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Abstract

While a suite of approaches have been developed to describe the scale, rate and spatial structure of exchange among
populations, a lack of mechanistic understanding will invariably compromise predictions of population-level responses to
ecosystem modification. In this study, we measured the energetics and sustained swimming capacity of giant Australian
cuttlefish Sepia apama and combined these data with information on the life-history strategy, behaviour and circulation
patterns experienced by the species to predict scales of connectivity throughout parts of their range. The swimming
capacity of adult and juvenile S. apama was poor compared to most other cephalopods, with most individuals incapable of
maintaining swimming above 15 cm s21. Our estimate of optimal swimming speed (6–7 cm s21) and dispersal potential
were consistent with the observed fine-scale population structure of the species. By comparing observed and predicted
population connectivity, we identified several mechanisms that are likely to have driven fine-scale population structure in
this species, which will assist in the interpretation of future population declines.
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Introduction

Defining the scale of exchange among populations and the

factors driving this exchange underpin our understanding of the

dynamics, genetic structure, and biogeography of aquatic animals

[1]. The life-histories of most marine species include at least one

widely dispersive stage, and the scale of this dispersal is one of the

primary determinants of population structure [2]. Broad dispersers

are genetically homogenous over larger spatial scales, and their

ability to adapt to local conditions can be compromised [3],

whereas local retention of larvae by behavioral or oceanographic

mechanisms drives greater local adaptation and genetic differen-

tiation [3]. As such, identifying the mechanisms that facilitate

broad versus local dispersal is considered a major challenge facing

marine ecologists and managers [4,5].

The importance of describing marine connectivity has led to the

development of a wide range of approaches, including genetic or

morphological comparisons [3,6], examination of otolith chemis-

try [7,8] and external or chemical tagging techniques [9,10].

However, identifying the mechanisms that drive population

structuring is exceedingly difficult, and a poor understanding of

factors driving differentiation hinders the accurate prediction of a

population’s response to environmental change. If however, a

comparison can be made between observed population connec-

tivity and that which is predicted (based upon known life-history

strategies, potential for dispersal, and oceanography experienced

by a species, etc.), mechanisms driving structure can be better

understood, and this will increase the ability to predict a

population’s response to change.

Large-scale movement has been observed in all stages of

cephalopod life history [11], from passive drifting of paralarvae to

migrations over several thousands of kilometres in adults [12].

Together with oceanographic currents [13,14], the swimming

capacity of cephalopods is a major determinant of population

connectivity, and cephalopods exhibit significant variability in

swimming performance. For example, the northern shortfin squid

Illex illecebrosus can sustain swimming speeds in excess of 1 m s21

[15], with extensive migrations in this species [16] facilitated by

optimal cost of transport (COTopt) speeds in the region of 0.6 m

s21 [17]. At the other end of the cephalopod spectrum, maximum

aerobic performance occurs at less than 0.2 m s21 in the

chambered nautilus [17], with tracked animals preferring speeds

of less than 0.05 m s21 [18]. Clearly swimming capacity represents

a major variable for identifying mechanisms driving differentiation

(or connectivity) among cephalopod populations.

Sepia apama is the largest cuttlefish species known, is endemic to

the temperate and sub-tropical waters of southern Australia, and

forms the only-known dense spawning aggregation of cuttlefish.

From May to August each year, hundreds of thousands of mature

S. apama converge on the small (, 60 ha) strip of rocky reef at

Point Lowly, South Australia (33.00uS, 137.75uE; Fig. 1) to breed,

and a strongly male-biased operational sex ratio has led to the

development of spectacular mating behaviors [19–22]. Like most

other cephalopods, S. apama are short-lived (12–-24 months [23])

and semelparous, spawning once at the end of their life-cycle.
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Given recent declines in spawning aggregation biomass [24],

understanding the degree of connectivity between the Point Lowly

aggregation and other parts of its range will be critical for

predicting population viability. It has been suggested that at least

three distinct populations are likely in South Australia [6], and

preliminary microsatellite, morphological and statolith chemistry

data suggests very little mixing of individuals over scales as small as

100 km (B.M. Gillanders unpublished data). While several aspects

of S. apama biology and ecology have received attention [19,21,25–

29], a major hindrance to identifying mechanisms driving fine-

scale structuring is a poor understanding of the sustained

swimming capacity (a measure of dispersal potential) of S. apama.

The aim of this study was to describe the energetics and

sustained swimming capacity of S. apama. By combining this

information with our understanding of the life-history strategy,

behaviour and oceanography experienced by S. apama, our

objective was to predict the scale of connectivity between sub-

populations of this species, and compare these predictions to

preliminary genetic data on S. apama population structure. In

doing so, we hope to achieve a better mechanistic understanding

of population differentiation in this species.

Materials and Methods

Ethics statement
All necessary permits were obtained for the described field

studies (Primary Industries and Resources SA S115 ministerial

exemption # 99022244), and all research was conducted with

approval from the University of Adelaide Animal Ethics Com-

mittee (# S-047-2007A). The location is not privately-owned or

protected in any way, and the field studies did not involve

endangered or protected species.

Study species
Sepia apama (n = 25 [1 female, 24 male]; 297–995 g wet mass;

15–22 cm mantle length) were collected via SCUBA (cuttlefish

were generally preoccupied with breeding so could readily be

captured by hand) from breeding grounds at Point Lowly, South

Australia (33u00’S, 137u44’E), during July and August 2009. Each

cuttlefish was immediately placed into individual, aerated, 68-L

plastic tubs, before being transported to the University of

Adelaide, South Australia (34u92’S, 138u60’E). Tubs were

constantly aerated during the 5 h transportation, and a 75%

water change was conducted twice en route. Immediately upon

arrival, each cuttlefish was transferred to individual aquaria (500-

L) housed within a 14 6 1uC controlled temperature room

(equivalent to temperature at Point Lowly aggregation site in July-

August). 75% water changes were performed daily for each

aquarium for the period in which cuttlefish were maintained prior

to swim trials. All experiments were performed within 72 h of

collection, and each individual was fasted for the entire 72 h prior

to swim trials to minimise oxygen uptake due to feeding and

digestion.

Respirometry, finning and jetting frequency
An 80-L Brett-type swim tunnel respirometer was used to

manipulate S. apama swimming speeds and to measure metabolic

rates. The perspex swim chamber was 750 mm long, 200 mm

wide and 107 mm deep, and the centre section of the lid was

constructed of transparent plastic film. Prior to measurements,

each cuttlefish was acclimated to the swim tunnel for 30 min,

during which time individuals settled in the upstream-half of the

swim chamber (covered with dark black plastic) and displayed only

occasional finning. Resting oxygen consumption rates were

recorded for 30 min, immediately followed by measurements of

oxygen uptake during swimming at a randomly-selected speed -

0.7, 11, 15 or 25 cm s21. Five individuals were swum at each

speed, and five were used only to quantify resting oxygen

consumption rate. Cuttlefish were allowed to choose their

preferred swimming orientation, and the swim chamber was

sufficiently wide for individuals to change orientation during

swimming trials (only one individual was greater than 19 cm ML,

and the plastic film in the lid could be pushed outward several cm

when cuttlefish turned). Each swim trial lasted 180 min

(considered to be sustained aerobic exercise in fishes [30–32]) or

until cuttlefish fatigued, which was defined as an unwillingness to

return to the upstream-half of the swim chamber following 10 s of

prodding of the arms with a blunt probe. In these instances, time

until fatigue was recorded. Immediately following trials, wet body

mass and mantle length, width and height were recorded. Some

cuttlefish occupied . 10% of the cross-sectional area of the swim

chamber, so a blocking correction was applied to all swimming

speeds to account for the increased water speed caused by the

profile of the animal [21,33–35].

All swim trials were recorded on a digital video camera (HDC-

SD1, Panasonic, Japan) that was positioned adjacent to the swim

chamber. The number of complete fin undulations and propulsive

jets were counted during three, randomly-selected, 1 min intervals

during resting and swimming trials for each cuttlefish. Mean finning

frequency and jetting frequency were then calculated for resting

cuttlefish and swimming cuttlefish at 7, 11, 15 and 25 cm s21.

As a preliminary examination of the sustained swimming

capacity of the early life-history stage of S. apama, seven eggs were

collected from the aggregation area in June 2009 and transported

Figure 1. Location of Sepia apama breeding aggregation (black
star) in northern Spencer Gulf, South Australia. Image source:
Google Earth mapping service.
doi:10.1371/journal.pone.0058694.g001
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to the University of Adelaide aquaria. Within 48 h of hatching,

each cuttlefish (12.3 6 0.4 mm ML; mean 6 SE) was placed in a

1-L swim chamber (10 cm cube) made from 363 mm wire mesh,

which was positioned inside the working section of the Brett-type

swim tunnel used in the adult experiments. Water velocity was

immediately increased to 3–4 cm s21, which was the lowest

velocity that could be maintained consistently with our flume

design, and is similar to the current speeds the hatchlings are likely

to experience at Point Lowly in winter (J. Kaempf, personal

communication). Time to fatigue was measured using the same

protocol as for adults.

Data analyses
Oxygen consumption was measured with a polarographic probe

(YSI, Yellow Springs, Ohio. Model 58 meter and 5739 electrode)

that was ventilated at a constant rate (with an external pump in a

separate circuit) independent of flume velocity. The probe was

calibrated daily by oxygen-saturated air in the aquaria. Oxygen

consumption rate (V.
O2: ml kg21 h21) was calculated for each

cuttlefish at each exercise intensity from the decline in dissolved

oxygen content over time, given 5.89 ml O2 L21 in oxygen

saturated saltwater (38 g L21) at 14uC [36]. Least-squares

regression was used to estimate the relationship between swim-

ming speed (cm s21) and oxygen consumption rate, and between

finning frequency (Hz) and jetting frequency (Hz) using data from

all 25 cuttlefish. Analyses were undertaken with Sigmaplot 10.0

(Systat Software, Inc). Gross aerobic metabolic cost of transport

(GCOT; J kg21m21) was calculated by converting rates of oxygen

consumed to joules of energy expended (assuming 1 ml of oxygen

= 20 J [37]), and dividing these values by their corresponding

swimming speeds.

Results

Respirometry and fatigue tests
A description of the relationship between swimming speed and

V.
O2 is provided in [21]. Briefly, V.

O2 increased in an exponential

manner from resting (40.8 6 2.2 ml kg21 h21) up to 15–16 cm

s21 (97.1 6 5.0 ml kg21 h21), which appeared to represent the

maximum aerobic speed for S. apama (there was a slight reduction

in mean oxygen consumption rate above this speed [21]). The 25–

27 cm s21 treatment was associated with a rapid onset of fatigue

(see below), indicating these higher speeds were partly supported

by anaerobic metabolism. We therefore excluded oxygen con-

sumption measurements from the 25–27 cm s21 treatment from

our regression analyses. The increase in oxygen consumption rate

with swimming speed (U; cm s21) up to 16 cm s21 is best described

by the exponential model:

O2(mlkg�1h�1)~11:05e0:117Uz29:36, ð1Þ

and from this equation, we estimated the minimum aerobic

gross cost of transport as 3.40 J kg21m21, at a speed of 13.4 cm

s21 (Fig. 2).

All individuals swum at 7–8 cm s21 were able to maintain

steady-state swimming for the entire 180 min trials without

succumbing to fatigue (Fig. 3). However, higher swimming speeds

led to increased incidence of fatigue, and a decrease in the mean

time cuttlefish could sustain swimming (Fig. 3). At the highest

swimming speed, all five individuals fatigued within 5 min (mean

4.2 6 0.5 min SE).

For hatchlings, the maximum time until fatigue was 10.0 min,

although most fatigue times were far lower (mean 4.7 6 1.1 min),

and these were continuously supported by mantle jetting

throughout the duration of all trials. Linear regression did not

detect a significant relationship between mantle length and time to

fatigue for hatchlings (P . 0.05).

Finning and jetting frequency
Finning frequency (ef ; Hz) increased linearly with swimming

speed (U; cm s21; P , 0.0001; R2 = 0.68; Fig. 4), following the

equation:

ff~0:052Uz0:791, ð2Þ

whereas the increase in jetting frequency (ej ; Hz), with swimming

speed (P , 0.0001; R2 = 0.90; Fig. 4) was best approximated by

the exponential model:

fj~0:018e0:119U{0:018, ð3Þ

such that low swimming values were supported primarily by

finning, and the frequency of propulsive jets increased consider-

ably at the highest swimming speed (25–27 cm s21).

Discussion

Swimming energetics of Sepia apama
Our estimate of the speed that minimises aerobic cost of

transport is approximately one third (or less) of that estimated for

several squid and cuttlefish species, with both predicted speeds and

those measured in the field more similar to those of the other

buoyancy-regulating group of cephalopods, the chambered

nautilus ([18] Fig. 2). The relatively narrow range of speeds over

which swimming could be maintained (, 25 cm s21) likely drives

the more rapid increase in COT above that of COTopt than for

other cephalopods, and this higher section of the S. apama

swimming spectrum was associated with a transition from fin

undulations to propulsive jetting - a mode of transport typically

reserved for squid, or for short bursts of activity associated with

predator avoidance in cuttlefish [14]. Not only is our estimate of

COTopt achieved at a low swimming speed, but 50% of

individuals swum at between 11 and 16 cm s21 (close to our

estimated COTopt; 13.4 cm s21) could not sustain swimming

beyond 90 min, and 70% of individuals had fatigued within 180

min of steady-state swimming. We did not measure octopine (the

major by-product of anaerobic glycolysis in cuttlefish [38]), but an

anaerobic contribution to locomotion would significantly increase

the gross COT during swimming at 11–16 cm s21, which would

further reduce the speed at which COTopt is achieved. The range

of speeds over which S. officinalis from O’Dor & Webber [17] were

swum is unclear, so whether the far greater speed of COTopt for

that species (more than double our estimate) is a function of

extrapolation from slower speeds or direct measurement at those

speeds is uncertain. The condition of our cuttlefish (midway

through a semelparous, protein catabolism-fuelled spawning event)

may have been somewhat less than cuttlefish earlier in the

spawning season, and this may explain some of the differences in

swimming performance between the two Sepia species. Clearly the

marked difference in optimal swimming speeds for these two

species of similar size, morphology and life-history warrants

further investigation.

Given that all speeds above 7–8 cm s21 led to a high prevalence

of fatigue, we consider it likely that the observed sustained daytime

speeds (6.0 6 2.1 cm s21; mean 6 standard error of estimate) of

Population Structuring in Cuttlefish
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free-ranging S. apama [21] approximate the maximum sustainable

speeds for this species. This interpretation is in agreement with

data on free-ranging and laboratory-reared S. apama from other

studies ([39,40] respectively). Interestingly, previous respirometry

data from three S. apama individuals reared in captivity and in

warmer (20–21uC versus 14uC from the present study) water [40]

suggest resting and maximum oxygen consumption rates approx-

imately two- to three-fold higher than from our study, resulting in

a Q10 (the increase in metabolic rate caused by a 10uC increase in

temperature) between 3 and 6. The Q10 of cephalopods is

generally close to 2 [37,41,42], and while the smaller mean body

mass of individuals from the earlier study (approximately half that

of cuttlefish used in the present study) might partly explain their

higher mass-specific metabolic rates, identifying the remaining

sources of metabolic rate variation in captive versus wild-sourced

cuttlefish could be a rewarding avenue for future study.

Mechanisms of self-recruitment
While the population structure of S. apama conforms to a

traditional model of isolation-by-distance across most of its range

[6], microsatellite, morphological and statolith chemistry data

recently demonstrated clear population divergence in S. apama

approximately 100 km south of the Point Lowly aggregation site

(B.M. Gillanders unpublished data). Identifying the mechanisms

driving this striking lack of gene-flow is particularly critical in light

of the significant declines in biomass observed at the Point Lowly

aggregation over the past decade [24].

During January and February, S. apama are immature and

feeding in northern Spencer Gulf, whereas from May–August,

mature cuttlefish at the aggregation site are not feeding [19,25]. If

the onset of a spawning migration coincides with that of maturity,

then cuttlefish must complete their migration within 2 months if

they are to reach the aggregation site by the start of the spawning

period (May). Sepia apama are diurnally active, resting on the

bottom at night (at least during spawning [20,21], and non-

breeding S. apama also appear to be diurnally active [43]), so a 2

month migration at 6–7 cm s21 during daylight hours could cover

approximately 140 km if unassisted by currents. Spawning S.

apama are thought to mobilise approximately 30% of their tissue to

fuel reproduction prior to death, at a rate of 0.8% body mass d21

[21,27], however, summer water temperatures in northern

Spencer Gulf are up to 10uC higher than in winter. These higher

temperatures would increase the rate of daily energy expenditure

to some extent, such that a 60 d (140 km) migration, at a rate of .

0.8% body mass loss per day, could probably not be supported by

energy reserves alone. Although we do not have estimates of

feeding success for wild S. apama, it is likely that refueling

requirements (as proposed by [39,40]) would reduce the distance

Figure 2. Estimated gross cost of transport in cephalopods, including the minimum cost (open circles) and actual tracked speeds
(filled circles). Data for S. apama are derived from Equation 1 and tracked speeds in the field [21]. Data for other species are from O’Dor & Webber
[17] and O’Dor [39].
doi:10.1371/journal.pone.0058694.g002

Figure 3. Time taken to fatigue (mean ± SE) for S. apama. Five
individuals were swum at each speed, and the percentage of individuals
that fatigued within 180 min of swimming is indicated.
doi:10.1371/journal.pone.0058694.g003

Population Structuring in Cuttlefish
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they could swim in 60 days to somewhat less than 140 km, a

prediction consistent with the approximate distance between Point

Lowly and the barrier of genetic divergence to the south (100 km;

B.M. Gillanders unpublished data). Passive northward advection

via currents and selective tidal-stream transport (STST) would

increase migration distances, both of which are possible. However,

density-driven circulation in Spencer Gulf is weakest in summer

[26,44], and recent hydrographic modelling suggests almost 90%

of passive particles released throughout Spencer Gulf in February

that are in the vicinity of Point Lowly by June originated in

northern Spencer Gulf. This suggests S. apama are unlikely to get a

‘free ride’ to Point Lowly from southern Spencer Gulf unless they

employ STST (testing for STST in S. apama and other cephalopods

may prove feasible with current electronic tagging techniques).

It is possible that individuals hatching in southern Spencer Gulf

begin a northward migration earlier than late February, however

given evidence for synchronous spawning throughout Spencer

Gulf [25], such a migration would need to begin at approximately

2–3 months of age, and would therefore require significant growth

and maturation to occur en route. Furthermore, with a rapid onset

of fatigue for hatchlings swum at just 3–4 cm s21, the early stages

of such a migration are likely to occur at a much slower pace.

There is evidence for a class of longer-lived (2 years), larger-bodied

S. apama in Spencer Gulf [23]; animals that would not have the

migration-time constraints of the shorter-lived cohort. However,

while the spawning aggregation is comprised of similar densities

for both 1- and 2-year-old cuttlefish [23], the majority (70–80%) of

S. apama throughout broader Spencer Gulf belong to the former

class, and an analysis of data from Payne et al. ([27] data were re-

analysed to compare breeding durations with size, rather than sex

as per the previous publication) suggests an increase in breeding

durations with size at Point Lowly (Fig. 5). Such a disparity would

lead to an overestimation of relative abundance of the 2-year class

at the breeding aggregation, so we consider it likely that most S.

apama in Spencer Gulf have a life-cycle of approximately 12-

months, and that the similar densities of both classes at the

aggregation is a result of extended residence times for the larger,

slower-growing individuals. Only low levels of gene flow are

required to maintain panmixia, so greater dispersal of these less-

abundant individuals could drive a model of isolation-by-distance

as seen throughout other parts of their range [6]. Preliminary

genetic data suggests they do not drive such a model (B.M.

Gillanders unpublished data), which would indicate either their

low abundance, or some other mechanism, restricts gene flow in

this cohort. While such considerations are consistent with limited

recruitment to the Point Lowly aggregation from southern

Spencer Gulf, the genetic barrier also implies dispersal of

aggregation-spawned cuttlefish is confined to an area less than

100 km south of Point Lowly.

Oceanographic modeling suggests 70–80% of cuttlefish hatched

at Point Lowly in October (the peak timing of cuttlefish hatching)

are likely to become confined to the western side of Spencer Gulf

by February, some 40–50 km from the aggregation site [26].

Critically, northern Spencer Gulf experiences a slight clockwise

circulation of water masses during summer [26,44], which would

make it more energetically expensive for these cuttlefish to travel

south (towards southern Spencer Gulf) than to travel north

(towards Point Lowly) in the months leading up to the spawning

period. With the poor sustained swimming capacity seen for S.

apama hatchlings, such a scenario could be a major driver of a lack

of genetic contribution of Point Lowly cuttlefish to the southern

reaches of Spencer Gulf.

Conclusions

Our estimates of swimming capacity and dispersal potential,

coupled with considerations of the behaviour, life-history strategy

and oceanography experienced by S. apama, are entirely consistent

with the striking population divergence observed for this species in

Spencer Gulf. Despite protection afforded by a fishing closure, the

unique Point Lowly aggregation has experienced drastic declines

in number and biomass over the past decade and while the

mechanisms for this decline remain unknown, our data suggest

recovery of that population is unlikely to be supported by recruits

from southern Spencer Gulf. The S. apama system provides an

example of how a comparison of predicted and observed

population connectivity may facilitate a mechanistic understand-

Figure 4. Relationships between swimming speed and frequency of finning (circles; see equation 2 in text) and propulsive jets
(triangles; equation 3 in text) for giant Australian cuttlefish Sepia apama. Dashed lines represent 95% confidence intervals.
doi:10.1371/journal.pone.0058694.g004
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ing of population structuring, which will ultimately improve the

ability to predict population change.
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