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David J. Kennaway

Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia

Abstract

Disrupting maternal circadian rhythms through exposure to chronic phase shifts of the photoperiod has lifelong
consequences for the metabolic homeostasis of the fetus, such that offspring develop increased adiposity,
hyperinsulinaemia and poor glucose and insulin tolerance. In an attempt to determine the mechanisms by which these
poor metabolic outcomes arise, we investigated the impact of chronic phase shifts (CPS) on maternal and fetal hormonal,
metabolic and circadian rhythms. We assessed weight gain and food consumption of dams exposed to either CPS or control
lighting conditions throughout gestation. At day 20, dams were assessed for plasma hormone and metabolite
concentrations and glucose and insulin tolerance. Additionally, the expression of a range of circadian and metabolic
genes was assessed in maternal, placental and fetal tissue. Control and CPS dams consumed the same amount of food, yet
CPS dams gained 70% less weight during the first week of gestation. At day 20, CPS dams had reduced retroperitoneal fat
pad weight (215%), and time-of-day dependent decreases in liver weight, whereas fetal and placental weight was not
affected. Melatonin secretion was not altered, yet the timing of corticosterone, leptin, glucose, insulin, free fatty acids,
triglycerides and cholesterol concentrations were profoundly disrupted. The expression of gluconeogenic and circadian
clock genes in maternal and fetal liver became either arrhythmic or were in antiphase to the controls. These results
demonstrate that disruptions of the photoperiod can severely disrupt normal circadian profiles of plasma hormones and
metabolites, as well as gene expression in maternal and fetal tissues. Disruptions in the timing of food consumption and the
downstream metabolic processes required to utilise that food, may lead to reduced efficiency of growth such that maternal
weight gain is reduced during early embryonic development. It is these perturbations that may contribute to the
programming of poor metabolic homeostasis in the offspring.
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Introduction

It has become increasingly clear that early environmental

influences can have long lasting impact on the normal de-

velopment and physiology of the fetus. Factors such as poor

maternal nutrition, prenatal stress and exposure to medicinal and

social drugs can all have negative health consequences for the

offspring that persist into adulthood [1–3]. This led us to consider

whether exposure to abnormal lighting conditions during preg-

nancy, as occurs during maternal shift work, can also have life-

long impacts on the developing fetus.

Due to the wide variations in the types and durations of

working schedules conducted in the community, it can be

difficult to experimentally expose either human subjects or

animal models to ‘shift work’. Nevertheless, shift work is

characterised by forced disruptions in the timing of activity,

sleep and light exposure, leading to disordered endocrine,

metabolic and behavioural rhythms. While it is known from

epidemiological and experimental studies that these changes can

increase the risk to the individual of developing a myriad of

chronic health disorders, it also raises the important question of

whether exposure to shift work during pregnancy can also affect

the developing fetus.

To address this question, we recently exposed pregnant rats to

a chronic phase shift (CPS) protocol whereby the photoperiod was

reversed twice every week throughout gestation and for 1 week

after birth. We demonstrated that in utero and early postnatal

exposure to this protocol negatively affected metabolic homeosta-

sis, with offspring displaying age and gender dependent hyperlep-

tinaemia, hyperinsulinaemia, poor glucose tolerance, insulin

resistance and increased adiposity [4]. These changes occurred

despite there being no effect of the protocol on birth weight or

early postnatal growth. Manipulating the photoperiod in this way

is likely to disrupt behavioural, endocrine and metabolite rhythms,

as well as deregulate the expression of clock genes. How these

disruptions translate into altered metabolic programming in the

offspring, however, is unknown.
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In this study we investigated the impact of chronic phase shifts on

maternal and fetal hormonal, metabolic and circadian rhythms.

Pregnant rat dams were exposed to either a control photoperiod or

chronic phase shifts of the photoperiod, and maternal weight gain,

food consumption, the circulating hormone and metabolite con-

centrations, and glucose and insulin tolerancewere assessed.We also

assessed the impact of this protocol on 24 hour profiles of clock and

metabolic gene expression in the maternal and fetal liver.

Methods

Animals
All experiments were approved by the University of Adelaide

Animal Ethics Committee and were conducted in accordance with

the Australian Code of Practice for the Care and Use of Animals for

Scientific Purposes. Albino wistar female rats aged 7–9 weeks were

housed with males (2:1) until pregnancy was confirmed by vaginal

smears for sperm. Upon detection of mating, females were housed

individually andmaintained on either control lighting conditions (12

light:12 dark, lights on at 0800 h) or exposed to repeated phase shifts

throughout gestation (presence of sperm, day 1). The chronic phase

shift (CPS) protocol involved manipulating the lighting schedule so

that every 3–4 days the photoperiod was reversed (Figure S1). The

photoperiod reversal occurred on the night of day 1 of gestation, so

that rather than going off at 2000 h as expected, the lights remained

on until 0800 h of day 2. Rats were weighed throughout gestation,

and food consumption was calculated by weighing the food in the

hopper at the end of each week (Control n= 9, CPS n= 12). An

additional experiment was conducted to analyse the timing of food

consumption.Upon thepresenceof sperm, individuallyhouseddams

were exposed to either the control or CPS protocol, with food

consumption recorded every minute (LabMaster Control System,

TSE Systems, Bad Homburg, Germany) until parturition (Control

n = 4, CPS n= 5).

24 Hour Analysis of Hormones, Metabolites and Liver
Clock Gene Expression
At day 19 to 20 of gestation, a separate cohort of pregnant dams

were killed by decapitation at 2000, 2400, 0400, 0800, 1200 and

1600 h (n= 4–6 per treatment, per time point, total of 64 dams). An

additional group of 10 non-pregnant control females of comparable

age were killed at 0800 h (n= 10). Major organs including brain,

heart, liver, kidney, gastrocnemius muscle, epigonadal fat, retroper-

itoneal fat, spleen, pancreas, stomach and adrenals were rapidly

dissected, weighed and stored in RNAlaterH (Life Technologies,

Carlsbad, CA) for gene expression analyses. Trunk blood was

collected into lithium-heparin tubes. The number of pups was

determined, and the second pup and placenta from each horn were

dissected and weighed (L2 and R2). The placentae were separated

into the labyrinth and junctional zones, and separately stored in

RNAlaterH, as was fetal liver. Plasma concentrations of glucose,

cholesterol, free fatty acids and triglycerides were assayed by

colorimetric enzymatic analysis on a Hitachi automated centrifugal

analyzer with the use of kits from Roche Diagnostics (Castle Hill,

Australia).Melatonin, corticosterone, insulinand leptinwereassayed

by RIA using kits obtained from Buhlmann (Schonenbuch, Switzer-

land), MP Biomedicals (Orangeburg, NY) and Linco Research (St.

Charles, MO) respectively.

Glucose and Insulin Tolerance Tests
At day 20 of gestation, separate cohorts of pregnant rats were

subjected to intraperitoneal glucose tolerance (IPGTT) and insulin

tolerance tests (IPITT). These occurred 26–28 hours after

resumption of a normal photoperiod, and 2–3 hours after lights

on. For the IPGTT, overnight fasted animals were injected

intraperitoneally with glucose (2 g/kg body wt; n= 7 per treatment

group). Blood was obtained from the tail vein before and 15, 30,

60, 90 and 120 min after glucose administration. Glucose was

analysed by the dehydrogenase method (HemoCue, Angelholm,

Sweden), with additional blood collected into lithium-heparin

microvettes at all time points for subsequent insulin assay. For the

IPITT, food was withdrawn at the beginning of the test and the

rats were injected intraperitoneally with insulin (0.75 IU/kg body

wt; Actrapid, Novo Nordisk; n = 7 per treatment group) 2–3 hours

after lights on. Blood (5 ml) was obtained from the tail vein before

and 5, 10, 15, 30, 60, 90 and 120 minutes after insulin

administration for glucose determination.

Gene Expression Analysis
RNA was isolated from 100 mg of maternal liver, 100 mg of

placental labyrinth or 50 mg of fetal liver using TriReagent

(Sigma, St Louis, MO) according to the manufacturer’s protocol.

Only 1 fetus and placenta from each dam was processed for gene

expression analysis, corresponding to position L2. Residual

contaminating DNA from all samples was removed using Ambion

DNAfreeTM kits (Applied Biosystems, Foster City, CA, USA). First

strand cDNA was generated from 2 mg of RNA using Invitrogen

Superscipt III reverse transcription kits (Invitrogen Corporation,

Carlsbad, CA). Amplification of cDNA was performed on

a GeneAmp 7500 Sequence Detection System (Applied Biosys-

tems, Foster City, CA) in duplicate, using primers designed and

optimised in our laboratory (Table S1). The expression of each

gene within each sample was normalised against b-actin, and

expressed relative to a calibrator sample with the use of the

formula 22(DDCt) as described previously [5].

Statistics
Statistical analyses were conducted using SPSS v.18 or

GraphPad Prism 5. Maternal weight gain and food consumption

from the control and CPS groups was fit to a polynomial quadratic

equation (Y=B0+B1*X+B2*X‘2). Food consumption data from

the LabMaster system was transferred to an Excel document

where the amount of food consumed for each rat in each hour

throughout gestation was calculated. Litter size was analysed using

non-parametric Mann-Whitney tests. Fetal, placental and fetal:-

placental ratio data was analysed using two-factor ANOVA.

Hormonal, metabolite and gene expression data was analysed

using two-factor ANOVA (time and treatment as factors) with

Bonferroni post hoc analyses to compare individual time points.

Area under/above the curve in the glucose and insulin tolerance

tests was analysed using t-tests. The probability value used to

identify statistical significance was P,0.05. 24 hour data was also

fit to a sine curve where the frequency was 24 hours, with the

amplitude, peak and trough values determined using Circwave

(http://hutlab.nl), with a probability of P,0.05 considered

rhythmic.

Results

Growth Trajectories and Food Consumption
The weight gain of control and CPS dams was fitted to the

polynomial quadratic equation (r = 0.92 and 0.91 respectively),

with comparisons between groups revealing significant differences

in B1 (P,0.001) and B2 (P,0.01, Figure 1a), suggesting

differences in weight gain over gestation. During the first week,

the control dams gained on average 25 grams, compared to only 8

grams in the CPS dams. Weight gain was parallel in the control

and CPS dams during the second week (48 and 45 g respectively),

Maternal/Fetal Responses to Chronic Phase Shifts
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however in the third week, the CPS dams gained 12 grams more

than the controls, so that over the whole gestational period they

had gained only 9 grams (6%) less. At day 19 of gestation, when

animals were weighed for the 24 hour data collection, CPS dams

weighed 5% less than the controls (Control 38065 g, CPS

36066 g, P,0.05). Cumulative food consumption for both groups

also fitted a polynomial quadratic equation (r = 0.98), although

there was no significant difference in either B1 or B2 (P.0.05), or

total food consumed (Control 479613 g, CPS 450610 g,

P.0.05), suggesting no differences in total food consumption

between the control and CPS dams at any stage of gestation

(Figure 1b). Analyses of the timing of food consumption reveal that

control animals consolidate their feeding to night, with 80% of

their food being consumed between 2000 h and 0800 h. In

contrast, the CPS dams graze consistently over 24 hours, on

average eating only 57% of their food between 2000 h and

0800 h. Even 3 days after resumption of a normal photoperiod,

the CPS dams still only eat 65% of their food at night.

Furthermore, this data confirms that total food consumption at

any stage of gestation was not affected by treatment (Table S2,

p.0.05). Body composition analyses performed at day 20 of

gestation revealed liver and retroperitoneal fat was significantly

reduced in the CPS dams (Figure 1c–d). For the liver, there was

a significant interaction effect of time and treatment, with post hoc

Bonferroni analyses revealing a significant decrease at 1200 h

(P,0.05). There was no effect of treatment on the weight of any of

the other tissues analysed (Table 1).

Fetal and Placental Growth
There was no effect of treatment on litter size (Figure 2a).

Analysis of fetal weight over the period of day 19 to 20 revealed

significant weight gain, with fetuses gaining 890 mg (50%) from

2000 h on day 19 to 1600 h on day 20 (Figure 2b). Placental

weight however, changed little over this time period (Figure 2c).

Calculations of fetal:placental ratio revealed an increase from 3.5

to 5 over the sampling times (Figure 2d). These results highlight

the rapid fetal growth and increases in the fetal:placental ratio that

occur during late gestation. There was, however, no effect of CPS

for either fetal weight, placental weight, or the fetal: placental

ratio, consistent with no change in birth weight being observed

following this protocol [4].

Maternal Hormone and Metabolite Concentrations
As expected, plasma melatonin concentrations were elevated at

night and low during the day in the control animals, with cosinor

analysis revealing a significant fit to the sine curve (P,0.001), and

therefore considered to be rhythmic (Figure 3a). The profile of

melatonin secretion was similar in the control and CPS dams, with

high concentrations of this hormone occurring during darkness,

and low levels in the light. Two factor ANOVA confirms that

there was no effect of treatment on the expression of this hormone,

however, there was a treatment x time interaction effect (P,0.01),

due solely to the difference between the two groups at 0800 h,

corresponding to the time of lights on.

By contrast, plasma corticosterone levels were strikingly

different between the two groups. In the control animals,

corticosterone secretion was rhythmic (P,0.001, Figure 3b), with

peak concentrations at the start of the dark phase (2236 h),

gradually decreasing until the time of lights on (1036 h). Levels

remained low for the next 4 hours, before gradually increasing

towards the end of the light phase. The CPS dams however, did

not show rhythmic secretion of this hormone (P.0.05), with high

concentrations being observed at 2000 h, which rapidly declined

to 80 ng/ml at 2400 h, before gradually increasing over the

remaining sampling times. These differences were reflected in

a significant treatment effect (P,0.05), with post hoc Bonferroni

Figure 1. Maternal weight gain, food consumption, adiposity and liver weight in response to chronic phase shifts. Weight gain (a),
total food consumption (b) day 20 liver (c) and epigonadal/retroperitoneal fat weight (d) of rats exposed to chronic phase shifts (CPS, red) or normal
lighting conditions (control, black) throughout gestation, *P,0.05, ***P,0.001. The timing of food consumption throughout gestation in control (e)
and CPS (f) dams. Horizontal green bar represents the period of tissue collection, and shading the timing of darkness in each group.
doi:10.1371/journal.pone.0053800.g001

Maternal/Fetal Responses to Chronic Phase Shifts
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analyses revealing lower concentrations of this hormone at 2400 h

(P,0.001) and elevated concentrations at 0800 h and 1200 h

(P,0.001) in the CPS dams.

Analysis of the plasma metabolites in the control dams revealed

rhythmic concentrations of glucose (P,0.05, Figure 3), insulin

(P,0.001), leptin (P,0.001), cholesterol (P,0.01) and free fatty

acids (P,0.01), with only the levels of triglycerides not fitting a sine

curve (P.0.05). Both glucose and insulin were elevated during

darkness, or the expected time of food consumption, while

cholesterol and free fatty acids were elevated during the light

period, or time of expected sleep.

Despite resumption of a normal photoperiod prior to sample

collection, the concentration of these metabolites in the CPS

treated dams was profoundly different. Glucose levels changed

Table 1. Body composition analyses of pregnant and non-pregnant dams.

Control- not pregnant Control- pregnant CPS- pregnant

Body weight 244.869.50 380.465.49* 360.466.14*

Pancreas 0.52860.024 0.71660.023* 0.69860.024*

Spleen 0.57460.031 0.76460.017* 0.7360.018*

Epigonadal Fat 4.97160.624 6.54960.424 5.67860.305

Retroperitoneal Fat 2.07760.214 3.07260.461* 2.60460.159#

Adrenals 0.06160.004 0.07760.003* 0.0760.002

Kidneys 1.83260.054 2.10860.027* 2.10260.038*

Heart 0.81760.025 0.99960.016* 0.95260.019*

Liver 10.23760.336 15.2260.274* 13.93960.253*#

Gastrocnemius muscle 2.86460.074 3.28360.062* 3.22360.07*

Brain 1.88660.034 1.95860.019 1.98660.02

*significantly different to non-pregnant controls, P,0.05.
#significantly different to pregnant controls, P,0.05.
Pregnant dams were killed at 4 hour intervals over 24 hours (n = 32 per group), whereas non-pregnant animals were killed at 0800 h (n = 10).
doi:10.1371/journal.pone.0053800.t001

Figure 2. Litter size, fetal weight and placental weight in response to chronic phase shifts. Litter size (a), fetal weight (b), placental weight
(c) and the fetal:placental ratio (d) of rats exposed to chronic phase shifts (CPS, red) or normal lighting conditions (control, black) throughout
gestation. Fetus number is expressed using a box plot with the median, minimum and maximum values (whiskers) and the inter-quartile range
(n = 32 per treatment). Fetal and placental weight and ratio are 2 representative fetuses/placenta from each litter, corresponding to position L2 and
R2, mean 6 SEM, n= 8–12 per group.
doi:10.1371/journal.pone.0053800.g002

Maternal/Fetal Responses to Chronic Phase Shifts
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Figure 3. Circadian profiles of maternal hormone and metabolite concentrations. Melatonin (a), corticosterone (b), glucose (c), insulin (d),
leptin (e), free fatty acids (f), triglycerides (g) and cholesterol (h) of rats exposed to chronic phase shifts (CPS, red square) or normal lighting conditions
(control, black circle) throughout gestation. Shading represents darkness in both groups. Data has been fit to sine curve with the period constrained
to 1, with solid lines representing a significant fit and dashed lines a non-significant fit. Data is mean6 SEM, n = 4–6, *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0053800.g003

Maternal/Fetal Responses to Chronic Phase Shifts
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rhythmically over the 24 hours (P,0.05) with low levels during

darkness and subsequently increasing during the following light

period. This was reflected in a significant treatment by time

interaction (P,0.05) whereby CPS dams had reduced levels at

2400 h (P,0.05), and higher levels at 1600 h (P,0.01). Similarly,

insulin concentrations varied differently with time (P,0.01) such

that CPS dams had reduced levels at 2000 h and 2400 h (P,0.05).

Plasma leptin concentrations were significantly affected by

treatment (P,0.001), being reduced during the late darkness

period in the CPS dams (P,0.05), whereas free fatty acid

concentrations varied differently with time such that CPS dams

had reduced concentrations at 1600 h (P,0.001). Both cholesterol

and triglyceride concentrations were affected by treatment

(P,0.05), with post hoc Bonferroni analyses revealing differences

at 1200 h and 1600 h respectively.

Glucose and Insulin Tolerance Tests
The glucose response to IPGTT did not differ significantly

between the control and CPS dams as reflected in the area under

the curve (AUC, P.0.05, Figure 4). Likewise, the insulin response

to glucose administration was similar in both groups (P.0.05).

The profile of blood glucose response to insulin administration

however differed, with repeated measures ANOVA revealing

a significant difference in blood glucose concentrations at 60, 90

and 120 minutes post insulin administration (P,0.05). However,

the change in glucose from baseline to 30 minutes post treatment

did not differ between the two groups (Control 1.4160.3, CPS

1.1160.18, P.0.05), and when area above the curve (AAC) was

calculated relative to baseline, there was no effect of treatment

(P.0.05), suggesting that while baseline glucose are reduced in the

CPS dams (20.7 mM), the sensitivity to insulin was not altered.

Maternal Liver Clock Gene Expression
The hepatic expression of Bmal1 mRNA was rhythmic,

changing 25 fold from a nadir at 2245 h to a peak 12 hours

later at 1045 h (P,0.001, Figure 5). Conversely, the expression of

Bmal1 in the CPS treated animals was not rhythmic (P.0.05)

despite changing from a peak at 1934 h to a nadir at 0724 h, in

antiphase to that of the controls. The amplitude of this change was

greatly reduced in the CPS dams, changing only 4 fold from peak

to nadir. While ANOVA revealed no overall effect of treatment

(P.0.05), Bmal1 varied differently with time such that CPS dams

had increased expression at 2000 h (P,0.01) and decreased

expression at 0800 h (P,0.01) and 1200 h (P,0.05).

The expression of Per1 mRNA in both the control and CPS

dam livers was rhythmic (P,0.01), however, the amplitude and

time of peak expression varied substantially between the two

groups. In the control animals, peak Per1 expression occurred at

2038 h, with an amplitude change of 16 fold. In the CPS dams

however, Per1 expression had peak levels at 0922 h, with an

amplitude change from peak to trough of only 3 fold. Again

there was no overall effect of treatment in the ANOVA

(P.0.05), yet Per1 varied differently with time such that CPS

dams had reduced expression at 2000 h (P,0.001) and

increased expression at 1200 h (P,0.05).

Per2 expression was highly rhythmic and in antiphase to Bmal1

in the control dams changing 19 fold from a trough at 1326 h to

a peak at 0126 h (P,0.001). However, in the CPS dams, Per2

expression was not significantly rhythmic (P.0.05), with minimal

changes across the 24 hours. There was a significant treatment x

time interaction (P,0.001) whereby CPS dams had reduced

expression at 2400 h (P,0.001), and elevated levels at 1200 h and

1600 h (P,0.01).

Rev-erba expression in the control dams changed rhythmically

over the 24 hour period of sampling, from peak values at 1918 h,

decreasing 350 fold to trough values at 0343 h (P,0.001).

Alternatively, Rev-erba expression in the CPS liver dams was not

rhythmic (P.0.05), with amplitude changes from peak to trough

being only 2 fold. ANOVA revealed a treatment effect (P,0.05),

and a treatment x time interaction (P,0.001) whereby CPS dams

had reduced expression at 2000 h and 1600 h (P,0.001) and

increased expression at 0800 h (P,0.01).

Maternal Liver Metabolic Gene Expression
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKfb3)

mRNA changed rhythmically over 24 hours, with data from both

the control and CPS dams significantly fitting a sine curve

(P,0.001, Figure 6). In the control animals, expression of this gene

was elevated at the start of darkness, decreasing through the night,

before rising slowly through the following day. In the CPS treated

dams however, the phase of expression was advanced by 8.5 hours

such that peak expression occurred just after the onset of the light

period. ANOVA revealed a treatment x time interaction effect

(P,0.001) whereby CPS dams had reduced expression at 2000 h

(P,0.05). In contrast, glucokinase, phosphoenolpyruvate carboxykinase

(PEPCK) and glycogen phosphorylase mRNA was only rhythmic in the

control animals, becoming arrhythmic in the CPS dams.

Glucokinase expression was significantly affected by treatment

(P,0.05), with post hoc analyses revealing increased expression at

2000 h and 1600 h in the CPS dams (P,0.05 and P,0.001

respectively). There was no overall treatment effect on PEPCK

mRNA, however expression varied differently with time (P,0.05)

such that CPS dams had decreased expression at 2000 h (P,0.01).

Similarly, glycogen phosphorylase was affected by treatment in a time

dependent manner (P,0.01), however post hoc analyses with

Bonferroni corrections do not reveal a significant difference at any

individual time point (P.0.05).

Fetal and Placental Gene Expression
In the fetal liver, Bmal1 and Per1 mRNA was not rhythmically

expressed, however in control and CPS animals, the expression of

Per2 and Rev-erba significantly fitted a sine curve (P,0.05, Figure 5).

Furthermore, the expression profiles of these genes in the control

and CPS fetal livers were in antiphase. For the control animals,

peak expression levels were observed during the time of darkness,

whereas for CPS animals, peak levels occurred during the day.

Per2 mRNA expression varied differently with time (P,0.001)

such that decreased expression was observed at 0400 h (P,0.05)

and increased expression was observed at 1600 h (P,0.001) in the

CPS fetal livers. For Rev-erba mRNA, there was an overall

treatment effect (P,0.05) with post hoc Bonferroni analyses

revealing decreased expression at 2400 h (P,0.05) and increased

expression at 0800 h and 1200 h (P,0.001) in the CPS fetal livers.

Insulin receptor substrate 2 (IRS2) mRNA in the fetal liver was affected

by treatment in a time dependent manner (P,0.05, Figure 7),

however post hoc Bonferroni analyses do not reach significance at

any individual time point (P.0.05). Hsp105 mRNA was affected

by treatment (P,0.01), with CPS fetal livers showing reduced

expression at 0800 h. Data from both control and CPS animals

significantly fitted a sine curve (P,0.05).

The expression of placental 11b-hsd2 and SNAT1 mRNA was

examined in placental labyrinth (Figure 7). There was no effect of

treatment on the expression of either of these genes (P.0.05).

However, while neither 11b-hsd2 nor SNAT1 expression in the

CPS placentas significantly fitted a sine curve (P.0.05), the time

dependent changes in the control placentas approached signifi-

cance (p = 0.06 and 0.09 respectively).
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Discussion

We have previously shown that exposure of pregnant rats to

chronic phase shifts of the lighting environment from conception

through to early lactation negatively influences a range of

metabolic parameters in the subsequent adult offspring [4]. In

particular, at 3 months of age, male offspring had increased

adiposity and hyperleptinaemia. By 12 months of age, the female

offspring also displayed this phenotype, with the addition of

hyperinsulinaemia and reduced glucose tolerance and insulin

sensitivity. The aim of the current study was to gain an

understanding of metabolic and other changes occurring in the

pregnant dam throughout gestation caused by CPS exposure

which may lead to the programming of metabolic disturbances in

the fetus. We found that CPS exposure throughout gestation

profoundly altered circadian rhythms of maternal corticosterone,

glucose, insulin, leptin, free fatty acids, triglycerides and choles-

terol as well as disrupting the timing of food intake and hepatic

clock and metabolic gene expression. There was no effect on

glucose tolerance, insulin sensitivity or total food consumption in

the dams, and yet the rate of maternal weight gain was altered.

Furthermore, CPS exposure in utero disrupted the timing of

circadian and metabolic gene expression in the developing fetal

liver.

The changes in weight gain in the CPS dams were unexpected,

being reduced during the first week of gestation. However, as

Figure 4. Glucose and insulin tolerance during gestation. Blood glucose (a) and plasma insulin (c) following 2 g/kg intraperitoneal injection of
glucose with corresponding area under the curve (b and d), or blood glucose (e) and corresponding area above the curve (f) following 0.75 IU/kg
intraperitoneal injection of insulin to pregnant dams exposed to chronic phase shifts (CPS, red square) or normal lighting conditions (control, black
circle) throughout gestation. Data is mean 6 SEM, n = 7 per treatment group.
doi:10.1371/journal.pone.0053800.g004
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gestation progressed, the CPS dams went on to gain weight more

rapidly, such that at the end of gestation they weighed only 4% less

than the controls. It is conceivable that the reduction in weight

gain observed during the early stages of gestation, a critical stage of

embryo development, may have mediated the impact of this

protocol on the metabolic health of the offspring. Experimental

Figure 5. Clock gene expression in maternal and fetal liver. Bmal1, Per1, Per2 and Rev-erba mRNA expression in the maternal liver (a–d) and
fetal liver (e–h) of control (black circle) and CPS (red square) dams at day 20 of gestation, 1 day after resumption of the normal photoperiod. Shading
represents the time of darkness in both groups. Data has been fit to sine curve with the period constrained to 1, with solid lines representing
a significant fit and dashed lines a non-significant fit. Data is mean 6 SEM, n= 4–6, *P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0053800.g005
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manipulation of weight gain through moderate caloric restriction

during the first half of gestation has previously been shown to

influence the metabolic health of rat offspring [6,7]. Restricting

calories to 20% of the control animals from conception to day 13

reduced initial body weight gains, but as gestation progressed and

food access returned to ad libitum, the caloric restricted animals

caught up so that by the end of gestation there was no significant

difference. While this did not affect birth weight, the offspring

went on to develop gender dependent hyperphagia, increased

adiposity, hyperinsulinaemia and hyperleptinaemia by 5 months of

age [6]. This phenotype was programmed through altered

neuronal development of the hypothalamic circuits regulating

feed intake [7]. It therefore appears that exposure to even

moderate nutrient restriction during early gestation can have

profound effects on the metabolic homeostasis of the adult

offspring. In our study, the CPS protocol did not reduce total

food intake at any stage of gestation, but rather changed the timing

of food consumption, leading to reduced weight gain during the

first week of gestation. This may have been a sufficient insult to

program perturbed metabolic homeostasis in the offspring.

At day 20 of gestation, the CPS dams had significantly reduced

retroperitoneal fat pad weights and a trend for decreased

epigonadal fat weights. Furthermore, maternal liver weight was

reduced at the start of the light period, in contrast to the control

animals which had elevated liver weights at this time. The reduced

fat pad and liver weight was not due to a reduction in these tissues

in response to CPS exposure. Instead, the CPS dams failed to

increase the size of these tissues in response to pregnancy at the

same rate as the controls, as they still had greater fat and liver

weights than that of the non-pregnant animals. The reduced liver

weights observed at 1200 h may be due to increased hepatic

glycogenolysis in response to low plasma glucose, insulin and leptin

levels detected through the previous dark period. This is supported

by the observation of increased glycogen phosphorylase mRNA in the

preceding time points, a key enzyme involved in the release of

glucose-1-phosphate from glycogen.

Exposure to the rapid changes in photoperiod has driven

changes in the timing of food consumption leading to intermittent

grazing rather than consolidated bouts of feeding during the dark

period. With each photoperiod shift, the CPS dams are unable to

adjust their pattern of food consumption to align with the new

phase of darkness, leading to a disrupted profile of food

consumption. Repeated exposure to these shifts may have led to

decreased food efficiency as reflected in reduced weight gain and

adipogenesis, particularly during the early stages of gestation.

Weight gain during the later stages of gestation is a reflection of

fetal and placental growth, as these tissues account for 25% of

maternal weight at term [8]. Given that litter size, fetal weight, and

placental weight were all unaffected by the CPS protocol, it is

perhaps unsurprising that maternal weight normalised to the

controls towards the end of gestation.

An analysis of the metabolic profile of the CPS and control

dams at day 20 of gestation reveal profound changes to glucose,

insulin, free fatty acids, triglycerides and cholesterol concentrations

in plasma, consistent with disrupted timing of food consumption.

In the control animals there were strong rhythms of these

metabolites, with the exception of plasma triglycerides. However,

in the CPS dams, the concentrations of these metabolites were

Figure 6. Circadian profile of metabolic gene expression in maternal liver. PFKfb3 (a), glucokinase (b), PEPCK (c) and glycogen phosphorylase
(d) mRNA expression in the maternal liver of control (black circle) and CPS (red square) dams at day 20 of gestation, 1 day after resumption of the
normal photoperiod. Shading represents the time of darkness in both groups. Data has been fit to sine curve with the period constrained to 1, with
solid lines representing a significant fit and dashed lines a non-significant fit. Data is mean 6 SEM, n = 4–6 per treatment group per time point,
*P,0.05, **P,0.01, ***P,0.001.
doi:10.1371/journal.pone.0053800.g006
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either in antiphase or arrhythmic. Furthermore, the usual strong

relationship between glucose and insulin as observed in the control

animals was disrupted. Further analysis of the mRNA of some key

hepatic enzymes involved in glycolysis and gluconeogenesis suggest

a dampened profile of expression. While none of these enzymes

were either up or down regulated, the observed arrhythmicity

suggests major changes to these metabolic processes.

A rhythm in plasma leptin was observed in the control dams,

with high levels at night during the time of feeding, and low levels

during the day as previously described in non-pregnant rats [9].

The reduced levels of leptin detected in the CPS dams at night is

likely due to the reduced adiposity of these animals, combined with

altered timing of food consumption. The junctional zone of the

placenta, however, also secretes leptin directly into the maternal

blood [10], and therefore we cannot exclude the possibility that

the reduced maternal leptin concentrations observed here are due

to reduced placental secretion. Leptin plays an important role in

fetal development, with its receptor active during neonatal life

[11]. In particular, leptin regulates development of hypothalamic

circuits regulating energy homeostasis in adult life [12]. Therefore,

alterations to the secretion of this hormone from the dam may

impact upon the developing offspring, leading to perturbed

hypothalamic function. The importance of leptin in neuronal

development can be demonstrated by examining ob/ob mice, with

offspring showing reduced brain weight and altered projections

and synaptic inputs to hypothalamic circuits that regulate feeding

[13]. Furthermore, many of these outcomes can be rescued

through early postnatal administration of leptin [13]. However, in

our model overall maternal leptin levels were reduced by 20%

rather than being completely absent. Additionally, unlike ob/ob

mice, the offspring retain the ability to secrete their own leptin

both in utero and postnatally. Nevertheless, the maternal hypo-

leptinaemia observed in our study may play a role in the

programming of perturbed metabolic homeostasis in the offspring.

Rhythmic melatonin secretion is regulated through indirect

neural projections from the suprachiasmatic nucleus (SCN) of the

hypothalamus to the pineal [14], and therefore gives an indication

of the phase of central SCN rhythmicity. We expected that

exposure to rapid photoperiod changes would alter clock functions

within the SCN and consequently melatonin secretion. However,

melatonin maintained a normal profile of high secretion during

darkness and low secretion during light. It has previously been

shown that when animals are exposed to either phase delays or

phase advances of the photoperiod, the SCN and consequently the

timing of melatonin secretion gradually shifts over subsequent days

so that eventually the internal clock is in phase with the external

light environment [15]. Depending upon the direction and degree

of the shift, this can take many days. Therefore, it was surprising to

observe that melatonin secretion in the CPS dams had already

aligned to the external photoperiod only 1 day after the previous

photoperiod reversal. We hypothesise instead that the central SCN

clock had never fully adjusted to the photoperiod changes before

the lights had been reversed again, and therefore, loosely

maintains time with the original photoperiod. Additionally,

melatonin secretion of pregnant animals may be less responsive

to photoperiod changes than non-pregnant animals. Only through

regular sampling throughout the whole protocol will this question

be answered. Interestingly, this profile of undisturbed melatonin

Figure 7. Fetal liver and placental labyrinth gene expression. IRS2 (a), Hsp105 (b) in fetal liver, and 11b-hsd2 (c), SNAT1 (d) in placental
labyrinth of control (black circle) and CPS (red square) dams at day 20 of gestation. Shading represents the time of darkness in both groups. Data has
been fit to sine curve with the period constrained to 1, with solid lines representing a significant fit and dashed lines a non-significant fit. Data is
mean 6 SEM, n = 4–6 per treatment group per time point, ***P,0.001.
doi:10.1371/journal.pone.0053800.g007

Maternal/Fetal Responses to Chronic Phase Shifts

PLOS ONE | www.plosone.org 10 January 2013 | Volume 8 | Issue 1 | e53800



secretion, despite changes to the timing of light exposure, activity

and food consumption is also apparent in human shift workers

[16,17].

Nevertheless, we expect that at stages during the protocol, the

melatonin secretion would be suppressed, particularly during the

periods of 24 hours of light, as light exposure of sufficient intensity

completely suppresses melatonin secretion [18,19]. Therefore, we

cannot rule out the possibility that reduced melatonin secretion

plays some role in mediating the changes previously observed in

the offspring. Indeed, a recent report has demonstrated the

importance of maternal melatonin secretion plays in programming

energy metabolism in the offspring [20]. Pups born to dams that

were pinealectomised prior to gestation display a similar pheno-

type to that observed following CPS exposure, including glucose

intolerance. Importantly, supplementation of the dams’ nightly

drinking water with melatonin, and the concomitant elevation in

nocturnal plasma melatonin, attenuated the negative effects of

maternal pinealectomy on the offspring. Surprisingly, the negative

consequences for the offspring appeared much earlier, with

glucose intolerance becoming detectable at 4 months of age,

compared to 12 months following the CPS protocol [4].

Compared to the aligned profiles of melatonin secretion in the

control and CPS dams, there were large differences in corticoste-

rone secretion between the two groups. Like melatonin, cortico-

sterone secretion is regulated through efferent connections from

the SCN. Neurons of the SCN terminate on cells of the PVN,

leading to rhythmic CRH release, ACTH secretion from the

pituitary and downstream rhythmic secretion of corticosterone

from the adrenal (reviewed in [21]). Furthermore, the adrenal

response to ACTH secretion also changes over 24 hours, mediated

through both local clock mechanisms and SCN-mediated activa-

tion of the autonomic nervous system [21,22]. Together this leads

to a rhythmic profile of secretion with increased levels at the end of

the light (sleep) period. However, unlike the pineal, the HPA axis is

responsive to regulation at many levels via stress, food anticipation

and negative feedback mechanisms [23,24]. Therefore, it was not

surprising to observe a disrupted profile of secretion in the CPS

dams. The regulating signals driving arrhythmic corticosterone

secretion were not identified in this study, but likely reflect altered

sensitivity of the HPA axis to stimulation at all levels, as well as

changes to the timing of incoming signals.

Regardless of the cause of the disrupted corticosterone

secretion, the altered pattern can be expected to mediate

important changes in maternal peripheral tissues and the de-

veloping fetus. Most peripheral tissues express glucocorticoid

receptor (GR), which can then affect the transcription of many

genes through both glucocorticoid response elements (GRE) or

through interaction with other transcription factors [25]. PEPCK

is an example of a gene possessing a GRE [26], the expression of

which has been profoundly disrupted in response to CPS exposure.

The sensitivity of peripheral tissues also fluctuates over 24 hours

through changes in the level of receptor expression and GR-

induced transcriptional activity [27,28]. During development,

appropriate glucocorticoid levels play a vital role in normal fetal

development [29], with most fetal tissues expressing GR from early

embryonic life [30]. The fetus is largely protected from excessive

levels of glucocorticoids through the actions of placental 11b-
hydroxysteroid dehydrogenase 2 (11b-hsd2), which converts

glucocorticoids into their inert forms [31]. Nevertheless, dispro-

portionate levels of glucocorticoids during both early and late fetal

development can have profound effects on the programming of

adult metabolism [32,33]. Usually these effects are mediated

through reduced growth and subsequent smaller birth weights,

although this is not always the case, particularly when exposure

occurs during early gestation [34]. While we didn’t observe

elevated overall levels of corticosterone in maternal blood, reduced

11b-hsd2 mRNA in placenta, or reduced growth rates of the fetus,

it is possible that the disrupted timing of secretion may in some

way negatively impact key developmental processes.

Given that the CPS protocol manipulates the dominant

zeitgeber to the circadian system (ie light), it was of interest to

investigate the impact of this protocol on clock genes in both

maternal and fetal tissues. Constant light exposure to pregnant

dams has previously been shown to dampen the expression of not

only melatonin secretion, but also maternal and fetal clock gene

expression, which can be regained through nocturnal melatonin

administration [35]. As expected, we found that in the control

dams, the expression of Bmal1, Per1, Per2 and Rev-erba mRNA in

the maternal liver was rhythmic, with high amplitude changes in

expression from peak to trough. Importantly, the pattern of

expression was such that Bmal1 mRNA was in antiphase to Per2,

consistent with a functional transcription-translation feedback loop

existing in this tissue. When exposed to the CPS protocol however,

pregnant dams experienced significant disruption to clock gene

expression; the expression of Bmal1, Per2, and Rev-erba did not

significantly fit a sine curve, and the amplitude changes were

greatly reduced. Alternatively, within the fetal liver of control

animals, Per2 and Rev-erba mRNA expression was rhythmic with

small amplitude changes from peak to trough, but not Bmal1

mRNA expression. Given the importance of Bmal1 in driving

rhythmic clock gene expression, and the necessity of this gene in

maintaining activity of a transcription-translation feedback loop, it

was surprising to then observe robust rhythms of Per2 and Rev-erba
mRNA. Interestingly, CPS fetal livers also rhythmically expressed

Rev-erba and Per2 mRNA, in antiphase to the controls.

What could be driving the rhythmic transcription of these genes,

if not the core circadian feedback loop? Schibler and colleagues

developed mice with a conditionally active, hepatocyte-specific

Rev-erba transgene, which led to suppression of the core circadian

transcriptional feedback loop through suppression of Bmal1 within

the liver but not the rest of the body [36]. Under these conditions,

circadian expression of the core clock genes was arrhythmic, with

the notable exception of Per2, which maintained an identical

profile of expression to that of the controls. This suggests that

rather than being solely reliant on a functional transcription-

translation feedback loop to maintain rhythmicity, Per2 is instead

responding to systemic cues. In the context of the fetal liver

developing within a rhythmic maternal system, the ability of Per2

to sense or detect maternal rhythms allows fetal tissue to maintain

rhythmicity in the absence of an endogenous circadian transcrip-

tional feedback loop. The molecular mechanisms, however, that

transmit this information are as yet unknown, but candidates

include core body temperature through heat shock factors,

maternal and/or fetal glucocorticoids, maternal melatonin and

substrate concentrations. Unfortunately, fetal corticosterone con-

centrations were not assessed in this study, but may have shed

some light on this question, particularly given recent demonstra-

tions of the importance of fetal glucocorticoids in conveying

maternal rhythmicity to the fetus [35]. Interestingly, we found that

the expression of the heat shock protein Hsp105 also changed

rhythmically in the control and CPS fetal livers, but with a different

phase of expression. This suggests that heat shock factors may

mediate the rhythmicity of Per2 and Rev-erba in the fetus,

particularly given the presence of heat shock response elements

in the promoter of at least Per2. It cannot be dismissed that

disruptions to the timing of circadian gene expression within the

developing fetus, as observed here in the fetal liver, may play some

role in the programming of adult metabolic disease.
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Conclusions
We have shown that exposure of pregnant dams to chronic

phase shifts of the photoperiod profoundly alters the normal

circadian pattern of food consumption, endocrine secretion and

metabolite concentrations, as well as metabolic and circadian gene

expression in the mother and fetus. Together these disruptions are

likely to have a negative effect on the developing fetus. However,

the reduced weight gain of the dams during a key stage of early

embryo development is likely to play a major role in the previously

observed offspring phenotype of increased adiposity, hyperinsuli-

naemia, hyperleptinaemia and poor glucose tolerance. Intriguing-

ly, the reduced maternal weight gain occurred independently of

total food consumption, suggesting that merely changing the

timing of feeding and the downstream metabolic processes

required to utilise those nutrients, can lead to an altered metabolic

phenotype in the adult offspring. In the context of human

pregnancies, maternal shift work also severely impacts upon the

timing of activity and food consumption. If the effects seen here in

a rat model translate into the human situation, then merely

disrupting the timing of food consumption may have lasting

impacts upon the developing baby, independent of birth weight,

which may predispose those offspring to the development of

metabolic disorders as adults.
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