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Abstract

The idea of laser powered lightcraft was first conceptualised in the early 1970’s
as a means of launching small scale satellite payloads into orbit at a much lower cost
in comparison to conventional techniques. Propulsion in the lightcraft is produced
via laser induced detonation of the incoming air stream, which results in the energy
source for propulsion being decoupled from the vehicle. In air breathing mode the
lightcraft carries no onboard fuel or oxidiser, allowing theoretically infinite specific
impulses to be achieved. Recently interest has been renewed in this innovative
technology through cross-continent and industry research programs aimed at making
laser propulsion a reality.

In a ground launched satellite, the vehicle must travel through the atmosphere
at speeds greatly in excess of the speed of sound in order to achieve the required
orbital velocities. Supersonic, and in particular hypersonic, flight regimes exhibit
complicated physics that render traditional subsonic inlet design techniques inade-
quate. The laser induced detonation propulsion system requires a suitable engine
configuration that offers good performance over all flight speeds and angles of at-
tack to ensure the required thrust is maintained throughout the mission. Currently
a hypersonic inlet has not been developed for the laser powered lightcraft vehicle.

Stream traced hypersonic inlets have demonstrated the required performance in
conventional hydrocarbon fuelled scramjet engines. This design technique is ap-
plied to the laser powered lightcraft vehicle, with its performance evaluated against
the traditional lightcraft inlet design. Four different hypersonic lightcraft inlets
have been produced employing both the stream traced inlet design methodology,
and traditional axi-symmetric inlet techniques. This thesis outlines the inlet design
methodologies employed, with a detailed analysis of the performance of the lightcraft
inlet at angles of attack and off-design conditions. Fully three-dimensional turbu-
lent computational fluid dynamics simulations have been performed on a variety of
inlet configurations. The performance of the lightcraft inlets have been evaluated at
differing angles of attack. An idealised laser detonation simulation has also been per-
formed to verify that the lightcraft inlet does not unstart during the laser powered

propulsion cycle.
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