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14cUniversità di Siena, I-53100 Siena, Italy
15University of Florida, Gainesville, Florida 32611, USA

16aINFN, Sezione di Roma, I-00185 Roma, Italy
16bUniversità ’La Sapienza’, I-00185 Roma, Italy

17LIGO-Hanford Observatory, Richland, Washington 99352, USA
18University of Birmingham, Birmingham B15 2TT, United Kingdom

19Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik, D-14476 Golm, Germany
20Montana State University, Bozeman, Montana 59717, USA

21European Gravitational Observatory (EGO), I-56021 Cascina (PI), Italy
22Syracuse University, Syracuse, New York 13244, USA

23LIGO-Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
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57cUniversità dell’Aquila, I-67100 L’Aquila, Italy

58University of Salerno, I-84084 Fisciano (Salerno), Italy and INFN (Sezione di Napoli), I-80126 Napoli, Italy
59Instituto Nacional de Pesquisas Espaciais, 12227-010-São José dos Campos, Sao Paulo, Brazil
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62Inter-University Centre for Astronomy and Astrophysics, Pune 411007, India
63University of Minnesota, Minneapolis, Minnesota 55455, USA
64aINFN, Gruppo Collegato di Trento, I-38123 Povo, Trento, Italy
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This paper presents results of an all-sky search for periodic gravitational waves in the frequency range

½50; 1 190� Hz and with frequency derivative range of �½�20; 1:1� � 10�10 Hz s�1 for the fifth LIGO

science run (S5). The search uses a noncoherent Hough-transform method to combine the information

from coherent searches on time scales of about one day. Because these searches are very computationally

intensive, they have been carried out with the Einstein@Home volunteer distributed computing project.

Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no

gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave

strain amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of

signals with h0 greater than 7:6� 10�25 at a 90% confidence level. This search is about a factor 3 more

sensitive than the previous Einstein@Home search of early S5 LIGO data.

DOI: 10.1103/PhysRevD.87.042001 PACS numbers: 04.80.Nn, 95.55.Ym, 97.60.Gb, 07.05.Kf

I. INTRODUCTION

A promising class of sources for detectable gravita-
tional wave signals is rapidly rotating neutron stars with
nonaxisymmetric deformations [1–5]. Such objects are
expected to emit long-lived continuous-wave (CW) sig-
nals. In the rest frame of the neutron star, these waves
have a constant amplitude and are quasimonochromatic
with a slowly decreasing intrinsic frequency. They are
received at Earth-based detectors with a Doppler modu-
lation due to the relative motion between the source and
the detector. Consequently the observed phase evolution
depends on the intrinsic signal frequency, the first fre-
quency time derivative (also called spin down), and the
source sky position; these parameters shall collectively be
called the phase evolution parameters. While using
higher-order frequency derivatives could potentially im-
prove the astrophysical detection efficiency in a part of
the parameter space (see Sec. III), we shall not consider
them in this paper for computational reasons. Finally, the
received signal has a time-dependent amplitude modula-
tion due to the (time-dependent) relative geometry of the
wave and the detector.

The previous two decades have seen the construction
and operation of several kilometer-scale laser interferomet-
ric gravitational wave detectors [6–11]. The detectors and
the data analysis tools have steadily improved over this
period. These have made it possible to search for various
gravitational wave signals with ever-improving sensitivity.
In this paper we focus on data from the fifth science run
(S5) of the LIGO (Laser Interferometer Gravitational Wave
Observatory) detectors, collected between the GPS times
of 815155213 s (Fri Nov 0416:00:00 UTC 2005) and

875145614 s (Sun Sep 3000:00:00 UTC 2007). The
LIGO network [6] consists of three detectors: one at
Livingston, Louisiana, USA, with an arm length of 4 km

(L) and two in the same vacuum envelope at Hanford,
Washington, USA, with arm lengths of 4 km (H) and
2 km, respectively. Only data from H and L detectors are
used in this paper. The Virgo and GEO 600 detectors also
collected data during the same time interval but are not
used in this analysis, which is optimized for two detectors

with similar sensitivities.
A coherent strategy for extracting faint CW signals

buried in noisy data using standard maximum-likelihood
techniques in the presence of ‘‘nuisance parameters’’ was
derived in Ref. [12]. The resulting detection statistic is the
so-called F -statistic, which has since been generalized to
the case of multiple detectors [13,14]. The F -statistic has
also been shown to arise as a special case in a more general

Bayesian framework [15]. Using theF -statistic means that
we need to search explicitly only over the phase evolution
parameters.
Coherent wide-parameter-space searches utilizing the

F -statistic have been carried out since the second LIGO
science run [16,17]. The amplitude sensitivity of this
type of search improves as the square root of the time
baseline. However, the template bank spacing decreases

dramatically with the time baseline, and the computa-
tional requirements of the search increase rapidly. Even
with a coherent time baseline of just a few days, a wide-
frequency-band all-sky search is computationally ex-
tremely challenging. It becomes completely unfeasible
if one considers instead time baselines on the order of

months.
As is often the case with computationally bound prob-

lems, hierarchical approaches have been proposed [18–20].
In these strategies, the entire data set is split into shorter
segments. Each segment is analyzed coherently, and after-
wards the information from the different segments is
combined incoherently (which means that the phase

Published by the American Physical Society under the terms of
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information is lost). The amplitude sensitivity grows at best

with the fourth root of the number of segments. Such

methods have been used in previous wide-parameter-space
searches published by the LIGO and Virgo Collaborations
[21–26].

A subset of these searches [21,22,25,26] used segments
sufficiently short (1800 s) that the signal remains within a
single Fourier frequency bin in each segment. In these
cases, a simple Fourier transform suffices for each seg-
ment. Three different variants of such methods have been
developed that combine the results from the different short
segments incoherently: the ‘‘stack-slide,’’ the ‘‘Hough-
transform’’ and the ‘‘PowerFlux’’ schemes. The stack-slide
procedure [18,20] averages the normalized power from the
Fourier transform of 30-minute segments [short time base-
line Fourier transform (SFT)] of the calibrated detector
strain data. The PowerFlux scheme [22,25] can be seen
as a variation of the stack-slide method, where the power is
weighted before summing. The weights are chosen accord-
ing to the detector noise and antenna pattern to maximize
the signal-to-noise ratio (SNR). The Hough-transform
method [19,27] sums weighted binary counts, depending
upon whether the normalized power in an SFT bin exceeds
a certain threshold.

As the segment duration is increased, it becomes
necessary to account for signal modulations within each
segment by computing the F -statistic over a grid in the
space of phase evolution parameters. This results in a
significant increase in the computational requirements of
the search. The distributed volunteer computing project
Einstein@Home [28] has been created to address this
need. Two previous papers [23,24] report on results of
such CW searches from the fourth LIGO science run and
from the first two months of S5, respectively. The method
used was based on the computation of the coherent
F -statistic on data segments from either the H or L detec-
tors separately, and only parameter space points with val-
ues of 2F larger than 25 were returned back to the
Einstein@Home server for further inspection. The thresh-
old value of 25 limited the ultimate sensitivity of that
search: if a signal was not loud enough to surpass that
threshold on at least some of the segments it would not be
detected. The threshold value was set by bandwidth con-
straints on the size of the results file uploaded back to the
server by the host, i.e., on the maximum number of sig-
nificant points that could be returned. These results were
subsequently combined by a coincidence scheme, per-
formed offline in the postprocessing phase. In contrast, in
the search presented here, the combination of the results
from the coherent searches takes place directly on the
host machines using a Hough-transform scheme. This
makes it possible to use a much lower threshold on 2F ,
equal to 5.2, that defines the parameter space points to be
passed on to the Hough transform. Moreover, in this
search, data from the H and L detectors are coherently

combined [13,14]. Finally, more data was searched in this
analysis compared to any previous Einstein@Home
search. The Einstein@Home runs presented here refer to
searches based on the first (S5R3) and second year of S5
LIGO data. This latter search was run on Einstein@Home
in two separate steps, called S5R5 and S5R6. Since the
S5R6 run used the same data as S5R5, but extended the
search region above 1 kHz, in this paper we simply refer to
these two runs as S5R5.
The paper is structured as follows. In Sec. II, we briefly

review the Hough-transform method. Section III describes
the Einstein@Home distributed search used to analyze the
data set. Section IV gives a detailed description of the
S5R5 postprocessing, which is based on the pioneer
S5R3 postprocessing (described in Appendix B). Upper
limit computations from the more-sensitive S5R5 data are
provided in Sec. V. The study of some hardware-injected
signals is presented in Sec. VI. In Sec. VII we make some
concluding remarks.

II. THE DATA ANALYSIS METHOD

A. The waveform model

Let us begin by briefly describing the standard signal
model for CW signals. In the rest frame of the neutron star,
the gravitational wave signal is elliptically polarized with
constant amplitudes Aþ;� for the two polarizations hþ;�ðtÞ.
Thus, we can find a frame such that

hþðtÞ ¼ Aþ cos�ðtÞ; h�ðtÞ ¼ A� sin�ðtÞ: (1)

The two amplitudes are related to an overall amplitude h0
and the inclination angle � between the line of sight to the
neutron star and its rotation axis,

Aþ ¼ 1

2
h0ð1þ cos 2�Þ; A� ¼ h0 cos �: (2)

The value of h0 is model dependent. For emission due to
nonaxisymmetric distortions, the amplitude h0 depends on
the ellipticity " of the star defined as

" ¼ jIxx � Iyyj
Izz

: (3)

Here Izz is the principal moment of inertia of the star, and
Ixx and Iyy are the moments of inertia about the other axes.

The amplitude is given by

h0 ¼ 4�2G

c4
Izzf

2"

d
; (4)

where f is the frequency of the emitted GW signal (which
is also twice the rotational frequency of the star), G is
Newton’s constant, c is the speed of light and d is the
distance to the star. The distribution of " for neutron stars is
uncertain and model dependent since the breaking strain
for a neutron star crust is highly uncertain (see, e.g.,
Refs. [2,29–31] for further discussion).
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Energy loss from the emission of gravitational
and/or electromagnetic waves, as well as possible local
acceleration of the source, causes the signal frequency
arriving at the solar system to evolve. To first order, it
can be expressed as

f̂ð�Þ ¼ f0 þ _fð�� �0Þ; (5)

where � is the arrival time of a wave front at the solar
system barycenter (SSB), f0 is the frequency at a fiducial

reference time �0, and _f denotes the first time derivative of
the frequency. The astrophysical implications of ignoring
higher-order derivatives in this Taylor expansion will be
discussed later. The phase of the signal, �ðtÞ, follows
directly from the frequency evolution with an initial phase
�0 at the reference time (see, e.g., Ref. [19]).

As the detector on the Earth moves relative to the SSB,
the arrival time of a wave front at the detector, t, differs
from the SSB time �1:

�ðtÞ ¼ tþ ~rðtÞ � ~n
c

þ�E� � �S�: (6)

Here ~rðtÞ is the position vector of the detector in the
SSB frame, and ~n is the unit vector pointing to the neutron
star; �E� and �S� are respectively the relativistic Einstein
and Shapiro time delays [32]. In standard equatorial
coordinates with right ascension � and declination �,
the components of the unit vector ~n are given by
ðcos� cos�; sin� cos�; sin�Þ.

Ignoring the relativistic corrections, the instantaneous
frequency fðtÞ of a CW signal, as observed at time t by a
detector on Earth, is described by the well-known Doppler
shift equation:

fðtÞ ¼ f̂ð�Þ þ f̂ð�Þ ~vð�Þ � ~n
c

; (7)

where ~vð�Þ is the detector velocity with respect to the SSB
frame; ~vð�Þ is the sum of two components, from the yearly
Earth motion around the Sun ( ~vy) and from the rotation of

Earth around its axis ( ~vd).
Finally, the received signal at the detector is

hðtÞ ¼ Fþðt; ~n; c ÞhþðtÞ þ F�ðt; ~n; c Þh�ðtÞ; (8)

where Fþ;� are the detector beam pattern functions which

depend on the sky position ~n and the relative polarization
angle c of the wave frame [12,33]. The wave frame is a
right-handed Cartesian coordinate system based on the
direction of propagation of the gravitational wave. Its z
axis is along the direction of propagation, and its x and y
axes are along the principal directions of polarization of the
wave. There are thus altogether eight signal parameters,
which include the four phase evolution parameters

ðf0; _f; �; �Þ, and four other parameters ðh0; �; c ; �0Þ.

B. The Hough-transform algorithm

For completeness, we summarize the Hough detection
statistic in this section. Further details of the method
are given in Ref. [19] and previous searches with this
method applied to short coherent times are reported in
Refs. [21,22].
The Hough transform is a well-known technique used

mainly in digital image processing for robust extraction of
patterns. Such a procedure is employed here for identifying
points in the time-frequency plane that match the pattern
expected from a signal. The time-frequency data in our
case is the F -statistic computed as a function of signal
frequency, for each of the data segments of duration Tseg,

over a grid of points in the space of ð�; �; _fÞ. The grid in

ð�; �; _fÞ space used for this F -statistic computation is
called the coarse grid because its resolution is determined
by the coherent time baseline Tseg and makes no reference

to the full observation time or the number of segmentsNseg.

The result of this computation is thus a collection of
F -statistic values F i

�;�; _f
ðkÞ where the integers k and i

label a frequency bin (with spacing �f as defined below)
and a data segment, respectively.
The frequency and frequency derivative spacings for the

coarse grid are based on choosing the maximum allowed
fractional loss in the F -statistic when the signal and tem-
plate points are slightly mismatched. This leads naturally
to the notion of a metric in parameter space [34,35] and this
has been studied for the CW case in Ref. [14]. The grid

spacings in f, _f are given respectively by [36,37]

�f ¼
ffiffiffiffiffiffiffiffiffi
12m

p
�Tseg

(9)

and

� _f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
720m

p
�T2

seg

; (10)

where m represents the nominal single dimension mis-
match value [14,38]. For all the Einstein@Home runs
discussed here, m has been taken equal to 0.3. The span
Tseg of each segment has been set equal to 25 hours for all

the runs. The frequency resolution, given by Eq. (9), is
�f� 6:7 �Hz for all the Einstein@Home runs described
in this paper. As we shall see shortly, for technical reasons

it turned out to be necessary to use a finer spacing for _f
than given by Eq. (10).
In combining these Nseg different F -statistic vectors, it

is necessary to use a finer grid in ð�; �; _fÞ centered around
each coarse grid point. Our implementation of the Hough-
transform algorithm assumes that the fine grid is a
Cartesian product of a rectangular sky grid and one dimen-

sional grids in f and _f. Moreover the fine sky grid is
assumed to be aligned with the � and � directions in the
sky. In order to completely cover the sky with the different

1Proper motion of the source can safely be neglected for
distances greater than �10 pc.
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fine sky grids, it is thus simplest to choose a rectangular
coarse sky grid aligned with the ð�; �Þ directions. We
choose a coarse grid such that the spacing in � is a constant
and the spacing in � is proportional to ðcos�Þ�1. This
ensures that each cell of the coarse grid covers a fixed
solid angle.

Since the coherent integration time is very close to a
sidereal day, it is reasonable to assume that the Hough sky-
patch size d� (which in our case is the same as the coarse
sky-grid resolution) is determined by vd, the Earth’s rota-

tion speed at the equator. At frequency f̂ we have [19]

d� ¼ c

vdf̂Tseg

: (11)

In practice, this estimate was verified by Monte-Carlo
studies with signal injections, and we used

d�F ¼
�
d� for S5R3

Rd� for S5R5;
(12)

where the factor R ¼ ffiffiffi
3

p
increases the size of the sky

patch d� for the S5R5 run. The Monte-Carlo studies
showed that this grid spacing for S5R5 corresponded ap-
proximately to a mismatch of m � 0:3 so that, for any
other value of m, the spacing should be approximatelyffiffiffiffiffiffiffiffiffiffiffiffiffi
m=0:3

p
Rd�.

We also need to set the resolution of the refined sky grid
used by the Hough algorithm. Since the full observation
time is of the order of a year, the relevant scale here is set
by the speed vy of Earth as it orbits the Sun. Following

[19], the resolution for the fine sky grid at a frequency f̂ is
given by

d�H ¼ c�f

}f̂vy

: (13)

The parameter } scales the resolution compared to the

conservative estimate c�f=ðf̂vyÞ and in practice, again

based on Monte-Carlo studies, we used } ¼ 0:5. One can
see that the increase in the number of sky position points
from the coarse F -statistic grid to the fine Hough grid is

N ref
sky ¼ ðd�F =d�HÞ2 ¼

�
�ffiffiffiffiffiffiffiffiffi
12m

p }
vy

vd

�
2 �Oð104Þ: (14)

Taking m ¼ 0:3 and } ¼ 0:5 yields N ref
sky ’ 8444 for the

S5R5 run.

Finally, let us turn to the coarse and fine grids for _f.

Ideally, we should refine the coarse _f grid spacing of
Eq. (10) by a factor Nseg [19]. However, in our implemen-

tation of the Hough transform, using this refinement turns
out to increase the maximum memory footprint of the
different searches and would make it unsuitable for
Einstein@Home. As a compromise, it was decided not to

use any refinement in _f and instead to use a finer resolution
for the coarse grid. Based on Monte-Carlo analyses, an

acceptable value for the _f spacing turns out to be

ð� _fÞS5R5 ¼
ffiffiffiffiffiffiffiffiffiffiffi
3:3m

p
T2
seg

� 1:2� 10�10 Hz s�1: (15)

This value was used for S5R5. However, for S5R3, this was
incorrectly set to

ð� _fÞS5R3 ¼
ffiffiffiffiffiffiffiffiffi
33m

p
T2
seg

� 3:8� 10�10 Hz s�1; (16)

leading to a corresponding loss in sensitivity for S5R3.
The flow chart of the search algorithm used for this

search is depicted in Fig. 1. The input data set is composed
of 30-minute baseline SFTs. This set is partitioned in
subsets such that no more than 25 hours of data are spanned
by each segment and such that there is overall (including
data from both detectors) at least 40 hours of data in each
segment. Let Tobs be the observation time spanned by the
Nseg segments constructed in this way.2 The multidetector

F -statistic is computed for each segment at each point of

the search parameter space ðf; _f; �; �Þ. The next step con-
sists of selecting parameter space points for which the
F -statistic is above the fixed threshold. For every set of

FIG. 1 (color online). High-level schematic of the pipeline used in the searches. For each data segment, the multi-detectorF -statistic
is computed and frequency bins are selected setting a threshold on the F -statistic. Such selected frequency bins are then used to create
the Hough map. The output is a set of candidates in the parameter space. The color-filled boxes indicate the steps performed on the
volunteer computers. The acronym ‘‘WU’’ is defined in Sec. III A and refers to the independent computing tasks into which we
partition the computational work of the search.

2Note that Tseg � Tobs=Nseg because of the gaps that are
unavoidably present in the data stream, corresponding to times
when the interferometers were not in lock, and to the selection of
25-hour segments containing the requisite amount of data.
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ðf; _f; �; �Þ, we assign a value ni ¼ 1 or 0 in the ith seg-
ment depending on whether the corresponding F -statistic
is above the threshold 5.2 or not; this threshold turns out to
be optimal [19]. The values niðfÞ are called a ‘‘peakgram,’’
which is the input to the Hough transform.

The final statistic used by the Hough search is a
weighted sum of binary counts ni, giving the so-called
Hough number count nc, expressed by [22]

nc ¼
XNseg�1

i¼0

wini: (17)

The weight wi for a frequency f and for a particular sky
location is determined from the average antenna response
and average detector noise over the duration of the ith
segment. Since the input data in each segment consists of
SFTs, we perform the averaging over each SFT. Let Ni be

the number of SFTs in the ith segment. Let Si;	h be the

single-sided power spectral density (PSD) of the 	th SFT
in the ith segment, averaged over a narrow frequency band
containing the search frequency. The wi are given by

wi /
XNi�1

	¼0

ðF2
þði;	Þ þ F2

�ði;	ÞÞwi;	; (18)

where Fþði;	Þ and F�ði;	Þ are the detector antenna pattern

functions for the 	th SFT in the ith segment, and

wi;	 ¼ 1

Si;	h
�

�
1

Ni

XNi�1


¼0

1

Si;
h

��1
: (19)

It is easy to see that in the hypothetical case when the data is

exactly stationary, so all the Si;	h are identically equal to each

other, thenwi;	 ¼ 1. More realistically, thewi;	 are approxi-

mately unity for stationary data and the use of the harmonic
mean in Eq. (19) ensures that the wi;	 do not deviate too far

from unity in the presence of nonstationary noise.
The weight normalization is

XNseg�1

i¼0

wi ¼ Nseg; (20)

which ensures that the Hough number count nc lies
within the range ½0; Nseg�. In Ref. [22] it is shown that

the weights wi, first derived in Ref. [39], maximize the
sensitivity, averaged over the orientation of the source (see
Appendix A for a further discussion of the weights and
some technical problems that were encountered in the
search).

From the Hough number count nc we define the signifi-
cance (or critical ratio), CR,

CR ¼ nc � �nc
�

; (21)

which measures the significance of nc as the deviation from
the expected value �nc, measured in units of the noise

fluctuations � in Gaussian stationary noise in the absence
of any signal. In these circumstances, �nc ¼ Nsegp and p is

the probability that a �2 variable with four degrees of
freedom (as 2F in absence of a signal) exceeds the
threshold of 5.2. In case of unity weighting, the standard
deviation is simply that of the binomial distribution:

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nsegpð1� pÞ

q
. When the weights are used, the stan-

dard deviation is given by

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k ~wk2pð1� pÞ

q
; (22)

where k ~wk2 ¼ PNseg�1

i¼0 w2
i [22]. The CR is the detection

statistic returned by the hierarchical searches presented
here.

III. THE EINSTEIN@HOME
DISTRIBUTED SEARCH

The Einstein@Home project is built upon the BOINC
(Berkeley Open Infrastructure for Network Computing)
architecture [40–42], a system that exploits the idle time
on volunteer computers to solve scientific problems that
require large amounts of computer power. During the S5R5
run, Einstein@Home had approximately 225000 registered
volunteers and approximately 750000 registered host ma-
chines that contributed a total of approximately 25000
CPU (central processing unit) years.

A. Details of the S5R5 search

The computational load is partitioned in independent
computing tasks, called ‘‘workunits’’ (WUs), each of
which is analyzed by a volunteer machine. In particular,
7369434 and 10945955 WUs have been generated for the
S5R3 and S5R5 runs, respectively. The S5R5 run was
launched on January 13, 2009 and ended on October 30,
2009. It used 10560 S5 LIGO SFTs, collected between the
GPS times of 852443819 s (Wed Jan 1005:56:45 GMT
2007) and 875278812 s (Mon Oct 0112:59:58 GMT 2007).
The analyzed data consists of 5550 and 5010 SFTs from
the LIGO H and L interferometers, respectively. The num-
ber of data segments used for the S5R5 run is 121, each
spanning no more than Tseg ¼ 25 hours and with at least

40 hours of data, as already said. Similar details for the
S5R3 run can be found in Appendix B.
The total search frequency range of the S5R5 search is

½50; 1 190� Hz, with a frequency resolution �f� 6:7 �Hz

and spin-down resolution � _f� 0:12 nHz s�1. Each WU
analyzes a constant frequency band B ’ 20 mHz, the full
spin- down interval, ranging roughly from �2 nHz s�1 to
0:11 nHz s�1, and a region of the sky, as we shall see in
Sec. III C.
The original data contained instrumental artifacts in

narrow frequency bands that were known before the launch
of the Einstein@Home run. Those bands were identified

EINSTEIN@HOME ALL-SKY SEARCH FOR PERIODIC . . . PHYSICAL REVIEW D 87, 042001 (2013)

042001-9



and the corresponding frequency bins in the SFTs were
replaced with white Gaussian noise at the same level as the
neighboring frequencies. Table I shows which bands were
treated in this manner and what instrumental artifact they
harbored. These control bands are useful to compare and
contrast the results obtained on real data against pure
theoretical noise. Measurements and studies after the
Einstein@Home run refined the frequencies and widths
of these artifacts and identified additional ones; the final
lists of artifacts are given in Appendix C, and were used
to discard candidates (as we shall see in Sec. IVB). The
‘‘cleaning’’ process affected�27 Hz of search bandwidth,
in addition to bands that were eliminated later in
postprocessing.

The output data files from each WU are stored as ZIP-
compressed ASCII text files containing the 10000 most
significant candidates ranked according to the significance

[as defined in Eq. (21)] over the parameter space searched
by that WU. The decision to keep the top 10000 candidates
was based on the maximum upload volume from the hosts
to the Einstein@Home servers. All in all, on the order of
1011 candidates were returned to the Einstein@Home
server from each run, corresponding roughly to 2.3 TB
of data.
The files contain nine quantities for each candidate. The

first four are the values (on the coarse grids) of the fre-

quency f, sky position ð�; �Þ, and spin down _f. The fifth is
the significance of the candidate as defined in Eq. (21). The
remaining four quantities are connected with the refined
sky grid centered on each coarse sky-grid point (recall that
refinement is performed only on the sky). In particular, the
location of the most significant point on the fine sky grid
and the mean and standard deviation of the Hough number
count values on all points of the fine grid are returned.

B. Validation of returned candidates

In order to eliminate potential errors, due to defective
hardware and/or software or to fraud, BOINC is configured
so that each WU is processed redundantly by computers
owned by at least two different volunteers. An automated
validation process checks the consistency of the results,
ruling out those that are inconsistent, in which case new
WUs are generated to run again independently. The first
step of the validation is to check that the file syntax is

correct and that the first four values, i.e., ðf; �; �; _fÞ, are
within the appropriate ranges. Next, for the pair of result
files from each WU, the validator checks that the values of

ðf; �; �; _fÞ agree to within floating point accuracy (the
frequency is in fact checked to double precision). Finally,
the significance values CR1 and CR2 from the two result
files are compared and are validated if

� :¼ jCR1 � CR2j=ðCR1 þ CR2Þ< 0:12: (23)

In S5R5, about 0.045% of results that were processed by
the validator were marked as ‘‘invalid,’’ including both
syntax errors in individual files and errors in comparisons
of different results files. Excluding the syntax errors in
individual files, the error rate arising from comparisons
of pairs of distinct result files (most likely due to differ-
ences in floating point arithmetic on different computa-
tional platforms) was �0:015%.
Is it possible that two invalid results could agree with

each other and thus end up being marked as valid? While it
is difficult to exclude this scenario with complete certainty,
an upper limit for the probability of this happening is
ð0:015=100Þ2 � 2:2� 10�8 (only the 0.015% error rate
due to comparisons of distinct result files is relevant
here). As mentioned earlier, there were a total of �1:1�
107 WUs. It is therefore unlikely that even a single pair of
result files would be incorrect and still pass validation.
The threshold of 0.12 on the value of � defined above

turns out to be much looser than necessary. The differences

TABLE I. Instrumental lines identified and ‘‘cleaned’’ before
the Einstein@Home runs. The different columns represent (I) the
source of the line; (II) the central frequency of the instrumental
line; (III) the number of harmonics; (IV) low-frequency-side
(LFS) of the knockout band; (V) high-frequency-side (HFS) of
the knockout band; (VI) the interferometer where the instrumen-
tal lines were identified. Note that when there are higher har-
monics, the knockout band width remains constant.

Cause fL (Hz) Harmonics LFS (Hz) HFS (Hz) IFO

Calibration 46.7 1 0.0 0.0 H

Calibration 54.7 1 0.0 0.0 L

Mains 60 19 1 1 H, L

Wire 345 1 5 5 L

Wire 346 1 4 4 H

Calibration 393.1 1 0.0 0.0 H

Calibration 396.7 1 0.0 0.0 L

Wire 686.5 1 1.0 1.0 L

Wire 686.9 1 0.3 0.3 H

Wire 688.2 1 0.3 0.3 H

Wire 689.5 1 0.5 0.6 H

Wire 693.7 1 0.7 0.7 L

Wire 694.75 1 1.25 1.25 H

Wire 1029.5 1 0.25 0.25 L

Wire 1030.55 1 0.1 0.1 H

Wire 1031.0 1 0.5 0.5 L

Wire 1032.18 1 0.04 0.04 H

Wire 1032.58 1 0.1 0.1 H

Wire 1033.6 1 0.2 0.2 L

Wire 1033.7 1 0.1 0.1 H

Wire 1033.855 1 0.05 0.05 H

Wire 1034.6 1 0.4 0.4 H

Wire 1041.0 1 1.0 1.0 L

Wire 1041.23 1 0.1 0.1 H

Wire 1042.00 1 0.5 0.2 H

Wire 1043.4 1 0.2 0.2 H

Calibration 1144.3 1 0.0 0.0 H

Calibration 1151.5 1 0.0 0.0 L
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in the actual observed values of � from a pair of matching
result files are usually much smaller. The observed stan-
dard deviation of� turns out to be�0:012, i.e., an order of
magnitude smaller than the threshold. In addition, the
standard deviation of the difference CR1 � CR2 is mea-
sured to be �0:15, which corresponds to a standard devia-
tion of�0:7 in terms of the number count. As we shall see
later (see, e.g., Fig. 3), the loudest events in every 0.5 Hz
band have an average loudest number count * 70. Thus,
these differences correspond to a & 1% effect in the num-
ber count at the 1-� level, and we expect this to have a
negligible effect on our analysis.

C. Workunit design

The design of the WUs must satisfy certain require-
ments. The first is that the WUs must be balanced, i.e.,
each WU must cover the same number of parameter space
points so that they can be completed in roughly the same
amount of time by a typical host machine. Second, the
amount of data that must be downloaded by each host
machine and the maximum memory footprint of each job
must be within appropriate limits. Finally, one needs to
choose the computational time for each WU on a typical
host machine and the total time that the project should
run, given the total computational power that is available.
To meet these requirements, we need to understand how
to split up the parameter space, and to measure the CPU
core time spent by the search code on each part of the
analysis.

We start with the basic parameters of the search, namely
the total observation time Tobs, the coherent time baseline
Tseg, the number of segments Nseg, the resolution for the

coarse and fine sky grids, d�F and d�H, given by Eqs. (12)
and (13), respectively, and the frequency and spin-down

resolutions, �f and � _f, given by Eqs. (9) and (15), respec-
tively. Recall that the limit on the maximum memory
footprint of each job already forced us to forego any

refinement in _f.
Unlike the previous Einstein@Home search [24], where

eachWU searched the whole sky, here we choose eachWU
to cover a fixed frequency bandwidth B, the entire spin-

down search range, and a limited area of the sky. Let f̂b be
the highest frequency in the bth search band. We want the
computation time for every WU to be approximately the
same, hence every WU must search the same number of
coarse sky-grid points. Since the resolution in the sky, d�F ,
is inversely proportional to the frequency of the signal that
we are searching for, WUs at higher frequencies will be
searching smaller portions of the sky. LetNb be the number
of coarse grid sky points over the whole sky for the bth
band,

Nb ¼ 4�

d�2F
¼ 4�

�
vd

c

�
2 f̂2bT

2
seg

R2
; (24)

which is shown in Fig. 2 for the S5R5 run. At frequency f̂b,
we then partition the sky in Pb parts, each containing Nsky

points,

Pb ¼ Nb

Nsky

¼ Kf̂2b; (25)

with K ¼ 4�ðvd

c Þ2T2
segR�2N�1

sky. In practice, to limit the

number of sky-grid files needing to be downloaded by
the host machines, the sky grids are constant over 10 Hz
frequency bands and are determined based on the highest
frequency in each band. A sky-grid file is a two-column
ASCII file which specifies the positions in the sky (right
ascension and declination) of the coarse grid templates to
be searched for every frequency and spin-down value in a
given 10 Hz band.

We choose a constant range of _f values over the entire
frequency band. To see what this implies for potential
sources, we define the spin-down age for a system emitting

at a frequency f and spin down _f to be � ¼ f=j _fj.3 It is
clear that at a given search frequency, the minimum spin-

down age is determined by the maximum value of j _fj
included in the search. Our choice of a constant range of
_f means that the minimum spin-down age is frequency
dependent,

�bmin ¼ fb

j _fjmax

: (26)

We choose the minimum age at 50 Hz to be 800 years and a

fixed range in _f, �½�20; 1:1� � 10�10 Hz s�1.

200 400 600 800 1000 1200
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b
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FIG. 2 (color online). Total number of F -sky-grid points, for
the S5R5 run, as a function of the frequency, given by Eq. (24).

3The reader is warned that the spin-down age as defined here
can be rather different from the true chronological age of the star.
For a neutron star with a present day frequency f and spin down
_f due purely to the emission of GWs, the age would be f=4j _fj;
more generally this depends on the physical mechanisms that are
responsible for the spin down [43]. Moreover, the notion of a
spin-down age does not make sense for cases when _f > 0. This
might happen either due to accretion, or apparent spin up from
acceleration in the vicinity of a globular cluster core, or because
of proper motion leading to an apparently positive measured
value of _f.
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The total number of WUs is simply the sum of the total
number of sky partitions at each frequency fb,

NWU ¼ X
b

Pb ¼ K
X
b

f̂2b � K

B

Z fmax

fmin

f̂2df

¼ K

3B
ðf3max � f3min Þ: (27)

In the third step we have replaced the sum over frequencies
with an integral between a minimum (fmin ) and maximum
(fmax ) frequency. As a consistency check, we shall see
later that B ’ 20 mHz, which is sufficiently small that this
is a good approximation.

The total computing time for one WU can be expressed
as

�WU ¼ NskyN _f½ðNf þ NsbÞ�F þ Nf�H�; (28)

where Nf, N _f, and Nsky represent the number of coarse

search frequency bins, spin-down values, and sky-grid
points, respectively, �F and �H are the times needed to

compute the F -statistics and Hough number count for one
point of the coarse grid; Nsb

4 represents additional ‘‘side-
band’’ bins needed to compute the Hough-transform. The
need for these sidebands can be understood by thinking
about computing the Hough number count for a frequency
near the edge of a given search band: that number count
will involve summing the peakgrams along a curved track
that can extend a small distance to either side of the target
frequency.

The time �F needed to compute the F -statistic for one

point of the coarse grid can be expressed as

�F ¼ �1FNSFT; (29)

where NSFT is the total number of SFTs used in the search;
�1F is the time needed to compute theF -statistic per single

SFT. The time �H in Eq. (28), needed to compute the
Hough number count corresponding to one point of the
coarse grid, can be written as

�H ¼ �1HNsegN ref
sky; (30)

where �1H is the time to sum the Hough number count per
single data segment and per single point of the fine grid.
HereN ref

sky is an overall refinement factor, i.e., the number

of grid points analyzed by the Hough algorithm for each

coarse grid point. In our case, since the only refinement is
over the sky,N ref

sky is given by Eq. (14). The computational

time is thus determined by the two timing constants �1F and

�1H. For our implementation of the algorithm, these con-
stants were measured to be

�1F ¼ 180 ns; �1H ¼ 1:1 ns: (31)

The typical run time is found to vary by about 30% among
different machines (at the 1-sigma level). The numbers in
Eq. (31) are of course only average values for a typical host
CPU core available at the time of the Einstein@Home
runs.
The presence of Nsb leads to an overhead for the com-

putation. We want to control this overhead and keep it
below some acceptable level. Thus, we define the overhead

 to be the ratio between the time spent in computing the
F -statistic for the ‘‘sidebands’’ and the total computational
time,


 � �fsb�F
Bð�F þ �HÞ þ �fsb�F

: (32)

The bandwidth B needs to be sufficiently large so that

 is sufficiently small, but a too large value of B can
lead to excessively high download volumes for the
Einstein@Home clients. From the above equation, we
see that the frequency bandwidth B can be determined by
fixing 
,

B ¼ �fsb�F
�F þ �H

�
1� 





�
: (33)

For all the Einstein@Home runs presented here we choose

 ¼ 5%. For the S5R5 run, this leads to B ’ 20 mHz.
The total run time �p of the project is

�p ¼ �WUNWU

NCPU

; (34)

whereNCPU represents the number of volunteer CPU cores.
Given a certain number of CPU cores and having fixed �p,

the maximum search frequency fmax can be derived from
the above equations to be

f3max ¼ f3min þ 3
�pNCPU

�F þ �H

ð1� 
Þ�f
�N _f

; (35)

where � ¼ 4�ðvd

c Þ2T2
segR�2. For the S5R3 and S5R5 runs,

the nominal project duration was chosen to be 6 months.
With the above choices, the search frequency ranges for
S5R3 and S5R5 turn out to be respectively ½50; 1 200� Hz
and ½50; 1 190� Hz.

D. Accuracy of spin-down model

Let us briefly discuss the second-order spin-down €f
which, as mentioned previously, is not a part of our search.
For our frequency resolution �f, given by Eq. (9), and the

full observation time Tobs, €f would have to be at least

4The bins Nsb can be calculated by �fsb=�f, where the
average Hough ‘‘sidebands’’ h�fsbi can be estimated from the
Hough master equation. The frequency offset corresponding to
the half diagonal distance � ~n, over one Hough sky patch, is

h�fsbi ¼ ðf̂=cÞhj ~vy � � ~nji ¼ vy

vd

1ffiffi
2

p
Tseg

. By using Tseg ¼ 25

hours, we get for S5R3 h�fsbi � 5� 10�4 Hz and Nsb � 75
bins, while for S5R5 h�fsbi � 8:7� 10�4 Hz and Nsb � 130
bins. However, to be conservative, ð2� NsbÞ bins were used for
safety reasons and to take into account the changes of the
velocity on the different segments.
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€f min ¼ �f=T2
obs � 1:3� 10�20 Hz s�2 (36)

in order for the signal to move by a single frequency bin
over the full observation time. On the other hand, for a
minimum spin-down age �min at a frequency f, a useful

estimate for the range of €f that we should search is

f=�2min ¼ _f2max =f. Thus, €f is potentially more important

at lower frequencies and higher spin-down values. Using

the maximum value of j _fj in the search and the minimum

value of the search frequency gives us a value of €f that
might be of astrophysical interest,

€fast ¼ 8� 10�20 Hz s�2

� j _fjmax

2:0� 10�9 Hz=s

�
2 �

�
50 Hz

f

�
:

(37)

Comparing with the minimum value of €f obtained above,

we see that there is potentially a region in ðf; _fÞ space
where we could improve our astrophysical detection effi-

ciency by including €f; for our chosen range of _f there is no

effect of €f above �308 Hz. It is important to note that the
calculation of Eq. (36) is too conservative because it does
not include any correlations between the phase evolution
parameters. On the other hand, there is considerable un-

certainty in the value of €fast. If the neutron star has a

braking index n � f €f= _f2, then €fast increases by a factor
n. If a star is spinning down purely due to gravitational
wave emission, then n ¼ 5. On the other hand, for the Vela
and Crab pulsars, observed values of n are�1:4 and�2:5,
respectively [44,45].

The actual impact on our astrophysical reach is thus hard
to quantify. Let us consider as an example the extreme case
when the spin down is entirely due to gravitational radia-
tion so that the braking index is n ¼ 5. For this case, a
conservative estimate of the part of the spin-down range

j _fjcons that is included in our search is

� _fcons
2� 10�9 Hz s�1

	 0:18

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f

50 Hz

s
: (38)

Here we have used Eqs. (36) and (37) modified by the
braking index factor. This corresponds to a minimum spin-
down value of �1:8 nHz s�1 at the upper frequency of
1190 Hz and �3:6� 10�10 Hz s�1 at 50 Hz.

IV. S5R5 POSTPROCESSING

As said earlier, roughly 1011 candidates from the S5R5
run were returned to the Einstein@Home server. They
were then transferred to the 6720-CPU-core Atlas
Computing Cluster [46] at the Albert Einstein Institute in
Hannover and postprocessed. The goal is to filter the set of
1011 candidates, excluding false candidate events. The
postprocessing strategy consists of the following steps:

(i) selection of 100 most significant candidates in 0.5 Hz
frequency bands;

(ii) removal of known instrumental noise artifacts;
(iii) removal of unknown data artifacts through the

F -statistic consistency veto;
(iv) follow-up of the most significant candidates with

S5R3 data;
(v) fully coherent follow-up of the surviving candidates.

The items outlined above are described in the next
subsections.

A. Selecting the top candidates in frequency bands

As is commonly done in CW searches, the results are
examined separately in fixed-size search frequency bands;
here we choose to perform the analysis in 0.5 Hz bands.
As described earlier, in designing the WUs, we have pre-
viously been led to break up the frequency range in
�20 mHz bands and the sky has been partitioned as
well. This was however done for purely technical reasons
to make the search on Einstein@Home feasible. The
choice of frequency bands for the postprocessing is based
on different requirements. First, we would like the detector
to have roughly constant sensitivity within each frequency
band. Furthermore, as we shall see, the search does not
result in a convincing detection candidate, and upper limits
will be set over each of these frequency bands. Having a
large number of very narrow bands would make the calcu-
lation of the upper limit very computationally intensive.
The choice of 0.5 Hz is a compromise between these two
requirements. This choice is in fact comparable to previous
CW searches and will make comparisons straightforward.
Finally, we note that all other things being equal, having a
larger frequency band will in principle also lead to a
decrease in sensitivity simply because of having a larger
number of templates. This is however a relatively minor
effect in the present case.
For each of the 0.5 Hz-wide frequency bands, we select

the 100 most significant candidates for further analysis,
leading to a set of 228000 loudest S5R5 candidates. This
choice was dictated by the available computational and
human resources for the postprocessing. As will be illus-
trated in the following, at the end of the automated post-
processing procedure there will remain of order 10
candidates that survive all selection criteria. This is about
the number that we can afford to follow-up manually with
further investigations. As our follow-up procedures are
further automated and optimized, it will become possible
to consider lower thresholds and to inspect a correspond-
ingly larger number of candidates.
The number count of such candidates is plotted in Fig. 3

as a function of the frequency. For most bands, it is con-
sistent with expectations. The number count generally
increases with increasing frequency because the number
of sky points searched over increases [see Eq. (11)] and the
maximum expected value of a random variable, over re-
peated trials, grows with the number of independent trials.

EINSTEIN@HOME ALL-SKY SEARCH FOR PERIODIC . . . PHYSICAL REVIEW D 87, 042001 (2013)

042001-13



Let us ignore the effect of the weights, and take the Hough
number count nc [defined in Eq. (17)] to be an integer
random variable following a binomial distribution. The
cumulative probability for obtaining nc or lower is

FðncÞ ¼
Xnc
n¼0

Nseg

n

� �
pn
segð1� psegÞNseg�n: (39)

The binomial parameters are Nseg ¼ 121 and pseg ¼ 0:267

(consistent with a 2F threshold of 5.2). The probability
pmax that the maximum number count is nc over a set of
Ntrials independent trials is

pmax ðnc; NtrialsjNseg; psegÞ ¼ FðncÞNtrials � Fðnc � 1ÞNtrials :

(40)

We compute Eq. (40) as a function of Ntrials, which
we take to be the number of templates searched to
cover 0.5 Hz bands, i.e., 7:5�104 frequencyvalues�
18 spin-downvalues�8444Houghpixels perF skypoint�
Nb, the total number of F sky points shown in Fig. 2. The
number of Hough pixels has been computed using Eq. (14)
with m ¼ 0:3 and } ¼ 0:5. Figure 3 shows the expected
value of the maximum (central black curve), computed
using the probability function given by Eq. (40), super-
imposed on our measurements (red circles) and confirming

that there is broad agreement, in most bands, between our
results and the expectations for Gaussian noise.

B. Removing known data artifacts

As a first step of the postprocessing pipeline, we elim-
inated from the list of top candidates any candidate whose
frequency was too close to that of either a known artifact or
to the cleaned noise bands described in Sec. III A.
Specifically, we discarded those candidates whose detec-
tion statistic could have been constructed with contribu-
tions either from:
(i) data polluted in either of the two instruments by

spurious disturbances; details of such detector dis-
turbances are given in Appendix C and, in particular,
a list of known spectral disturbances for the H and L
instruments are listed in Tables VI and VII.

(ii) from fake noise that had been inserted by the clean-
ing process and hence could not host a CW signal
(see Table I in Sec. III A).

After this veto, about 25% of the candidates were elimi-
nated from the original set of 228000 loudest S5R5 candi-
dates. More precisely, a total of 172 038 S5R5 candidates
survived this veto. The bandwidth removed due to the lines
listed in Appendix C amounted to �243 Hz; an additional
27 Hz was removed due to the cleaned noise bands.
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FIG. 3 (color). Number count of top 100 loudest candidates (blue dots) selected in 0.5 Hz-wide frequency bands as a function of the
search frequency, across the entire S5R5 search frequency range. The loudest (most significant) candidate in every 0.5 Hz band is
indicated by a red circle. The expected values of the loudest candidates for Gaussian noise alone are shown by the central black curve.
The lower and upper black curves show 
3 standard deviations from the expected value.
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C. The F -statistic consistency veto

We have thus far considered only known instrumental
disturbances for vetoing candidates. However, we expect
there to be more such disturbances present in the data that
have not yet been explicitly identified. The idea is to
discriminate between disturbances in a single detector
and signals, which should produce consistent values of
the F -statistic in both detectors [47]. We refer to this
method as the F -statistic consistency veto.

For each of the 172038 S5R5 surviving candidates, the
single-detector and multidetector F -statistic was com-
puted for each of the 121 data segments and then averaged
over the segments. We refer to these averaged 2F values as
h2F Hi and h2F Li for the H and L detectors, respectively,
and h2F HLi for the coherent combination of the data from
the two detectors. Candidates were discarded if either
h2F Hi or h2F Li were greater than h2F HLi. Using this
veto, a small fraction (4.1%) of candidates was eliminated,
leaving 164971 surviving S5R5 candidates.

The impact of this veto is limited in this case due to the
prior removal of the bulk of instrumental artifacts.
However, the F -statistic consistency veto represents an
efficient method to remove disturbances that clearly stand
out of the noise in the absence of independent instrumental
evidence. Figure 4 shows the average 2F values for

164971 surviving (top plot) and 7067 vetoed (bottom
plot) S5R5 candidates as a function of the multidetector
average 2F values. By construction, all the surviving
candidates in the top panel of Fig. 4 lie below the red
dotted line, which defines the veto criterion.

D. Distribution of candidates

We have now applied all of our vetoes that try to remove
instrumental artifacts. While there will of course remain
other low amplitude instrumental spectral lines and hard-
ware signal injections (described later in Sec. VI), we now
need to deal with the possibility that, say, even Gaussian
noise can mimic a signal in some cases. All remaining
candidates will need to undergo detailed individual inspec-
tion and we will only be able to afford this for a few
candidates. As our follow-up techniques become more
refined, optimized and automated, we will be able to
improve this part of the pipeline and dig deeper into the
noise.
Figure 5 shows the histogram of h2F HLi for the 164971

surviving candidates up to h2F HLi values of 9. The distri-
bution actually extends up to h2F HLi � 542:8 but we show
only the low h2F HLi-values distribution in order to explain
our next choice of threshold. There are 166 candidates with
h2F HLi> 9 and they are all clustered at the two frequen-
cies of �108:9 Hz and �575:2 Hz, corresponding to two
simulated signals injected in the data stream, as discussed
in Sec. VI. The region h2F HLi< 6:5 contains well over
99% of the candidates and, as seen in Fig. 5, below 6.5 the
density of candidates increases very sharply. We will take
6.5 as a threshold for the next step in our follow-up
procedure.
The number of candidates expected to survive the 6.5 cut

on h2F HLi in fixed 0.5 Hz bands increases with frequency
because the number of sky locations searched scales with
the square of the searched frequency. In order to compute
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FIG. 4 (color). Values of 2F averaged over 121 data segments
for the single-detector case, h2F Hi (green dots), h2F Li (blue
dots) and the multidetector case, h2F HLi (red dots), against those
for the combined multidetector statistic. The top (bottom) plot
shows such values for 164971 (7067) surviving (vetoed) S5R5
candidates such that h2F Hi and (or) h2F Li is less (greater) than
h2F HLi.
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FIG. 5 (color online). Histogram of average multidetector 2F
values for 164971S5R5 surviving candidates. The red dotted line
draws the boundaries of the bulk of candidates due to instru-
mental noise and corresponds to the threshold h2F HLi ¼ 6:5.
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the false alarm probability corresponding to this threshold
in different frequency bands, we stress that in the absence

of a signal, the value of 2F HL in the ith segment, 2F ðiÞ
HL,

follows a �2 distribution with four degrees of freedom.
Furthermore, since

h2F HLi � 121 ¼ X121
i¼1

2F ðiÞ
HL; (41)

it is clear that h2F HLi � 121 is a �2 random variable with
(4� 121) degrees of freedom. The false alarm probability
corresponding to a threshold at (6:5� 121) for such a
random variable is �10�16. This corresponds to expected
false alarm rates of about 0.1, 0.6, 2.6, and 10% for
searches in Gaussian noise over 0.5 Hz bands at 100,
250, 500, and 1000 Hz, respectively, considering the num-
ber of independent trials given by the number of searched
templates in the respective bands. Disregarding the non-
Gaussian line features evident in Fig. 6, the ratio of the
number of candidates observed above the 6.5 threshold at
lower frequencies (say below 800 Hz) to that at higher
frequencies (say above 800 Hz) is not inconsistent5 with
the ratios of the false alarm rates computed above. We note
that the false alarm probability given above overestimates

the number of expected candidates above the 6.5 threshold
because that threshold is not the only cut applied to the
data. The previous cuts, discussed in the preceding sec-
tions, lower the actual false alarm probability of the surviv-
ing candidates.
There are 184 remaining S5R5 candidates, for which

h2F HLi> 6:5, and they are shown in Fig. 7 as a function of
the frequency. They are clustered at twelve frequencies and
only the most significant candidate from every cluster has
been followed up.

E. Following up candidates with S5R3 data

For the next step in our postprocessing pipeline, recall
that our underlying signal model of Eq. (1) assumes that
the signal is long lived; thus its amplitude is constant in
time and its intrinsic frequency evolves smoothly accord-
ing to Eq. (5) with a constant spin down. This is an
idealized model: although pulsars are the most stable
clocks in the Universe, neutron stars are nonetheless
known to glitch, to be perturbed by external agents, and
in some cases to be affected by significant timing noise.
Furthermore, for sufficiently long observation times, the
spin-down evolution model that we use here, including
only the first spin-down order, may not be adequate to
describe the actual signal model (see also the discussion
in Sec. III D). However, since the data set used in the S5R3
run ends just about a week before the S5R5 data set, it is
reasonable to assume that any putative signals should be
present in both data sets. Moreover, the average noise floor
level in the detectors turns out to be approximately stable
between S5R3 and S5R5. Thus, we might expect that a
detectable signal should be visible in both searches.
The next follow-up step for each candidate then consists

of a hierarchical search carried out on the same WU as

FIG. 6 (color online). Average multidetector 2F values of the
S5R5 candidates surviving the F -statistic consistency veto as a
function of the frequency. The horizontal line represents the
threshold value of h2F HLi ¼ 6:5. The bottom plot shows the top
plot in the region close to the threshold.

FIG. 7 (color online). Histogram of the S5R5 candidates that
have been further investigated through deep follow-up study
with the S5R3 data set.

5Due to the low number statistics, it is hard to make a sharper
statement.
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done for S5R5 (i.e., over the same parameter space), but
using the S5R3 data set. The closest6 candidate to the
original one from such a search was identified and the
value of its detection statistic was compared with what
one would expect if the S5R5 candidate were due to a
signal. In particular, the expected number counts in S5R3
and S5R5 should be related according to

E½NS5R3
c � ¼ NS5R5

c � 84=121; (42)

where 84 is the number of data segments used in S5R3, as
we shall see in Appendix B. Possible reasons for this not to
be a good approximation would be if the detector noise
floor were to vary significantly between S5R3 and S5R5 or
the fact that the relative geometry between the detector and
source varies in time. We have already remarked that the
noise floor is, on the average, stable between S5R3 and
S5R5. Furthermore, albeit in each segment the expected
2F values for a given signal might be different, if we
average this expected value over many nonoverlapping
segments, we expect this to converge within a few tens of
segments; recall here that each segment spans a duration of
25 hours, while the antenna pattern function of the detec-
tors has a periodicity of 24 hours. Thus, it is reasonable to
assume that Eq. (42) is valid.

Candidates for which the measured value NS5R3
c was

more than 3� less significant than the expected E½NS5R3
c �

were discarded as not being consistent with a CW signal,
where � was computed using Eq. (22). As shown in
Table II, two candidates were discarded by this follow-up
test, at �80:9 Hz and�108:9 Hz. However, the second of

these, as well as the candidates at �52:8 Hz and
�575:2 Hz, represent three simulated signals injected
only part of the time during S5, as discussed in Sec. VI.
As we can see from Fig. 7, the bulk of the candidates

arise from the strong hardware-injected pulsar 2 and 3
signals (see Sec. VI). In particular, 84 and 88 candidates,
respectively, are clustered near the frequencies of these two
injected signals.

F. Fully coherent follow-up

Excluding the hardware-injected simulated signals, the
postprocessing up to this point has left us with eight
surviving candidates. These have been significant enough
to pass our thresholds and have not been clearly identified
as instrumental artifacts, or eliminated by inconsistency
between the H and L detectors, or by the follow-up with the
S5R3 data set. We therefore need to consider other more
sensitive methods. If these candidates are real signals, then
their SNRs and significance should increase if the parame-
ter space grids are made finer, or as the coherent integration
time becomes larger.
We use a three-step procedure consisting of a grid-based

semicoherent Hough search, followed by a semicoherent
and a final fully coherent F -statistic search, using the
Mesh Adaptive Direct Search (MADS) algorithm for con-
strained optimization. The reference implementation of
the MADS algorithm is publicly available through the
NOMAD library [48,49]. Hence, in the following, we refer
to such searches simply as NOMAD searches. Contrary to
the traditional grid-based methods, a mesh adaptive search
constructs the trial points as the search evolves aiming to
find the maximum of the statistic.
The three steps of the follow-up procedure are the

following:
(1) Re-run the Hough search around a given candidate,

but with a finer grid to reduce the mismatch with a
putative signal. The search region includes five fre-
quency bins on either side around the candidate and
16 neighboring coarse sky-grid points. The fine
Hough sky grid is refined by a factor of 2 in each
direction by using } ¼ 1 (see Eq. (13)) instead of
0.5 as in the original search. Furthermore, we refine

the coarse _f grid spacing of Eq. (10) by a factor
Nseg ¼ 121 [19].

(2) The loudest candidate from the first step is used as a
starting point for the semicoherent F -statistic
NOMAD optimization. The detection statistic in
this step is the sum of the F -statistic values from
each segment. This search has been performed in a
fixed parameter space box around the starting point.
The dimensions of the box are �f ¼ 10�4 Hz,

�� ¼ 0:10 rad, �� ¼ 0:24 rad and � _f ¼
10�10 Hz s�1. The loudest candidate found in this
semicoherent F -statistic NOMAD search is passed
on to the next step.

TABLE II. S5R5 candidates followed up using the S5R3 data
set. The different columns represent (I) the candidate frequency
(shown also in Fig. 7), (II) its significance (CR), (III) the S5R5
number count (NS5R5

c ), (V) the expected, and (VI) observed
number count values after following the candidate up
(E½NS5R3

c � and NS5R3
c , respectively).

Frequency (Hz) CR NS5R5
c E½NS5R3

c � NS5R5
c

52.808297682 7.7 70 49 37

80.891816186 10.1 82 57 34

96.581099597 8.1 72 50 37

108.85716501 13.9 101 70 55

144.74321811 7.9 71 49 42

434.09886421 7.7 70 49 46

575.16357663 11.6 89 62 53

677.47882796 8.0 71 49 46

932.36948703 8.5 74 51 46

984.44286823 8.2 73 51 47

1030.1650892 9.1 77 53 53

1141.9926498 9.4 78 54 48

6The distance used to judge closeness between candidates is a
Euclidean distance expressed in bins in the four dimensions
ðf; _f; �; �Þ.
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(3) In the third step, the loudest candidate from the
previous step is used as a starting point for the fully
coherent F -statistic NOMAD search. This search
spans the entire duration of the S5R5 data set and
has been carried out in a parameter space box de-
fined by using the diagonal elements of the inverse
Fisher matrix in each dimension around the starting
point. These elements are described by Eq. (16) in
Ref. [50] and have been computed from the inverse
of the semicoherent parameter space metric com-
puted at the candidate point, rescaled by the mea-
sured SNR at the same point; for more details we
refer the reader to Ref. [50].

In both the semicoherent and fully coherent NOMAD
searches, we ran multiple instances of the algorithm iterat-
ing over the mesh coarsening exponent using both deter-
ministic [48] and stochastic [51] methods for the choice of
search directions. Based on Monte-Carlo studies, the false-
dismissal probability of the follow-up procedure is found
to be less than 10%.

As said earlier, in the presence of a real signal we expect
the significance of a candidate to increase as the template grid
becomes finer because there will be a template with a smaller
mismatch with respect to the real signal. At that template the
signature of the signal should be more evident and all the
consistency tests should continue to hold. If the candidate
signal detected on the finer grid does not pass a consistency
test, this indicates that it is not behaving as we would expect
from the signals that we are targeting. The candidates at
�96:6 Hz, �144:7 Hz, �932:4 Hz, �1030:2 Hz and
�1142 Hz fail a multidetector versus single-detector
F -statistic consistency test (see Sec. IVC) after performing
the semicoherent NOMAD search; therefore, they cannot be
considered defensible CW signals. Moreover, line artifacts
appear in the average power spectrum of S5 H data at
�932:4 Hz, �1030:2 Hz and �1142 Hz.

The remaining candidates, namely at �434:1 Hz,
�677:5 Hz and �984:4 Hz, survive the F -statistic con-
sistency test on the finer grid and are followed up with the
fully coherent F -statistic NOMAD search. However, for
each of them, the maximum value of the detection statistic
over the parameter space searched is much lower than
would be expected based on the original candidate parame-
ters, and in fact is consistent with the expectation for
Gaussian noise. Hence, also these three candidates do not
survive a more sensitive inspection and cannot be consid-
ered viable detection candidates. Thus, we see that all the
candidates listed in Table II are inconsistent with the
properties of a true CW signal.

V. UPPER LIMIT ESTIMATION

The analysis of the Einstein@Home searches presented
here has not identified any convincing CW signal. Hence,
we proceed to set upper limits on the maximum intrinsic
gravitational wave strain h0 that is consistent with our

observations for a population of CW signals described by
Eq. (8), from random positions in the sky, in the gravita-
tional wave frequency range ½50:5; 1 190� Hz, and with
spin-down values in the range of �½�20; 1:1� �
10�10 Hz s�1. The nuisance parameters cos �, �0, and c
are assumed to be uniformly distributed. As commonly
done in all-sky, all-frequency searches, the upper limits
are given in different frequency sub-bands and here we
have chosen these to be 0.5 Hz wide. Each upper limit is
based on the most significant event from the S5R5 search
in its 0.5 Hz band.

A. Monte-Carlo upper-limit estimates

Our procedure for setting upper limits uses Monte-Carlo
signal injection studies using the same search and post-
processing pipeline (except for the S5R3 and fully coherent
follow-ups) that we have described above. In every 0.5 Hz
band, our goal is to find the value of h0 (denoted h

90%
0 ) such

that 90% of the signal injections at this amplitude would be
recovered by our search and are more significant than the
most significant candidate from our actual search in that
band. We can thus exclude, with 90% confidence, the
existence of sources (from our specific population) that
have an amplitude h0 > h90%0 .

In order to estimate h90%0 , for each injection at a ran-

domly chosen parameter space point, a hierarchical search
is performed over a small parameter space region, which
consists of
(i) a 0.8 mHz frequency band centered at the S5R5

frequency grid point closest to the randomly chosen
source frequency;
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FIG. 8 (color online). Confidence versus the injected h0 values
for sets of 1000 injections in the band [216, 216.5] Hz. This plot
illustrates how the uncertainty on the confidence level affects the
uncertainty on the value of h90%0 .
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(ii) four spin-down values around the S5R5 frequency
derivative grid point closest to the randomly chosen
spin down;

(iii) a sky patch consisting of 10 S5R5 coarse sky-grid
points closest to the randomly chosen sky location.

At the end of each hierarchical search, the most significant
candidate is selected and postprocessed as described in the
previous section. The vetoes for excluding known instru-
mental lines are not required because we have already
excluded them from the upper-limit analysis. We first
check if this candidate is significant enough to be part of
the 100 Einstein@Home loudest candidates originally se-
lected in its corresponding 0.5 Hz band. Then we perform
the F -statistic consistency check and finally we compare
the computed average multiinterferometer 2F value
(h2F Cand

HL i) with the maximum h2F HLi value we have in
the corresponding 0.5 Hz band. If h2F Cand

HL i is greater than

the maximum h2F HLi, then the simulated source is con-
sidered to be recovered and more significant than the most
significant candidate of the search. The confidence level is
defined as C ¼ nrec=ntot, where nrec is the number of
recovered candidates, and ntot ¼ 100 is the total number
of injections performed.
After some preliminary tuning to determine a range of

h0 values close to the 90% confidence level, we use an
iterative procedure to determine the confidence as a func-
tion of the injected population h0 until we hit a confidence
value close to 90%, within the expected 1� fluctuations.
Since we use 100 injections, from a binomial statistic we
estimate the 1� fluctuation to be 3% and hence we asso-
ciate the h90%0 value to any measured confidence in the

range 87%–93%. The 3% uncertainty in confidence trans-
lates to an uncertainty in h90%0 smaller than 5%, as can be

seen from Fig. 8, which shows a typical confidence versus
injected h0 behavior. Each point in Fig. 8 was derived with

FIG. 9 (color). Upper limits for the S5R5 Einstein@Home search (red dots) as well as the previous Einstein@Home search, called
S5R1, which used early S5 data (blue dots) [24]. The three stars correspond to hardware-injected simulated pulsars which were
recovered in the S5R5 search. The curves represent the source strain amplitude h0 at which 90% of simulated signals would be
detected. The vertical bars represent 156 half-Hz frequency bands contaminated by instrumental disturbances for which no upper limits
are provided. The upper limits for the 0.5 Hz-wide bands starting at 69.5, 139.5, 335.5 and 648 Hz are fairly high due to significant
partial contamination in these bands by lines listed in Tables VI and VII. Note that the broadness of the red curve is due to the 5% steps
used to vary the injected population h0 values in the Monte-Carlo signal software-injections until a confidence value close to 90% is
reached. In addition, less than 1=4 of the spectral range shown was excluded in many narrow bands because of known instrumental
artifacts, as described in Sec. IVB. The cyan curve shows the predicted h90%0 upper limits according to Eq. (43).
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1000 injections and hence is affected by fluctuations
smaller than 1%.

The lower (red) curve in Fig. 9 shows the resulting upper
limits as a function of the frequency. The upper (blue)
curve shows the upper limit values from the previous
Einstein@Home search in early S5 data [24]. The current
upper limit values are about a factor 3 more constraining
than the previous Einstein@Home ones. In particular, the
most constraining upper limit falls in the 0.5 Hz-wide band
at 152.5 Hz, where we can exclude the presence of signals
with h0 greater than 7:6� 10�25. The three stars shown in
Fig. 9 correspond to the simulated pulsars 2, 3, and 5, i.e.,
the hardware injections recovered in the S5R5 search (dis-
cussed in Sec. VI).

The numerical data for the plot in Fig. 9 can be obtained
separately [52]. A conservative estimate of the overall un-
certainty on the h90%0 values shown in Fig. 9 is 15%, having

added to the 1� statistical upper limit estimation procedure
uncertainty the 10% amplitude calibration uncertainties for
the data used in this Einstein@Home run [53].

As we have excluded from the search those frequency
bands hosting spectral artifacts (Tables VI and VII) and the
cleaned noise bands (Table I), we therefore also exclude
these frequency intervals from the upper limit statements.
Vertical bars in Fig. 9 represent 156 half-Hz frequency
bands for which no upper limits are provided because the
entire half-Hz band has been excluded.

As shown in Fig. 9, the upper limits on h0 provided in
the 0.5 Hz-wide bands starting at 69.5, 139.5, 335.5,
and 648 Hz are fairly high, roughly equal to 3� 10�23,
8:8� 10�24, 1:7� 10�23 and 2� 10�23, respectively.
This is due to significant partial contamination in these
bands by lines listed in Tables VI and VII; the upper limit is
given for the remaining, clean part of the band, but loud
candidates from the disturbed part make up the loudest 100
candidates selected in the processing, so a simulated signal
must be especially loud to surpass those. Note that, for the
same reason, if we had set upper limits in the 156 half-Hz
bands shown in Fig. 9 we would have obtained similarly
high upper limits on h0.

B. Analytic sensitivity estimates

The h90%0 upper limits can be independently predicted

using the method in Ref. [54], adapted to the Hough-
on-F -statistic search method (see Ref. [55] for details).
The upper limit procedure described above is modeled
by a simple threshold on the number count, where the
thresholds are the largest number counts observed in
each 0.5 Hz upper limit band. The probability that, in
the neighborhood of an injected signal, the number count
nc will exceed a threshold nc;th is denoted by P½nc >
nc;thj�ðh0; cos �;�0; c ; mÞ�; this probability can be calcu-

lated analytically from the known distribution of nc. The
recovered SNR, �, is a function of the nuisance parameters
and of the mismatch m between the injected signal and the

nearest template. In addition, note that in the presence of a
signal, 2F follows a non-central �2 distribution with 4
degrees of freedom; �2 is the noncentrality parameter of
this distribution. In the presence of a signal, averaging P
over the parameters of � (except h0) gives hPðnc >
nc;thj�ðh0ÞÞi, which equals the confidence of recovering a

population of injections with amplitude h0. In each 0.5 Hz
band, we determine the value of h0 such that hPðnc >
nc;thj�ðh0ÞÞi ¼ 90%; this value is then the predicted value

of h90%0 , given by

h90%0 ¼ H

ffiffiffiffiffiffiffiffiffiffi
Sh
Tdata

s
(43)

as a function of the detector noise Sh and the total data
volume Tdata ¼ NsegTseg. The factorH varies from�141 to

FIG. 10 (color online). Panel (a) and (b) represent the distance
range (in kpc) and the maximum ellipticity, respectively, as a
function of the frequency. Both the panels are valid for neutron
stars spinning down solely due to gravitational radiation and
assuming a spin-down value of �� 2 nHz s�1. In these plots,
the 156 half-Hz frequency bands for which no upper limits are
provided have not been considered.
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�150 over the range of search frequencies, and is plotted

in Ref. [55]. It is given by H ¼ 2:5�̂90%
ffiffiffiffiffiffiffiffiffi
Nseg

p
, where �̂90%

is the mean injected SNR per segment of a population of
signals as described above, and is itself a function of the
false alarm and false dismissal probabilities, and Nseg

[54,55]. The variation of H as a function of frequency
arises from the variation of �̂90% as a function of the false
alarm probability in each upper limit band, which are
calculated from the largest number counts nc plotted in
Fig. 3.

The predicted values are shown by the cyan curve in
Fig. 9. The root-mean-square error between the Monte-
Carlo estimated and predicted h90%0 values (�7% over all

frequencies) is comparable with the uncertainties due
to calibration (10%) and the finite stepping of the
Monte Carlo procedure (5%). This demonstrates that the
sensitivity of the Hough-on-F -statistic search method, as a
function of the search parameters, is well understood.

C. Astrophysical reach

Figure 10 shows the maximum reach of our search.
The top panel shows the maximum distance at which we
could have detected a source emitting a CW signal with
strain amplitude h90%0 . The source is assumed to be spin-

ning down at the maximum rate considered in the search,
�� 2 nHz s�1, and emitting at the spin-down limit, i.e.,
with all of the lost rotational energy going into gravita-
tional waves. The intrinsic gravitational wave strain from a
source at a distance d, with frequency f, frequency deriva-

tive _f, and emitting at the spin-down limit is

hsd0 ¼ 4:54� 10�24

�
1 kpc

d

��
250 yr

�f=ð4 _fÞ
�
1=2

; (44)

where the canonical value of 1038 kgm2 is assumed for Izz
in Eq. (4). The bottom panel of the figure does not depend
on any result from the search. It shows the spin-down

ellipticity values as a function of the frequency for sources
emitting in gravitational waves all the energy lost while
spinning down at a rate of�� 2 nHz s�1. This is obtained

by setting _f ¼ �2 nHz s�1 in the following equation:

"sd ¼ 7:63� 10�5

� � _f

10�10 Hz s�1

�
1=2

�
100 Hz

f

�
5=2

: (45)

Around the frequency of greatest sensitivity, 152.5 Hz, we
are sensitive to objects as far as 3.8 kpc and with an
ellipticity "� 10�4. Normal neutron stars are expected
to have " less than a few times 10�6 based on theoretical
predictions [31]. A plausible value of "� 3:5� 10�6

could be detectable by a search like this if the object
were emitting at 625 Hz and at a distance no further than
500 pc.

VI. STUDY OF HARDWARE-INJECTED SIGNALS

As part of the testing and validation of search pipelines
and analysis codes, simulated signals are added into the
interferometer length control system to produce mirror
motions similar to what would be generated if a gravita-
tional wave signal were present. Table III shows the pa-
rameters of the set of simulated CW signals injected into
the LIGO detectors; we shall often refer to these injections
also as ‘‘fake pulsars.’’ These injections were active from
the GPS epoch 829412600 s until 875301345 s. Of these
ten hardware-injected CW signals, eight had frequencies
covered by the S5R5 search frequency band: the fake
pulsars 4 and 7 have frequencies outside this band and
thus have not been taken into account during this analysis.
The fake pulsars 6 and 8 have spin-down values outside the
S5R5 search frequency derivative range.
As a minor complication, the hardware injections were

not active all the time. In the S5R5 data set, their duty cycle
was �63% and �60% in L and H, respectively. The
hardware injections were active in 76 of the 121 S5R5

TABLE III. Simulated (‘‘fake’’) pulsar hardware injections during the S5 LIGO run, created with the JPL DE405 Sun and Earth
ephemeris files. The pulsar parameters are defined at the GPS reference time of 751680013 s in the SSB frame. These are the frequency
fP, the spin down _f, the sky position ð�; �Þ, the polarization angle c , the initial phase �0, the inclination parameter cos � and the
dimensionless strain amplitude h0. These parameters correspond to the only set of hardware injections, injected into the S5 LIGO data,
that fall within the GPS times of the S5R5 data.

Name fP (Hz) _f (Hz s�1) � (rad) � (rad) c (rad) �0 (rad) cos � (rad) h0

Fake pulsar 0 265.5771052 �4:15� 10�12 1.248817 �0:981180 0.770087 2.66 0.794905 2:47� 10�25

Fake pulsar 1 849.0832962 �3:00� 10�10 0.652646 �0:514042 0.356036 1.28 0.463822 1:06� 10�24

Fake pulsar 2 575.163573 �1:37� 10�13 3.756929 0.060109 �0:221788 4.03 �0:928576 4:02� 10�24

Fake pulsar 3 108.8571594 �1:46� 10�17 3.113189 �0:583579 0.444280 5.53 �0:080666 1:63� 10�23

Fake pulsar 4 1403.163331 �2:54� 10�8 4.886707 �0:217584 �0:647939 4.83 0.277321 4:56� 10�23

Fake pulsar 5 52.80832436 �4:03� 10�18 5.281831 �1:463269 �0:363953 2.23 0.462967 4:85� 10�24

Fake pulsar 6 148.7190257 �6:73� 10�9 6.261385 �1:141840 0.470985 0.97 �0:153733 6:92� 10�25

Fake pulsar 7 1220.979581 �1:12� 10�9 3.899513 �0:356931 0.512323 5.25 0.756814 2:20� 10�24

Fake pulsar 8 194.3083185 �8:65� 10�9 6.132905 �0:583263 0.170471 5.89 0.073903 1:59� 10�23

Fake pulsar 9 763.8473165 �1:45� 10�17 3.471208 1.321033 �0:008560 1.01 �0:619187 8:13� 10�25
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data segments, and they were completely absent in the
remaining 45 segments. Their expected value of the
Hough number count is thus

E½nHIc � ¼ X
j

�jwj þ p
X
l

wl; (46)

where the superscript ‘‘HI’’ refers to Hardware Injection, j
runs over the number of data segments where the hardware
injections were active and l runs over the remaining seg-
ments, and thewj are the Hough weights given by Eq. (18);

�j and p are the probabilities that the estimated value of

2F (for a given data segment) crosses the threshold
2F th ¼ 5:2 in the presence and absence of a signal, re-
spectively (expressions for �j and p can be found in

Refs. [12,19]).
Figure 11 shows, for each pulsar hardware injection, the

histograms of the expected 2F values, computed for all the
segments where a particular hardware injection was active.
From this figure one can infer that the fake pulsars ex-
pected to be the loudest in terms of 2F values are pulsars 2,
3, 5, and 8.

The pulsar hardware injections go through the normal
search and postprocessing pipelines in the usual way as
described in the previous sections. As discussed in the
following, the fake pulsars recovered in the S5R5 search
are pulsars 2, 3, and 5. On the other hand, fake pulsars 6
and 8 are missed because their spin-down values are out-
side our search range. As expected, fake pulsars 0, 1, and 9
are not recovered because their amplitudes are too weak
and they do not pass the h2F HLi> 6:5 cut, as shown in
Table IV. In this table, the observed number counts of 69–
72 are consistent with noise fluctuations in those half-Hz

bands (see Fig. 3) superseding the weak injected signals.
Note that the expected 2F values shown in Fig. 11 were
computed assuming a search using exactly the correct
signal parameters provided in Table III, while the observed
h2F HLi values in Table IV were obtained from our search
which uses a grid of templates, so significant mismatch is
to be expected. Table IV compares the expected and ob-
served values of the number counts associated with the S5
hardware injections and the surviving S5R5 candidate
events closest to them. As in Sec. IVE, the measure of

FIG. 11 (color online). Histograms of the 2F values estimated, for every data segment, for all the S5 hardware injections covered by
the investigated frequency range. The largest 2F values are from the fake pulsars 2, 3, 5, and 8. In all the plots, the total number of data
segments where the hardware injections were active is 76.

TABLE IV. Comparison between the expected and observed
number counts (E½nHIc � and NS5R5

c , respectively) associated with
the hardware injections and the recovered S5R5 candidates
closest to these injections. The h2F HLi values for each of the
candidates are also listed. The fake signals labeled pulsar 4 and 7
were not taken into account in this analysis since they have
frequencies outside the S5R5 search frequency range. The ‘‘ex-
pected’’ values marked by asterisks are not actually expected to
be obtained because the spin-down rates for those signals lie
outside the range of this search.

Name E½nHIc � NS5R5
c h2F HLi

Fake pulsar 0 53 69 5.6

Fake pulsar 1 49 71 5.7

Fake pulsar 2 88 80 22.3

Fake pulsar 3 89 96 197.1

Fake pulsar 5 85 70 6.6

Fake pulsar 6 76� 71 5.3

Fake pulsar 8 87� 72 5.5

Fake pulsar 9 53 72 5.8
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distance used here is a Euclidean distance, expressed in

bins, in the four dimensions ðf; _f; �; �Þ.
Table V lists the parameters of pulsars 2, 3, and 5 and the

parameters of the corresponding recovered candidates. We
successfully find candidates near the correct signal pa-
rameters. The mismatch in spin down might seem large,
but in fact the injections were found at the nearest spin-
down template. The number count values show consistency
within the 3� range.

VII. CONCLUSIONS

No evidence for continuous gravitational waves has
been observed in the search presented here. Upper limits
on the intrinsic gravitational wave strain have been derived
using standard population-based methods and are shown in
Fig. 9. These results are about a factor of 3 more constrain-
ing than those from the previous Einstein@Home search in
early S5 data [24]. This improvement comes from using
more data (a year versus two months), from using a multi-
detector coherent statistic (versus a single-detector statis-
tic), from a lower effective threshold in the coherent
detection stage, and from a more sensitive incoherent
method to combine the information from the coherently
analyzed segments. The largest effect comes from low-
ering the effective threshold. Indeed much of the improve-
ment in sensitivity is attributable to improved data analysis
methods (as opposed to improved detector sensitivity). If
we had used the much higher threshold of 25 on 2F , as in
Ref. [24], our sensitivity would have been a factor of�2:5
worse than our final upper limits,7 thereby undoing almost
all of the factor of 3 improvement mentioned above.

We have not included second time derivatives of the
frequency in our search. This could be astrophysically
significant in some regions of parameter space, as dis-
cussed in Sec. III D. It is important to keep this caveat in
mind while interpreting our results.

This is the most sensitive wide-frequency-range, all-sky
search for CW signals performed to date. The upper limit

values are comparable to those obtained recently using the
PowerFlux method [22,26] on the entire S5 data set
(S5R3þ S5R5). Reference [26] searched for CW signals
over the whole sky, in a smaller frequency band (up to
800 Hz versus 1 190 Hz here), but a broader spin-down
range up to �6 nHz=s. Strain upper limits were set at the
95% confidence in 0.25-Hz wide sub-bands. In particular,
near 152 Hz, the PowerFlux strict, all-sky upper limit
on worst-case linearly (best-case circularly) polarized
strain amplitude h0 is �1� 10�24 (3:5� 10�25). As a
comparison, at the same frequency, this search constrains
the strain to h0 & 7:6� 10�25 (as shown in Fig. 9), 9:2�
10�25 and 3:2� 10�25 for the case of average, linear and
circular polarization, respectively, with a 90% confidence
level in a 0.5-Hz wide band.
The most constraining upper limit obtained by this

search is h90%0 � 7:6� 10�25 at 152 Hz; the corresponding

maximum reach is roughly 4 kpc, assuming "� 10�4.
It has long been expected that searching a large parame-

ter space for CW signals will require hierarchical semi-
coherent searches. This analysis is a milestone towards that
goal, and we expect that future analyses will build on the
tools developed here.
There are a number of areas where further improvements

are possible. In the latest round of analysis (an
Einstein@Home processing run that began in March
2012), some of the postprocessing techniques developed
for this analysis have been ‘‘moved upstream’’ to the hosts.
One example is the generalizedF -statistic consistency test
[56]. This continues the pattern of moving analyses for-
merly carried out in the postprocessing stage (for example,
the incoherent combination step) onto host machines.
Another step forward is in the semi-coherent algorithm
that combines the coherent analyses from the different
segments. The Hough algorithm described here turned
out to be rather cumbersome, and does not combine the
coarse and fine grids in an optimal way. The latest round of
Einstein@Home processing makes use of a simpler opti-
mal semicoherent method, which allows longer coherent
time baselines to be used. This method, based on a detailed
analysis of correlations in parameter space [57], is de-
scribed in Ref. [58]. Looking farther forward, we expect
to use higher-order spin-down parameters both to search

TABLE V. Study of hardware injections in the S5R5 search. Values of ðf; �; �; _fÞ for the fake pulsar 2, 3, 5 and for the closest
recovered candidates (denoted as Cand 2, 3, 5) are listed. The nc value in the last column represents the expectation value E½nHIc � for
the fake pulsars and the observed number count NS5R5

c for the corresponding recovered candidate.

Name f (Hz) � (rad) � (rad) _f (Hz s�1) nc

Fake pulsar 2 575.163573 3.756929 0.060109 �1:37� 10�13 88

Cand 2 575.163556 3.757514 0.065354 �1:64� 10�11 80

Fake pulsar 3 108.857159 3.113189 �0:583579 �1:46� 10�17 89

Cand 3 108.857158 3.09806 �0:5839483 �1:64� 10�11 96

Fake pulsar 5 52.8083243 5.281831 �1:463269 �4:03� 10�18 85

Cand 5 52.8082977 5.58845 �1:470972 �1:64� 10�11 70

7Note that this does not mean that simply lowering the
threshold to 5.2 in the S5R1 search would increase the S5R1
sensitivity by a factor 2.5.
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for a broader class of signals as well as to be able to employ
longer coherent time baselines in the analysis.

The Advanced LIGO and Advanced Virgo detectors are
currently under construction, and should begin operations
around 2016. In comparison with the current generation,
these instruments will provide an order-of-magnitude im-
provement in strain sensitivity, increasing the volume of
space observed by a factor of a thousand.

These and other improvements in data analysis methods
and instrumentation make us optimistic that we will
eventually be able to make direct detections of CW signals.
Such detection will provide new insights into the internal
structure, formation history and population statistics of
neutron stars.
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APPENDIX A: PROBLEMS IN CALCULATING
THE WEIGHTS

In this section we describe two software errors that
affected the main hierarchical search code. While these
errors did not invalidate the search results and were
dealt with adequately, we document them here for
completeness.

The first issue is connected with the choice of weights
used to construct the number count defined in Eqs. (17) and
(18). The weights for each segment are computed follow-
ing Eq. (19) which uses the harmonic mean of the noise
spectra for each SFT. However, the original method for
computing the weights used the arithmetic mean of the
contributions instead of the harmonic mean, which turned
out to have the perverse effect that segments with a few
noisy SFTs got a disproportionately large weight. This led
to a much larger value for the variance given in Eq. (22)
and a correspondingly anomalously small value of the
significance defined in Eq. (21). All WUs were originally
run using the arithmetic mean which led to anomalously
low values of the significance CR due to non-stationary
noise for a small number of frequency bands: [50, 202],
[328.5, 329], [995.5, 1010], and [1069, 1075] Hz. TheWUs
for these bands were re-computed with the weights given
by Eq. (19). All other frequencies are unaffected by this
problem.
A second issue, which interacts with the problematic

calculation of the weights described above, is floating point
inaccuracy in our implementation of the Hough-transform
algorithm. A single threshold crossing for the F -statistic
leads to aþ1 in number count for possibly a large number
of points in parameter space [18], and it is not necessary to
step through parameter space point-by-point to calculate
the final number count. For the vast majority of cases, our
implementation of the Hough transform agrees with the
brute force approach for calculating the number count, but
the two can occasionally differ. If we were not using
weights, these differences would have a minor effect on
the number count. Occasionally, however, these floating
point errors coincide with the cases when we assign ex-
cessively large weights to particular segments as discussed
above. In these cases, the discrepancies in the number
count can be large and in some cases may even exceed
the number of segments, which is in principle a strict upper
bound on the number count. Note that our upper limits
remain valid because they consistently use the same search
code, and any candidates are followed up by independent
codes, thereby avoiding spurious false alarms. Using the
modified weights based on Eq. (19) fixes this problem as
well.

APPENDIX B: S5R3 POSTPROCESSING

The S5R3 run was launched on September 23, 2007, and
ended on September 25, 2008. Like S5R5, it was an all-sky
search. It used 7237 S5 LIGO SFTs, collected between the
GPS times of 818845553 s (Sat Dec 17 09:05:40 GMT
2005) and 851765191 s (Tue Jan 0209:26:17 GMT 2007).
The data analyzed consisted of 3781 SFTs from H and
3456 SFTs from L. The number of data segments used for
the S5R3 run was 84, with duration each Tseg ¼ 25 hours.

The search frequency range was [50, 1200] Hz, with a
frequency resolution �f� 6:7� 10�6 Hz and a mismatch
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value m ¼ 0:3, leading to the spin-down resolution given
by Eq. (16). In the S5R3 run, each WU analyzed a constant
frequency bandwidth B ’ 16 mHz, the full spin-down in-
terval, ranging roughly from �1:6 nHz s�1 to �3:1�
10�11 Hz s�1 in steps of 3:8� 10�10 Hz s�1, and a certain
region of the sky, as already discussed in Sec. III C. The sky
grids and output file formats are identical to those used in
S5R5. A major difference with S5R5 are the weights: no
weighting schemewas used in S5R3, and all the weightswi

appearing in Eq. (17) were set to unity. In total,�7� 1010

S5R3 candidates were sent back to the Einstein@Home
server. The S5R3 postprocessing was performed before
that for S5R5, and it was used as a ‘‘test-bed’’ for the
latter. It consists of the same series of steps described
previously in Sec. IV. The significance values of the 100
loudest candidates in 0.5 Hz-wide frequency bands are
plotted in Fig. 12 as a function of the frequency. These
represent a total of 230000 candidates. This set is re-
duced by �27% via the removal of instrumental noise
artifacts (listed in Tables VI and VII) and of the candi-
dates from search frequency bands close to the fake
noise (according to Table I). For all the surviving
167779 candidates, the F -statistic consistency veto
described in Sec. IVC removes an additional 3.6%.
Figure 13 shows the values of h2F Hi, h2F Li and
h2F HLi versus h2F HLi for 161785 candidate events
that survived (top plot) and 5994 that were excluded
(bottom plot).

Candidates whose h2F HLi-value is greater than 6.5,
i.e., 1465 out of 161785, are followed up by performing
a hierarchical search using the S5R5 data set. This run,
whose details are described in Sec. IV, consists of �46%
more data than was used for S5R3 and is thus more
sensitive than S5R5. The followed-up candidates are
plotted in Fig. 14 as a function of the frequency: 87

TABLE VI. Known S5 H spectral artifacts. The different col-
umns represent (I) the central frequency of the instrumental line;
(II) the number of harmonics including the fundamental;
(III) low-frequency (LF) bound of the knockout band;
(IV) high-frequency (HF) bound of the knockout band; (V) the
cause of the line (see key below). When there were higher
harmonics, the third and fourth columns were multiplied by
the harmonic number to yield the proper LF and HF bounds.

fL (Hz) Harmonics LF HF Cause

1.0 1000 0.9999194 1.0000806 Electronics

46.70 1 46.6932 46.7068 Calibration

48 1 47.96 48.04 Pulsed-heating

51 1 50.96 51.04 Pulsed-heating

54 1 53.96 54.04 Pulsed-heating

57 1 56.96 57.04 Pulsed-heating

60 121 59.96 60.04 Mains

63 1 62.96 63.04 Pulsed-heating

66 1 65.96 66.04 Pulsed-heating

69 1 68.96 69.04 Pulsed-heating

72 1 71.96 72.04 Pulsed-heating

85.80 1 85.79 85.81 Electronics

89.9 1 89.84 89.96 Electronics

93.05 1 93.04 93.06 Unknown

93.25 1 93.24 93.26 Unknown

139.95 1 139.94 139.96 Electronics

164.52 1 164.51 164.53 Electronics

329.51 2 329.49 329.53 Wire

329.58 1 329.56 329.59 Electronics

329.59 2 329.57 329.61 Wire

329.70 2 329.67 329.72 Wire

329.78 2 329.75 329.8 Wire

329.86 1 329.85 329.87 Electronics

335.695 1 335.67 335.72 Wire

335.7230 1 335.698 335.748 Wire

335.7410 1 335.716 335.766 Wire

335.8200 1 335.795 335.845 Wire

343.2879 1 343.261 343.315 Wire

343.4145 1 343.394 343.435 Wire

343.9272 1 343.907 343.948 Wire

344.0584 1 344.038 344.079 Wire

344.5247 1 344.499 344.55 Wire

344.6685 1 344.647 344.69 Wire

344.7186 1 344.692 344.745 Wire

344.8280 1 344.810 344.847 Wire

347.1824 1 347.16 347.204 Wire

347.3107 1 347.29 347.331 Wire

347.3635 1 347.34 347.387 Wire

347.5099 1 347.489 347.531 Wire

347.5818 1 347.557 347.606 Wire

347.6860 1 347.664 347.708 Wire

347.7230 1 347.703 347.743 Wire

393.1000 1 393.093 393.107 Calibration

539.43 1 539.42 539.44 Electronics

546.06 3 545.89 546.21 Wire

548.36 1 548.37 548.37 Electronics
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FIG. 12 (color online). Significance of 230000 loudest candi-
dates selected in 0.5 Hz-wide frequency bands as a function of
the frequency.
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fL (Hz) Harmonics LF HF Cause

564.07 3 563.9 564.22 Wire

566.10 3 565.93 566.25 Wire

568.10 3 567.93 568.25 Wire

646.385 3 646.22 646.535 Wire

648.835 3 648.67 648.985 Wire

649.87 1 649.86 649.88 Unknown

659.31 1 659.30 659.32 Electronics

686.6615 1 686.634 686.689 Wire

686.9176 1 686.896 686.939 Wire

688.0224 1 688 688.044 Wire

688.2825 1 688.26 688.305 Wire

689.1301 1 689.108 689.152 Wire

689.4262 1 689.404 689.449 Wire

689.5036 1 689.482 689.525 Wire

689.7361 1 689.715 689.758 Wire

694.4720 1 694.447 694.497 Wire

694.7292 1 694.703 694.755 Wire

695.0220 1 694.999 695.045 Wire

695.2091 1 695.185 695.233 Wire

695.4274 1 695.404 695.451 Wire

695.4814 1 695.457 695.506 Wire

915.80 1 915.79 915.81 Electronics

960 1 959.99 960.01 Timing

961 1 960.99 961.01 Timing

995.50 1 995.49 995.51 Electronics

1009.70 1 1009.69 1009.71 Electronics

1030.55 1 1030.48 1030.63 Wire

1032.19 1 1032.16 1032.23 Wire

1032.58 1 1032.56 1032.61 Wire

1033.78 1 1033.77 1033.79 Electronics

1033.8766 1 1033.84 1033.92 Wire

1034.3294 1 1034.3 1034.36 Wire

1034.4549 1 1034.42 1034.49 Wire

1034.821 1 1034.78 1034.86 Wire

1042.25 1 1042.18 1042.32 Wire

1042.3785 1 1042.35 1042.41 Wire

1042.8179 1 1042.8 1042.84 Wire

1043.0272 1 1042.99 1043.06 Wire

1043.3351 1 1043.31 1043.36 Wire

1043.455 1 1043.38 1043.53 Wire

1144.3 1 1144.29 1144.31 Calibration

1374.4509 1 1374.43 1374.47 Wire

1376.6139 1 1376.59 1376.64 Wire

1377.1423 1 1377.12 1377.17 Wire

1378.7493 1 1378.72 1378.78 Wire

1379.3999 1 1379.37 1379.43 Wire

1379.5062 1 1379.48 1379.53 Wire

1380.0283 1 1380 1380.05 Wire

1390.0061 1 1389.98 1390.03 Wire

1390.6821 1 1390.66 1390.71 Wire

1391.4240 1 1391.4 1391.45 Wire

1391.5967 1 1391.57 1391.62 Wire

TABLE VI. (Continued)

fL (Hz) Harmonics LF HF Cause

1718.5697 1 1718.54 1718.6 Wire

1721.9155 1 1721.89 1721.94 Wire

1724.0104 1 1723.94 1724.08 Wire

1724.9704 1 1724.95 1725 Wire

1725.6181 1 1725.59 1725.64 Wire

1737.9391 1 1737.92 1737.96 Wire

1738.9907 1 1738.97 1739.01 Wire

1739.8250 1 1739.8 1739.85 Wire

1740.0280 1 1740 1740.05 Wire

TABLE VI. (Continued)

TABLE VII. Known S5 L spectral artifacts. The columns are
the same as in Table VI.

fL (Hz) Harmonics LF HF Cause

1.0 1000 0.9999194 1.0000806 Electronics

54.7000 1 54.6932 54.7068 Calibration

59.0683 1 58.9749 59.1617 Pulsed-heating

59.3918 1 59.3146 59.469 Pulsed-heating

59.7382 1 59.5942 59.8822 Pulsed-heating

60 121 59.96 60.04 Mains

60.2731 1 60.1556 60.3906 Pulsed-heating

60.5918 1 60.5284 60.6552 Pulsed-heating

60.9497 1 60.8609 61.0385 Pulsed-heating

93.2903 1 93.2758 93.3048 Electronics

96.7082 1 96.6959 96.7205 Electronics

139.9387 1 139.92 139.958 Electronics

145.0622 1 145.047 145.078 Electronics

186.5874 1 186.565 186.61 Electronics

193.4164 1 193.395 193.437 Electronics

233.2314 1 233.185 233.277 Electronics

241.7774 1 241.713 241.842 Electronics

329.2339 2 329.216 329.252 Wire

329.3409 2 329.323 329.359 Wire

329.4025 2 329.379 329.426 Wire

335.276 1 335.256 335.296 Wire

335.4100 1 335.386 335.434 Wire

335.5950 1 335.57 335.62 Wire

335.7770 1 335.752 335.802 Wire

342.9424 1 342.915 342.97 Wire

343.0980 1 343.075 343.121 Wire

343.355 1 343.335 343.375 Wire

343.4726 1 343.451 343.494 Wire

343.6231 1 343.6 343.647 Wire

344.266 1 344.246 344.286 Wire

344.4132 1 344.392 344.434 Wire

346.6349 1 346.603 346.667 Wire

346.8060 1 346.784 346.828 Wire

346.8727 1 346.85 346.896 Wire

346.9151 1 346.895 346.935 Wire
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candidates are clustered at�108:857Hz and represent the
contribution of the hardware injection pulsar 3 [59]; 73
candidates have frequencies peaked around �1081 Hz,
59 candidates at �1198:9 Hz and 28 at �1141 Hz.
Except for the candidates that represent the contribution
from the hardware injected signal, none of the S5R5

fL (Hz) Harmonics LF HF Cause

346.9650 1 346.945 346.985 Wire

347.0370 1 347.017 347.057 Wire

396.7 1 396.693 396.707 Calibration

685.9147 1 685.893 685.937 Wire

686.2051 1 686.172 686.238 Wire

686.8158 1 686.792 686.84 Wire

687.0511 1 687.021 687.081 Wire

687.3246 1 687.301 687.348 Wire

688.8577 1 688.832 688.883 Wire

693.4187 1 693.392 693.445 Wire

693.6827 1 693.652 693.713 Wire

693.7638 1 693.74 693.788 Wire

693.9111 1 693.888 693.934 Wire

693.9834 1 693.958 694.008 Wire

694.0889 1 694.058 694.12 Wire

960 1 959.99 960.01 Timing

961 1 960.99 961.01 Timing

1029.5578 1 1029.53 1029.58 Wire

1030.7536 1 1030.73 1030.78 Wire

1031.1536 1 1031.13 1031.18 Wire

1033.5104 1 1033.49 1033.53 Wire

1040.3507 1 1040.33 1040.37 Wire

1040.6940 1 1040.67 1040.72 Wire

1040.7343 1 1040.71 1040.76 Wire

1040.7859 1 1040.76 1040.81 Wire

1041.0204 1 1041 1041.04 Wire

1041.1701 1 1041.15 1041.19 Wire

1041.2731 1 1041.25 1041.29 Wire

1150.0661 1 1149.15 1150.98 Calibration

1151.9118 1 1151.56 1152.26 Calibration

1372.9742 1 1372.95 1373 Wire

1374.6601 1 1374.64 1374.68 Wire

1375.2021 1 1375.18 1375.23 Wire

1378.3695 1 1378.34 1378.39 Wire

1387.3946 1 1387.37 1387.42 Wire

1387.9327 1 1387.9 1387.96 Wire

1387.9660 1 1387.92 1388.01 Wire

1388.0561 1 1388.03 1388.08 Wire

1388.3850 1 1388.35 1388.42 Wire

1388.5530 1 1388.53 1388.58 Wire

1388.7127 1 1388.69 1388.74 Wire

1716.8006 1 1716.77 1716.83 Wire

1718.8679 1 1718.84 1718.89 Wire

1719.5480 1 1719.52 1719.57 Wire

1723.4861 1 1723.46 1723.51 Wire

1734.7999 1 1734.78 1734.82 Wire

1735.9610 1 1735.94 1735.99 Wire

1736.1977 1 1736.16 1736.23 Wire

1736.4134 1 1736.39 1736.44 Wire

1920.0000 1 1919.99 1920.01 Timing

1921.0000 1 1920.99 1921.01 Timing

1922.0009 1 1921.98 1922.02 Timing

TABLE VII. (Continued)

101
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102
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FIG. 13 (color). Values of 2F averaged over 84 data segments
for the single-detector case, h2F Hi (green dots), h2F Li (blue
dots), the multidetector case (h2F HLi, red dots) against those for
the combined multidetector statistic (h2F HLi). The top (bottom)
plot shows such values for 161785 (5994) surviving (vetoed)
candidates such that h2F Hi and (or) h2F Li is less (greater) than
h2F HLi.

FIG. 14 (color online). Histogram of 1465 S5R3 candidates
that have been further investigated through follow-up study
using the S5R5 data set.
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candidates is consistent with a signal at a level consistent
with the observed S5R3 excess. We then conclude that
no gravitational wave signal is observed in the S5R3
data.

APPENDIX C: INSTRUMENTAL
NOISE ARTIFACTS

This appendix contains lists of the main known
spectral lines of instrumental origin in the LIGO detectors
during the S5 run. They were individually identified with a
particular source, or were members of identified combs of
lines found in many channels (e.g., 60 Hz combs), or the
source was unknown, but they were found in frequency
coincidence between the gravitational wave channel and
auxiliary channels. In the latter case, to ensure that actual
gravitational wave signals were not rejected, the SNR in
the auxiliary channel had to be at least five times larger
than in the gravitational wave channel and the density of
lines in the auxiliary channel had to be low enough that
accidental coincidence with a line in the gravitational wave
channel was highly unlikely. The spectral lines and har-
monics detected in H and L are listed in Tables VI and VII,
respectively. As mentioned earlier, on the basis of these
tables, about 22 and 25% of candidates have been excluded
from the analysis in the S5R5 and S5R3 postprocessing,
respectively.

For each candidate with frequency fc and derivative _fc,

the candidate was rejected if a band �fc ’ fc � 10�4 þ
j _fcj � 107 s on either side of the signal had any overlap

with an instrumental line band. This was done in order to
take into account the maximum possible Doppler shift due
to the Earth’s orbital velocity, which is roughly 10�4 in
units of the speed of light, and the maximum frequency
shift due to the spin down of the source over the�
 107 s
time span relative to the reference time during the
Einstein@Home run.
A short explanation of the key to the line sources listed

in the fifth column of Tables VI and VII follows.
Mains lines at multiples of the 60 Hz electrical power

system frequency; the dominant coupling mechanism at
60 Hz was from magnetic fields generated by electric
currents coupling to the permanent magnets mounted on
the test masses.
Electronics produced by either electronic circuit

oscillations or by slight data corruption associated with
repetitive processes in the data acquisition computers. The
line was identified in power supply voltage variation, mag-
netic fields from electronics or by direct measurements.
Calibration produced for calibration purposes by mov-

ing a test mass with the actuation system.
Timing introduced by the timing verification system.
Wire a vibrational resonance of a mirror suspension

wire.
Pulsed-heating produced by cyclically pulsed mains

heating circuits, coupling to the test mass magnets via
magnetic fields.
Unknown a line of unknown source that appeared in

auxiliary channels and met the rejection criteria noted in
the text.
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