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Abstract of thesis

This thesis provides a detailed account of an experimental investigation into the effects of
leading edge sinusoidal protrusions (tubercles) on the performance of airfoils. The leading
edge geometry was inspired by the morphology of the Humpback whale flipper, which is
a highly acrobatic species. The aim of this study is to investigate the potential advantages
and disadvantages of incorporating tubercles into the leading edge of an airfoil. Specific
parameters have been varied to identify an optimum tubercle configuration in terms of

improved lift performance with minimal drag penalties.

The investigation has shown that for all tubercle arrangements investigated, increased lift
performance in the post-stall regime comes at the expense of degraded lift performance in
the pre-stall regime. However, it has also been noted that through optimizing the
amplitude and wavelength of the tubercles, pre-stall lift performance approaches the
values attained by the unmodified airfoil and post-stall performance is much improved. In
general, the configuration which demonstrates the best performance in terms of maximum
lift coefficient, maximum stall angle and minimum drag has the smallest amplitude and
wavelength tubercles. A new alternative modification has also been explored, whereby
sinusoidal surface waviness is incorporated into the airfoil, giving a spanwise variation in
local attack angle. Results indicate that optimisation of this configuration leads to similar
performance advantages as the best-performing tubercle configuration. It is believed that

the flow mechanism responsible for performance variation is similar to tubercles.

The deterioration in pre-stall performance for airfoils with tubercles in the current study
has been explained in terms of Reynolds number effects and also the relatively weak
spanwise flow in the boundary layer. In swept and tapered wings such as the Humpback
whale flipper, spanwise flow occurs along the entire span, so the effect of tubercles can be

expected to be much larger.

Surface pressure measurements have indicated that the region of separation and
reattachment for airfoils with tubercles is restricted to the trough between the tubercles
rather than extending across the entire span. Hence, leading-edge separation is initiated at
the troughs but occurs at a higher angle of attack for other locations, leading to a delayed

overall stall for airfoils with tubercles. In addition, integration of the surface pressures



along the airfoil chord has indicated that lift, and hence circulation, varies with spanwise
position, providing suitable conditions for the formation of streamwise vorticity. A
spanwise variation in circulation is also predicted for the wavy airfoil since the relative

angle of attack varies along the span.

Counter-rotating streamwise vortices have been identified in the troughs between
tubercles using particle image velocimetry in a series of cross-streamwise, Cross-
chordwise planes which have not been investigated previously using this technique. The
associated peak primary vorticity and circulation have been found to increase with angle
of attack for a given measurement plane. This provides an explanation for the
effectiveness of tubercles post-stall since an increased primary vortex strength leads to a
greater boundary layer momentum exchange. The results show that the magnitude of the
circulation generally increases in the streamwise direction, except when there exist
secondary vortex structures of opposite sign on the flow side of the primary vortices. A
proposed mechanism for this increasing circulation of the primary vortices is the
entrainment of secondary vorticity which is generated between the adjacent primary
vortex and the airfoil surface. It is postulated that this process of entrainment alternates

between the primary vortices in an unsteady fashion.

Leading edge tubercles have also been found to mitigate tonal noise associated with the
NACA 0021 and the NACA 65-021 at all angles of attack in a novel investigation.
Elimination of the tonal noise occurred for the majority of modified airfoils and in many
cases the broadband noise level was also reduced for certain frequency ranges. It is
believed that tonal noise elimination is facilitated by the presence of the streamwise
vortices and that the spanwise variation in separation location is also an important factor.
Both characteristics modify the stability characteristics of the boundary layer, altering the
frequency of velocity fluctuations in the shear layer near the trailing edge. This affects the
coherence of the vortex generation downstream of the trailing edge, hence leading to a

decrease in trailing edge noise generation.
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Nomenclature

o

Ci

Cy

Cor
Cp
Cpi
Cpu
Ce
ClLmax
Cru
ACE s
Cu

1/4

CM1/4M

speed of sound = 343m/s

tubercle amplitude

airfoil span

airfoil chord

Pitot probe centreline

mean airfoil chord

sensitivity coefficient

convection velocity of boundary layer instabilities
cross-sectional area of wind tunnel

chordwise component of form drag coefficient
drag coefficient

induced drag coefficient

uncorrected drag coefficient.

lift coefficient

maximum lift coefficient

uncorrected lift coefficient

change in lift coefficient due to streamline curvature

pitching moment coefficient at the quarter-chord position
uncorrected pitching moment coefficient

normal coefficient

pressure coefficient

Pitot tube diameter

diffraction limited image diameter
distance between object and image planes
particle diameter

non-dimensional Pitot diameter

drag

aperture diameter.

diagonal of camera sensor frame

diagonal of object plane
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frequency

camera focal length

discrete frequency related to primary tonal peak
peak tonal frequency

f-number

chordwise force

normal force

effective tubercle height

height of wind tunnel test section

airfoil camber

shape factor

height of wind-tunnel jet

height or width of CCD array

lift

suitable length scale

characteristic length

length of aeroacoustic feedback loop
normalised length of separation bubble on pressure surface
normalised length of separation bubble on suction surface
roughness height

coverage factor

magnification factor

total number of measurements

number of vectors across the diameter of a vortex
number of interrogation windows across image
pressure at airfoil surface

freestream statics pressure

dynamic pressure

spanwise spacing between riblets in wall units
spanwise spacing between riblets
residual
median residual

conversion factor between pixel units at CCD array to mm
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7, normalised residual

R half-width of wind tunnel.

Re Reynolds number

Re,  Reynolds number based on boundary layer development length
Res+ Reynolds number based on boundary layer displacement thickness
Rey  Reynolds number based on boundary layer momentum thickness
S planform area

Stk Stokes number

t airfoil thickness

AT time delay between laser pulses

Tu turbulence intensity

u velocity component in streamwise (x) direction
U, combined standard uncertainty
Uk velocity of flow at top of roughness element

Ur frictional velocity

U expanded uncertainty

U. characteristic velocity

U; uncertainty component

U,  freestream velocity

u' average fluctuating velocity component in streamwise (x) direction
v velocity component in vertical (y) direction

v degrees of freedom

Ve effective degrees of freedom

Vs particle settling velocity
v, estimated vector for outlier replacement
Vv average fluctuating velocity component in vertical (y) direction
v “smoothed” vector value determined using an adaptive Gaussian window
V volts
. local median velocity vector
V,  central displacement vector
V, uncorrected velocity

AV axial velocity due to doublet

X



w downwash velocity component

w velocity component in spanwise (z) direction

Wy weighting coefficient

W average fluctuating velocity component in spanwise (z) direction
w out-of-plane component of velocity

X streamwise distance

x mean of data set

Xm single measurement

x/c non-dimensional chordwise distance
b% vertical distance

Ve distance from wall to probe centreline
y+ non-dimensional wall distance

Ay streamline displacement correction

z spanwise distance

Az light sheet thickness

AZy  light sheet thickness

o angle of attack
a non-dimensional velocity gradient
Ol true angle of attack

Acy. change in attack angle due to streamline curvature
actual angle of flow for finite-span airfoil

Aa angle induced by downwash from tip vortices

K Von Karman’s constant

o boundary layer thickness

o buffer to account for laser jitter

5 boundary layer displacement thickness

OAD

uncertainty in displacement

O uncertainty in particle image diameter
Oq uncertainty due to velocity gradient
Om magnification uncertainty

On uncertainty due to sub-optimal particle seeding
%

actual position of the particle



Oy perspective uncertainty

O uncertainty due to laser “jitter”

Ow wall proximity correction

£ angular misalignment of load cell axes

£ compensating factor for normalised median test

ep  relative uncertainty in displacement

& relative uncertainty in particle image diameter

& relative uncertainty due to velocity gradient

Em relative magnification uncertainty

EN relative uncertainty due to sub-optimal particle seeding
& relative perspective uncertainty

& relative uncertainty due to laser “jitter”

& random velocity error

&b solid blockage of model in wind tunnel

Ewb wake blockage of model in wind tunnel
Errandom Tandom error in circulation

Erpias bias error in circulation

Enbias DI1as error in vorticity

Ewrand Tandom error in vorticity

r circulation
A tubercle wavelength
A wavelength of illuminating light

A> shape factor

Ao noise transmission ratio

dynamic viscosity

kinematic viscosity

relative rotation angle between a trough and peak for wavy airfoil

boundary layer momentum thickness

N O @ = X

, pr fluid density
yox particle density

lo2 standard deviation
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Oy

uncertainty in particle displacement
particle relaxation time

wall shear stress

vorticity

vorticity threshold or contour
similarity variable
horizontal/vertical grid spacing

flashlamp g-switch delay
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