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ABSTRACT

Motivation: With the advent of relatively affordable high-throughput

technologies, DNA sequencing of cancers is now common practice in

cancer research projects and will be increasingly used in clinical prac-

tice to inform diagnosis and treatment. Somatic (cancer-only) single

nucleotide variants (SNVs) are the simplest class of mutation, yet their

identification in DNA sequencing data is confounded by germline poly-

morphisms, tumour heterogeneity and sequencing and analysis errors.

Four recently published algorithms for the detection of somatic SNV

sites in matched cancer–normal sequencing datasets are VarScan,

SomaticSniper, JointSNVMix and Strelka. In this analysis, we apply

these four SNV calling algorithms to cancer–normal Illumina exome

sequencing of a chronic myeloid leukaemia (CML) patient. The candi-

date SNV sites returned by each algorithm are filtered to remove likely

false positives, then characterized and compared to investigate the

strengths and weaknesses of each SNV calling algorithm.

Results: Comparing the candidate SNV sets returned by VarScan,

SomaticSniper, JointSNVMix2 and Strelka revealed substantial differ-

ences with respect to the number and character of sites returned; the

somatic probability scores assigned to the same sites; their suscepti-

bility to various sources of noise; and their sensitivities to low-allelic-

fraction candidates.

Availability: Data accession number SRA081939, code at http://code.
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1 INTRODUCTION

Cancer genome projects are currently working to catalogue the

diversity of DNAmutations present in different cancers via high-

throughput DNA sequencing of matched cancer–normal sam-

ples. These projects seek to find correlations between mutation

profiles and clinical outcomes, identify mutations driving cancer

progression and identify targets for novel therapeutic develop-

ments. Somatic single nucleotide variants (SNVs) are the simplest

class of mutation, but their detection from matched cancer–

normal sequencing data is complicated by both biological and

technical noise.
Cancers arise from a single ancestral cell that has acquired

enough somatic mutations to deregulate its own proliferation

and expand into a large cell population with clonal mutations

matching the ancestral profile. Loss of function in genes for

genome stability and repair establishes a mutator phenotype in

which a greater rate of somatic mutation provides the cell popu-

lation with a vast repository of mutations in low copy. Those

mutations conferring a selective advantage preferentially expand

in number, forming subpopulations with the same subclonal mu-

tations. Clonal and subclonal mutations include drivers of the

cancer phenotype, and passenger mutations that arose in the

same clonally expanding cell line as a driver (Lee and

Swanton, 2012; Loeb, 2011; Salk et al., 2010).

Analysis of cancer sequencing data has unique challenges,

including: methods for analysing matched cancer–normal sam-

ples to distinguish germline polymorphism from somatic vari-

ation; genome rearrangements that do not align well to the

reference; and cancer sample heterogeneity from subclonal vari-

ation and sample impurity (Ding et al., 2010; Gundry and Vijg,

2012; Meyerson et al., 2010).

In addition to this biological complexity are several sources of

mapping and sequencing error, both random and systematic.

Error profile assessments of the Illumina sequencing platform

have identified increased error rates at read ends, a tendency

towards transversion base-call errors, a low indel error rate

and systematic sequence-specific errors following inverted

repeat sequences and GG motifs (Dohm et al., 2008; Meacham

et al., 2011; Nakamura et al., 2011). The majority of systematic

errors assessed by Meacham et al. (2011) only had base-call

errors on one of the two DNA strands. They suggested the pres-

ence of different motifs immediately preceding a certain site

during sequencing on different strands leaves one strand signifi-

cantly more prone to phasing error than the other. Greater depth

of sequencing is often advanced as the solution to separating

sequencing errors from real variation, but the susceptibility of

particular sites to recurrent base-call errors is consistently

observed at any depth. Furthermore, increased depth has the

unintended side effect of allowing sites with lower susceptibility

to systematic error to accumulate multiple such mistakes. This is*To whom correspondence should be addressed.
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a particularly significant problem in cancer sequencing, as sub-
clonal variation and sample impurity give rise to mutations at the

same low allelic fractions as aggregations of systematic error.

2 SOMATIC SNV DETECTION

Somatic SNV detection is a preliminary step in most cancer

sequencing projects, feeding into various downstream analyses
addressing the broader goals of cancer genome research. How

successfully the motivating research goals are met depends on the

quality of the mutation set used as input for further work.
Early publications, such as the malignant melanoma cell line

analysis by Pleasance et al. (2010), relied on independent geno-

type calling of the two samples followed by subtraction of the

normal sample calls from the cancer calls to obtain a candidate
somatic mutation set. However, this ‘subtraction’ method using

standard algorithms for SNV calling in single samples did not
optimize the detection of shared germline polymorphisms by

jointly analysing the two samples, nor were standard genotyping
algorithms designed to detect variants at the low allelic fractions

found in cancer samples.
Four SNV calling algorithms specifically designed for joint

analysis of matched cancer–normal samples are VarScan
(Koboldt et al., 2009, 2012), SomaticSniper (Larson et al.,

2012), JointSNVMix (Roth et al., 2012) and Strelka (Saunders

et al., 2012). We also note the availability of MuTect (Cibulskis
et al., 2013); however, this tool was unpublished at the time of

the comparison presented here.

2.1 Variant calling algorithms

A comparison of the underlying models and methods used by

these four SNV calling algorithms is provided in Supplementary
Table S1. It should be noted that these SNV calling algorithms

do not model aneuploidy or copy number variation, and SNV
calls will be confounded with any such events.

2.1.1 VarScan2 VarScan2 first independently analyses pileup
files from the cancer and normal samples to heuristically call a
genotype at positions achieving certain thresholds of coverage

and quality. If there is a variant base constituting at least the

‘minimum variant frequency’ of all reads (0.20 by default), then
the genotype is called as either heterozygous (variant575%) or

homozygous variant (variant 475%). Otherwise, the site is
deemed homozygous reference. Then, at positions where these

heuristically determined genotypes do not match in cancer and
normal, a one-tailed Fisher’s exact test is performed on the read

counts. A significant result is called somatic if the normal sample

was homozygous reference, or as loss-of-heterozygosity (LOH) if
the normal sample was heterozygous, or unknown if the normal

sample was called homozygous variant and the cancer sample
did not match. VarScan2 can take optional purity estimates for

the cancer and/or normal sample, and will adjust its variant
frequency thresholds accordingly.

2.1.2 SomaticSniper SomaticSniper uses a Bayesian probability
calculation to estimate the posterior probability of each possible

joint genotype across the normal and cancer samples given the
data observed and prior genotype likelihoods based on the ref-

erence sequence, sequencing error rate, population mutation rate

and somatic mutation rate. Each site is given a ‘somatic score’
(S), a phred-scaled posterior probability that the cancer and

normal genotypes are the same.

2.1.3 JointSNVMix2 JointSNVMix is based on a different
Bayesian approach using a mixed binomial model. The model

considers each site across the two samples to have one of nine

joint genotypes possible after reducing the bases to ‘A’ for a
reference and ‘B’ for a variant base. The set of joint genotypes

across all sites is considered to have a multinomial distribution
whose parameters have a Dirichlet prior with trained hyper-par-

ameters. At each site, the number of reads supporting the refer-

ence base in cancer and normal is considered to have a binomial
distribution. The binomial probability parameter is modelled

from a beta prior with trained hyper-parameters, conditional

on the joint genotype.
First, the hyper-parameters of the multinomial and binomial

distributions are trained by expectation maximization over a

subset of the data, using set default values as priors. Then, the

posterior probability of each joint genotype is calculated at each
site. The basic model, JointSNVMix1, assumes the data have

perfect base calls and alignment, whereas the extended model,

JointSNVMix2 (JSM2), weighs each read by base and mapping
quality.

2.1.4 Strelka Strelka performs an initial realignment around

indels in the normal and cancer BAM files, then uses a complex
set of calculations, again based on a Bayesian probability model,

to report the most likely genotype at candidate sites along with

the phred-scaled joint probability of the most likely normal
sample genotype and the event of any somatic mutation in the

cancer sample. The normal sample allele frequencies are mod-
elled as diploid genotypes with a noise term to factor in sequen-

cing and mapping errors, whereas the cancer sample allele

frequencies are modelled as a mixture of the normal sample
and somatic variation at any frequency. The exact details of

the model, which are too numerous to describe here, take into

account base and mapping qualities, strand bias, the prior prob-
ability of any site being a somatic mutation and the expected rate

of heterozygosity in the normal sample.

2.2 Filtering candidate SNV sites

These somatic SNV calling algorithms use a variety of informa-

tion to calculate a somatic probability score for each candidate
site returned. However, the full complexity of noise present in

any DNA sequencing dataset is not typically considered during

SNV calling, so raw output sets of candidate SNV sites typically
require filtering to remove likely false positives.

Koboldt et al. (2012) recommended various filters addressing
the quality of variant bases at candidate sites, including within-

read position, extreme strand bias, flanking homopolymer motifs
and low mapping quality. Larson et al. (2012) recommended

filtering on the basis of strand bias, mapping quality, proximity

to read ends, proximity to indels, nearby homopolymers, nearby
SNVs and depth. Unlike the other algorithms that solely provide

SNV calling capability, Strelka has its own inbuilt post-calling

filter for sites with extremely high depth indicative of over-map-
ping to repetitive sequences; reads with too many mismatches to

the reference; and the presence of spanning deletions mapped

2224

N.D.Roberts et al.

s
-
,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt375/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt375/-/DC1
. 
less than 
more than 
. 
,
. 
s
s
t
.
,
,
:


across the site. Strelka outputs the candidates identified both

before and after the post-calling filter, so either set is available

for analysis (Saunders et al., 2012).

3 RESULTS

VarScan2, SomaticSniper, JSM2 and Strelka were used to return

candidate SNV sites from matched cancer–normal exomes from

a chronic myeloid leukaemia (CML) patient, sequenced with the

Illumina HiSeq platform in paired 100 bp reads (SRA081939).

The algorithms were also applied to similar exome sequencing

data from non-cancerous patient samples (randomly split into

two equal-sized subsamples to mimic production of two

normal sequencing samples from each individual) to assess the

output returned in the absence of any real somatic variation

between samples. Details of the data and methods used are avail-

able in the Supplementary Information.

3.1 Raw output

The output from each of the four algorithms includes both gain-

of-variation somatic SNV candidates and sites of apparent LOH

in the cancer sample. Using low probability score thresholds for

inclusion to generate large candidate sets, the raw output con-

sisted of 2667 somatic and 1720 LOH VarScan candidates; 2663

somatic and 175 LOH SomaticSniper candidates; 2178 somatic

and 2040 LOH JSM2 candidates; and 438 somatic and 29 LOH

Strelka candidates. Only 50 of the somatic candidates were re-

turned by all four callers, and the vast majority of sites were

uniquely returned by one caller.
In keeping with the primary purpose of these algorithms, we

chose to focus this review on the somatic candidates rather than

LOH. A short discussion on the LOH candidates returned by

these algorithms is included in Section 4.1.

As expected, given the low probability stringency used to

define candidate inclusion, the number of sites returned exceeded

the number of expected true positives by orders of magnitude.

Two simple approaches for reducing the number of candidates

would be to remove sites returned with a low probability score,

or to remove candidates uniquely identified by one caller.
The distribution of somatic probability scores for sites unique

to each caller and returned by multiple callers, as shown in

Figure 1, indicates that filtering out sites returned by only one

algorithm would remove sites regarded to have high somatic

probability by one such measure. Furthermore, Figure 2 shows

that many sites returned with a high probability score by one

caller are returned with a much lower probability score by an-

other. If the first step of post-calling filtration was to remove

from each caller’s output the sites returned with low probability,

then information on sites being found by multiple callers but at

markedly different probabilities would be lost. Given the poor

correlations between probability scores from different callers for

the same sites, their intrinsic value is questionable.
Observable in both Figures 1 and 2 is that, unlike the other

callers, none of VarScan’s lowest probability candidates were re-

turned by any other caller. In sharp contrast, many of Strelka’s

candidates at probability 0.20 were returned with high probability

scores by other callers. The somatic probabilities in the raw JSM2

output are calibrated far too high, with 337 somatic candidates

returned with probability score 1.0, and a further 748 somatic

candidates returned with probability scores between 0.95 and

1.0, when the expected number of true positives is closer to 100.

3.2 Filters

Rather than reducing the number of candidates by increasing the

probability score threshold for inclusion, we applied filters

Fig. 1. Frequency distribution of probability scores for somatic candi-

dates in the raw output from the CML exome, with sites unique to each

caller in a light shade and sites returned by multiple callers in a dark

shade. Note that gaps between SomaticSniper and Strelka frequency

peaks are an artefact due to the phred scaling used by these tools

Fig. 2. Probability scores of somatic candidates in common between

pairs of algorithms for the CML exome. Pearson correlation coefficients

between pairs are VS&SS 0.50, VS&JS 0.59, VS&ST 0.42, SS&JS 0.23,

SS&ST 0.21 and JS&ST 0.46
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designed to remove sequencing and mapping errors. Sites were
removed if any of the following criteria were met (considering

variant bases in the cancer sample for somatic candidates and
variant bases in the normal sample for LOH candidates): variant

bases emanate exclusively from one strand; mean variant base
quality is less than 15; no variant has base quality over 30; mean

variant mapping quality is less than 15; no variant has mapping
quality over 40; more than two candidate SNVs (identified by

any algorithm) are within 50 bp either side; spanning deletions
contribute420% to the overall depth in either sample; or can-

didates are immediately adjacent to indels in420% of reads in
either sample. A detailed breakdown of filtering results is avail-

able in the Supplementary Information.
By far the most significant filtering metric was the requirement

to have at least one relevant variant base on each strand, with

5437 out of 10 438 candidates removed for having 100% strand
bias. Although this filter was designed to remove systematic

sequencing errors, complete strand bias can occur solely as a
result of random sampling between the two strands, especially

at low depths. For a site with a total of v variant reads, the
chance that all of those reads occur on one strand is 2� 0:5v.
Using these per-site strand bias probabilities for this dataset, the
expected number of sites with 100% strand bias is 1272, less than

a quarter of the number actually observed. When applying the
same methods to whole genome sequencing cancer–normal data

(not shown), the expected number of sites with 100% strand bias
was less than half the number observed. The relative extent of

strand bias may be greater in exome sequencing because of the
exome capture design tending to cover sequences just outside the

targeted regions from one direction (and one strand) only.
However, the profusion of strand biased variants in both

exome and whole genome data supports the descriptions of sys-
tematic errors of sequencing by Nakamura et al. (2011) and

Meacham et al. (2011).
There were significant differences between the filter pass rates

of the four output sets, as presented in Table 1. The raw output
from Strelka was least susceptible to these indicators of sequen-

cing and mapping error, while the output from JSM2 was most
susceptible.

3.3 Comparison and characterization of candidate sites

After filtering, 2920 candidate sites remained, including 812 som-

atic and 475 LOH VarScan candidates; 862 somatic and 85 LOH

SomaticSniper candidates; 470 somatic and 455 LOH JSM2 can-

didates; and 268 somatic and 28 LOH Strelka candidates, with

overlaps between the four sets of somatic candidates illustrated

in Figure 3.

Figures 4 and 5 present some effects of increasing each algo-

rithm’s somatic probability score threshold for inclusion to one,

and thus reducing the number of candidate sites in their output

to the top calls.

Figure 4 illustrates that the proportion of somatic sites found

by any other caller (at any probability threshold) improves as the

candidate sets are reduced to their top calls. VarScan’s top 22

somatic candidates were all returned with probability 1.00 by all

four callers. Of SomaticSniper’s top 49 candidates, 11 were not

returned at any probability level by the other three algorithms,

Fig. 4. Proportion of somatic sites found by multiple callers as the prob-

ability score threshold of each caller is increased to 1.0 and the number of

candidate sites reduces

Fig. 3. Overlaps between somatic SNV candidate sets in the filtered

output for the CML exome

Table 1. Pass rates (%) of candidate sites (somatic and LOH) through

the strand bias filter and the combination of all other filters

Algorithm name Strand bias All other filters

VarScan 50.3 58.3

SomaticSniper 50.4 66.2

JSM2 45.8 47.9

Strelka 70.9 89.9

The combined filters for variant base and mapping quality, nearby SNVs, spanning

deletions and adjacent indels were applied after the removal of sites with 100%

strand bias.

All differences are significant, except between VarScan and SomaticSniper with the

strand bias filter.
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while of JSM2’s top 124 candidates, 78 were not returned by any

other caller. Strelka’s top 30 candidate sites included 25 returned

by the other three callers with probability 1.00, except for two

sites below a 20% variant frequency missed completely by

VarScan. The five sites given 1.00 somatic probability by

Strelka but not returned at any probability level by the other

three algorithms were low-allelic-fraction candidates with variant

proportion in the normal sample from 0.0 to 1.5% and in the

cancer sample from 2.4 to 5.5%.

Figure 5 illustrates the proportion of somatic sites present in

dbSNP as the output sets are reduced to their top calls.

Candidate somatic mutation sites found in dbSNP are sometimes

interpreted as germline polymorphism false positives (Roth et al.,

2012), or sites of common sequencing error contaminating the

database. This is not always true, as some sites within dbSNP

have validated as true-positive somatic mutations in cancer.

While no particular site should be removed as a false positive

solely on the basis of a dbSNP entry, the overall proportion of

sites in dbSNP should still be a valid indicator of the comparative

number of germline false positives in different output sets. When

considering more than 100 candidates, VarScan appears to be the

worst offender with �80% constituency of dbSNP compared

with SomaticSniper �60% and JSM2 �50%. This vastly im-

proves within the top set of 22 VarScan somatic candidates

and mildly improves within the top set of 49 SomaticSniper can-

didates. As JSM2 considerably overestimates its somatic prob-

ability scores, its top tier of somatic calls can not be reduced to

any5124, and no improvement is seen. In contrast, only �20%

of Strelka’s candidate sites at any probability cut-off are present

in dbSNP, indicating Strelka is not as prone to returning germ-

line polymorphisms. Rather, Strelka’s false positives may tend to

be the result of sequencing errors.
The characteristics of somatic candidates uniquely returned by

each caller are illustrated by Figure 6. Each set of sites returned

solely by one caller was sorted by variant proportion in the

cancer sample. Then the variant proportion in the cancer

(smooth lines) and normal sample (jagged lines) were plotted

against the scaled index of each site.
VarScan’s default algorithm design returns somatic candidates

if, for variant bases above 15 in quality, the cancer variant pro-

portion is between 20 and 75% and the normal variant propor-

tion is outside this range. Although obscured to some extent in

Figure 6, which plots the proportion of all variant bases not just

those above 15 in quality, it is apparent that sites uniquely re-

turned by VarScan are those at which the variant proportion in

the normal sample falls slightly below 20% (and above in the

cancer sample). The vast majority of unique VarScan candidates

had a strong variant signal in both samples, again suggesting a

tendency for VarScan to return germline polymorphism false

positives.
SomaticSniper shows a distinctive discretized quality in its

cancer variant proportions, explained by the low depth at most

sites uniquely found by SomaticSniper. Unlike the other callers,

SomaticSniper had no lower bound for the depth of its candidate

sites, and 70% of the candidates unique to SomaticSniper had

depths in the cancer sample below 12. At low depths, variant

allele frequencies can only occur at certain discrete levels, largely

explaining the pattern in Figure 6. While the sites at the discre-

tized variant frequencies and low depths appear to have no cor-

responding variant signal in the normal sample, yielding the

result that 71% of sites unique to SomaticSniper have no variant

signal in the normal, SomaticSniper’s output also contained

unique sites at higher depths with variant signals in evidence

from both samples, constituting likely germline polymorphism

false positives.
JSM2 uniquely returned low-allelic-fraction candidates with

variant proportions in the cancer �5–20%, but variant signals

in the normal sample were also present at 75% of these sites.

Half of the candidates unique to JSM2 had depths in the cancer

Fig. 6. The proportion of total depth contributed by the most common

variant base in the cancer (smooth lines) and normal (jagged lines) for

somatic sites uniquely returned by VarScan (red), SomaticSniper (green),

JSM2 (orange) and Strelka (blue). The horizontal axis is the scaled index

of each site after sorting by variant proportion in the cancer (scaled index

chosen for comparisons across different sample sizes)

Fig. 5. Proportion of somatic candidates present in dbSNP as the prob-

ability score threshold of each caller is increased to 1.0 and the number of

candidate sites reduces
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sample above 90. This suggests a possible weakness of JSM2:
that at high depths of sequencing, a statistically significant dif-

ference between variant proportions in the two samples is more
likely, regardless of the biological significance.
Strelka appears tuned to detect even lower allelic fractions, as

its unique calls have variant proportion in the cancer around 5%.
In contrast to JSM2, 72% of Strelka’s unique output had no

variant base in the normal sample.

3.4 Non-cancer exomes

For each of two exomes sequenced to high depth from non-can-
cerous samples, we twice randomly split the BAM file in half and

applied the somatic calling algorithms to these matched normal–
normal samples to return purely false-positive candidate sets.

After applying the previously described post-calling filters, the
number of false-positive sites output by all four algorithms in the

four cases were 5, 7, 10 and 11. On inspection, these 33 false
positives were seemingly indistinguishable from some of the som-

atic candidates identified in the cancer samples, with depths ran-
ging from 10 to 73 and most having somatic probability scores

above 0.90.

4 CONCLUSIONS AND FUTURE PERSPECTIVES

Comparing the candidate SNV sets returned by VarScan,
SomaticSniper, JSM2 and Strelka revealed substantial differ-

ences as to the number and character of sites returned; the som-
atic probability scores assigned to the same sites; their

susceptibility to various sources of noise; and in their differing
sensitivities to candidate mutations at a low allelic fraction.

4.1 LOH candidates

All four algorithms return candidate LOH events implying loss

of variation in the cancer sample. The term typically implies a
deletion event, but duplication events also register as LOH can-

didates when a previously 1:1 heterozygous signal shifts to a 2:1
signal in the duplicated region. LOH candidates may also arise

from somatic mutations present in the ‘normal’ cell sample that
were never present as germline polymorphisms in the general cell
population of the individual.

Given these confounding factors, the LOH candidates re-
turned by these tools are not, by themselves, a strong indication

of actual LOH. These SNV calling algorithms have not been
optimized to detect LOH regions, and merely give the output

as a by-product of their main purpose. Regions with a relatively
high frequency of LOH candidates may indicate real copy

number variation, but these should be investigated by alternative
means like aCGH.
After filtering, the proportion of LOH candidates in the

output from each algorithm was �50% for JSM2, 40% for
VarScan and 10% for SomaticSniper and Strelka. As regions

of interest with relatively high frequency of LOH candidates
are still identifiable in smaller output sets, and as the LOH can-

didates assigned the highest probability scores by VarScan also
tend to be returned by SomaticSniper and, to a slightly lesser

extent, by Strelka as well, no obvious benefit is gained in using
VarScan or JointSNVMix to return greater numbers of LOH

candidates.

4.2 Somatic candidates

The main purpose of the four algorithms analysed here is the

detection of candidate somatic SNV sites purporting gain of

variation in the cancer sample. A core group of sites was identi-

fied by all algorithms at high probabilities, though given the

identification of a few similar sites within the non-cancerous

exomes, false positives are likely to be included even in this

common set. Beyond this core group, there were marked differ-

ences in the probability scores assigned to the same sites and in

the characteristics of sites returned by one algorithm only.
VarScan (Koboldt et al., 2009, 2012) has the advantage that its

top set of somatic candidate sites are convincing mutations with

high concordance with other callers. However, aside from these

relatively clearcut candidates identified by all calling algorithms,

VarScan’s output at lower probability thresholds appear inun-

dated by germline polymorphism false positives, an understand-

able consequence of VarScan’s algorithm design. By

automatically classifying sites with 20–75% variant frequency

as heterozygous and sites just outside these thresholds as homo-

zygous, any germline polymorphism that, by chance and the

vagaries of sequencing bias, registers either side of these cut-

offs in the two samples becomes a candidate for Fisher’s test.

At reasonably high depth, even a small difference in variant

proportions can achieve statistical significance, regardless of bio-

logical significance. Aside from the high rate of germline false

positives, the other major drawback to VarScan is its inability to

detect low-allelic-fraction candidates below its minimum variant

frequency for heuristic genotyping. We used the default settings

with the lower bound of 20% and thus VarScan failed to return

even the most convincing mutations below this level. Given the

paucity of convincing candidates returned by VarScan that

would not also be returned by SomaticSniper or Strelka at

high probability, we conclude little benefit is gained in running

VarScan as opposed to these other algorithms.

SomaticSniper (Larson et al., 2012) has no minimum depth

requirements and thus is liable to return a unique set of candi-

dates at the low depths that surround target regions in an exome

capture assay. If desired, it would be a simple matter to add an

additional post-calling filter for minimum depth. Apart from

those sites identified at low depths in the exome sample, other

sites uniquely found by SomaticSniper tended to be mutations

with a 10–30% allelic fraction. As a means of generating a var-

iety of candidate SNV sites without any particular drawbacks,

SomaticSniper is a practical and credible program, though its

results should by no means be interpreted as constituting an

inherently true mutation profile.
JSM2 (Roth et al., 2012), in its current implementation, is

extremely inconvenient to use. Unlike the other algorithms,

which only output sites of interest above particular, customizable

thresholds, JSM2 includes a line in the output file for every single

site in the input BAM files regardless of their somatic or LOH

probability scores. This high volume of output is unnecessarily

awkward for exome data and impracticable for whole genome

data. Not only are the training and classifying steps of JSM2

considerably slower than either SomaticSniper or Strelka, but

it is also left up to the user to develop a reasonable method for

extracting the candidate sites. Even after the raw output was

pared back to genuine sites of interest, JSM2’s candidates had
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the lowest pass rate through filters to remove sequencing error

and then after that were found to have 50% constituency in

dbSNP. These results suggest JSM2 candidates are vulnerable

to false positives from both sequencing error and germline

polymorphisms. Furthermore, JSM2 vastly overestimates the

somatic probabilities assigned to each site, such that a small

set of the highest ranking candidates can not be derived. This

problem would be overcome by lowering the prior parameter

for expected rate of somatic mutation, but in this analysis,

only the default settings were considered. The sites uniquely re-

turned by JSM2 have a 5–20% allelic fraction in the cancer, with

the majority having only slightly lower variant signals in the

normal sample. We suggest that the extra sites identified by

JSM2 do not, on current evidence, include enough convincing

candidates to outweigh the inconvenience of its unwieldy

implementation.

Strelka (Saunders et al., 2012) is a computationally efficient

program that returns a much smaller output set of candidates

than the other algorithms. Some Strelka calls with probability

scores of 0.0 and 0.2 overlapped with high probability output

from other callers, so all Strelka sites were considered valid

candidates for analysis, regardless of probability score. The

sites uniquely found by Strelka were low-allelic-fraction

mutations �5% variant frequency in the cancer. Given the clin-

ical importance of subclonal mutations with drug resistant cap-

ability, Strelka is a valuable tool for identifying candidate

mutations below the detection level of other algorithms, without

returning an excessive number of dubious results. Strelka also

identifies the same high-probability clonal-type mutations as the

other algorithms. Of the four algorithms investigated here, we

consider Strelka and SomaticSniper to be the best overall

performers.

Although all designed for the same, conceptually simple, task

of identifying candidate somatic SNV sites in matched cancer–

normal sequencing data, the complexity of the systematic noise

permeating sequencing data affects each algorithm in different

ways. In practice, many cancer sequencing projects have relied

on one SNV calling pipeline to generate candidates. The poor

consensus between different algorithms beyond a small group of

clearcut candidates suggests extreme care is needed to prevent

over-interpreting any one output set as being intrinsically repre-

sentative of the true mutation profile. Using two algorithms with

different vulnerabilities to error that appear ‘tuned’ to detect

different types of candidates is likely to provide a significant

reduction in false negatives, at the cost of returning more false

positives. However, as post-calling filters can be designed to

remove as many unconvincing candidates as desired, the benefits

of seeking alternative candidate sites from different algorithms

still hold.

Given the significant differences and contradictions in the

output returned by each SNV calling algorithm, extreme caution

should be applied when interpreting their somatic probability

scores, choosing sites for subsequent analysis, and reporting re-

sults. Over-interpreting the output from any one SNV calling

algorithm as being the closest possible estimation to the real

set of somatic SNVs risks the inclusion of errors that algorithm

is vulnerable to, and the omission of real mutation identifiable by

different algorithm designs.

4.3 Filters, ranking and assessment of candidate sites

Candidate SNV sets are typically filtered to remove multiple in-

dicators of sequencing error. Incorporating a knowledge of the

sequencing platform’s error profile after initial SNV calling,

rather than including it as part of the calling algorithm, allows

the basic calling algorithms to remain relevant for various iter-

ations of the sequencing technology. As the error profiles of

DNA sequencing platforms rapidly shift with every technical

upgrade, it makes more sense to continually update a set of

best-practice filters than redesign the calling algorithms every

year. Having said this, there is currently no best-practice filtering

method commonly agreed with.
Aside from the six features we used for filtering (strand bias,

nearby SNVs, spanning deletions, adjacent indels, variant base

and mapping qualities), some other filters recommended in the

literature include within-read position and the presence of par-

ticular surrounding sequence motifs (Koboldt et al., 2012;

Larson et al., 2012; Meacham et al., 2011; Nakamura et al.,

2011). Errors are known to accumulate in and around homopo-

lymers, inverted repeats and G-rich motifs such as GGT and

GGC, so these would be ideal inclusions in a best-practice filter-

ing design for Illumina data. The simplest and most accessible

method of filtering is the independent definition of set cut-offs

for different features dictating the inclusion or exclusion of each

site. However, as more error features are described and included

in filtering, this simple method becomes less appropriate. For

example, while it may be reasonable to require a certain min-

imum mapping quality for every candidate, it would not be rea-

sonable to remove every candidate site following a GG motif,

even though this too has been strongly associated with error. A

more sophisticated method of filtering out likely false positives

would be the joint consideration of multiple error indicators

(including surrounding motifs) in the definition of a classification

or probability recalibration rule reflecting the gamut of features

known to correlate with error. Training such a rule requires an

extensive set of validated true- and false-positive SNV candidates

within data from the sequencing platform of interest, so is most

practical at large sequencing centres.
Metrics used to gauge the quality of candidate sites after fil-

tering include the proportion of sites in dbSNP or HapMap to

assess germline polymorphism false positives, and pass rate

through filters to assess sequencing error false positives. In gen-

eral, such metrics are difficult to interpret because a low rate of

one false-positive type may imply either a high true-positive rate

or a high false-positive rate of the other type. Another metric

often used to assess candidate SNV sets is their transition–trans-

version ratio, under the assumption that departure from the

observed Ti–Tv ratios of SNPs in normal genomes indicates con-

tamination from sequencing error false positives. However, the

many reports of cancers presenting with transition–transversion

ratios significantly different from the typical levels within non-

cancerous genomes (Liu et al., 2002; Oki et al., 2009; Yang et al.,

2003), coupled with the fact that germline polymorphism false

positives naturally correspond to the standard ratios, suggest the

transition–transversion ratio is a poor metric for assessing can-

cerous somatic mutations.
Although deletion and duplication events confound the search

for SNV candidates, at present these SNV calling algorithms
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only model diploid variation. Information on copy number vari-
ation from aCGH or other methods should be kept in mind
when interpreting output from SNV calling algorithms.

4.4 Understanding the molecular basis of cancer

Cancer genome projects seek to identify mutations of therapeutic
or biological interest, and to correlate mutation profiles with
treatment outcomes for the development of personalized medi-

cine and improved cancer survival rates. Somatic SNVs are an
integral part of the mutational landscape, and, with an under-
standing of their relative strengths and weaknesses, a logical se-
lection of multiple SNV calling algorithms should be used to

offset their individual quirks and reduce the number of false
negatives. As extensive validation experiments are often imprac-
tical, post-calling filters designed to remove sequencing and ana-

lysis errors can reduce the burden of excessive candidates as
much as required before further investigation.
Although some number of false positives is inevitable in any

candidate mutation set, if the patient cohort is large enough,
relevant and actionable mutations will be ultimately identified
by their recurrence in multiple patients. This is slightly con-

founded by the presence of systematic sequencing errors accu-
mulating at susceptible genomic positions across different
sequencing samples, but these should balance out between pa-
tients with different clinical outcomes and have little effect on

correlation analysis. However, for rare cancer subtypes for which
large patient cohorts are difficult to recruit, additional validation
steps may be needed to prevent false positives contaminating the

data and obfuscating the associations between mutational pro-
files and clinical outcomes.
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