Physiological and Genetic Investigations of Iron Deficiency in Field Peas (*Pisum sativum* L.)

by

Uyek M. Yakop

M.Ag.Sc. University of Adelaide

Thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy

School of Agriculture, Food and Wine Faculty of Sciences, University of Adelaide

July 2012

TABLE OF CONTENTS

	Page
Table of Contents	i
Abstract	V
Declaration	ix
Acknowledgements	xi
Abbreviations	xii
Chapter 1 – General Introduction	1
Chapter 2 – Literature review	5
2.1 Introduction	5
2.2 Fe in Soil	7
2.2.1 Content and Distribution of Fe in Soil	7
2.2.2 Solubility and Mobility of Fe in Soil	8
2.3 Availability of Fe in Plants	10
2.3.1 Fe Concentration in Plants	10
2.3.2 Fe Uptake and Mobilisation	11
2.3.3 Movement of Fe within Plants	12
2.3.4 Fe Deficiency in Plants	14
2.3.5 Factors Affecting Fe Deficiency	15
2.3.6 Correction of Fe Deficiency	17
2.4 Mechanisms and Inheritance of Nutrient Efficiency	19
2.4.1 Mechanism of Tolerance to Nutrient Deficiency	19
2.4.2 Inheritance of Nutrient Efficiency	19
2.5 The Assessment of Nutrient Efficiency	21
2.5.1 Development of a Suitable Screening Technique	21
Field screening	22
Potted soil and nutrient solution tests	23
In vitro screening methods	25
2.5.2 The Rating of Tolerance to Nutrient Efficiency	25
2.6 Field pea (<i>Pisum sativum</i> L.)	26
2.7 Conclusion	30
Chapter 3 – Development of a screening method to identify peas tolerant to Fe deficiency	33
3.1 Introduction	33
3.2 Development of a solution screening method to identify peas tolerant to Fe	
deficiency (Experiment 1)	35
3.2.1 Introduction	35
3.2.2 General Materials and Methods	35
Genetic materials	35
Container and solution preparation	36
Experimental design	38

	3.2.3 Experiment 1.1 The Effect of NaHCO ₃ on Fe deficiency chlorosis	39
	symptoms of field peas	
	3.2.3.1 Material and Methods	39
	3.2.3.2 Results	40
	Solution pH	40
	Chlorosis symptoms	40
	Chlorosis symptoms in different NaHCO ₃ concentrations	40
	Chlorosis symptoms amongst genotypes	43
	The growth of plants	45
	Effect of NaHCO ₃ on Root/Shoot Ratio	48
	3.2.4 Experiment 1.2 The effect of KHCO ₃ on Fe deficiency chlorosis symptoms of field peas	50
	3.2.4.1 Introduction	50
	3.2.4.2 Selecting sample genotypes	51
	3.2.4.2.1 Materials and Methods	51
	3.2.4.2.2 Results	51
	3.2.4.3 The effect of KHCO ₃ concentration on Fe deficiency chlorosis symptoms	55
	3.2.4.3.1 Materials and Methods	55
	3.2.4.3.2 Results	56
	The development of chlorosis symptoms	56
	The most severe chlorosis symptoms	58
	Increase in chlorosis	59
	Growth of plants	60
3.3	Development of soil screening method to identify peas tolerant to Fe deficiency (Experiment 2)	65
	3.3.1 Introduction	65
	3.3.2 Materials and Methods	66
	Soils and pots	66
	Genetic materials	67
	Experimental design	67
	3.3.3 Results	68
	Chlorosis symptoms	68
	Shoot dry weight	72
	Nutrient concentration	73
3.4	The effect of soil moisture on expression of Fe deficiency chlorosis	90
Э.т	(Experiment 3)	70
	3.4.1 Introduction	90
	3.4.2 Materials and Methods	90
	Genetic materials	90
	Soils and pots	90
	Experimental design	90 91
	3.4.3 Results	91 91
		91 91
	Chlorosis symptoms Shoot dry weight	91
25		93 96
J.J	Confirmation that chlorosis is due to Fe deficiency (Experiment 4)	90

3.5.1 Introduction	96
3.5.2 Material and Methods	97
3.5.3 Results	97
3.6 Discussion	101
Chapter 4 - Investigations into the physiological basis for Fe efficiency in field	109
4.1 Introduction	109
4.2 Materials and Methods	110
4.2.1 Relationship between total and active Fe concentration and chlorosis	
(Experiment 1)	110
Soils and solution experiments	110
Genetic materials	110
Experimental design	111
a) Identifying active Fe concentration	111
b) Identifying the concentration of total Fe	112
c) Relationship between active Fe and concentration of total Fe	112
4.2.2 Relationship between Fe(III) reduction and chlorosis (Experiment 2)	113
4.3 Results	114
4.3.1 Relationship between total and active Fe concentration and chlorosis	
(Experiment 1)	114
a) Concentration of active Fe	114
b) Concentration of total Fe	114
c) Relationship between active Fe and concentration of total Fe	117
4.3.2 Relationship between Fe(III) reduction and chlorosis (Experiment 2)	119
4.4 Discussion	121
Chapter 5 – Genetics of tolerance to iron deficiency in the field pea cultivar Santi	127
5.1 Introduction	127
5.2 Materials and Methods	127
5.2.1 Evaluation of F_1 hybrids	128
5.2.2 Evaluation of F_1 hybrids 5.2.2 Evaluation of the F_2 population and F_2 derived F_3 families	120
<i>Evaluation of the</i> F_2 <i>population</i> and F_2 derived F_3 furthers	129
F_2 derived F_3 population	132
5.2.3 Evaluation of the BC_1F_1 population	132
5.3 Results	134
5.3.1 Reaction of F_1 hybrids to Fe deficiency chlorosis	134
5.3.2 Evaluation of the F_2 population of Parafield x Santi	137
Morphological characteristics	137
Chlorosis score	138
Chi-square analysis	138
Comparing the observed F_2 population variance	130
5.3.3 Evaluation of F_2 derived F_3 families	140
5.3.4 Evaluation of BC_1F_1 population	140
5.4 Discussion	144
	177

5.4.1 Evaluation of F_1 hybrids	144	
5.4.2 Number of genes conferring tolerance to Fe deficiency	146	
Chapter 6 – Genetics of tolerance of field pea accessions to Fe deficient	cy	
chlorosis	149	
6.1 Introduction	149	
6.2 Material and Methods	150	
6.3 Results	152	
F_2 generation	152	
Santi crosses	154	
Parafield crosses	155	
Active Fe	159	
6.4 Discussion	167	
Chapter 7 – General discussion	171	
Appendices	179	
References		

ABSTRACT

Iron (Fe) deficiency chlorosis affects both yield and quality of many species, including cool-season food legumes and the chlorosis symptom is especially prevalent in crops grown on calcareous soils which are widely distributed in the southern region of Australia. Although Fe fertilizers have been used to correct the chlorosis and are effective for short term control, cultivation of tolerant cultivars could reduce the damage in the long term for all sensitive crops including field peas. The present study was conducted to investigate various aspects of the genetic tolerance of field pea cultivars Santi and Parafield, in particular, with the objective of providing the information to implement an efficient breeding strategy for the long-term control of Fe deficiency chlorosis.

Methods to screen field peas for tolerance to Fe deficiency were developed by utilizing both solution and pot soil cultures. Nutrient solution with a high concentration (10 mM) of bicarbonate (HCO3⁻) in either the sodium (Na) or potassium (K) forms induced symptoms of Fe deficiency and it was possible to discriminate between tolerant and sensitive field pea genotypes. Plants grown in NaHCO₃ developed symptoms indicative of Na toxicity and therefore KHCO₃ was selected for solution culture studies. On the basis of this result, 37 accessions were screened in solution culture containing 10 mM KHCO₃ and eight accessions that were representative of the range of response to Fe deficiency chlorosis and variation in plant morphologies were selected for physiological and genetic studies. These included Santi, Px-95-183-7-1, Px-89-82-1 and Px-97-58-1 (tolerant genotypes) and Parafield, Glenroy, Px-97-9-4, and Px-96-83-1-1 (moderately sensitive to sensitive genotypes).

Three cultivars, namely Santi, Glenroy and Parafield were grown in pots to identify the effect of three types of calcareous soils obtained from Wangary, Glenroy and Millicent and UC soil as a control, on the Fe chlorosis symptoms. Severe symptoms indicative of Fe deficiency were induced in plants grown in Wangary and Millicent soils and were most severe for Parafield. Imposing a high soil moisture treatment of 120% of field capacity induced more severe chlorosis symptoms than 100% or 80% of field capacity, and in all three treatments Parafield was the most sensitive, Glenroy intermediate and Santi remained green. Fe chelates in the forms of Fe-EDDHA and Fe-EDTA were applied as both foliar and soil treatments to Parafield plants, grown in Millicent soil, that were exhibiting severe chlorosis. All combinations of fertilizer type x method of application were effective in

reducing shoot chlorosis of the top leaves at the time of application and also subsequent growth, indicating that the leaf chlorosis was due to Fe deficiency.

The physiological mechanism controlling genetic variation in tolerance to Fe deficiency chlorosis, between field pea cultivars Santi and Parafield, and derived backcross lines was investigated. The major mechanism was not related to acquisition as Fe(III) reductase activity of roots, and the concentration of total Fe in leaves, were not significantly different between tolerant and sensitive genotypes. There was also little or no association with distribution within the plant as the pattern of distribution of total Fe from shoot tips to lower leaves was the same for both cultivars. However, the main variation between Santi and Parafield was in maintaining active Fe in young leaves and stipules and active Fe in young tissues of Santi was significantly greater than in Parafield. There was a highly significant correlation between chlorosis and active Fe and the concentration of active Fe increased from shoot tips which were chlorotic to lower leaves which maintained a high concentration of chlorophyll. The association between active Fe and chlorosis was also observed in backcross and F_2 populations confirming that this is a direct relationship, and not just a chance association between the two traits in two unrelated cultivars.

The genetic control of tolerance to Fe deficiency chlorosis in the cross between tolerant Santi and sensitive Parafield was investigated. Reciprocal F_1 hybrids, the F_2 , F_3 generations, and BC₁F₁ plants were tested for responses to Fe deficiency using the Millicent soil at 120% field capacity. There was no difference in response between the reciprocal F_1 hybrids and their response indicated that tolerance was a partially dominant trait. Segregation of the F_2 , F_3 and backcross generations revealed ratios, and population variances, that were consistent with tolerance being conferred by two partially dominant genes.

As tolerance to Fe deficiency chlorosis is under major gene control with high heritability, and the trait is already present in adapted Australian cultivars, it could be introduced to other breeding material either through bi-parental crosses or via backcrossing, depending on other target traits in the populations. Selection could be undertaken effectively in early generations, for example individual F2 plants with progeny testing in the F3, to identify homozogyous tolerant selections. Although this project was not successful in identifying molecular markers linked to tolerance to Fe deficiency chlorosis, as molecular maps for field pea are further developed it is highly probable that linked markers could be idenfied.

Tolerance to Fe deficiency chlorosis was inherited independently of major genes for seed colour, plant height and leaf type, and could therefore be readily transferred to a range of plant types.

The specific tolerance of Px-95-183-7-1 and Px-89-82-1 (tolerant), Px-96-83-1-1 (moderately tolerant) and Px-97-9-4 (sensitive), all of which are breeding lines of the South Australia field pea breeding program, was compared with Santi and Parafield. These lines were crossed to Parafield and Santi and F_1 hybrids and the F_2 of each cross was grown in Millicent soil at 120% of field capacity and tested for reaction to the Fe deficiency. Results indicated that the number of genes controlling tolerance to Fe deficiency chlorosis varied, depending on the parental combinations. A cross between sensitive and tolerant parents segregated at two genes, but crosses between sensitive and intermediate-tolerant, or between intermediate-tolerant and tolerant parents segregated at a single gene. Investigations of the pedigrees of all lines tested in the project also revealed evidence of major gene control of tolerance. All tolerant lines included the breeding line M150-1 in their pedigrees and one of the parents of M150-1 is likely to be the source of Fe efficiency. Further investigations are required to identify the specific line.

The outcome of this project should assist in the breeding of Fe deficiency chlorosis tolerant cultivars of not only field peas but also the other pulse crops grown in southern Australia. The screening methods should be applicable to all crops, while it is likely that the genetic control of tolerance would also be similar among the closely related cool season pulse species.

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

.....

Date

Uyek Malik Yakop

x

ACKNOWLEDGEMENTS

Praise be to God, the most gracious, the most merciful

A special thank you to my wife, Eriani and my children, Alifia and Amira, whose support have been invaluable throughout the duration of this project.

I especially also express my gratitude to my main supervisor Dr. Jeff G. Paull for his advice, encouragement and patient supervision throughout the years, in particular during preparing this thesis.

I am also thankful to my other supervisors, Dr. James Stangoulis and Dr. Ken Chalmers for their supervision and allowing me use of their laboratory, materials and facilities.

I am also thankful to Kevin James for his assistance throughout the project, especially for the supply of seed, soils and other materials. Thanks also to Eunyong, Lam and Yusuf for their friendship and support during studying at Waite Campus.

Finally, I would like to thank my government, Indonesia, for funding to study at The University of Adelaide.

ABBREVIATIONS

ABARE	Australian Bureau of Agricultural and Resource Economics
ABS	Australian Bureau of Statistics
ANOVA	analysis of variance
BC	Backcross
CSBP	CSBP Plant and Soil Laboratory
DAS	days after sowing
DAT	days after treatment
DNA	deoxyribonucleic acid
EC	electrical conductivity
FAO	Food and Agricultural Organisation
FC	field capacity
F _n	Filial generation, eg F_2 is the second filial generation
Fe	iron
Fe (II)	Fe^{2+}
Fe (III)	Fe ³⁺
Fe-EDDHA	Fe-ethylendiamine di(o-hydroxyphenylacetic) acid
Fe-EDDHMA	Fe- ethylendiamine di(2-hydroxy-4-methylphenylacetic) acid
Fe-EDTA	Fe-ethylenediaminetetraacetic acid
ICP-AES	inductively coupled plasma – atomic emission spectrometry
HCO ₃ -	bicarbonate
LSD	least significant difference
М	molar
MES	2-[N-Morpholino]ethanesulfonic acid
mM	millimolar
NA	nicotianamine
RO	Reverse Osmosis water
SARDI	South Australian Research and Development Institute
SDW	shoot dry weight
SPAD	Soil Plant Analysis Development
UC	University of California
YOL	youngest open leaf (3 rd YOL: third youngest open leaf)
YOS	youngest open stipule (3 rd YOS : third youngest open stipule)