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Approximate Least Trimmed Sum of Squares

Fitting and Applications in Image Analysis
Fumin Shen, Chunhua Shen, Anton van den Hengel, Zhenmin Tang

Abstract—The least trimmed sum of squares (LTS) regression
estimation criterion is a robust statistical method for model
fitting in the presence of outliers. Compared with the classical
least squares (LS) estimator, which uses the entire data set for
regression and is consequently sensitive to outliers, LTS identifies
the outliers and fits to the remaining data points for improved
accuracy. Exactly solving an LTS problem is NP-hard, but as
we show here, LTS can be formulated as a concave minimization
problem. Since it is usually tractable to globally solve a convex
minimization or concave maximization problem in polynomial
time, inspired by [1], we instead solve LTS’ approximate com-
plementary problem, which is convex minimization. We show
that this complementary problem can be efficiently solved as a
second order cone program (SOCP). We thus propose an iterative
procedure to approximately solve the original LTS problem. Our
extensive experiments demonstrate that the proposed method is
robust, efficient and scalable in dealing with problems where data
are contaminated with outliers. We show several applications of
our method in image analysis.

Index Terms—Least trimmed sum of squares regression, robust
model fitting, outlier removal, second order cone programming,
semidefinite programming.

I. INTRODUCTION

In image analysis and computer vision, regression analysis

is a fundamental technique for many model fitting problems.

For example, many multi-view geometry problems are essen-

tially model fitting and when an algebraic criterion is used,

they are standard regression problems [2]. Since in most cases

the measurement data are contaminated by noise and outliers,

RANSAC has been used as the de facto tool to remove outliers

under the consensus set maximization criterion [3]1. RANSAC

has been successfully applied to robust estimation, in particular

in multi-view geometry problems. It works by iteratively
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1We argue that “trimmed fitting”, “consensus set maximization”, and
“outlier removal” in most computer vision problems have the same definition.
So hereafter we may use these terms interchangeably.

performing sampling and consensus testing. However, there

are drawbacks for RANSAC and its variants [3], [4]. First,

RANSAC is a stochastic process: one may obtain differ-

ent results when running RANSAC multiple times. Second,

RANSAC cannot be applied to high dimensional problems.

The number of samples required to achieve a set probability

of success is exponential in the dimension of the problem.

Also, because it usually needs many sampling steps, RANSAC

can only be used on problems for which a solution can be

efficiently computed. For some computer vision problems such

as linear regression based face recognition [5], which is very

different from multi-view parameter estimation problems, it is

not clear how to apply RANSAC to improve the recognition

accuracy.

In this work, we proffer a method for outlier removal within

a least squares setting, which is equivalent to model fitting

under the LTS criterion. It can be viewed as an approximate

solution to the original LTS method, and is thus labeled

approximate least trimmed sum of squares (ALTS). At an

algorithmic level, the method is based on the simple heuristic

of solving the inverse of the original LS optimization problem,

i.e., maximum squares fitting, with a constraint on the number

of data points to fit. We then remove the measurements

that contribute to the maximum squares fitting, and solving

again; the process is repeated until some stopping criterion

is met. Our method has some desirable properties: a) Unlike

RANSAC, our method is deterministic and non-heuristic. b)

Compared with methods that solve an NP-hard problem, which

is usually very computationally expensive, our method solves

a second-order cone programming (SOCP) problem at each

iteration and therefore it is efficient and scalable.

Our method is largely inspired by the outlier removal ap-

proach of Sim and Hartley [6], in the sense that both methods

iteratively remove outliers and at each step, the methods fit

the data and remove the measurement (or measurements)

with greatest residuals. However, the fitting criteria for the

two methods are very different. Our method approximately

solves the least trimmed squares fitting problem. The ℓ∞ norm

minimization based outlier removal of Sim and Hartley [6]

can be viewed as approximately solving the least k-quantile

fitting problem. Clearly, both least trimmed squares and least

k-quantile are well-regarded robust regression criteria. LTS is

known to be statistically more efficient than least k-quantile.

Usually, for low-dimensional problems where these estima-

tors can be computed, LTS should be preferred. For higher-

dimensional problems, the only known solutions offer uncon-

trolled approximations. Therefore, statistical efficiency of the

minimizer and quality of approximation may be competing
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concerns.

The main contributions of our work are as follows.

• We first show that the LTS problem can be formulated

as a concave minimization problem, which is NP-hard.

Inspired by the work of [1], we also approximately

solve the NP-hard problem by iteratively solving its

complementary concave maximization problem. More

importantly, by exploiting the structure of the problem,

we derive an approximate complimentary optimization

problem which is formulated as an SOCP. Off-the-shelf

solvers such as Mosek [7] can be used to efficiently

solve the SOCP problem. Compared with [1], in which a

semidefinite programming (SDP) problem is formulated,

our SOCP formulation is much more efficient.

• We apply the proposed algorithm to several computer

vision applications and show that encouraging results are

obtained.

Next, we briefly review previous work that is relevant to ours.

II. PRIOR WORK

We review some existing work on the topic of outlier

removal and robust regression fitting before we present the

proposed algorithm. As pointed in [6], “It is difficult to cite

references to this [fitting the largest residual and removing

it], since papers using this method are usually rejected”,

therefore we only review some work that is closest to ours.

The most popular outlier removal method in computer vision

is RANSAC [3]. The pros and cons of RANSAC are well

known and discussed above.

The hardness of exactly solving the LTS problem has been

shown in [8]—generally it is NP-hard. Li [9] proposed a robust

least squares fitting method, which can be seen to solve a

similar LTS fitting problem. The robust fitting problem there is

converted into a bilinear programming problem, which is non-

convex and NP-hard in general. A branch-and-bound (BnB)

method is then used to globally solve the bilinear optimization

problem. The downside of this method is that it is extremely

slow and not scalable. Agulló [10] also used BnB to globally

solve the LTS problem. With a standard desktop, the BnB

method of [9] can only solve low dimensional (e.g., 2D,

3D) problems with less than 100 data points.2 In contrast,

our method only needs to solve SOCPs, which scales to

problems with tens of thousands data points. Actually, it is

known that some types of bilinear optimization problems can

be equivalently converted into concave minimization problems

[11]. It is not difficult to show the equivalence between the

bilinear formulation in [9] and our concave minimization

formulation. The essential difference is that our concave

minimization formulation leads to an efficient approximate

polynomial algorithm. It remains unclear whether one can

obtain an efficient solver starting from the bilinear formulation

in [9].

Lee et al. removes outliers by solving a convex sum-of-

infeasibilities [12] problem. Olsson et al. [13] improved the

method of [6] by considering Lagrange dual problem of the

2Personal communication with the author of [9].

ℓ∞ minimization problem in [6], the advantage being that less

number of inliers are mistakenly removed by solving the dual

problem.

Since Hartley and Schaffalitzky [14] introduced ℓ∞ norm

minimization, which makes finding a globally optimal solution

for many multi-view geometry problems tractable, there is

a growing interest in seeking a global solution for many

computer vision problems. Two main directions have been

identified in terms of global optimization in computer vision

[15]. One approach has been to reformulate an originally non-

convex problem into a convex one (or quasi-convex). Many

ℓ∞ norm minimization problems belong to this category [14],

[16]. The other has been to use global optimization method

for solving the non-convex problem, mainly using BnB [9],

[10]. Our work here belongs to the former category as we re-

formulate a non-convex problem into a convex one and solve

the original problem approximately.

In robust statistics, much effort has been spent on robust

least squares estimation [17], [18], [19], [10]. Rousseeuw

and Leroy [18] have presented a thorough introduction to

the LTS problem. They also proposed a re-sampling method

termed PROGRESS for approximating the robust least median

of squares (LMS) estimation. Rousseeuw and Van Driessen

introduced the Fast-LTS method for approximately solving the

LTS problem [19], which is faster than most robust LTS or

LMS methods. In this work, we empirically show that our

method is in general even faster than Fast-LTS.

The rest of the paper is structured as follows. In Section

III, we show how to formulate the LTS problem as a concave

minimization problem. Then in Section IV, we present our

main contribution: we approximately solve the LTS problem

using SOCP. We then apply the proposed method to a few

image analysis applications in Section V. Finally, we conclude

our paper in Section VI.

III. PROBLEM SETTING

In this section, we present our main results. Our starting

point is standard LS estimation. Robust linear regression is one

of the most important problems in the area of statistics and

many other applications. It is often conducted via minimizing

the sum of squared residuals. Let A = [a1; . . . ; an] ∈ R
n×d

be the measurement data matrix. Here ai ∈ R
1×d is the i-

th row of the matrix. y ∈ R
n is the vector of the model’s

response. β ∈ R
d is the linear model’s parameter that needs

to be estimated.

The plain least squares (LS) estimation writes:

min
β

n
∑

i=1

(aiβ − yi)
2, (1)

or in a compact form,

min
β

‖Aβ − y‖2, (2)

for which we have a closed-form solution

β = (A⊤A)−1A⊤y. (3)

In the above minimization problem, the terms (aiβ− yi)
2 are

the squared residuals. Due to its simplicity and efficiency, least
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squares estimation has been widely used. However, it utilizes

the entire data set and therefore can be easily influenced by

outliers. In some cases this can lead to extremely distorted

estimates.

A variety of techniques have been developed to diminish

the impact of outliers upon the final estimate. One of them is

the LTS criterion, which minimizes the sum of the k smallest

squared residuals while outliers with larger squared residuals

are excluded.

The least trimmed squares fitting problem can be directly

formulated as a mixed integer programming problem:

min
π

min
β

n
∑

i=1

(aiβ − yi)
2 · πi

s.t. 1⊤π = k, πi ∈ {0, 1}, ∀i = 1 · · ·n. (4)

Ideally, when the squared residual (aiβ − yi)
2 is larger, the

corresponding πi will be 0. The integer constraint can be

replaced with a simple linear constraint as follows:

min
π

min
β

n
∑

i=1

(aiβ − yi)
2 · πi (5a)

s.t. 1⊤π = k, 0 ≤ π ≤ 1. (5b)

Problems (4) and (5) are equivalent because of the following

fact.

Theorem 1. For a concave minimization problem, every local

and global solution is attained at some extreme point of the

feasible domain.

The proof of this theorem can be found in [20]. When we

fix β the optimization problem (5) is a linear program in π. A

linear function is also a concave function (convex at the same

time). Therefore, the optimal solution for π must be achieved

at an extreme point of the feasible set, for which πi can only

be either 0 or 1. So (4) and (5) have the same solution.

Let Π be a diagonal matrix with its diagonal elements being

π. If we fix π, the above problem (the inner minimization) has

a closed-form solution for the variable β and the problem can

be largely simplified. We can rewrite the objective function

into

FLTS = (Aβ − y)⊤Π(Aβ − y),

and its gradient vanishes at the optimum, which leads to the

solution for β:

β⋆ = (A⊤ΠA)−1A⊤Πy. (6)

Now we can eliminate β from FLTS,

FLTS = (Aβ
⋆ − y)⊤Π(Aβ

⋆ − y)

= 2[y⊤Πy − y⊤ΠA(A⊤ΠA)−1A⊤Πy]. (7)

Now the optimization problem writes

minπ FLTS as in (7), s.t. (5b). (8)

The following theorem shows that the problem (8) is a

concave minimization problem and in general, it is NP-hard.

This is expected because the original problem (4) is a NP-hard

combinatorial problem.

Theorem 2. The objective function of (7) is concave in the

variable π (or Π).

Proof: The first term is linear in Π and hence convex

and concave. So we only need to check the second term,

and all that we need to show is the convexity of f(Π) =
y⊤ΠA(A⊤ΠA)−1A⊤Πy. We can establish the convexity of

f via its epigraph:

epi f = {(Π, t) | y⊤ΠA(A⊤ΠA)−1A⊤Πy ≤ t}

=

{

(Π, t)

∣

∣

∣

∣

[

A⊤ΠA A⊤Πy

y⊤ΠA t

]

� 0.

}

(9)

Using the Schur complement condition for positive semide-

finiteness of a block matrix [21], and because A⊤ΠA must

be p.s.d., the epigraph epi f must be a convex set. Therefore

f is convex, which demonstrates that the function in (7) is

concave.

Note that this theorem has appeared in [1] and here we

present a simpler proof. This result is not surprising. Many 0-1
integer programming problems can be equivalently converted

into concave minimization problems [22]. For example, An

integer program minx c⊤x, s.t. A⊤x = b,x ∈ {0, 1}d can

be written into minx c⊤x+M
∑d

i=1
xi(1−xi), s.t. A⊤x =

b, 0 ≤ x ≤ 1, with M an arbitrarily large positive number.

IV. MAXIMUM RESIDUAL OUTLIER IDENTIFICATION

Observing that the optimization problem (8) is a concave

minimization problem, we instead solve its complementary

problem, which is a convex minimization problem:

max
π

y⊤Πy − y⊤ΠA(A⊤ΠA)−1A⊤Πy

s.t. 1⊤π = p, 0 ≤ π ≤ 1. (10)

Thus the global optimum is easily obtained in polynomial

time. We call the above problem as approximate least trimmed

sum of squares (ALTS) fitting. Ideally, here p is the number

of outliers that one wants to remove. Different from (4) or

(8), by maximizing (rather than minimizing) the expression in

(10), one can identify the outliers which are corresponding to

πi with value 1.

As we show in Theorem 2, using (9), we can easily

reformulate the ALTS problem into a semidefinite program

(SDP). Although polynomial-time interior-point algorithms for

SDP have been well studied, they are usually not scalable.

Next we show that (10) is essentially a second-order cone

program (SOCP), which is much more efficient and scalable.

First, we introduce a new variable w ∈ R
n such that

A⊤w = A⊤Πy. Problem (10) becomes

min
π,w

w⊤Π−1w− y⊤Πy (11a)

s.t. A⊤w = A⊤Πy,1⊤π = p, 0 ≤ π ≤ 1. (11b)

The objective function is actually
∑n

i=1
w2

i /πi − y⊤Πy. We

interpret 0/0 = 0 here. Now we introduce another set of

variables t such that w2
i /πi ≤ ti, ti > 0 for i = 1, . . . , n.

The hyperbolic constraint can be represented as a second-order

cone constraint:

w2 ≤ πt, π ≥ 0, t ≥ 0 ⇐⇒

∥

∥

∥

∥

[

2w
π − t

]∥

∥

∥

∥

≤ π + t. (12)
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We have converted the ALTS problem into an SOCP:

min
π,w,t

1⊤t−
n
∑

i=1

y2i πi

s.t.

∥

∥

∥

∥

[

2wi

πi − ti

]
∥

∥

∥

∥

≤ πi + ti (i = 1 . . . n);

A⊤w = A⊤Πy, 1⊤π = p, 0 ≤ π ≤ 1. (13)

Note that A⊤Πy =
∑n

i=1
πiyia

⊤

i .

Note that the solution of (13) for π is not necessarily

an integer because (13) is not exactly complementary to the

original integer programming problem. It is possible that a

fractional value in [0, 1] is assigned to a π. Some heuristics

can be used to round up the non-integer solution, as commonly

applied in integer programming. It is guaranteed that, the

solution of (13) for π has at most d+1 non-integers. Here d
is the dimension of the input data. This result can be obtained

by looking at the KKT conditions and the complementary

conditions [21] of the original ALTS problem (10). These

conditions show that π is determined by a system of equations

with d+1 degrees of freedom. So there are at most d+1 non-

integer solutions in π. This result suggests that we may simply

treat all non-integer components of π as outliers when d is not

very large.

Also it is not difficult to see that at each iteration, at least

one outlier can be identified.

To run ALTS for outlier removal, we need to determine the

value for p first, which corresponds the targeted number of

outliers to be removed at each iteration. This value may be

empirically set to: the number of total outliers divided by the

maximum iteration number.

V. EXPERIMENTAL RESULTS

Extensive experiments on a variety of fitting problems

using data with different levels of random noise and varying

fractions of outliers are described below in order to illus-

trate the effectiveness of the proposed approach. We also

test the efficiency of our approach (ALTS by SOCP) on

different problems comparing to other two LTS methods:

ALTS by SDP and Fast-LTS [19]. The code for Fast-

LTS is downloaded from ftp://ftp.win.ua.ac.be/

pub/software/agoras/newfiles/fastlts.gz. All

the experiments are conducted using Matlab, running on a PC

with a Quad-Core 3.07G Hz CPU and 12GB RAM.

We test the proposed method on various problems in com-

puter vision and image analysis, including robust face recog-

nition, line fitting, circle fitting, and homography estimation.

Despite the diversity of the problems, minimal modifications

are required for each. We need only adjust the measurement

data matrix A, the response vector y, and the number of

outliers p to be removed for each new problem formulation.

A. Outlier detection

In order to evaluate the effectiveness of the method in

identifying outliers a set of face images have been augmented

with a variety of occlusions. We then follow linear regression

classification (LRC) of [5] to train a regression model. Fig. 1

Fig. 1. Examples demonstrating the performance of the method in detecting
outliers. The first and third columns are the original corrupted facial images.
The detected outlier pixels are set to white in the second and fourth columns.

shows example images from the dataset, and the results of

outlier detection. The first two rows represent typical images

from the AR face dataset and show the forms of occlusion

caused by scarves and sunglasses. The third row shows images

from the Extended Yale B dataset which have had 40% of their

pixels replaced with those of another image (see [23]).

With respect to the formulation given above each image of

one subject in the dataset represents a column vector ai and the

measurement data matrix A the cumulation of these column

vectors. The column vector y represents the query image. We

have empirically set the value of the parameter p to around

30% of the image size for the sunglasses tests and 38% for the

scarf tests. For the random block occlusion case, we set the

parameter p as the size of the block dimension. The detected

outlier pixels are set to be white as shown in the images on

the right of the original corrupted images.

Note that ALTS does not assume knowledge of the position

or other features of the corruption. The results show that most

pixels corresponding to sunglasses or scarves are correctly

detected. A small number of pixels around the eyes are

misclassified as inliers, however, which may be due to the

misalignment of the original images during cropping.

The fact that the pixel values of the monkey face image

are similar to those of the human face image makes a per-

pixel occlusion decision far more challenging than the previous

examples. As in Fig. 1, however, ALTS detects most of the

block correctly.

B. Robust face recognition

We now describe the results of experiments performed on

five public face recognition datasets: the AT&T dataset, the

Georgia Tech. dataset, the AR [24] dataset, Extended Yale B

[25], and CMU-PIE [26]. To evaluate the proposed approx-

imate least trimmed sum of squares algorithm, we compare

it with both the well-known traditional classifiers PCA [27],

LDA [28], and three related state-of-the-art methods for robust

face recognition: linear regression classification (LRC) [5],



5

sparse representation-based classifier (SRC) [23] and the linear

regression classification with collaborative representations (re-

ferred to as LRC-C) [29]. Note that our approach to robust face

recognition is different from robust regression based methods

such as [30], where usually a non-convex robust regression

loss is used to replace the convex least squares loss.

Linear regression classification selects the class correspond-

ing to βi which has the smallest reconstruction error. A similar

method is suggested in [29], which uses the training data

belonging to all classes (instead of only the corresponding

class) to train the model β and then set βi as the ith subvector

of β that corresponds to the ith class. The reconstruction error

is then calculated using βi for each class i.

Two SRC models were presented in [23]:

1) SRC0 denotes the standard SRC in [23] which solves:

min ‖β‖1, s.t. y = Aβ.
2) SRC1 denotes the extended SRC [23] handling occlusion

and corruption: min ‖w‖1, s.t. y = Bw, where B =
[A, I], and w = [β, e]. I and e are the identity matrix

and error vector respectively.

Both methods are included in the comparison testing below.

Note that similar to LRC-C, SRC takes all training images

(represented in column vectors) to formulate a larger mea-

surement data matrix A.

For the purpose of the face recognition experiments, outlier

pixels are first removed using ALTS, leaving the remaining

inlier set for processing by any regression based classifier.

In the experiments listed below LRC has been used for this

purpose.

In addition, three datasets are used to compare compu-

tation efficiency between our method and other robust LTS

algorithms on robust face recognition problems. The first

two databses, AR and Extended Yale B contains faces with

disguises; and the third dataset is for artificial occlusion

example. Extensive experiments are conducted using different

image sizes and different training sample numbers.

The AT&T dataset The AT&T dataset, also known as the

ORL database, consists of 10 images each of 40 subjects.

The images have been taken at different times, with varying

lighting conditions, multiple facial expressions (smiling or

not smiling, open or closed eyes), adornments (glasses or no

glasses) and rotations up to 20 degrees.

For the purpose of testing we have taken the first five images

of each subject as a training set and the remaining five as a

test set. All the images with dimension 112 × 92 are down

sampled to 10× 10. A comparison between the results of our

method and those of several others is summarized in Table I.

For PCA and LDA, four reduction dimensions are selected: 5,

10, 20 and 40. We set p in ALTS as 15% of the total pixels. As

shown in Table I, ALTS achieves the best accuracy of 94%,

which is 1.5% better than LRC and 0.5% better than the best

SRC. It also outperforms the best result of LDA and PCA by

1% and 4% respectively. Althogh no occlusion or corruption

appears on this dataset, ALTS still achieves a better recognition

accuracy than LRC. This may be mainly because ALTS can

effectively remove noisy pixels caused by lighting or other

variations.

TABLE I
CLASSIFICATION ACCURACY (%) ON THE AT&T DATASET. FOR PCA AND

LDA, WE HAVE REDUCED THE ORIGINAL DIMENSION TO FOUR DIFFERENT

DIMENSIONS (5, 10, 20, AND 40). ∗NOTE THAT FOR LDA, THE MAXIMUM

DIMENSION IS 39 BECAUSE THIS DATASET HAS 40 CLASSES.

Approach D-5 D-10 D-20 D-40

PCA 72 85 88.5 90

LDA 66 81.5 91.5 93∗

LRC 92.5

SRC0 90.5

SRC1 93.5

ALTS 94

These results show that ALTS is producing state-of-the-art

performance on un-occluded face data, as we would hope.

The Georgia-Tech dataset The Georgia-Tech dataset con-

sists of 15 images each of 50 subjects. The images were taken

in two or three sessions at different times with different facial

expressions, lighting conditions, scale and background.

The original 480×640 images are down sampled to 15×15
pixels. The first 8 images of each subject were used for training

and the last 7 images are used as a test set. All experiments

are conducted on the original images without any cropping

or normalization. We set p as 15% of the total pixel number

for ALTS. A comparison of ALTS with a variety of other

methods is shown in Table II. For PCA and LDA, four reduced

dimensions are selected: 5, 10, 20 and 40. ALTS achieves the

best recognition accuracy of 92.9% which is slightly higher

than LRC, LRC-C, SRCs and the best PCA, LDA results.

This is consistent with the results on the AT&T dataset.

Faces occluded by sunglasses The AR dataset [24] consists

of over 4000 facial images from 126 subjects (70 men and 56
women). For each subject 26 facial images were taken in two

separate sessions. The images exhibit a number of variations

including various facial expressions (neutral, smile, anger, and

scream), illuminations (left light on, right light on and all side

lights on), and occlusion by sunglasses and scarves.

Of the 126 subjects available 100 have been randomly

selected for testing (50 males and 50 females) and the images

cropped to 112 × 92 pixels. 8 images of each subject with

various facial expressions but without occlusions were selected

TABLE II
CLASSIFICATION ACCURACY (%) ON THE GEORGIA TECH. DATASET. FOR

PCA AND LDA, WE HAVE REDUCED THE ORIGINAL DIMENSION TO FOUR

DIFFERENT DIMENSIONS (5, 10, 20, AND 40).

Approach D-5 D-10 D-20 D-40

PCA 90 91.7 92.3 92

LDA 92.3 92 92 92

LRC 92

LRC-C 92

SRC0 92

SRC1 92.3

ALTS 92.9
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Fig. 2. Two examples demonstrating the performance of ALTS in recon-
structing face images occluded by sunglasses from the AR dataset. Faces from
left to right are original occluded images, the images reconstructed by ALTS,
and the difference between the original image and the reconstructed images.

for training. Testing was carried out on 2 images of each of

the selected subjects wearing sunglasses.

Two example test images of subjects wearing sunglasses

from the AR dataset and their corresponding reconstructed

images are shown in Figs. 2 and 3. Fig. 4 (top) shows a

comparison of the recognition rates of LDA, PCA, LRC,

SRCs and ALTS with respect to various feature spaces of

dimension 42, 154, 644, and 2576. The SRC algorithms have

been conducted on the first three feature spaces only due to

their extremely high computation time. PCA was carried out

with a final dimension of 5, 10, 20, 40, 80, 160, and 320, and

the best result reported. For LDA, only the first 5 dimension

options are selected as there are only 100 classes in this

task. It is obvious from Fig. 4 that the method proposed

here significantly outperforms the other methods listed. In

addition it is worth noting that on a feature space of dimension

644 ALTS achieved a recognition accuracy of 94.5% which

outperforms SRC1 by 32.5% and LDA by 74%. For LRC-C

[29], a similar technique to SRC1 is used to model occlusions,

which writes minβ ‖y − Bβ‖22 where B = [A,M]. M is a

matrix designed for this dataset, which has fewer columns

than the identity matrix I and is better than I to represent

non-face objects [29]. However LRC-C does not perform well

in this experiment, and only achieved an accuracy of 53.5%

at dimension 2576.

In Fig. 5 (top), we show the computational time compar-

ison of detecting outlier pixels in a typical face image with

sunglasses using Fast-LTS and the ALTS algorithms which

are implemented by both an SDP and SOCP. We can clearly

see that ALTS by SOCP is much faster than Fast-LTS on all

feature dimensions. When the feature dimension is low (less

than about 600), ALTS implemented by SDP is only slightly

slower than ALTS by SOCP and much faster than Fast-LTS.

However, when the feature dimension is higher, ALTS by SDP

becomes much more time consuming than that by SOCP and

also slower than Fast-LTS. Note that in this experiment settings

there are only 8 samples in each class. When the problem

dimension d is larger, the difference of efficiency between our

method and ALTS by SDP is much more significant, which is

shown next.

Faces occluded by scarves The test set for the scarf

occlusion tests were 2 images of each of the selected subjects

Fig. 3. Two examples demonstrating the performance of ALTS in reconstruct-
ing images of faces occluded by scarves from the AR dataset. faces from left
to right are the original occluded images, the images reconstructed by ALTS,
and the difference between the original images and the reconstructed images.

from the AR dataset wearing scarves. Fig. 4 (bottom) shows a

comparison of recognition rates for LDA, PCA, LRC, LRC-C,

SRCs and ALTS with various feature spaces. Similar as the

case for sunglasses (top), the proposed method significantly

outperforms its competitors. Note also that on the feature space

of dimension 504, ALTS achieved 84% recognition accuracy

which is better than SRC0 by 54.5% and better than LRC by

76%.

Since LRC-C admits a closed-form solution and it is in

general very efficient [29], we also test LRC-C on images

without down-sampling at dimension 112×92 and it achieves

a recognition accuracy of 80%. LRC-C performs much better

than SRC and LRC at high dimensions. However, it is still

worse than ALTS.

In Fig. 5 (bottom) we compare the computation time of
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Fig. 4. Recognition accuracy (y-axis) for 100 subjects with sunglasses (top),
and scarves (bottom) on the AR dataset. The x-axis is the feature dimension
in log scale.
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Fig. 5. Computational time comparison of ALTS implemented by SDP and
SOCP as well as Fast-LTS for robust face recognition with different feature
dimensions: 42, 154, 644, 2576. Plots shown on the top and bottom are results
on the “sunglasses” and “scarves” subsets of the AR dataset, respectively.

detecting outlier pixels in a face image with scarf for different

methods. Similar as in the time comparison of the sunglasses

experiment (the first plot of Fig. 5), we can see that ALTS-

SOCP runs much faster than the other two methods in higher

feature space.

Contiguous block occlusions In order to evaluate the

performance of the algorithm in the presence of artificial

noise and larger occlusions we now describe testing involving

replacing image pixels with those from another source. The

Extended Yale B dataset [25] consists of 2414 frontal face

images from 38 subjects under various lighting conditions. The

images are cropped and normalized to 192× 168 pixels [31].

Half of the images were randomly selected for training (about

32 images per subject), and the remaining half for testing. In

our experiment, all the images are down sampled to 24× 21
pixels.

Two example occluded images with 20% and 40% (by area)

occlusion by randomly placed monkey faces, and their ALTS

reconstructions are shown in Fig. 6. In order to evaluate the

performance of the various methods on this data each was

run on 3 sets of images with randomly placed occlusions at 3

sizes each. For ALTS, we set p as the outliers number divided

by iteration number T . Results corresponding to two values

for T = 1 and 5 are reported. Table III shows that ALTS

and SRC1 achieve comparable accuracies (92.6 ± 0.6% and

92.3±1.0%) on the 20% occlusion data which is a significant

improvement over other compared methods. When T = 1,

SRC1 outperforms ALTS with 30% and 40% occlusion, how-

ever, the performance of ALTS is significantly better than that

of standard SRC and LRC. When T = 5, it is not surprising

Fig. 6. Two examples demonstrating the performance of ALTS in recon-
structing face images occluded by monkey faces in Extended Yale B dataset.
Faces from left to right are the images occluded by monkey face, the images
reconstructed by ALTS, and the difference image between the occluded image
and reconstructed images. The top row is with 20% occlusion and bottom row
is with 40% occlusion.

that ALTS achieves better recognition accuracies (89.1% and

82.2% on the 30% and 40% occlusion data respectively),

which are even better than those of SRC1 and significantly

better than SRC0 and LRC. When it is run only one iteration

(T = 1), our method can remove more inliers.

We then test the efficiencies of our method ALTS by SOCP

and other two LTS methods, ALTS by SDP and Fast-LTS, on

the Extended Yale B dataset in tow scenarios. Fig. 7 shows the

computation time comparisons of detecting a random block

of a typical face image from the Extended Yale B database

by these three methods. Fig. 7 (top) demonstrates that with

the number of training samples being fixed, ALTS by SOCP

performs much better than that by SDP and Fast-LTS on most

feature dimensions: 12× 10, 24× 21, and 48× 42. Note that

we do not report the running time of Fast-LTS on image size

6×5 because Fast-LTS does not allow the problem dimension

(number of training samples per subject for face recognition) d
larger than the observation number n and here n = 30, d = 32.

From Fig. 7 (bottom) we can see that with the feature

dimension fixed (on 24× 21) ALTS by SOCP perform much

faster than that by SDP when with a larger number of training

images. Similar as in [1], Fig. 7 (bottom) shows that with a

relatively low dimension (d < 20 and n = 504 here) ALTS by

SDP performs faster than Fast-LTS. However when d is larger,

ALTS-SDP becomes much more time consuming than the

other two methods due to SDP’s high polynomial computation

complexity.

Partial face features on the CMU-PIE dataset As shown

above, occlusion can deteriorate face recognition performance.

TABLE III
RECOGNITION RATES (%) IN THE PRESENCE OF RANDOMLY PLACED

BLOCK OCCLUSIONS OF IMAGES FROM THE EXTENDED YALE B DATASET.

Approach 20% 30% 40%

LRC 82.3± 0.7 69.1± 1.6 53.9± 1.5

SRC0 80.1± 1.1 66.5± 0.6 54 ± 0.5

SRC1 92.6± 0.6 88.5± 0.2 82.1± 1.5

ALTS (T = 1) 92.3± 1 80.2± 0.8 65.6± 0.9
ALTS (T = 5) 93.2± 0.8 89.1± 1.6 82.2± 1.5
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Fig. 7. Time comparison of ALTS implemented by SDP and SOCP and
Fast-LTS for face recognition problem on the Extended Yale B dataset in two
scenarios: different feature dimensions (6×5, 12×10, 24×21, and 48×42)
with fixed number (32) of training samples of each subject; and different
numbers of training samples of each subject with fixed feature dimension of
24× 21. Both the x-axis and y-axis of the left chart are in log-scale.

Intuitively, occlusion at different face locations will perform

differently. In this experiment, we investigate the effective-

ness of using only partial face features. Here we compare

our approach with other methods using two different partial

features: eyebrows and eyes, mouth and chin. Different from

[23], in which only the extracted partial features are used

and other parts of a face image are discarded, we take an

opposite strategy: the pixels corresponding to one of these

partial features are set to zeros and we keep the remaining

pixels. Following this strategy, if a partial feature is more

important than others, worse performance must be achieved

with this feature being dead pixels.

In this experiment, we use the CMU-PIE dataset [26]. It

contains 68 subjects with 41368 face images, each person

under 13 different poses, 43 different illumination conditions,

and with 4 different expressions. In our experiment all of the

face images are aligned and cropped, and resized to 24 × 24
pixels. Here we use the subset containing images of pose C27

(a nearly front pose) and we only use the data from the first

20 subjects, each subject with 21 images.

We normalize each image to be a unit vector. The first 15

images of each subject are used for training and the rest 6

for test. The test images are preprocessed so that one part

of faces (about 1/3 pixels) are set to be dead pixels. See

Fig. 8 for illustration. The parameter p is set to 1/3 of feature

dimension. Results are reported in Table IV. We do not report

SRC0 because here n = 576 and d = 300 (n > d) makes the

SRC equation system y = Aβ overdetermined. This problem

10

20

30

40

50

60

Fig. 8. Typical face images from the CMU-PIE dataset. Around 1/3 of the
image pixels are set to zeros at locations of “eyebrows and eyes” or “mouth
and chin”.

TABLE IV
RECOGNITION ACCURACIES (%) OF VARIOUS METHODS ON THE

CMU-PIE DATASET WITH DIMENSION 24× 24 CONTAINING 1/3 DEAD

PIXELS AT DIFFERENT POSITIONS (SHOWN IN THE FIRST ROW). FOR

ALTS, RESULTS FOR TWO VALUES OF T : 33% AND 43% OF THE NUMBER

OF ALL PIXELS ARE REPORTED IN THE LAST TWO ROWS.

Approach eyes & eyebrows mouth & chin

LRC 30.83 40

SRC1 56.67 65

ALTS (33%) 70 88.33

ALTS (43%) 75.83 94.17

is solved by SRC1 which replaces A with B = [A, I] [23]. In

order to eliminate the adverse influence of black pixels, here

for our algorithms, we remove one pixel at each iteration,

i.e., p = 1 for ALTS and in total T iterations are needed.

Results for different values of T : 33% and 43% of all pixels

are reported. From Table IV, we can easily see that ALTS

performs the best. In particular, with the mouth and chin part

replaced with black pixels, when T is set as 43% of pixels

number ALTS achieves a recognition accuracy 94.17% which

is considerably higher than that of LRC and SRC1.

It is noteworthy that all these algorithms obtain a worse

performance when the test images lose the information of eyes

and eyebrows than in the other situation. This is consistent

with the argument from [32] that the eyes and eyebrows part

of human faces is most informative for face recognition.

For these robust LTS methods, the computation time is

reported in Table V. Consistent with the results of previous

experiments, ALTS-SOCP is much more efficient than the

other two methods.

C. Geometric model fitting

Having shown that ALTS is effective in reconstructing

partially occluded images we now investigate its performance

in more classical parameter estimation. The first problem we

approach in this vein is line fitting.

Line fitting Fig. 9 shows the performance of our algorithm

(marked with label “ALTS”) and least squares (marked with

label “LS”) on data generated under two different models.

TABLE V
COMPUTATION TIME (IN SECONDS) OF VARIOUS LTS METHODS FOR

REMOVING OUTLIER PIXELS OF A FACE IMAGE OF CMU-PIE DATASET.

Approach eyes & eyebrows mouth & chin

Fast-LTS 1.52 1.51

ALTS-SDP 0.78 0.86

ALTS-SOCP 0.09 0.06
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LS

ALTS

Fig. 10. An example demonstrating the performance of our algorithm on
an extremely case. Outliers detected by our algorithm are marked as squares.
The solid line is fitted by our method and the corresponding least squares fit
is the dashed line. In this case, we set n = 210 and k = 200.

We generate A ∈ R
n×d randomly and β ∈ R

d randomly.

We then set the first k error terms ǫj , j ∈ [1, . . . , k] as

independent standard normal random variables. We set the last

n−k error terms as independent chi squared random variables

with 5 degrees of freedom. We also test using the two-sided

contamination model which sets the sign of the last n − k
variables randomly such that the outliers lie on both side of

the true regression line. In both cases we set y = Aβ + ǫ.
For ALTS, p is set n− k for two-sided contamination model.

In order to remove all the outliers in one side contamination

model, only one outlier is removed and totally n−k iterations

are needed. As can be seen in Fig. 9, ALTS detects all of the

outliers and consequently generates a line estimate which fits

the inlier set well for both noise models, where LS achieves

a reasonable estimate only for the two-sided contamination

case where the inlier and outlier distributions are centered

about the same line. Fig. 10 shows a more extreme example,

where 10 outliers are located far from the inliers. As would

be expected LS produces a skewed result, where ALTS has

correctly identified the outliers and produced a perfect line

estimate. For this experiment, most existing approaches fail,

including RANSAC and the method of Sim and Hartley [6].

Table VI shows a comparison of computation time of Fast-

LTS and the ALTS algorithms implemented by SDP and SOCP

under the two-sided contamination model. We place 10 percent

of the points as outliers, and the parameter p is set as the

number of outliers placed. We compare efficiencies of different

methods for problems with dimension d varying from 2 to 50

(shown in the first column of Table VI) and n ≤ 2000 (shown

in the first row). It is clear that with all 100 ≤ n ≤ 2000
ALTS implemented by SOCP is much faster than that by SDP.

This is consistent with the theoretical analysis: the complexity

of interior point methods for SOCP is much lower than that

of SDP [21]. Fast-LTS also performs slower than ALTS by

SOCP for all n and d and also slower than ALTS by SDP

when the problem size is small, i.e., n ≤ 500, d ≤ 5. We

notice that with observation number n and problem dimension

d becoming larger, the SDP algorithm becomes more time

consuming significantly and slower than Fast-LTS when d ≥
20, n ≥ 200.

Then we use the average trimmed absolute residuals [1] for

accuracy comparison of Fast-LTS, ALTS and least squares fit-

ting, which is shown in Table VII. We can see that, consistent

with the result in [1], the average trimmed absolute residuals

of ALTS are on par compared with those of Fast-LTS, and are

much better than those of traditional least squares.

Circle fitting An example of the performance of ALTS in

circle fitting is shown in Fig. 11. The 100 inlier points were

selected from a distribution uniformly around the perimeter

of a circle centered at (0, 0) with radius 10, and had noise

sampled from N (0, 1) added. The 26 outliers (p = 26)

were randomly generated approximately following a uniform

distribution inside the box. Fig. 11 shows that ALTS has

correctly identified the inlier and outlier sets, and demonstrates

that the center and radius estimated by ALTS fit the true inlier

data well.

Homography estimation The final problem for which the

performance of the ALTS algorithm is presented is that of

estimating homographies from real image data. Fig. 12 (top)

shows the image pairs, keypoint correspondences and labels

provided in [33]. There are totally 74 pairs of correspondences,

52 of them are good points (labeled as inliers) and 22 are

noise (labeled as outliers). Comparison of performance and

computation efficiency between RANSAC and ALTS is sum-

marized in Table VIII. In this case ALTS and RANSAC were

both based on the normalized Direct Linear Transformation

(DLT) method for homography estimation [2]. We run ALTS

to remove p = 5 outliers at each iteration till an all-inlier set

is obtained. For RANSAC, different distance thresholds t are

chosen (see Table VIII). For each t we run 10 times and the

average results are reported.

We use the RANSAC implementation of [34]. The true in-

liers detected by ALTS and RANSAC are shown in the middle

and bottom of Fig. 12 respectively. Both RANSAC and ALTS

correctly identifies an inlier set and a good approximation of

the correct homography, but rejects a proportion of the points

labeled as inliers by [33]. In terms of computation efficiency,

our ALTS implemented by SOCP is about eight times faster

than RANSAC to obtain an all-inlier set.

−15 −10 −5 0 5 10 15

−10
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Fig. 11. An example of the performance of ALTS in circle fitting. Points
identified by ALTS as outliers are marked by red squares.
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LS

ALTS

ALTS

LS

Fig. 9. Two examples demonstrating the performance of our algorithm on one sided contamination data (left) and the two sided contaminated data (right).
Outliers detected by our algorithm are marked as squares. The solid line is fitted by our method and the corresponding least squares fit is the dashed line. In
these two cases, we set n = 100 and k = 70.

TABLE VI
COMPUTATIONAL TIME (IN SECONDS) COMPARISON OF DIFFERENT ROBUST FITTING METHODS UNDER TWO SIDED CONTAMINATION MODEL. THE FIRST

COLUMN IS THE PROBLEM DIMENSION d AND THE FIRST ROW IS THE OBSERVATION NUMBER n. “FAST”, “SDP”, AND ”SOCP” REPRESENT FAST-LTS
[19], ALTS-SDP [1] AND OUR PROPOSED FAST SOCP METHOD, RESPECTIVELY. WE CAN SEE THAT THE PROPOSED METHOD IS IN GENERAL MUCH

FASTER THAN ITS COMPETITORS.

100 200 500 1000 2000
Fast SDP SOCP Fast SDP SOCP Fast SDP SOCP Fast SDP SOCP Fast SDP SOCP

2 0.91 0.16 0.01 1.02 0.18 0.01 1.22 0.29 0.04 1.22 0.59 0.11 1.33 1.86 0.29

5 0.94 0.18 0.01 1.05 0.23 0.02 1.23 0.38 0.05 1.26 0.71 0.13 1.37 2.21 0.32
10 0.98 0.26 0.01 1.08 0.33 0.02 1.35 0.62 0.07 1.34 1.46 0.16 1.48 3.86 0.40

20 1.05 0.27 0.02 1.20 1.21 0.03 1.53 2.64 0.89 1.54 5.61 0.22 1.64 12.47 0.53

30 1.92 9.82 0.12 1.79 20.51 0.31 1.91 61.23 0.69

50 2.92 248.37 0.50 3.12 391.20 1.17

TABLE VII
AVERAGE ABSOLUTE RESIDUALS COMPARISON OF DIFFERENT FITTING METHODS: THE PROPOSED ALTS, FAST-LTS (SHOWN AS “FAST”), LSin AND

LS. THE THIRD RESULT LSin IS THE AVERAGE RESIDUAL OF LEAST SQUARES FITTING USING ONLY INLIER OBSERVATIONS, I.E., GROUND TRUTH. LS IS

THE LEAST SQUARES FITTING USING ALL OBSERVATIONS.

100 200 500 1000 2000
ALTS Fast LSin LS ALTS Fast LSin LS ALTS Fast LSin LS ALTS Fast LSin LS ALTS Fast LSin LS

2 0.96 0.96 0.96 3.60 0.89 0.88 0.90 5.40 1.00 1.00 1.00 1.66 1.02 1.02 1.02 1.45 1.00 1.00 1.00 1.27
5 0.98 0.97 0.95 6.43 0.88 0.87 0.88 4.89 0.98 0.97 0.97 3.31 0.98 0.98 0.98 3.08 0.97 0.97 0.97 1.75
10 1.00 1.16 1.00 9.46 0.98 1.00 0.98 5.20 1.08 1.05 1.05 5.38 0.95 0.95 0.95 3.33 1.01 1.01 1.01 2.36
20 0.88 2.32 0.66 10.41 1.07 1.07 0.92 10.67 1.05 0.98 0.98 4.88 0.99 0.98 0.98 3.59 1.03 1.03 1.03 3.16
30 1.18 0.93 0.92 5.70 1.10 0.97 0.97 5.16 1.04 0.96 0.96 4.07
50 0.96 0.95 0.94 13.18 1.00 1.00 1.00 13.15

TABLE VIII
COMPARISON OF PERFORMANCE AND COMPUTATION TIME BETWEEN

RANSAC AND ALTS ON HOMOGRAPHY ESTIMATION.Ndet IS THE

NUMBER OF DETECTED INLIERS AND Nfa IS THE NUMBER OF DETECTED

FALSE INLIERS. FOR ALTS, p = 5 OUTLIERS ARE REMOVED AT EACH

ITERATION TILL AN ALL INLIERS SET IS OBTAINED. THE COMPUTATION

TIME IS SHOWN IN SECONDS.

RANSAC

residual threshold t Ndet Nfa computation time

0.01 40 2 0.08
0.005 37 1 0.13
0.001 26 0 0.59

Our ALTS

iterations Ndet Nfa computation time (accumulated)

1 52 17 0.01
3 46 13 0.03
6 39 5 0.05
8 33 1 0.06
9 29 0 0.07

VI. CONCLUSION

We have proposed a second-order cone programming for-

mulation of the approximate least squares estimation problem.

We have demonstrated its efficiency over existing approximate

LTS methods.

In solving this problem using second order cone program-

ming, we arrive at a robust regression method suitable for

application to a range of key problems in computer vision.

Extensive synthetic and real image testing shows the method

to be efficient and scalable to the extent required by the

application domain, and robust to the types of noise exhibited.

Like many other robust fitting methods, the proposed

method needs to know how many outliers to be removed.

One may heuristically determine this value. In the future, we

plan to investigate how to estimate the degree of noise in the

contaminated data.
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