EFFECT OF LEADING EDGE TUBERCLES ON AIRFOIL PERFORMANCE

By

Kristy Lee Hansen

A Thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

SCHOOL OF MECHANICAL ENGINEERING

July 2012

© Kristy Lee Hansen

Abstract of thesis

This thesis provides a detailed account of an experimental investigation into the effects of leading edge sinusoidal protrusions (tubercles) on the performance of airfoils. The leading edge geometry was inspired by the morphology of the Humpback whale flipper, which is a highly acrobatic species. The aim of this study is to investigate the potential advantages and disadvantages of incorporating tubercles into the leading edge of an airfoil. Specific parameters have been varied to identify an optimum tubercle configuration in terms of improved lift performance with minimal drag penalties.

The investigation has shown that for all tubercle arrangements investigated, increased lift performance in the post-stall regime comes at the expense of degraded lift performance in the pre-stall regime. However, it has also been noted that through optimizing the amplitude and wavelength of the tubercles, pre-stall lift performance approaches the values attained by the unmodified airfoil and post-stall performance is much improved. In general, the configuration which demonstrates the best performance in terms of maximum lift coefficient, maximum stall angle and minimum drag has the smallest amplitude and wavelength tubercles. A new alternative modification has also been explored, whereby sinusoidal surface waviness is incorporated into the airfoil, giving a spanwise variation in local attack angle. Results indicate that optimisation of this configuration. It is believed that the flow mechanism responsible for performance variation is similar to tubercles.

The deterioration in pre-stall performance for airfoils with tubercles in the current study has been explained in terms of Reynolds number effects and also the relatively weak spanwise flow in the boundary layer. In swept and tapered wings such as the Humpback whale flipper, spanwise flow occurs along the entire span, so the effect of tubercles can be expected to be much larger.

Surface pressure measurements have indicated that the region of separation and reattachment for airfoils with tubercles is restricted to the trough between the tubercles rather than extending across the entire span. Hence, leading-edge separation is initiated at the troughs but occurs at a higher angle of attack for other locations, leading to a delayed overall stall for airfoils with tubercles. In addition, integration of the surface pressures

along the airfoil chord has indicated that lift, and hence circulation, varies with spanwise position, providing suitable conditions for the formation of streamwise vorticity. A spanwise variation in circulation is also predicted for the wavy airfoil since the relative angle of attack varies along the span.

Counter-rotating streamwise vortices have been identified in the troughs between tubercles using particle image velocimetry in a series of cross-streamwise, crosschordwise planes which have not been investigated previously using this technique. The associated peak primary vorticity and circulation have been found to increase with angle of attack for a given measurement plane. This provides an explanation for the effectiveness of tubercles post-stall since an increased primary vortex strength leads to a greater boundary layer momentum exchange. The results show that the magnitude of the circulation generally increases in the streamwise direction, except when there exist secondary vortex structures of opposite sign on the flow side of the primary vortices. A proposed mechanism for this increasing circulation of the primary vortices is the entrainment of secondary vorticity which is generated between the adjacent primary vortex and the airfoil surface. It is postulated that this process of entrainment alternates between the primary vortices in an unsteady fashion.

Leading edge tubercles have also been found to mitigate tonal noise associated with the NACA 0021 and the NACA 65-021 at all angles of attack in a novel investigation. Elimination of the tonal noise occurred for the majority of modified airfoils and in many cases the broadband noise level was also reduced for certain frequency ranges. It is believed that tonal noise elimination is facilitated by the presence of the streamwise vortices and that the spanwise variation in separation location is also an important factor. Both characteristics modify the stability characteristics of the boundary layer, altering the frequency of velocity fluctuations in the shear layer near the trailing edge. This affects the coherence of the vortex generation downstream of the trailing edge, hence leading to a decrease in trailing edge noise generation.

Statement of Originality

I, Kristy Lee Hansen certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of Copyright Act, 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed: _____ Kristy Lee Hansen Date: January 2012

Acknowledgements

I would like to thank all who have helped me during my candidature. I am especially grateful to my supervisors Associate Professor Richard Kelso and Associate Professor Bassam Dally for giving me the opportunity to work on this project and for their contribution and advice. I am also sincerely grateful to my father, Professor Colin Hansen, who continually encouraged me and offered valuable technical support. I also appreciate the support of Associate Professor Con Doolan who made valuable contributions to this work.

I would also like to thank the School's workshop staff, in particular Bill Finch for machining my airfoils with such perfection. I am also grateful to Dave Osborne for building by force measurement apparatus. In addition, I will never forget the workshop humour which always seemed to lift my spirits.

Thanks to my colleagues for their help and support both technically and emotionally. I'm especially grateful to those who engaged in complex intellectual discussions with me, which challenged my ideas and perceptions and broadened my understanding of the topic. I also appreciate those who listened to me asking a question, which I subsequently answered myself simply because I was given the opportunity to communicate my misunderstanding. In addition, I am thankful to those who passed on their knowledge of experimental apparatus, helping me to progress more efficiently.

Finally, thanks to my family and friends for being there for me and for believing in me. Especially to those who stopped asking me when I was going to finish and also expressed an interest in my topic. I also appreciate the encouragement of dear Damon Shokri who convinced me to publish despite my claims that my work was not ready for that. From this moment, I realised that the true value of my work could never be realised until I shared it with others.

Nomenclature

- a_o speed of sound = 343m/s
- *A* tubercle amplitude
- *b* airfoil span
- c airfoil chord
- *c* Pitot probe centreline
- \overline{c} mean airfoil chord
- c_i sensitivity coefficient
- *c_r* convection velocity of boundary layer instabilities
- *C* cross-sectional area of wind tunnel
- C_{Cf} chordwise component of form drag coefficient
- C_D drag coefficient
- C_{Di} induced drag coefficient
- C_{Du} uncorrected drag coefficient.
- C_L lift coefficient
- CLmax maximum lift coefficient
- *C*_{Lu} uncorrected lift coefficient
- $\Delta C_{L,sc}$ change in lift coefficient due to streamline curvature
- $C_{M_{1/4}}$ pitching moment coefficient at the quarter-chord position
- $C_{M_{1/4}u}$ uncorrected pitching moment coefficient
- C_N normal coefficient
- C_p pressure coefficient
- *d* Pitot tube diameter
- d_{diff} diffraction limited image diameter
- *d_o* distance between object and image planes
- d_p particle diameter
- d^+ non-dimensional Pitot diameter
- D drag
- D_a aperture diameter.
- D_i diagonal of camera sensor frame
- D_o diagonal of object plane

f	frequency
f	camera focal length
f_n	discrete frequency related to primary tonal peak
f_s	peak tonal frequency
$f_{\#}$	f-number
F_C	chordwise force
F_N	normal force
h _{eff}	effective tubercle height
h	height of wind tunnel test section
h _{max}	airfoil camber
Η	shape factor
Н	height of wind-tunnel jet
l_c	height or width of CCD array
L	lift
L	suitable length scale
L _c	characteristic length
L	length of aeroacoustic feedback loop
$(L/c)_p$	normalised length of separation bubble on pressure surface
$(L/c)_{\rm s}$	normalised length of separation bubble on suction surface
k	roughness height
k	coverage factor
М	magnification factor
п	total number of measurements
n_v	number of vectors across the diameter of a vortex
N_{IW}	number of interrogation windows across image
р	pressure at airfoil surface
p_{∞}	freestream statics pressure
q	dynamic pressure
s^+	spanwise spacing between riblets in wall units
S	spanwise spacing between riblets
<i>r</i> _i	residual
r_m	median residual
r _o	conversion factor between pixel units at CCD array to mm

- r_0^* normalised residual
- *R* half-width of wind tunnel.
- *Re* Reynolds number
- Re_x Reynolds number based on boundary layer development length
- Re_{δ^*} Reynolds number based on boundary layer displacement thickness
- Re_{θ} Reynolds number based on boundary layer momentum thickness
- *S* planform area
- *Stk* Stokes number
- t airfoil thickness
- ΔT time delay between laser pulses
- *Tu* turbulence intensity
- *u* velocity component in streamwise (*x*) direction
- u_c combined standard uncertainty
- u_k velocity of flow at top of roughness element
- u_{τ} frictional velocity
- U expanded uncertainty
- U_c characteristic velocity
- U_i uncertainty component
- U_{∞} freestream velocity
- $\overline{u'}$ average fluctuating velocity component in streamwise (x) direction
- *v* velocity component in vertical (*y*) direction
- v degrees of freedom
- v_{eff} effective degrees of freedom
- v_s particle settling velocity
- v_0' estimated vector for outlier replacement
- $\vec{v'}$ average fluctuating velocity component in vertical (y) direction
- \tilde{v} "smoothed" vector value determined using an adaptive Gaussian window
- V volts
- \vec{V}_{m} local median velocity vector
- \vec{V}_0 central displacement vector
- V_u uncorrected velocity
- ΔV axial velocity due to doublet

- *w* downwash velocity component
- w velocity component in spanwise (z) direction
- $w_{i,j}$ weighting coefficient
- $\overline{w'}$ average fluctuating velocity component in spanwise (z) direction
- *W* out-of-plane component of velocity
- *x* streamwise distance
- \overline{x} mean of data set
- x_m single measurement
- x/c non-dimensional chordwise distance
- *y* vertical distance
- y_c distance from wall to probe centreline
- y+ non-dimensional wall distance
- Δy streamline displacement correction
- *z* spanwise distance
- Δz light sheet thickness
- ΔZ_0 light sheet thickness
- α angle of attack
- α non-dimensional velocity gradient
- α_* true angle of attack
- $\Delta \alpha_{sc}$ change in attack angle due to streamline curvature
- α' actual angle of flow for finite-span airfoil
- $\Delta \alpha$ angle induced by downwash from tip vortices
- κ Von Karman's constant
- δ boundary layer thickness
- δ buffer to account for laser jitter
- δ^* boundary layer displacement thickness
- $\delta_{\Delta D}$ uncertainty in displacement
- δ_e uncertainty in particle image diameter
- δ_g uncertainty due to velocity gradient
- δ_m magnification uncertainty
- δ_N uncertainty due to sub-optimal particle seeding
- δ_p actual position of the particle

- δ_p perspective uncertainty
- δ_t uncertainty due to laser "jitter"
- δ_w wall proximity correction
- ε angular misalignment of load cell axes
- ε compensating factor for normalised median test
- $\varepsilon_{\Delta D}$ relative uncertainty in displacement
- ε_e relative uncertainty in particle image diameter
- ε_{g} relative uncertainty due to velocity gradient
- ε_m relative magnification uncertainty
- ε_N relative uncertainty due to sub-optimal particle seeding
- ε_p relative perspective uncertainty
- ε_t relative uncertainty due to laser "jitter"
- ε_u random velocity error
- ε_{sb} solid blockage of model in wind tunnel
- ε_{wb} wake blockage of model in wind tunnel

 $\varepsilon_{\Gamma\text{-random}}$ random error in circulation

- $\varepsilon_{\Gamma-bias}$ bias error in circulation
- $\varepsilon_{\omega\text{-bias}}$ bias error in vorticity
- $\varepsilon_{\omega-rand}$ random error in vorticity
- Γ circulation
- λ tubercle wavelength
- λ wavelength of illuminating light
- λ_2 shape factor
- λ_0 noise transmission ratio
- μ dynamic viscosity
- *v* kinematic viscosity
- θ relative rotation angle between a trough and peak for wavy airfoil
- θ boundary layer momentum thickness

 ρ , ρ_f fluid density

- ρ_p particle density
- σ standard deviation

- σ_s uncertainty in particle displacement
- au particle relaxation time
- τ_w wall shear stress
- *ω* vorticity
- ω_t vorticity threshold or contour
- ζ similarity variable
- Δ horizontal/vertical grid spacing
- Δ_{f-q} flashlamp q-switch delay

Table of Contents

Abstract	of thesis	i
Statemen	nt of Originality	iii
Acknow	ledgements	v
Nomenc	lature	vii
Table of	Contents	xiii
List of fi	gures	xvii
List of ta	bles	XXV
Chapter	1 Introduction to Flow Control	1
11	Introduction	1
1.2	Background	2
13	Flow Control	3
1.5	History and Development of Flow Control	4
1.1	Classifications of Flow Control	6
1.6	Passive Techniques	
1.0	1 Lift Enhancement	7
1.0	 2 Drag Reduction 	14
1 7	Active Techniques	11
1.7	1 Lift Enhancement	10
1.7.	 2 Drag Reduction 	17
1.7.	3 Manipulation of Near Wall Viscosity	24
1.7.	Summary and Discussion of Passive/Active Techniques	27
1.0	Durpose of Tubercles on Humpback Whale Flipper	23
1.9	Potential Applications for Engineered Devices	
Chapter	2 Paviaw of Literature and Associated Patents	
	Introduction	
2.1	Descarabinto Tuboralos	
2.2	1 Opentification of Derformance Enhancement	
2.2.	 Qualification of Performance Elimancement. Influence of Tuberele Configuration on Airfoil Derformance. 	
2.2.	 2 Influence of Tubercle Configuration on Alffold Performance 2 Einite Span Compared with Somi Infinite Span Desults 	
2.2.	5 Finite Span Compared with Semi-Infinite Span Results	
2.2.	4 Reynolds Number Effects	
2.2.	5 Flow Patterns	41
2.2.	6 Mechanism of Flow Control	46
2.3	Airtoil I onal Noise	
2.4	Existing Patents	
2.4.	Scalloped Wing Leading edge	
2.4.	2 Scalloped Leading edge Advancements	53
2.4.	3 Scalloped Trailing Edge	
2.4.	4 Iurbine/Compressor Rotor with Leading edge Tubercles	
2.4.	5 Spoked Bicycle Wheel	
2.5	Summary and Discussion	
2.6	Aims and objectives of current research	
2.7	Remainder of Thesis	
2.8	New Work in this Thesis	63
Chapter	3 Experimental Equipment and Methodology	65
3.1	Introduction	65
3.2	Airfoil Design	65

3.3 For	ce Measurements	72
3.3.1	Wind Tunnel	72
3.3.2	Boundary Layer Profile	73
3.3.3	Turbulence Intensity	79
3.3.4	Experimental Method for Force Measurements	80
3.3.5	Collection and Processing	
3.3.6	Angular Misalignment Correction	
3.3.7	Conversion of Rig to Test Half-Span Models	
3.3.8	Boundary Layer Trip Design	85
3.3.9	Corrections of Wind Tunnel Effects for a Full-Span Model	
3.3.10	Corrections of Wind Tunnel Effects for a Finite-Span Model	
3.3.11	Force Measurement Uncertainty Analysis	94
3.4 Sur	face Pressure Measurements	98
3.4.1	Pressure Taps	99
3.4.2	Scanivalve	100
3.4.3	Pressure Tap Locations	101
3.4.4	Determining Lift and Form Drag From Pressure Distributions	
3.4.5	Pressure Tap Uncertainty Analysis	104
3.5 Hyc	lrogen Bubble Visualisation	105
3.5.1	Water Channel	105
3.5.2	Hydrogen Bubble Method	107
3.6 Part	ticle Image Velocimetry	109
3.6.1	Specific Considerations for Airfoils with Tubercles	110
3.6.2	Thebarton Water Channel	112
3.6.3	Tracer Particles	114
3.6.4	Particle Image Size	116
3.6.5	Lasers	117
3.6.6	Light Sheet Optics	118
3.6.7	Time Delay Calculations	119
3.6.8	Timing and Synchronisation	
3.6.9	Imaging System	121
3.6.10	PIV Image Processing	
3.6.11	Post-Processing Techniques	
3.6.12	Dynamic Velocity Range	127
3.6.13	Dynamic Spatial Range	
3.6.14	Vorticity Estimation	
3.6.15	Circulation Estimation	129
3.6.16	PIV Uncertainty Analysis	130
3.6.17	Summary	131
3.7 Acc	oustic Measurements	132
3.7.1	Anechoic Wind Tunnel Measurements	133
3.7.2	Acoustic Measurement Uncertainty Analysis	135
3.8 Air	foil Structural Resonance Frequency Measurements	136
Chapter 4	Lift and Drag Forces	141
4.1 Intr	oduction	141
4.2 Full	-Span Airfoils	142
4.2.1	Comparison with Published Data	142
4.2.2	Negative Lift Characteristic of the NACA 65-021 Airfoil	143
4.2.3	Comparison of Airfoils and Effects of Tubercles	147
4.2.4	Performance Effects of Variation in Tubercle Amplitude	148

4.2.	5 Performance Effects of Variation in Tubercle Wavelength	149
4.2.	6 Wavy Airfoil Comparison	151
4.2.	7 Amplitude-to-wavelength Ratio (A/λ)	152
4.2.	8 Effective Device Height to Boundary Layer Thickness (heff/ λ) Ratio.	153
4.3	Half-Span Airfoils	155
4.3	1 Comparison of Results for Variation in Tubercle Amplitude	158
4.3	2 Comparison of Results for Variation in Tubercle Wavelength	161
4.3	3 Finite Effects on Wavy Airfoil Models	162
4.4	Quantification of Three-Dimensional Effects	163
4.5	Analysis of the Uncertainty Associated with Force Measurements	165
4.6	Summary	169
Chapter	5 Surface Pressure Characteristics	173
5.1	Introduction	173
5.2	Unmodified NACA 0021 Airfoil	175
5.2	1 Analysis of Pressure Distribution	175
5.2	2 Lift Coefficient Calculated from Pressure Distribution Data	180
5.2	3 Pressure Contours as a Function of Chordwise Position and Angle of A	Attack
	182	
5.3	Unmodified NACA 65-021 Airfoil	183
5.3	1 Analysis of Pressure Distribution	183
5.3	2 Explanation for Negative Lift Phenomenon	188
5.3	3 Lift Coefficient Calculated from Pressure Distribution Data	190
5.3	4 Pressure Contours as a Function of Chordwise Position and Angle of A	Attack
	191	
54	NACA 0021 with A8λ30 Leading Edge Tubercle Configuration	192
5.4	1 Analysis of Pressure Distribution	192
5.4	2 Lift Coefficient Calculated from Pressure Distribution Data	
5.4	3 Pressure Contours as a Function of Chordwise Position and Angle of A	Attack
	197	
5.5	Analysis of the Uncertainty Associated with Pressure Measurements	198
5.6	Summary	203
Chapter	6 Analysis of Flow Patterns	207
6.1	Introduction	207
6.2	Hydrogen Bubble Visualisation	208
6.3	Airfoil Selection for Particle Image Velocimetry (PIV)	210
6.4	Suitability of Ensemble Averaging	211
6.5	Vorticity	212
6.5	1 Summary of Vorticity Characteristics	218
6.6	Circulation	219
6.7	Discussion of Circulation	223
6.8	PIV Uncertainty Analysis.	225
6.8.	1 Estimation of Systematic Uncertainty in Particle Displacement	225
6.8.	2 Estimation of Random Uncertainty in Particle Displacement	226
6.8.	3 Uncertainties in Vorticity Estimation	229
6.8.	4 Uncertainties in circulation estimation	230
6.9	Summary	231
Chapter	7 Acoustic Measurements	233
7.1	Introduction	233
7.2	Calibration	233
7.3	Acoustic Measurements in Hard-Walled Wind Tunnel	234

7.3.1 Noise	Levels Associated with NACA 0021 Airfoil	
7.3.2 Noise	Levels Associated with NACA 65-021 Airfoil	
7.4 Acoustic N	leasurements in Anechoic Wind Tunnel	
7.4.1 Verifi	cation of the choice of frequency range	
7.4.2 Noise	Measurements for NACA 0021 Airfoil	
7.4.3 Noise	Measurements for NACA 65-021 Airfoil	
7.4.4 Aeroa	coustic Feedback Loop	
7.5 Summary.		
Chapter 8 Concl	usions	
Chapter 9 Recon	nmendations for Future Work	
References		
Appendix A - Verif	ication of force transducer calibration	
Appendix B - Effic	iency Plots for Force Measurements	
Appendix C - Surfa	ce pressure measurement feasibility study	
C1 Expected p	pressure forces	
C2 Complexit	у	
C3 Difficulty	in interpreting images	
Appendix D - Airfo	il structural resonance frequency measurements	
Appendix E - Propo	osed Flow Topology for a Tubercle	

List of figures

Figure 1.1 - Humpback whale calf with tubercles visible on flipper leading edge
(http://www.oceanwideimages.com)
Figure 1.2 – (a) Co-rotating vortex generator configuration, (b) counter-rotating vortex generator
configuration (Adapted from Godard & Stanislas, 2006)9
Figure 1.3 – Leading edge serrations (Soderman, 1972)10
Figure 1.4 – Dye flow visualisation showing leading edge extensions and associated flow pattern
(Adapted from Thompson, 1997)10
Figure 1.5 – (a) Conventional trip strip turbulator, (b) Zig-zag trip strip turbulator
Figure 1.6 – Oil flow visualisation showing the flow pattern and associated interpretation for a wavy
wing at $\alpha = 0^{\circ}$ (Adapted from Zverkov & Zanin, 2009). The waviness is created by extending
the grooves and humps of tubercles along the entire chord length12
Figure 1.7 – Schematic of movable flaps showing (a) attached flow at a low angle of attack and (b)
separated flow at a high angle of attack (Meyer & Bechert, 1999)
Figure 1.8 – Various models and aircraft with wing fences used in the experiments by Williams
(2009)
Figure 1.9 – Experimental investigation by Gaster to determine the response of compliant coatings to
the Tollmien-Schlichting waves generated by a disturbance input (Gaster, 1987).
Figure 1.10 – Schematic showing scalloned groove riblets with associated velocity profiles (Bechert <i>et</i>
al 2000)
Figure 1.11 – Sketch of airfoil-shaned large-eddy breakun devices in tandem in a turbulent boundary
laver (Cad_eLHak 1990)
Figure 1.12 The position of the leading edge flans and slats on an airliner (Airbus A. 300). In this
right 1.12 - The position of the reading edge haps and stats on an animet (An bus A-500). In this
Figure 1.12 Krueger flen en exemple of leading edge flen device (Swetten 2011)
Figure 1.15 - Ki deger hap, an example of leading edge hap device (Swatton, 2011).
rigure 1.14 – Instantaneous image of Gurney hap showing vortex formation as well as upwarus deflection of the flow (Components) & Houghton 2002)
Generation of the flow (Carpenter & Houghton, 2005).
Figure 1.15 - Schematic of zero net mass flux jet with acoustic actuator (adapted from Ginaranz <i>et al.</i> ,
Figure 1.16 - Flow visualisation of the uncontrolled (left) and controlled (right) NACA 0015 airfoil at
$\alpha = 18^{\circ}$ (Tuck and Soria, 2004)
Figure 1.17 – Leading edge slots (Dingle & Tooley, 2005)
Figure 1.18 – Schematic of vortex generator jet actuator showing pitch angle of 30° and a rotatable
plug to vary the skew angle (Khan & Johnson, 2000)22
Figure 1.19 – Flow visualisation for NACA 0015 airfoil at $\alpha = 12^{\circ}$ showing separation in the absence
of flow control (left) and flow reattachment with plasma (right) (Roth, 2003)24
Figure 1.20 – Typical Reynolds number range for various applications
(Adapted from Lissaman, 1983)29
Figure 1.21- Surfboard fin with leading edge tubercles (Stafford, 2010)
Figure 1.22 - Altra-Air Fan 2.4m with leading edge tubercles (Fanmaster, 2011)
Figure 2.1 – (a) Experimental models, (b) Lift Coefficient vs. angle of attack and (c) Lift/drag ratio.
Solid lines: unmodified airfoil, triangles: modified airfoil (Miklosovic et al., 2004)
Figure 2.2 – (a) Model whale flippers, sweep angles of 15° & 30°, (b) Lift plots, sweep angle = 15°
(Murray et al., 2005)
Figure 2.3 - Panel method simulation of flow over a finite span wing at $\alpha = 10^{\circ}$ with straight leading
edge (<i>left</i>) and leading edge tubercles (<i>right</i>). Colours represent the pressure differences on the
wing (Watts & Fish, 2001).
Figure 2.4 - Streamlines at the edge of the boundary layer (Watts & Fish 2001) 42
Figure 2.5 – Pressure contours and streamlines for NACA 63-021 with and without tubercles (Fish
and Laudar 2006)
and Laddel, 2000)
Figure 2.0 – Dye now visualisation showing formation of streamwise vortices at $\alpha = 24^{\circ}$ after stall. (a)
Unmodified airfoll and (b) Airfoll with tubercles, $\lambda = 0.05 c$ and $A = 0.12 c$ (right). (Custodio,
2008)
Figure 2.7 – (a) Instantaneous vorticity magnitude slices in span-wise direction for $a = 15^{\circ}$ and (b)
Averaged shear-stress lines for $\alpha = 15^\circ$, $Re = 500,000$ (Pedro & Kobayashi, 2008)
Figure 2.8 – (a) Leading edge sheet cavitation and tip vortex cavitation on the smooth rudder, α =
17.0° and (b) Cloud cavitation in troughs between tubercles and tip vortex cavitation on

modified rudder, $\alpha = 15.8^{\circ}$. $Re = 786,000$ (Weber <i>et al.</i> , 2010). Cavitation is highlighted arrows	by black
Figure 2.9 – Schematic showing movement of vortices towards troughs as predicted using the	e method
of images (Custodio, 2008). Image vortices shown in red are adapted	
Figure 2.10 - Schematic of tonal noise generating mechanism as portraved by Desquenses (2)	007)52
Figure 2.11 – Cross-sectional view taken from the leading edge of a tubercle to the trailing edge of a tubercle to tubercle to the trailing edge of a tubercle to tub	lge
(Watts & Fish, 2006).	
Figure 2.12 – An illustrative perspective view portraying the invention (Presz Jr. et al., 1989)	
Figure 2.13 – (a) Yacht with invention incorporated on the sail, keel and rudder (b) Gas turb	ine with
external casings taking the form of the invention (c) Stator vane with the invention incl	uded on
the trailing edge (Presz Jr. et al., 1989).	55
Figure 2.14 -Bicycle wheel with tubercles on leading edge of spokes (Zibkoff, 2009)	56
Figure 3.1 – Process used to construct model airfoils with tubercles.	66
Figure 3.2 – Associated whale flipper (Fish & Battle, 1995).	68
Figure 3.3 - Section view of airfoil with tubercles (a) 3D view, (b) Plan view with characterist	ic
dimensions	70
Figure 3.4 – Set of NACA 0021 and NACA 65-021 airfoils with tubercles (left and right respe	ctively).
	70
Figure 3.5 - Process used to model wavy airfoils	71
Figure 3.6 – Sections of wavy models with labels, (a) $\theta 4\lambda 15$, (b) $\theta 4\lambda 30$ and (c) $\theta 2\lambda 30$	71
Figure 3.7 – Schematic of the wind tunnel used for force and pressure tapping measurement	s73
Figure 3.8 – Velocity profile at wind-tunnel contraction exit normalised with respect to mean	velocity.
	73
Figure 3.9 – Plot of boundary layer profile, <i>Re</i> = 120,000	75
Figure 3.10 – Schematic of displacement correction	76
Figure 3.11 – Schematic of wall proximity correction	76
Figure 3.12 – Velocity distribution for a turbulent boundary layer	
Figure 3.13 - Plot of output voltage against freestream velocity for hot-wire calibration	
Figure 3.14 – Load cell arrangement	
Figure 3.15 – Experimental set-up	
Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces	
Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and	
Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, ε	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, ε Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame 	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>ε</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. 	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, £. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Belative section for an environmental section of the section of the section. 	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, £. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). 	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, ε Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999) Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section at al. 1000). Note that the model in the surrout study is mounted variable. 	61 83 83 (b) 85 190 91 1 (Barlow
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, ε Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section et al., 1999). Note that the model in the current study is mounted vertically 	61 81 83
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>ε</i> Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). 	61 83 84 (b) 85 190 91 1 (Barlow 92 93 Adata
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>e</i> Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999) Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999) Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger (b) Scanivalve controller. (c) Scanivalve and (d) Baratron pressure transducer 	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, £. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section et al., 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow et al., 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer. 	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>e</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer. Figure 3.24 – Timing diagram in reference frame of controller. 	61 83 83 (b) 85 190 1.(Barlow 91 1.(Barlow 92 93 93 0 data 101 102
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>e</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.24 – Timing diagram in reference frame of controller. Figure 3.26 – Modified airfoil showing three rows of pressure taps. 	61 83 83 (b) 84 (b) 85 190 91 1 (Barlow 92 93 9 data 101 101 102 102
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>e</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.24 – Timing diagram in reference frame of controller. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.27 – Coordinate system and stress definitions. 	61 83 84 (b) 85 190 91 1 (Barlow 92 93 0 data 101 101 102 102 104
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>ε</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.27 – Coordinate system and stress definitions. Figure 3.28 – Water tunnel facility used for hydrogen hubble visualisation. 	61 83 83 (b) 84 (b) 85 190 91 1 (Barlow 92 93 0 data 101 101 102 102 104 104
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, ε. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional model Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section et al., 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow et al., 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.24 – Timing diagram in reference frame of controller. Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.27 – Coordinate system and stress definitions. Figure 3.28 – Water tunnel facility used for hydrogen bubble visualisation. Figure 3.29 – Independent dye visualisation and particle image velocimetry (PIV) for water transducer and transducer and transducer and particle image veloc	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>ε</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.27 – Coordinate system and stress definitions. Figure 3.28 – Water tunnel facility used for hydrogen bubble visualisation. Figure 3.29 – Independent dye visualisation and particle image velocimetry (PIV) for water transducer in the stress definition). 	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, £. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section. Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode. Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer. Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.27 – Coordinate system and stress definitions. Figure 3.28 – Water tunnel facility used for hydrogen bubble visualisation. Figure 3.29 – Independent dye visualisation and particle image velocimetry (PIV) for water transducer alibration (ER Hassan 2011, personal communication). 	
 Figure 3.15 – Experimental set-up Figure 3.16 – Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>e</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.24 – Timing diagram in reference frame of controller. Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.28 – Water tunnel facility used for hydrogen bubble visualisation. Figure 3.29 – Independent dye visualisation and particle image velocimetry (PIV) for water t calibration (ER Hassan 2011, personal communication). Figure 3.31 – Examples of generic hydrogen bubble wire designs, (a) horizontal wire probe, (a) 	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, <i>e</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.27 – Coordinate system and stress definitions. Figure 3.28 – Water tunnel facility used for hydrogen bubble visualisation. Figure 3.30 – Mount used in water tunnel for hydrogen bubble visualisation experiments. Figure 3.31 – Examples of generic hydrogen bubble wire designs, (a) horizontal wire probe, (vertical wire probe (Smits & Lim, 2000). 	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, <i>F_x</i> and <i>F_y</i> and misalignment, <i>ε</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a) logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.28 – Water tunnel facility used for hydrogen bubble visualisation. Figure 3.29 – Independent dye visualisation and particle image velocimetry (PIV) for water transducer and and particle image velocimetry. Figure 3.31 – Examples of generic hydrogen bubble wire designs, (a) horizontal wire probe, (vertical wire probe (Smits & Lim, 2000). 	
Figure 3.15 – Experimental set-up Figure 3.16 – Lift and Drag Forces Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, ε Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999) Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i> , 1999). Note that the model in the current study is mounted vertically Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i> , 1999) Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer. Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.27 – Coordinate system and stress definitions. Figure 3.28 – Water tunnel facility used for hydrogen bubble visualisation. Figure 3.29 – Independent dye visualisation and particle image velocimetry (PIV) for water to calibration (ER Hassan 2011, personal communication). Figure 3.30 – Mount used in water tunnel for hydrogen bubble visualisation experiments Figure 3.31 – Examples of generic hydrogen bubble wire designs, (a) horizontal wire probe, of vertical wire probe (Smits & Lim, 2000). Figure 3.32 – Section of airfoil at $\alpha = 5^{\circ}$ with tubercles showing particle image velocimetry measurement planes from a perspective viewpoint.	
Figure 3.15 – Experimental set-up Figure 3.16 – Lift and Drag Forces. Figure 3.16 – Lift and Drag Forces. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i> , 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i> , 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.27 – Coordinate system and stress definitions. Figure 3.28 – Water tunnel facility used for hydrogen bubble visualisation. Figure 3.29 – Independent dye visualisation and particle image velocimetry (PIV) for water to calibration (ER Hassan 2011, personal communication). Figure 3.31 – Examples of generic hydrogen bubble visualisation experiments. Figure 3.32 – Section of airfoil at $\alpha = 5^{\circ}$ with tubercles showing particle image velocimetry wertical wire probe (Smits & Lim, 2000). Figure 3.32 – Section of airfoil at $\alpha = 5^{\circ}$ with tubercles showing particle image velocimetry measurement planes from a perspective viewpoint. Figure 3.33 – Typical field of view for PIV experiments.	
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, ε. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section et al., 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow et al., 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer. Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.27 – Coordinate system and stress definitions. Figure 3.29 – Independent dye visualisation and particle image velocimetry (PIV) for water t calibration (ER Hassan 2011, personal communication). Figure 3.30 – Mount used in water tunnel for hydrogen bubble visualisation experiments. Figure 3.32 – Section of airfoil at α = 5° with tubercles showing particle image velocimetry measurement planes from a perspective viewpoint. Figure 3.34 – Thebarton water tunnel used for PIV experiments. 	81 83 84 (b) 85 190 91 1 (Barlow 92 93 0 data 101 102 104 106 runnel 107 108 b) 109
 Figure 3.15 – Experimental set-up Figure 3.16 - Lift and Drag Forces. Figure 3.17 – Schematic of airfoil showing relative force transducer axes, <i>F_x</i> and <i>F_y</i> and misalignment, <i>ε</i>. Figure 3.18 – Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section Figure 3.19 – Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 – Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 – Image system for a three-dimensional model in a closed rectangular test section <i>et al.</i>, 1999). Note that the model in the current study is mounted vertically. Figure 3.22 – Image vortex locations for a closed round jet (Barlow <i>et al.</i>, 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer. Figure 3.25 – Pressure tap locations for unmodified airfoils. Figure 3.26 – Modified airfoil showing three rows of pressure taps. Figure 3.27 – Coordinate system and stress definitions. Figure 3.29 – Independent dye visualisation and particle image velocimetry (PIV) for water translution. Figure 3.30 – Mount used in water tunnel for hydrogen bubble visualisation experiments. Figure 3.31 – Examples of generic hydrogen bubble wire designs, (a) horizontal wire probe, (wertical wire probe (Smits & Lim, 2000). Figure 3.32 – Section of airfoil at <i>a</i> = 5° with tubercles showing particle image velocimetry measurement planes from a perspective viewpoint. Figure 3.34 – Thebarton water tunnel used for PIV experiments. Figure 3.34 – Thebarton water tunnel used for PIV experiments. 	81
 Figure 3.15 - Experimental set-up Figure 3.17 - Schematic of airfoil showing relative force transducer axes, F_x and F_y and misalignment, ε. Figure 3.18 - Modified mount for analysis of three-dimensional effects, (a) original frame modified lowered frame, (c) structure used to gain height and block hole in test section Figure 3.19 - Schematic showing method of images used to simulate three-dimensional mode Figure 3.20 - Relative contribution of various sources of drag (Barlow et al., 1999). Figure 3.21 - Image system for a three-dimensional model in a closed rectangular test section et al., 1999). Note that the model in the current study is mounted vertically. Figure 3.22 - Image vortex locations for a closed round jet (Barlow et al., 1999). Figure 3.23 - Block diagram of Scanivalve pressure multiplexer and associated hardware, (a logger, (b) Scanivalve controller, (c) Scanivalve and (d) Baratron pressure transducer . Figure 3.26 - Modified airfoil showing three rows of pressure taps. Figure 3.27 - Coordinate system and stress definitions. Figure 3.28 - Water tunnel facility used for hydrogen bubble visualisation. Figure 3.30 - Mount used in water tunnel for hydrogen bubble visualisation experiments. Figure 3.31 - Examples of generic hydrogen bubble wisualisation experiments. Figure 3.32 - Section of airfoil at α = 5° with tubercles showing particle image velocimetry measurement planes from a perspective viewpoint. Figure 3.34 - Thebarton water tunnel used for PIV experiments. Figure 3.35 - Particle image velocimetry calibration for Thebarton water tunnel. Figure 3.36 - Histogram of PIV data showing the "peak-locking" effect (Raffel et al., 1998). 	81
 Figure 3.15 – Experimental set-up	81 83 84 (b) 85 190 91 n (Barlow 92 93 o data 101 102 102 104 105 104 105

Figure 3.39 – Timing diagram for laser/camera synchronisation.	121
Figure 3.40 – Schematic of perspective error (not to scale).	131
Figure 3.41 – Schematic of microphone positions	133
Figure 3.42 – Anechoic wind tunnel facility.	134
Figure 3.43 - Mount for anechoic wind tunnel	134
Figure 3.44 – Schematic showing accelerometer positions for vertical mount (left) and horizontal	
mount (right)	138
Figure 3.45 – Structural resonance frequency measurements for unmodified NACA 0021 airfoil. (a	a)
Vertical mount (b) horizontal mount	140
Figure 3.46 - Structural resonance frequency measurements for NACA 0021 airfoil with A2 λ 7.5	
tubercle configuration. (a) Vertical mount (b) horizontal mount	140
Figure 4.1 - Lift coefficient vs. angle of attack for NACA 0021 compared with experimental data for	or
NACA 0020 (Miklosovic, 2007).	142
Figure 4.2 - Drag coefficient vs. angle of attack for NACA 0021 compared with experimental data	tor
NACA 0020 (MIKIOSOVIC, 2007)	142
Figure 4.3 - Repeatability and influence of gap on lift coefficient for NACA 0021,	143
Figure 4.4 - Repeatability and influence of gap on drag coefficient for NACA 0021,	143
Figure 4.5 - Lift coefficient plotted against angle of attack for NACA 05-021,	144
Figure 4.0 - Diag coefficient plotted against angle of attack for NACA 03-021,	144
Figure 4.8 – Effect of trip height on the coefficient for NACA 05-021 (d = 5mm),	145
Figure 4.9 – Effect of trip neight on drag coefficient for NACA 05-021 ($k = 0.4$ mm), $Re = 120,000$	145
Figure 4.10 – Effect of trip position on drag coefficient for NACA 65-021 ($k = 0.4$ mm),	146
Figure 4.11 - Trinned lift coefficient nlatted against angle of attack for NACA 65-021	146
Figure 4.12 - Tripped drag coefficient plotted against angle of attack for NACA 65-021,	146
Figure 4.13 - Tubercle amplitude variation and the effect on lift coefficient for NACA 0021. $Re =$	110
120.000.	147
Figure 4.14 - Tubercle amplitude variation and the effect on drag coefficient for NACA 0021, Re =	:
120,000	147
Figure 4.15 - Further amplitude reduction and the effect on lift coefficient for NACA 0021, <i>Re</i> =	
120,000	149
Figure 4.16 - Further amplitude reduction and the effect on drag coefficient for NACA 0021, Re =	
120,000	149
Figure 4.17 - Tubercle wavelength variation and the effect on lift coefficient for	150
Figure 4.18 - Tubercle wavelength variation and the effect on drag coefficient for NACA 0021, <i>Re</i>	=
	150
Figure 4.19 - Lift coefficient plot for various wavy airfoil configurations and comparison with the	
most successful tubercle configuration, $Re = 120,000$.	151
Figure 4.20 - Drag coefficient plot for various wavy airfoli configurations and comparison with the most successful to bands configuration. $B_{0} = 120,000$	2 151
most successful tubercie configuration, $Re = 120,000$.	151
Figure 4.21 - I ubercie A/λ ratio and the effect on lift coefficient for NACA 0021,	152
Figure 4.22 - I ubercle A/A ratio and the effect on drag coefficient for NACA 0021,	152
Figure 4.25 - The effect of amplitude-to-wavelength ratio on maximum lift coefficient, $Re = 120,00$	U. 152
Figure 4.24 The offect of amplitude to we veloce the ratio on stall angle	155
Figure 4.24 - The effect of amplitude to wavelength ratio on maximum lift to drag ratio	155
$R_{\rho} = 120\ 0.00$	153
Figure 4.26 - Maximum lift coefficient and associated normalised effective tubercle height. $Re =$	155
120.000.	154
Figure 4.27 - Stall angle and associated normalised effective tubercle height	154
Figure 4.28 – Maximum lift-to-drag ratio and associated normalised effective tubercle height,	155
Figure 4.29 – Comparison of lift coefficient for full-span and half-span NACA 0021 airfoils, $Re =$	
120,000.	156
Figure 4.30 – Comparison of drag coefficient for full-span and half-span NACA 0021 airfoils, Re =	-
120,000	156
Figure 4.31 - Comparison of lift coefficient for full-span and half-span NACA 65-021 airfoils, Re =	:
120,000	158
Figure 4.32 - Comparison of drag coefficient for full-span and half-span NACA 65-021 airfoils, Re	=
120,000	158

Figure 5.7 - Trapezoidal integration method for lift calculation using pressure distribution data, $Re = 120,000$
120,000
Figure 5.8 – Normalised pressure contours for suction surface of NACA 0021,
Figure 5.9 – Normalised pressure contours for pressure surface of NACA 0021,
Figure 5.10 – Normalised pressure distribution plots for NACA 65-021 unmodified airfoil where
"top" refers to suction surface and "bottom" refers to pressure surface, <i>Re</i> =120,000.
Separation bubble locations found from XFOIL skin friction data are indicated
Figure 5.11 – Friction coefficient against chordwise position for NACA 65-021 at low angles of attack
(suction surface),
Figure 5.12 - Friction coefficient against chordwise position for NACA 65-021 at high angles of attack
(suction surface)
Figure 5.13 – Friction coefficient against chordwise position for NACA 65-021 at low angles of attack
(prassura surfaça)
(pressure exactly)
Figure 5.14 - Friction coefficient against chordwise position for IVACA 05-021 at high angles of attack
(pressure surface),
Figure 5.15 – Pressure distribution and boundary layer characteristics for NACA 65-021 airfoil at α
$= 2^{\circ}$ (dashed lines indicate the inviscid solution), $Re = 120,000$
Figure 5.16 - Pressure distribution and boundary layer characteristics for NACA 0021 airfoil at α =
2° (dashed lines indicate the inviscid solution), $Re = 120,000$
Figure 5.17 – Lift coefficient against angle of attack for different measurement methods (NACA
$(65-021), Re = 120,000, \dots, 191$
Figure 5.18 – Normalised pressure contours for suction surface of NACA 65-021
Figure 5.19 – Normalized pressure contours for pressure surface of NACA 65-021 191
Figure 5.10 – Ivol manseu pressure contours for pressure surface of FACA 05-021,
Figure 5.20 – Normansed pressure distribution piots for artion with A6350 tubercle configuration,
where symbols are chosen as follows: "•" pressure surface "0" suction surface,
Figure 5.21 – Lift coefficient for A8X30 evaluated from pressure distribution at "peak", "mid" and
"trough" tubercle positions compared to force results, $Re = 120,000$
Figure 5.22 - Normalised pressure contours for suction surface of airfoil with A8A30 tubercle
configuration, <i>Re</i> = 120,000
Figure 5.23 - Normalised pressure contours for pressure surface of airfoil with A8A30 tubercle
configuration. $Re = 120.000197$
Figure 5.24 – Pressure coefficient uncertainty analysis for NACA 0021 at $\alpha = 6^{\circ}$ 100
Figure 5.24 – I ressure coefficient uncertainty analysis for NACA 0021 at $\alpha = 0$,
Figure 5.25 - Fressure coefficient uncertainty analysis for NACA 0021 at $\alpha = 20^{\circ}$,
Figure 5.26 – Relative uncertainties pre-stall for pressure tappings located on airfoil suction surface
(NACA 0021), $\alpha = 6^{\circ}$, $Re = 120,000$
Figure 5.27 - Relative uncertainties post-stall for pressure tappings located on airfoil suction surface
(NACA 0021), $\alpha = 20^{\circ}$,
Figure 5.28 – Pressure coefficient uncertainty analysis for NACA 65-021 at $\alpha = 8^{\circ}$,
Figure 5.29 – Pressure coefficient uncertainty analysis for NACA 65-021 at $\alpha = 20^{\circ}$
Figure 5.30 – Relative uncertainties pre-stall for pressure tannings located on suction surface of
airfoil (NACA 65-021)
Figure 5.21 Delative uncertainties post stall for pressure tannings located on suction surface of
Figure 5.51 – Relative uncertainties post-stain for pressure tappings located on suction surface of airfail (NACA (5.021)
airioii (INACA 05-021),
Figure 5.32 – Pressure coefficient uncertainty analysis for A8A30 tubercle configuration at $\alpha = 5^{\circ}$, 202
Figure 5.33 – Pressure coefficient uncertainty analysis for A8 λ 30 tubercle configuration at α = 20°,
Figure 5.34 – Relative uncertainties pre-stall for tapping located at $x/c = 0.1$ on suction surface of
airfoil, $\alpha = 5^{\circ}$, $Re = 120,000,$
Figure 5.35 – Relative uncertainties pre-stall for tapping located at $x/c = 0.1$ on suction surface of
airfoil $\alpha = 20^{\circ} R_{0} = 120000$ 203
Even 6.1 Hydrogen hybrid viewelicetion at $D_{2} = 4270$, $\alpha = 100$, 40.220 configuration (a) angled ton
Figure 0.1 - Hydrogen bubble visualisation at $ke = 4570$, $\alpha = 10^{\circ}$, A8A50 configuration (a) angled top
view snowing stream-wise vortices, (b) side view in plane of trough (c) side view in plane of peak
and (a) top view depicting regions of acceleration. Dashed lines show the outline of the leading
edge, flow is from left to right
Figure 6.2 - Hydrogen bubble visualization of the NACA 0021, angled top view: (a) unmodified
airfoil, (b) A4 λ 15 (c) A4 λ 30 (d) A4 λ 60 and (e) A8 λ 30 (Re = 5250, α = 10°), flow is from left to
right
Figure 6.3 – An example of instantaneous vorticity contours for the 0.4c plane at $\alpha = 5^{\circ}$, where time
spacing beween images is 0.1s, Re = 2230

Figure 6.4 – Average velocity contours compared with velocity fluctuation contours, 0.4c plane at.2	212
Figure 6.5 - Comparison between (a) velocity vector field and (b) vorticity contour plot at $\alpha = 15^{\circ}$, x/c = 0.4, $Re = 2230$	213
Figure 6.6 - Vorticity contours (1/s) for sequential chordwise planes at $\alpha = 5^{\circ}$, $x/c = 0.4$,	214
Figure 6.7 - Vorticity contours for $x/c = 0.2$ at $\alpha = 10^{\circ}$	216
Figure 6.8 - Vorticity contours for sequential chordwise planes at $\alpha = 10^{\circ}$, (a) $x/c = 0.4$, (b) $x/c = 0.6$ (c) $x/c = 0.8$, (d) $x/c = 1$, $Re = 2230$. Asterisks mark secondary vortex structures. Note that a different vorticity scale is shown for the $x/c = 1$ plane.	, 216
Figure 6.9 - Vorticity contours for sequential chordwise planes at $\alpha = 15^{\circ}$, (a) $x/c = 0.4$, (b) $x/c = 0.6$ (c) $x/c = 0.8$, $Re = 2230$.	, 217
Figure 6.10 - Path of integration and enclosed region for $\alpha = 5^{\circ}$, where: (a) $x/c = 0.4$, (b) $x/c = 0.6$, (c) $x/c = 0.8$ (d) $x/c = 1$. $R_a = 2230$. Red – positive vortex core blue – negative vortex core	710
Figure 6.11 - Path of integration and enclosed region for $\alpha = 10^\circ$, $x/c = 0.2$ plane. Red - positive vortex core sources blue - negative vortex core sources - negative vortex -	tex
Figure 6.12 - Path of integration and enclosed region for $\alpha = 10^\circ$, where: (a) $x/c = 0.4$, (b) $x/c = 0.6$,	220
(c) $x/c = 0.8$, (d) $x/c = 1$, $Re = 2230$. Red - positive vortex core, blue - negative vortex core. The	;
yellow arrow indicates a possible pathway of vorticity entrainment	221
Figure 6.13 - Path of integration and enclosed region for $\alpha = 10^{\circ}$, where: (a) $x/c = 0.4$, (b) $x/c = 0.6$, (c) $x/c = 0.8$, (d) $x/c = 1$, $Re = 2230$. Red - positive vortex core, blue - negative vortex core. Yell	low
arrows indicate possible pathways of vorticity entrainment2	222
Figure 6.14 – Circulation variation with angle of attack and chordwise position	223
Figure 6.15 – Schematic showing wall vorticity close to the surface being entrained by the primary vortices at adjacent locations. Dashed arrows indicate transport of vorticity to adjacent troug	ghs
Detween tubercies	224 of
the point of maximum positive vorticity, $Re = 2230$	at 228
Figure 6.17 – Particle displacement in z with respect to y location, where dashed red line shows the associated maximum gradient. $Re = 2230$	228
Figure 6.18 – Particle displacement in y with respect to z location, where dashed red line shows the	-
associated maximum gradient, $\ddot{R}e = 2230$	228
Figure 7.1 – Measured signal after calibration using 94dB calibrator	234
Figure 7.2 – Measured signal after calibration using 114dB calibrator2	234
Figure 7.3 – Sound pressure level (SPL) against frequency, f , for NACA 0021 at angle of attack, $\alpha = 1-8^{\circ}$ (microphone at window), $Re = 120,000$	= 236
Figure 7.4 - Sound pressure level (SPL) against frequency, f , for NACA 0021 at angle of attack, $\alpha = 8^{\circ}$ (microphone at exit), $Re = 120,000$.	= 1- 236
Figure 7.5 - SPL against frequency for unmodified NACA 0021 at $\alpha = 5^{\circ}$ for three separate runs	127
(microphone at window), $Re = 120,000$.	237
Figure 7.6 - SPL against frequency for variation tubercle of amplitude (small A) for NACA 0021 at = 5° (microphone at window) $R_e = 120000$	237 α 237
Figure 7.8 - SPL against frequency for variation of tubercle wavelength (small λ) for NACA 0021 a = 5° (microphone at window), $R_{d} = 120,000$	11 α 137
Figure 7.9 - SPL against frequency for wavy NACA 0021 variations at $\alpha = 5^{\circ}$ (microphone at window). $B_{\alpha} = 120,000$	
Figure 7.10 - Strouhal no. against angle of attack for NACA 0021 tubercle configurations with tona	237 11 730
Figure 7.11 - Strouhal no. against angle of attack for NACA 0021 tubercle configurations with tona	1 1 1 1 1 1
Figure 7.12 - SPL against angle of attack for tubercle configurations with tonal noise (microphone swindow). $Re = 120\ 000$	at 239
Figure 7.13 - SPL against angle of attack for tubercle configurations with tonal noise (microphone sexit). $Re = 120,000$.	at 239
Figure 7.14 - SPL against frequency for NACA 65-021 at angle of attack, α = 7-10° (microphone at window) <i>Re</i> = 120,000	, 740
Figure 7.15 - SPL against frequency for NACA 65-021 at angle of attack, $\alpha = 7-10^{\circ}$ (microphon at exit) $R_{e} = 120,000$.но .е 740
Figure 7.16 - SPL against frequency for NACA 65-021 at $\alpha = 8^{\circ}$ for variation tubercle amplitude (microphone at window) $R_{\rho} = 120000$	240 240

Figure 7.17 - SPL against frequency for NACA 65-021 at $\alpha = 9^{\circ}$ for variation tubercle amplitud	e
(microphone at window), $Re = 120,000.$	240
Figure 7.18 - Strouhal no. against angle of attack for NACA 65-021 unmodified airfoil with tona	al
noise, <i>Re</i> = 120,000	241
Figure 7.19 - SPL against angle of attack for unmodified NACA 65-021 with tonal noise, <i>Re</i> =	
120,000	241
Figure 7.20 – SPL for NACA 0021 unmodified airfoil with larger frequency range, 50 s	$\leq f \leq$
10,000Hz in AWT, <i>Re</i> = 120,000	242
Figure 7.21 – SPL for A4 λ 7.5 tubercle configuration with larger frequency range, $50 \le f \le 10,00$	00Hz,
in AWT $Re = 120,000$	242
Figure 7.22 - SPL against frequency measured in anechoic wind tunnel (AWT) for	a)
unmodified 0021 b) A2A7.5 c) A4A7.5 d) A4A15 e) A4A30 f) A4A60 g) A8A30 h) 02A30 i) 04A	130 j)
$\theta 4\lambda 15, Re = 120,000$	243
Figure 7.23 – Effect of amplitude-to-wavelength ratio on SPL of tonal noise	244
Figure 7.24 - Strouhal no. against angle of attack for NACA 0021 airfoils with tonal noise in AV	VT, Re
= 120,000 Error! Bookmark not d	efined.
Figure 7.25 - SPL against angle of attack for NACA 0021 airfoils with tonal noise in AWT, Re =	:
120,000Error! Bookmark not d	efined.
Figure 7.26 - SPL against frequency measured in AWT for a) unmodified 65-021 b) 6 A4A30	c) 6
$A8\lambda 30, Re = 120,000.$	245
Figure 7.27 - Schematic of feedback loop (Arbey & Bataille, 1983)	246

List of tables

Table 1.1 - Flow control devices and their corresponding effects and benefits	26
Table 2.1 – Summary of variations in performance for finite span models.	40
Table 3.1 – Considerations affecting chord length selection	67
Table 3.2 - Relative wavelength determined from Fish and Battle (1995)	68
Table 3.3 - Tubercle configurations and adopted terminology	69
Table 3.4 – Wavy airfoil configurations and adopted terminology	71
Table 3.5 – Determining degrees of freedom for a given uncertainty approximation	97
Table 3.6 – Values of relevant parameters for measurement uncertainty analysis	98
Table 3.7 – Pressure tap positions for unmodified airfoil.	102
Table 3.8 – Pressure tap positions for modified airfoil	103
Table 3.9 - Values of relevant parameters for uncertainty analysis	105
Table 3.10 – Time delay used for particle image velocimetry measurements of freestream velocity.	113
Table 3.11 – Summary of measurement planes and associated time delay, ∆T	.120
Table 3.12 – Summary of PIV recording parameters	.132
Table 3.13 – Measurement parameters for resonance frequency testing (transfer function)	.137
Table 3.14 – Summary of position combinations for accelerometer and impact hammer	138
Table 3.15 - Measurement parameters for resonance frequency testing (auto power spectrum)	.139
Table 3.16 - Hard-walled wind tunnel (vertical airfoil mount)	139
Table 4.1 – Nomenclature used in figures showing uncertainty in force measurements	166
Table 5.1 – Chordwise extent of laminar separation bubble determined from the friction coefficien	ıt
for the suction surface (NACA 0021), <i>Re</i> = 120,000	177
Table 5.2 - Chordwise extent of laminar separation bubble and final separation location determine	ed
from friction coefficient for the suction surface (NACA 65-021), Re = 120,000	, 187
Table 5.3 – Chordwise extent of laminar separation bubble determined from the friction coefficien	ıt
for the pressure surface (NACA 65-021), <i>Re</i> = 120,000	188
Table 5.4 – Location of separation bubbles for NACA 0021 airfoil with A8A30 tubercles at trough	
cross-section on suction surface	,195
Table 5.5 - Nomenclature used in figures showing uncertainties in force measurements	,199
Table 5.6 – Summary of separation characteristics	205
Table 6.1 – Positive and negative peak vorticity for chordwise measurements planes ($\alpha = 5^{\circ}$)	.215
Table 6.2 - Positive and negative peak vorticity for chordwise measurements planes ($\alpha = 10^{\circ}$)	217
Table 6.3 - Positive and negative peak vorticity for chordwise measurements planes ($\alpha = 15^{\circ}$)	218
Table 6.4 - Circulation for chordwise measurements planes ($\alpha = 5^{\circ}$)	.220
Table 6.5 - Circulation for chordwise measurements planes ($\alpha = 10^{\circ}$)	221
Table 6.6 - Circulation for chordwise measurements planes ($\alpha = 15^{\circ}$). Circulation values calculated	d
without erroneous region are shown in brackets.	223
Table 7.1 – Summary of tonal noise characteristics at $\alpha = 5^{\circ}$ for the NACA 65-021 airfoil	.246
Table 7.2 – Senaration characteristics calculated using XFOIL at $\alpha = 5^{\circ}$.	248
The set of	0