 and 29]. It can, therefore, be seen that once the wedge properties, 

such as those in Eqs. 2 and 3, have been derived from prism tests, as in Fig. 8, they can be 

used to derive the ductility of any reinforced concrete beam such as that in Fig. 1. 

 

5. Conclusions 
 

Quantifying concrete softening and the region over which softening occurs using softening 

stress-strain relationships and empirical hinge lengths has proved to be a very difficult 

problem. An alternative approach is described in which the concrete softening behaviour is 

measured directly through prism tests; it is shown how the results of these prism tests can 

be used in the analysis of flexural members without the need for softening stress-strain 

relationships and without the need for empirical hinge lengths. This approach is unique as it 

does not require stress-strain softening relationships but stress-sliding relationships that can 

be obtained directly from prism tests. This new wedge based approach has been compared 

with tests on eccentrically loaded prisms giving good simulation of the softening behaviour 
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due to micro-cracking. It is suggested that this direct approach may be useful in the 

development of new concrete materials such as fibre concrete and maybe also be useful in 

the refinement of existing ductility models for ordinary reinforced concrete. 
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Table 1 Detail of concrete prisms 

Prism 
  

Width 
[2dw] 
(mm) 

Height 
[2Ldef] 
(mm) 

Depth 
(mm) 

Sp 
(mm) 

fp 
(mm) 

Test-50 50 100 200 0.04 45 
Test-75 75 150 300 0.11 48 

Test-100 100 200 400 0.12 42 
Test-125 125 250 500 0.15 39 
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Fig. 1 Compression wedge in a beam [2] 
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Fig. 2 Concentrically loaded prism 
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Fig. 3 Measured concrete material properties 
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Fig. 4 Deformation of a single wedge 
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Fig. 5 Wedge contractions 
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Fig. 6 Eccentrically loaded prism 
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Fig. 7 Wedge based flexural analysis 
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     (a). Width (2dw) to height (2Ldef)                                 (b). depth to height 

Fig. 8 Typical formation of wedges 
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Fig. 9 Test results  
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Fig. 10 Non-dimensionalised test results 
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Fig. 11 Stress-slip comparison 
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Fig. 12 Typical moment-rotation comparison 
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Fig. 13 Non-linear rotation at e = 70 mm 
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Fig. 14 Non-linear rotation at e = 60 mm 

 

  



 

xxxiii 

 

 

 

 

 

Fig. 15 Non-linear rotation at e = 85 mm 
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