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Abstract
Since its discovery in kaon decay in 1964, the origin of C P (Charge-Parity)
violation has stili not been completely understood. Even though the Stan-

dard Model is able to describe this phenomenon, its description invoives

mány theoretical uncertainties. Examples are the parameters of the Cabibbo'

Kobayashi-Maskawa (CKM) matrix elements, and the hadronic matrix ele'

ments connected to the short and long distance effects. The interest in CP
violation has increased with the rise of studies in cosmological physics (baryo'

genesis) and also with the use of new models so-called "beyond the Standard

Model", such as the Higgs model and its derivative, the left-right symmetric

models and supersymmetric models.

CP violation can occur via three different modes: it could be an indirect
manifestation through the interaction of two initiat states, for example B0 -
Bo -+ /, it could be a direct manifestation due to the initial particie decay, for

example, a difference between the decay rates B+ -+ pl(r)p+, and finally,

it could be a combination of the two processes, decay and mixing, as in

Bl -+ $K". One exciting way to obtain a more accurate understanding of

direct CP violation is to study the details of the C P violating asymmetries

in the case where p - e mixing plays a role in the B meson decay. In fact,

p - u mixing provides an opportunity to erase the phase uncertainty mod(n)

in the determination of the cKM angles o (in the case of B + pr) and 7 (in
the case of B -+ pK) in the unitarity triangle (UT). This phase uncertainty

usually arises from the conventional determination of sin 2a (ot sin 27) in
indirect C P violation. Hence, we have an efficient test to check the picture

of direct C P violation within the Standard Model.

To achieve this goal, the present thesis is divided in three parts. Firstly,

d.irect CP violation is studied. in the following decays: B*'o -+ po(r)M+'o

where M*,0 iseither a pion or a kaon. The mixing (through isospin violation)

of an to to po which decays into two pions allows us to obtain a difference

of the strong phase reaching its maximum at the c^l resonance. The calcula-

tion of the hadronic matrix elements is carried out using the socalled naive

factorization method. This approach utilizes the knowiedge of the transition

form factors between pseudoscalars and vector particles. In this first part,

these form factors will be directly extracted from the literature. By com-

paring experimental data with theoretical results, it is possible to constrain

uncertainties associated with the form factors and parameters p and 4 of the

CKM matrix elements. The experimental data (from BELLE, BABAR and

CLEO) for branching ratios such as Ø(B -+ pn) and Ø(B + p/{) will be

used in this way. TÈus, we are able to determine in first approximation (a

correct order of magnitude) the CP violating asymmetry parameter, asp,

xlll



for the decays B+p -+ T+T- K+'o and B*'0 -+ r*n-r*'o'
In order to decrease all the uncertainties mentioned previousiy, it is neces-

sary to evaluate the transition form factors between pseudoscalar and vector

purti.l"r. To get these form factors, \,ve first need to calculate the wave

iunctions which are involved in these transitions. We take into account sev-

eral physical constraints to determine the wave functions for the particles

n,K,p,-, and B; these include the decay constant, electromagnetic form

factor, transition form factor and charge radius. we also consider the nor-

malization to fully constrain the wave functions. we apply an explicitly

Covariant Light Front Dynamics (CLFD) formalism in our analysis to com-

pute both wave functions and transition form factors. In this formalism, the

state ,rector describing the system under consideration is defined on a lighi

front plane of arbitrary orientation. It is thus decomposed in Fock state

"o*poo"rrts, 
each one being expressed in terms of a probability amplitude

very similar to a non-relativistic wave function. Alt ofi-shell amplitudes are

thus explicitly dependent on the orientation of the light-front plane, while

any physical amplitude should be independent on it'
Th"o, the last major uncertainty that remains is related to the final state

interactions. To compute the hadronic matrix elements without using naive

factorization and the Bjorken assumption, we will apply QCD factorization.

By assuming some properties lie in energy scales involved in B decays, it
a1lo*, us to determine as well as possible the non-factorizable terms which

arise during the usual hadronic matrix calcuiation. Finally, only one uncer-

tainty ."*iiot uncontrolled, theoretically speaking: these are the CKM ma-

trix parameters p and 4. By comparing, once again, experimental results for

brarrching ratios Ø(B -+ pK) and Ø(B -> pn) with the theoretical results

obtained in this second approach, we can check firstly the transition form fac-

tors determined in CLFD. Secondly, we can use these conclusions to predict

the C P violating asymmetry parameter ¡ (trCpt for decays B*'0 -) T+T- Kt'o
and B*,0 -+ rln-n+'o. Finally, based on these results, we determine some

limitsfor the parameters p and 4 of the Cabibbo-Kobayashi-Maskawa matrix.
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