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Abstract
Since its discovery in kaon decay in 1964, the origin of C P (Charge-Parity)

violation has still not been completely understood. Even though the Stan-

dard Model is able to describe this phenomenon, its description involves

mány theoretical uncertainties. Exampies are the parameters of the Cabibbo-

Kobayashi-Maskawa (CKM) matrix elements, and the hadronic matrix ele-

ments connected to the short and long distance efiects. The interest in C P

violation has increased with the rise of studies in cosmological physics (barye
genesis) and also with the use of new models so-called "beyond the Standard

Model", such as the Higgs model and its derivative, the left-right symmetric

models and supersymmetric models.

C P violalion can occur via three different modes: it could be an indirect

manifestation through the interaction of two initiai states, for example B0 -
Bo -+ /, it could be a direct manifestation due to the initial particle decay, for

"*.-pi", a difference between the decay rates B* + po(r)p+, and finally,

it could be a combination of the two processes, decay and mixing, as in

Bl + $K". One exciting rryay to obtain a more accurate understanding of

direct C P violation is to study the details of the CP violating asymmetries

in the case where p - a mixing plays a role in the B meson decay. In fact,

p - (r) mixing provides an opportunity to erase the phase uncertainty mod(n)

in the determination of the CKM angles o (in the case of B + pn) and 7 (in

the case of B -+ pK) in the unitarity triangle (UT). This phase uncertainty

usually arises from the conventional determination of sin 2a (ot sin 27) in

indirect CP violation. Hence, we have an efficient test to check the picture

of direct C P violation within the Standard Model.

To achieve this goal, the present thesis is divided in three parts. Firstly,

direct C P violatioo i, studied in the following decays: Bt'o + po(r)M+'o

where M*,o iseither a pion or a kaon. The mixing (through isospin violation)

of an u to po which decays into two pions allows us to obtain a difference

of the strong phase reaching its maximum at the u resonance' The calcula-

tion of the hadronic matrix elements is carried out using the so-called naive

factorization method. This approach utilizes the knowledge of the transition

form factors between pseudoscalars and vector particles. In this first part,

these form factors will be directly extracted from the literature. By com-

paring experimental data with theoretical results, it is possible to constrain

unceriainties associated with the form factors and parameters p and 4 of the

CKM matrix elements. The experimental data (from BELLE, BABAR and

cLEo) for branching ratios such as Ø(B + pzr) and- Ø(B -+ p/l) will be

used in this way. Tti,rr, trye are able to determine in first approximation (a

correct order of magnitude) the CP violating asymmetry parametet, øsp,

xlll



for the decays B+'o -+ T+T- I{+'o and Bt'O -+ n*n-rt'o.
In order to decrease all the uncertainties mentioned previously, it is neces-

Sary to evaluate the transition form factors between pseudoscalar and vector
particles. To get these form factors, 'we first need to calculate the wave

functions which are involved in these transitions. We take into account sev-

eral physical constraints to determine the wave functions for the particles
TrK,p,¿¡ and B; these include the decay constant, electromagnetic form
factor, transition form factor and charge radius. We also consider the nor-
malization to fully constrain the wave functions. We apply an explicitly
Covariant Light Front Dynamics (CLFD) formalism in our analysis to com-

pute both wave functions and transition form factors. In this formalism, the
state vector describing the system under consideration is defined on a light
front plane of arbitrary orientation. It is thus decomposed in Fock state
components, each one being expressed in terms of a probability amplitude
very similar to a non-relativistic wave function. All ofi-shell amplitudes are

thus explicitly dependent on the orientation of the light-front plane, while
any physical amplitude should be independent on it.

Then, the last major uncertainty that remains is related to the final state
interactions. To compute the hadronic matrix elements without using naive
factorization and the Bjorken assumption, we will apply QCD factorization.
By assuming some properties lie in energy scales involved in B decays, it
allows us to determine as well as possible the non-factorizable terms which
arise during the usual hadronic matrix calculation. Finally, only one uncer-
tainty remains uncontrolled, theoretically speaking: these are the CKM ma-
trix parameters p and 4. By comparing, once again, experimental results for
branching ratios Ø(B + pK) and Ø(B + pn) with the theoretical results
obtained in this second approach, we can check firstly the transition form fac-
tors determined in CLFD. Secondly, we can use these conclusions to predict
the C P violating asymmetry parameter, dcp, for decays Bt'o + T+'î- K+'o
^-¡ o*.0 . -+---+.0 tì:-^il.. L^^^l ^- +L^^^ -^^..1+^ --.^ l^+^-*:-^ ^^*anci lt-'- -i, 7T'7T 7t-'-. ,itinally, oaseû on [nese resulÏs, we ûeLermrfic surile
limits for the parameters p and 7 of the Cabibbo-Kobayashi-Maskawa matrix.

xtv



Résumé

L'origine de la violation C P (Charge-Parité) n'est pas encore complètement

comprise depuis sa découverte dans la désintégration du kaon en 1964. Même

si le modèle standard décrit de manière assez précise ce phénomène, il prend

en compte de nombreuses incertitudes telles que ceiles sur les paramètres de

la matrice Cabibbo-Kobayashi-Maskawa (CI{M), celles sur les éléments de Ia

matrice hadronique reliée aux effets à courte et longue distances (problème

d'intéraction forte), etc ... L'intérêt de la violation C P s'est accru avec l'essor

d.u domaine cosmologique (étude de la baryogénèse), et avec i'élaboration de

nouveaux modèles dits "au-delà du modèIe standard", dont on peut citer
par exemple le modèie multi-scalaire, le modèle symétrique droite-gauche,

les modèles supersymétriques.
La violation CP peut se présenter selon trois modes possibles: soit,

c'est une manifestation indirecte drìe au mélange de deux états initiaux qui

intéragissent, par exemple Bo - Bo -f /, soit c'est une manifestation directe

dûe àla désiniégration de la particule initiale, par exemple B+ -+ po(r)p+,

soit enfin, c'est une combinaison de mélange et de désintégration, par exemple

B3 + úK". lJne voie d'étude motivante pour permettre une compréhension

pLus précise de Ia violation directe de C P est d'étudier plus en détails les

paramètres d'asymétrie dans le cas de la désintégration du méson B tout en

tenant compte autant que possible de toutes les incertitudes présentes, et en

particulier celles liées à I'intéraction forte.
Pour ce faire, l'étude présentée dans cette thèse est divisée en trois par-

ties. Premièrement, la violation directe de C P est étudiée dans les réactions

suivantes: B+,o + po(r)M+'o où M*'0 représente soit un pion soit un kaon.

Le mélange p -ar qui se désintègre en deux pions permet d'obtenir à travers

la violation d'isospin, un déphasage maximum de la phase forte au voisinage

de la résonaîce e. Le calcul des éléments hadroniques se fait en utilisant la
méthode dite de factorisation naive où un nombre de couleur effectif, N:J f ,

paramétrise les effets hadroniques. Cette méthode implique la connaissance

ães facteurs de forme de transition entre particules pseudoscalaires et parti-

cules vecteurs. Dans cette première partie, ceux-ci sont directement extraits

de la littérature scientifique. En confrontant ies données expérimentales et

les résultats théoriques, il est alors possible de contraindre ies incertitudes

théoriques liées aux facteurs de forme, aux éléments p et 4 de la matrice

CabibúeKobayashi-Maskawa (CKM) et au nombre de couleur effectif, N:Jl ,

via principalement les rapports de branchement Ø(B -> pn) et Ø(B + pK).

Il devient alors possible de déterminer en première approximation le taux

d'asymétri" poor Ie, désintégrations B*'o + rtn- K1'0 
"1 

34'0 -+ n*n-nt'o -

Afln de réduire les présentes incertitudes, il est alors nécessaire d'évaluer

xv



les facteurs de forme de transition entre les particules pseudo-scalaires et
vecteurs. Pour obtenir ces facteurs de forme, il est indispensable de calculer
les fonctions d'ondes qui sont impliquées dans ces transitions. On prendra en

compte les contraintes physiques qui distinguent les particules les unes des

autres, i.e., constante de désintégration, facteur de forme électromagnétique,
facteur de forme de transition et rayon moyen carré. A ceci s'ajoute la condi-
tion de normalisation qui intervient dans toute évaluation de fonction d'onde
représentant une particule décrite dans une approche de théorie des champs.
Dans notre cas, nous appliquerons un formalisme explicitement covariant et
dynamique du front de lumière pour notre analyse. Dans ce formalisme, le
vecteur d'état décrivant un système donné est défini sur un plan du front
de lumière suivant une orientation arbitraire. Il est alors décomposé en état
de Fock où chaque état est exprimé en terme d'amplitude de probabilité.
Les amplitudes "off-shell" sont explicitement dépendantes de I'orientation
du plan du front de lumière tandis que les amplitudes physiques doivent en
être indépandentes.

Ayant déterminé les facteurs de forme de transition entre les particules
B ,, n, K, p et a,, la dernière incertitude qui puisse être analysée est celle liée à
I'importance des intéractions dans les états finaux. Afin de calculer au mieux
les éléments de matrices hadroniques sans utiliser i'hypothèse de Bjorken,
nous utiliserons une approche dénommée QCD factorisation. Elle permet,
en tenant compte des échelles d'énergie mises en jeu dans les procéssus
de désintégration, de calculer la partie généralement non factorisable d'un
élément de matrice hadronique, et ainsi d'approximer les intéractions dans
les états finaux. Désormais, seule une incertitude subsiste: les éléments p et rl
de la matrice CKM. En comparant les résultats expérimentaux des rapports
de branchement et les résultats théoriques obtenus par cette étude, il est alors
envisageable à la fois, de vérifier Ia validité des facteurs de forme déterminés
par l'approche CLFD, puis d'extraire des prédictions sur le taux d'asymétrie
de la violation directede CP dans les désirrtéerations du méson B en trois
corps. Finalement, nous exploiterons ces résultats afin d'obtenir des limites
sur les éléments p et q de la matrice CabibbeKobayashiMaskawa.
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Chapter 1

Introduction

,, Ecrire est d,fficile, po,rce qu'on est touiours dépassé par son liure. "

Jean d'Orrnesson

A little bit of history...

Why did the matter in our Universe not completely annihilate with antimat-

ter immediately after its creation? The answer to this question has been

and remains the quest of many physicists, both experimentalists and theo-

reticians, in high energy physics since the mid 1950's. The answer lies some-

where within C P violation theory, since it enables us to distinguish in an

absolute way matter and anti-matter. For a long time, Charge conjugation

C, which transforms a particle into its anti-particle, and Parity P, which

reflects the space coordinate d into -d, were considered as exact discrete

symmetries in procerses such as those involving electromagnetic, strong and

weak interactions.
In May 1947 one of the first decays of a neutral particle (Ko + ,r+n-)

into two .h.rged ones vÍas observed. Almost ten years later (1956), Lee and

yang [1], moiivated by the secalled 0 -r puzzle, pointed out that parity

iorr.ii.n"" might be nát conserved. in weak interactions. Soon after (1957),

wu eú al l2l and Garwin et at l3l verified this theoretical analysis indepen-

dently unà Lrr"n found that boih parity and charge invariance are violated

in weak interactions. In 1964 Christenson, Cronin, Fitch and Turlay [4], dis-

covered for the first time C P violation in Ko meson decays, at Brookhaven

National Lab. It was found that two neutral strange mesons could mix by

.)



4 CHAPTER 1. INTRODUCTION

weak interaction through the decay,

I(o -+ (trn,rrr) -+ lio .

One way to represent this mixing is to consider two particles, called 111 and
I{2 and defined as a linear combination of Ko and .K0:

lK,) : l1{o) + lKo) (1.i)

lK"l: yo
) (r.2)

K, (K, -+ Ks with short lifetime rs:8.92 x 10-11 s) decays into two pions
and K2 (Kz -+ K¿ with long lifetima r¡ : 5.I7 x 10-8 s) decays into three
pions if one assumes CP conservation. What was observed in 1964 was the
interference between the particles K7 + TtTt and .Ifs ) r.'î. Even though the
branching ntio Ø(K¡ -+ nn) is very small, it was the proof that Ks and
K¿ should be rewritten as a linear combination of Kr and K2 as follows,

lKs) = l¡r,) + rlKr), (1.3)

ll{)=lKù+elKr), (1.4)

where the epsilon parameter, €, describes the strength of CP violation.
lrl - 2 x 10-3 and Arg(e) - nl4. We had to wait until 1973 to find the
theoretical explanation within the Standard Model by M. Kobayashi and T.
Maskawa [5] whereas there is still not definitive theoretical explanation be-
yond the Standard Model. In this work, our analysis will stay within the
Standard Model framework.

Plan
C P violation, as it has already been mentioned, is a very exciting field of
investigation in particle physics. For almost forty years, physicists have been
trying to understand this mechanism. As everyone can imagine, it is not easy
to draw an exact picture of C P violation. One way to extract reasonable
predictions, since theoretically speaking, one knows the mechanism within
the Standard Model, is to use a phenomenological approach which, of course,
carries many uncertainties and is very often model dependent.

The aims of this thesis are, first of all, to determine an order of magnitude
for the direct CP violation in decays such as B + po(r)Mt'o ¿ vtn-¡y¡t,o
(with M being a kaon or a pion). The p - ø mixing effects in these decays

1

\/2
1
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are also investigated in detail. The second aim is to decrease, within a rela-

tivistic and dynamic approach, the uncertainties included in the form factor

transitions and wave functions which are involved in our analysis. The third
aim is to apply a ne\¡/ kind of f.actorization of hadronic matrix elements, and

hence, to be abie to obtain better predictions for the branching ratios as

well as the cP violating asymmetry parameter,, dcp, in B decays. com-

parisons with experimental data (only for branching ratios) provided by the
-gRgRR, 

BELLE and CLEO collaborations give us an excellent opportunity

to finally constrain the cabibbo-Kobayashi-Maskawa (cKM) matrix element

parameters p and 4.
To study as far as theoretical tools allow us to go' we divide our work

into four parts as follows: the first part, so'called "Matter Antimatter", gives

the necessary and basic background in particle physics in order to under-

stand the concept of C P violation within the Standard Model. In particular,

we recall briefly in Chapter 2, the characteristics of the Standard Model:

Gauge theory, Quantum chromodynamics, Quantum Electrodynamics and

Electroweak interaction. It is known that, within the Standard Modei frame-

work, the CabibboKobayashi-Maskawa matrix is the main source of Charge

Parity violation. Thus, we introduce it in an extensive way since all of the

following work is based on it. Experimentaliy, it has been observed that c P

violation can arise in different ways. To clarify them and to introduce the one

which rrye are going to focus on, \¡r,re summarize the different observations of

CP violation in B meson decays. This first part is very well established and

therefore we refer the reader to the plentiful literature for more explanation

and detail.
The second part, socalled "Branching Ratio and Direct C P Asymme-

try in B Decays", mainly focuses on the analysis of direct CP violation'

We begin by explaining the formalism used in oul approach: the operator

prodrr.l expansion (OPE), Wilson coefficients and finally the effective Hamil-

toniun arelntroduced (Chapter 3). We then describe the calculation of the

hadronic matrix elements involved in the decay amplitude, by using the so-

called ,,Naive factorization" method. In Chaptet 4,, we discuss in detail p-u
mixing, its origin (Vector Meson Dominance model) and its inclusion in our

calculitions of the branching ratios and, C P violating asymmetry parameter

a6p. Ínchapter 5, we are then able to investigate the branching ratios such

""'øçn 
+ pr) anð, Ø(B -> pK).Atl the numerical and technical details are

described in this 
"hupì"r. 

we u,lso list the branching ratios fot Ø(B -+ pr.)

and. Ø(B + pK) measured by CLEO, BABAR and BELLE. Based on our

results ior the branching ratios and comparisons with the experimental data,

we determine in Chapter 6, direct CP violation for the same decays inciuding

p - (J) mixing effects.
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Our calculations contain several uncertainties. One of them is the form
factor involved in the factorization method. The third part of this thesis,
the so-called "Covariant Light Front Dynamics, Wave Functions and Form
Factors", aims to reduce this uncertainty. To increase the accuracy on these
transition form factors, we recalculate them in a relativistic and dynamical
approach. In Chapter 7, we introduce the main properties and definitions
of Covariant Light Front Dynamics (CLFD). In Chapter 8, we determine
the wave functions for the following mesons: we evaluate the pseudoscalar
particies n,KrB and D and the vector particles p and a. We emphasize
that this study takes into account some experimental data (decay constant,
charge radius...) in order to parametrize the wave functions. We use the wave
functions mentioned previously to compute the transition form factors such
as pseudoscalar pseudoscalar transition and pseudoscalar vector transition.
This last study is accomplished in Chapter 9.

In order to go further in our investigation, we replace the naive factor-
ization (used as a first approach) by a very recent (1999) and promising
theoretical framework. This last part, "QCD Factorization in B Decays",
presents the corrections included in our analysis through the "QCD factor-
ization" method. The main idea is to include all of the interactions at the
order o" between quarks and gluons arising in the final states following B
decays (in our case). In Chapter 10, we introduce in detail the method .p-
plied in our calculations. Expecting to have reduced as far as we can, all
the uncertainties involved in the analytical calculation of decay amplitudes,
we are able, in Chapter 11, to recalculate the branching ratios Ø(B + pr)
and Ø(B + pK). In a similar manner to Chapter 6, we are also able in
Chapter I2r lo determine more accurate asymmetries in B meson decays. In
this final chapter, we also propose some reasonable constraints regarding the
CabibboKobayashi-Maskawa matrix element parameters p and, r¡. To end
this work, we give some final remarks and draw some conclusions based on
¿L:- ^-^'l---:^ ---:¿L:- ¿L^ O¿^-l^-J ltif ^ J^lûIIls drll.¡,ry¡,I¡j wIL,ItlII üUc OL<!II(I¿It.t wIU(.ICI.



Chapter 2

CP violation) a brief overvlew

" Les petites choses ont leur importance; c'est toujours par elles qu'on se

perd,. "

Fi.odor Dostoieuski

In this chapter, we introduce the formalism and the concept of C P viola-

tion [6] within the framework of the Standard Model (SM). We set the scene

and describe all the "participants" which are necessary to understand a C P

violating asymmetry between matter and antimatter'

2.! The Standard Model

z.L.L Basic concePts

The Standard Model of elementary particle physics gives a complete descrip-

tion of the weak, electromagnetic and strong interactions. It is based on the

Glashow-salam-weinberg Model of the electroweak interaction plus Quan-

tum Chromodynamics. This model is derived from work undertaken in 60's

and is built on the principle of local gauge symmetry'

Gauge theorY

Within the Standard Model, the fundamental interactions are governed by

gauge theory [7]. The free QED or QCD-Lagrangian (for a Dirac particle)

ã".ái¡"a in túe framework of gauge theory is not invariant under the phase

changes calied local gauge transformations. Nevertheless,local gauge invari-

ance can be restoreã uy upptying the appropriate covariant derivativeDp

a

ù
I
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acting on the field (fermion field for example). Then, the Lagrangian be-

comes invariant under any local transformations of a symmetry group. If
the symmetry group elements commute, we have an Abelian gauge theory.
This is the case for Quantum Electrodynamics (QED) where {/(1) defines an
Abelian group. This is not the case for Quantum Chromodynamics (QCD)
where ^9tl(3)""r",,", the gauge group of strong interaction, is a non-Abelian
group. In the latter group, SU(3)"oro,,,, the eight generators correspond to
the gluons. The properties of asymptotic freedom and confinement are due
to the colour charge carried by the gluons and quarks, which leads to gluons
interacting with each other (self-interaction), as well as with quarks.

Quantum ChromoDynamics

QCD [7] is the quantum field theory of strong interaction between quarks
and gluons. Since the colour symmetry of the quark model is gauged, the
strong interaction is described by an SU(3) colour Yang-Mills theory with
each flavou¡ of quarks transforming according to the fundamental triplet
representation. By adding the renormalization requirement, the analytical
form of the full QCD-Lagrangian density has to be the following:

Lqcp:
1

- n{1-/,:i - a,/ri"+ gf"'"Ãur/r")(apL" - a'A"t" + gf"d"AotrA"")

1

- U{arl"')' 4"ôr(ðu6"' - gf"b' Ab')q"

+$ln,@p - isropr\ - *f ,þ , (2.r)
LJ

where the first line refers to the gauge part of the QCD-Lagrangian. Ãi,9
and f"b" are the gluon fields, gauge coupling and structure constants of

^9U(3).or""r, respectively. The gluon colour indices take the values, a,b,c
equal to 1, . . . ,8. The first term of the second line defines the gauge fixing,
where { could be 1 for Feynman and 't Hooft gauge. The second term of
the same line describes the Faddeev-Popov interaction, where 7 is the ghost
field. The following term is the fermion part with the free part given by
{tl4rp' - -)] tþ andthe quark gluon interaction written as $l1rgA",T"fú,
where ty' refers to the quark field and To to the generators of ,S[/(3)"oro"..

Quantum ElectroDynamics

QED [7] is the quantum field theory of electrons, positrons and photons. It
describes any electromagnetic interactions of these elementary particles. The
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fermion field t/ transforms under a local t/(1) transformation as:

,þ(*) + rþ'("): exp(-ie)(")) ,þ(*) . (2.2)

To restore the local U(1) gauge invariance of the free Lagrangian for a Dirac

particle, we introduce a vector frelð, A, (called gauge field) and we replace the

ordinary derivative 0rby a covariant derivativeDr. Hence, the full QED-
Lagrangian density constrained by the U(1) group of transformations reads

âst

1^1
Lqøo : -Ui1ar/., - 0,Ar)" - fr{ar/.')'

9

+rþ
ln",,ru, 

t ie*p) - *lr. (2.8)

The gauge part of the QED-Lagrangian is given by the first term which is

invariant under transformalion A', -> Ap+Ap). The second term is the gauge

fixing condition analogously to the QCD-Lagrangian, but here the photon

fieldls gauged. The last part contains the interaction term, -tþTre{Ptþ and

the free QED-Lagrangian, ?þi'yr(A' - rn)rþ.

2.L.2 The electroweak interaction

Within the Standard Model (SM), one defines three generations of quarks

and leptons [7, 8, 9]. The gauge symmetry which governs these particles is,

Gs¡,r:SU(3)"ØSU(2)L8U(l)v, (2'4)

where c, L a.¡d Y refer to colour, Ieft and hypercharge respectively. Since one

assumes that a scaiar field, /, defines a Vacuum Expectation Value like,

(d): 0

ul\/,
(2.5)

the gauge group G5¡y is spontaneously broken down to su(2)78 t/(l)v.
SU(á)L-ø tllf¡r can also be spontaneously broken to t/(1)B¡',r through the

Vacuum Expectation Value of a scalar doublet Higgs field:

(d):(i;) (26)

The particles are classifred as follows. The left-handed leptons are in su(2)L

doublets,

(:') 
"(";- 

), ( ";-), (2.7)
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and similarly for the quarks,

(2.8)

with the corresponding right-handed singlets. Note also that dt,s' and b' are

related to the mass eigenstates d, s and ó by a unitarity transformation. The
Standard Modet Lagrangian is written down as the most general renormaliz-
able Lagrangian which is consistent with the gauge symmetry. If we focus on

the electroweak interaction of quarks and leptons, the massive bosons, I'7+,
are the mediators describing the electroweak charged current interaction,

ftrttlr+'+ r;w-') , (2.s)

where, 92 is the SU(2)L coupling constant and the currentl "If, is given by,

4 :ÐGr')"-a + f(ort)v-e, (2.10)
ÍJ

with q and I denoting respectively quark and lepton. The notation I/ -
A refers to the 'yr(I - 7r) structure. We stress that the charged current
interactions involve only left-handed quarks and left-handed leptons. For
the neutral current interaction, the vectors are Zo and the photon A. The
corresponding Lagrangian term is,

#*tl,r'+ eü At" , (2.rr)

where the current { is defined as,

J"r:DÍ1rþl-"!,qtu)f . (2.12)
i

In Eq. (2.I2), / denotes the quark flavour and, c{r,"!a ur" written as,

"!, 
: r{ - 2Q ¡ sin2 oø, and c!¡ - T{ , (2.13)

where Q ¡ it the charge, O¡7 is the Weinberg angle and T{ is the third com-
ponent of the weak isospin. For the current J"r"*, one has,

Jf"^ =lQrftrf . (2.14)
Í

(;) 
"("),(',)"

tt; - (r[)ï
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Finally, the weak interaction is related to the Fermi constant, G¡, which
plays an important role in the Standard Model,

e2
(2.15)

ïM!,ysin2Ùry '
Gr g'?,

J2:W:
where M,ry is the boson I,7 mass.

2.2 The Cabibbo-Kobayashi-Maskawa matrix

2.2.L Sources of CP violation

There are three possibilities which may explain the source of C P violation

inside the Standard Model [10, 11, 12]. The first one comes from the strong

interaction. If we assume that the vacuum is given by a superposition of

degenerate vacua In) which creates non-trivial quantum fluctuations (instan-

tons), we can include in the Lagrangian the following term:

Le:o.ffir¡,"^* , (2.16)

where d is the QCD vacuum angle (in fact, the C P violating asymmetry

parameter), 9" the QCD gauge coupling and Gf, the QCD field strength

tensor. The term Le violates C P symmetry for a non-zero value of. ã :
g - arg(det Mr), where Md is the non-diagonal quark mass matrix expressed

in the electroweak basis. But, up to now, the so-called strong C P problern [13,

14] remains without any available explanation: based on the experimental
'rr.io", on the electric dipole moment of the neutron, 0 has to be less than

10-10 which implies a extremely fine value of the QCD vacuum angle 0. The

second possible source of C P violation is in the leptonic sector if neutrinos are

massive. In this case, the term related to the leptonic sector, in the effective

Lagrangian, can give, after symmetry breaking, a Majorana neutrino mass

matrix with three CP violating phases. The last way to get C P violation in

the quark sector, is the CKM matrix. This possibiiity is widely detailed in

the following.

2.2.2 The CKM matrix
Let us first focus on the Yukawa interaction term in the Lagrangian used in

the Standard Model. It reads as,

Lyuko-o: -YXQ"nÓda¡ -YïQtoÓ"n¡ I h'c' , (2'17)
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where 4J is the Yukawa matrix element, Qr are the left-handed quark SU(2)-
doublets and 26, dp are the right-handed SU(2)-singlets. C P asymmetry is

violated if and only if,

srn{det[YdYdt,Y"Y"tl)+0. (2.1s)

Now, if we replace ó bv @ + Ho)lJr, the Yukawa Lagrangian becomes

massive and gives,

Lyuko-o: -(M¿);¡dn¿daj - (M")¿¡ut¡up¡ j h.c. , (2.L9)

with M¡ : YrrlJt. In the mass basis) one can always find some unitarity
matrices V¡r, and V¡a which verify the condition,

v¡1M¡Vla: Mlo"n ,, (2.20)

where Mlo"n is diagonal and real. Then, the mass eigenstates are given by,

dz¿: (V¿¡,)¿¡dt¡ ,

dn¿: (V¿a)¿¡dn¡ ,

,..tL¿: (W¡,)¿¡d¡,¡ ,,

lt1i: (V¿p);¡d,p¡ .

Therefore, after electroweak symmetry breaking, the charged current inter-
action fo quarks is given by,

Lw= e -- ú"hur¿t*(V,nVlt)r¡dt¡WI 
* h.c. , (2.21)

where by definition, one puts,

Vcxt,r:Vr¡,VJt. Q.22)

This non-diagonal 3 x 3 matrix is so-called the CabibbeKobayashi-Maskawa
and represents the charged current couplings between quark transitions. It
describes the only source of flavour changing interaction in the quark sector.
The CKM matrix is dependent on nine parameters; three real angles and
6 phases. In order to get a unique matrix, some conventions are adopted:
the first is the arrangement of the quark masses from the heaviest to the
lightest. We can also iilustrate this by taking into account the hierarchy of
quark transition through the charged currents (see Fig. 2.1) [15].
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ud

13

(2.24)

c
-o(l)
- -o(lo')

- -o(to¿)
o(l03)

Q=-1l3 q=+2t3

Figure 2.1: Hierarchy of strength of transitions between quarks.

The connection between the electroweak eigenstates (d', s', b') and their

mass eigenstates (d,,s,b) is given bY,

V"¿ W'
V¿ V'
Va V,

(2.23)

b t

(í):(

Therefore, the CKM matrix takes the form,

V"¿

V¿
V¿

The second convention on the matrix, is to minimize the number of phases in

the matrix. When this is realized (in the case of three generations of quarks),

the CKM matrix contains only one single physical phase. It is called the

Kobayashi-Maskawa phase ô¡ç¡a and any C P violating physical observable

in flavour changing interactions has to be related to this phase. Inside the

Standard Mod,el, the phase 6xu is the oniy source of C P violation in the

quark sector.
There are two parametrizations of this matrix. One, called standard

parametrizationreads [16, 17],

VcxM :
stee -i6 x ¡rtCtZctg EtzCtS

-stzczs - c12323s1sei6** ctzczs - da2d'2ss1""n6\*

Stzszs - c12c2gs1gei6** -ctzszg - 312c2gs13ei6**

Vcx¡rt:

szgcrs

czsctz

(2.25)
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where cij: cosfl¡¡ and s¿¡: sinî¿¡. The three angles 0¿¡, are real mixing
parameters. The c¿¡ and s¿¡ are chosen positive and d¡¡a can vary in the
range 0 < 6xu ( zr since the measurements of C P violation in Ii decays

impose this. In this representation, there are four independent parameters

which are,

sn: lVu,l, sß: lWal, szz: lV"ul, and 67ç¡a . (2.26)

Another parametrization is widely used in phenomenological applications.
This is the Wolfenstein parametrization (Wolfenstein 1983) [16, 18, 19]. In
this approach, the four independent parameters are ), A, p and 4. Then, by
expanding each element of the matrix as a po\¡/er series of the parameter
) : sin 0":0.2209 (d" is the GeltMan Levy Cabibbo angle), one gets (O()n)
is neglected),

t"** =
L-|À' ) AÀ3(p-irt)
-À r-l^, A^2

A)3(1 -p-in) -A^2 1

(2.27)

where 4 plays the role of the CP violating phase. In this parametrization,
even though it is an approximation in À, the CKM matrix satisfies unitarity
exactly, which means,

ûå**.v"**: î :v"**.ùå** . (2.2s)

The relation between the two parametrizations described above is,

st2:),
s23 : AÀ' 

'
syss-i6xt't : AÀ3(p - irù .

Finally, one can also define a C P violating quantity independent of the
parametrization. This quantity is called Jarlskog parameter and represents
the unique condition for CP violation [10, 20];

3

gmlV¿¡V¡,¡VlV[¡]: lr, Ð e¿¡7nê¡tn . (2.29)
fllrn=l

CP symmetry is violated within the Standard ModeI if Jcp + 0. From
the CKM matrix derived in the Wolfenstein parametrization, one can also
obtain 6 normalization relations and 6 orthogonality relations because of the
unitarity of the matrix, for example:

V"¿Vå+V¿Vå*V¿VÅ:O. (2.30)
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By combining the Wolfenstein parametrization and the unitarity triangle, we

can represent the structure of the CKM matrix geometrically in the complex

plane (p.,n), as shown in Fig. 2.2. The relations betweeî (p,p) and (n'q)
are [21],

/ )2\ _ /- À'\u: (t -î)r, o: (t - i), (2.31)

The area of all triangles drawn from the orthogonality or normalisation

Im

A: (P,î)

+ l- p+iR

c: (o,o) B = (1,0) Re

Figure 2.2: The unitarity triangle (UT) of the CKM matrix in the complex

plane.

relations is the same and reads [16, 21],

2At - lJcpl , where Jcp : Àu A"t: 0(10-5 ) ' (2'32)

The accuracy between the (p,4) and (p,4) quantities is in the order of Stto'

The three angles a, B and.7 of the unitarity triangle 122,231in can be derived

as a function of the CKM matrix elements and one gets,

o:a*lwÀ, þ:-",tlm], arg^r:
V"¿V,"*a

(2.33)
V¿VÅ

which gives analytically the following relations,

sin(2o) :

sin(2B) -

2nø"+p2-p)
@'+p')(G-p')'+n,),

2n0 - Þ)

G-Ð'+n''

G

p
T

2ñõ
sin(27) :ffi.
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As regards the lengths CA and BA in the triangle ABC, one has also,

(2.34)

rF0

-t

-l

R, = c A =lml : (' - *llry'.ljl, R, : B A =lml : ilY*l

20

p

Figure 2.3: Confidence levels, plotted in the plane (p,n), and obtained from
a global fit taking into account many experimental data.

To comptrete this description, we end by giving the numerical values of the
CKM matrix [24]:

Vcx¡r :
0.974I to 0.9756

0.219 to 0.226
0.004 to 0.014

0.219 to 0.226

0.9732 to 0.9748

0.037 to 0.044

0.0025 to 0.0048

0.038 to 0.044
0.9990 to 0.9993

(2.35)

The experimental determination of the matrix elements Uqq, ãre mainly based

on B decays, K semi-leptonic decays, B decays, lifetimeof B meson, and from
unitarity conditions. In Fig 2.3, values of p and r¡ arc plotted according to
the latest experimental constraints [16].

sin 2P,¡¡

lv"#*l

WM
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2.3 C P violation in .El meson d.ecays

The theory of C P violation predicts Iarge C P violating effects in B meson

decays [10, 12, 27,25], where one can observe three features of C P violation.

First, we define the decay amplitude AB¡ and Ae¡ by,

Apf : uludlB) ,

ÃeÍ : ulídlB) ,

where 11¿ is the decay Hamiltonian. We also write down the decay amplitude

Ap¡ as,

Aøi:lArl¿å6'+;ø'*lArlei6"+;Ó", (2.36)

where each term is related to a particular Feynman diagram (or set of Feyn-

man diagrams). Two types of phases appear in As¡. The frrst phase, /¿,

(called weak phase) originates from the CKM matrix element through the

corr"sponding electroweak Lagrangian term. The second one, d¡, (called the

strong phase) does not violate CP symmetry and arises from the final state

interaction processes (absorptive parts in the amplitudes). Let us now de-

scribe briefly the difierent kinds of C P violation'

2.3.L C P violation in mixing

This requires that two neutral mass eigenstates cannot be chosen to be C P

eigenstates [12, 2L,25]. If, one defrnes the mixing matrix for the two meson

system as,

M:M+il , (2.37)

where M and f are complex 2 x 2 matrices, the asymmetry will be propor-

tional to,

acp: r_(#"), (2.38)

which means that a relative phase between Me aîd f12 is necessary.

2.g.2 c P violation in the interference of decays with
and without mixing induced

The featur e of C P violation is based on spontaneous oscillations of a particle

(see Fig. 2.4) into its antiparticle, which are due to the difference between

T7
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d

2Øte

b

w- w* Bo

a 5

b d

u,c,t Bo

d 6

Figure 2.4: Leading box diagrams for Bo Bo mixing.

mass eigenstates in the system of Bo , Bo ¡t2,2I,251. Then, it yields a mixing
(in some case) of two states which provides interfering amplitudes and may
produce CP violation.
By definition, the time dependent asymmetry is given by,

o,cp(t, Bo - Bo + F) : r(Bo(r) -+ r) - r(Bo(r) + F)
(2.3e)

r(Bo(¿) + F) + r(Bo(¿) + F) '

where l(.Bo(t) + F') is the decay rate of Bo(t) + F. After decomposition,
one gets,

ocp(t, Bo - Bo -+ F) :
ooåio(t,Bo - Bo -+ F LMt + t,Bo - Bo + ,F') sin(AMú)

cosh(Afú/2) - (t, Bo - + F)sinh(Arúl2)

B0

U,C,BO

.w*

(2.40)

where L,M : (0.523 t 0.029 + 0.031) ps-l for the B meson. The expressions
for ad"'þ"u, o\";o"n and ø$! are the following,

decouoiî,: i;Jål;,
nzszno 29mÇacp -:I;¡p,

'àF 1+lfl'
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The observable ( has the form:

t - --ió¡',ts-u
A(Bo -+ F)

(2.41)
A(Bo -+ F) '

where /¡a represents the weak mixing phase.

2.3.3 Direct CP violation in B decays

This requires that the two CP conjugate processes have different absolute

values for their amplitude [12, 13, 21,25]. This type of C P violation is called

Direct C P violation. Let us start from the usual definition of asymmetry,

o,cp(B -) F) : r(B -r F) - r(B + F)
r(B -+ r) + r(B -> F)',

(2.42)

which gives,

o"r(B-iF) : ' Q'43)

where A(B + F) is the amplitude for the considered decay. If one uses the

definition of the amplitude written in Eq. (2.36)' one gets,

o"r(B + F) : -2lAtl lA2l sin(/1 - ór)sin(ô1 - 62)
(2.44)

lArl + 2lAllA2l cos($1 - S2 ) cos(ó1 - 6z) + lAzl

Therefore, in order to obtain direct CP violation, the CP asymmetry param-

eter a6p needs a strong phase difference coming from the hadronic matrix

and a weak phase d,ifference coming from the CKM matrix'

2'
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Chapter 3

Effective Hamiltonian

" La seule écriture ualable, c'est celle que I'on inuente... C'est cela qui rend

les choses réelles. "

Ernest Herningway

In this chapter, we define the theoretical tools which will be used in order

to calculate, in first approximation, the asymmetries and branching ratios

in B meson decays 126, 271. We derive the basic formalism such as the

Operator Product Expansion, Wilson coefrcients, effective Hamiltonian and

naiue factorization.

3.1- Operator Product ExPansion

The operator Product Expansion (oPE) [28, 29, 30] is used to reproduce

the weak interaction of quarks. The decay amplitude, A(M -+ F), can be

written as,

A(M -) F) o Cn(p)(Flo;(ùlM) , (3'1)

where ¡^l refers to the energy scale and is equal to m6 in our case. In Eq' (3'1)'

c;(p) are the wilson coefficients (see section 3.2) and o;(p) the operators

given by the OPE, then, one sees that the OPE separates the calculation

ãr tn" amptitude, A(M + F), into two distinct physical regimes. one is

called harilor short-distance physics, representedby c¿(p,) and calculated by

a perturbative approach. The other is called soft or long-distance physics.

Túis part is describedby O¿(p), and is derived by using a non-pert'rbative

uppro."h such as aLlN expansion [31], QCD sum rules [32,33], hadronic

sum rules...

23
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The operators, O,,, (dependence on ¡-z is removed here for convenience) can

be understood as local operators which govern a given decay. They can be

written, in a generic form, as,

On: (4l,rqj)(qkl"2qt) , (3.2)

where f,,; denotes a combination of gamma matrices. They should respect
the Dirac structure, the colour structure and the type of quark relevant for the
decay being studied. We can define two kinds of topology which contribute:
there is the tree diagram of which the operators are Ot,, Oz 128,29,,30, 34], and
the penguin diagram expressed by the operators Os to O rc 128 , 29 , 30 , 34] . As
regards tree contributions (I,7+ exchange), the Feynman diagram is shown
Fig. 3.1.

Vq,u

w

9r

Figure 3.1: Tree diagram.

The current-current operators related to the tree diagram are the follow-
ing [28, 30],

Oi : e"'yr(I - ^fs)uBAB1'G - 1s)bo ,

Oi : qlp\ - %)ua1u(L - r)b ,

oft

Oí: Q"lr(L - 15)upEpt*(7 - ls)bo ,

Oi - QlrQ - 1s)u91u(l -'y')ó ,

depending on the channel b + u or ó + s, respectively. In the above
equations, a and B are the colour indices. The second type of contribution
is the penguin one. We can also define two sets of penguin contributions.

q4a

b
q3

q,

Vi"
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The first is called a QCD-penguin (one or two gluons are exchanged) and the

second is called an electroweak-penguin ('y and Zo exchange). The Feynman

diagram for the QCD-penguin is shown in Fig. 3.2 and the corresponding

operators are written as follows [28, 30]:

Os: q1t"(r -.ys)bDnl/ e -.,tr)q' ,

qt

o+ : Qo'tt Q - r)bBD,dBt'Q - r)qL,
qt

and for the (V - A)(V { A) transition currents, one has,

05 : q1r(I - r)bDq'.rr(t t -ys)q' 
,

q'

Oa: Q...tt"Q - x)bBE q"nr0 + x)ql. .

qt

Vq¡
U',

Figure 3.2: QCD-penguin diagram (left hand-side) and real penguin (right

hand-side)...

q.

9r

q,

w
q4

b

o

Finally, for the electroweak-penguin, there are two Feynman diagrams repre-

sented. in Fig. 3.3 (2,7 exchange from quark line) and Fig. 3.4 (2,1 exchange

from the l4rline). The structure of Oz to 016 is given by [28, 30],

o, :lrrtr(l - rr)b D"nn"r'(r + tòq' ,

9":|Q,rr(l - 'rr),nuDen'dfl'(L + 15)q:, ,

q'
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Vi',
Vqu

Zr"{

Figure 3.3: Electroweak-penguin diagram.

V/
q4

b

a
9r

q,

on -|lnr(t - "ru)ä 

\"',ø't'(L 
- r)q' ,

orc:|øa,{r - r)bu|"nr;r'(r - x)q!* ,

where en denotes the quark electric charge and q', the quarks (u,c,s,ú) which
may contribute in the penguin loop.

Vqu
Vi',

z,y

q4

9¡

q,

il+

b

w

Figure 3.4: Electroweak-penguin diagram (coupling between Z,'l and W)
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3.2 Wilson coefficients

As we already mentioned in the previous section (see Section 3.1), the C¿(pt)

are the Wilson coefficients [29]. They represent the physical contributions

from scales higher than ¡.r (the OPE describes physics for scales lower than

p), and since QCD has the property of asymptotic freedom, they can be cal-

culated in perturbation theory. The Wilson coeffi.cients include contributions

of all heavy particles, such as, the top quark, the W bosons, and the charged

Higgs. Usually, the scale p is chosen to be of the order of O(m6) for the B
d"""yr. Wilson coefficients are calculated to the next-toleading order (NLO)

since this is the first order where one can get some corrections O(o") from

the leading-log-order (LO). By definition, C(p.) (we remove for convenience

the index i) is given by [28, 29, 30],

C(p) : U(¡t, M',y)C(Mw) , (3.3)

where tl(p,Mw) 'describes tne QCD evolution and reads as,

u(t,Mw): l,* +4t#]'l' - #'], (84)

with ,I the matrix element including the leading order and the next-to-leading

order corrections. d is the anomalous dimension. The final expression for

C(p,) inthe NLO, with Uo(p , Mw) : (a"(Mw)/4"(p))d is,

c(tò :[t. # 4r'rr,tw*tlr.+(B - r)], (3 5)

where B is a constant term which depends on the factorization scheme. Since

the strong interaction is independent of quark fl.avour, the C (p,) are the same

for all B decays' At the scale ¿r : trtb: 5 Gev, C(¡r) take the following

values [35, 36, 37, 38] summarized in Table 3.1. To be consistent, the matrix

elemenis of the operators, O¿, should also be renormalized to the one-loop

order. This resuits in the efiective Wilson coefficients, Cj, which satisfy the

constraint,

Ç¿(m6)(O;1r"a)) :Cl(O¿)"", (3'6)

where (Oo)""" are the matrix elements at the tree level. These matrix ele-

ments wili be evaluated in the factorization approach. From Eq. (3.6), the
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where

+0.0r74
+0.0373

+0.0104

-0.0459

I
Cz
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C¿ lor ¡.t - 5

-0.3125
+1.1502

Cs

Ca

Cs

Ca

Cr -1.050 x 10-Þ

Ce +3.839 x 10-4
-0.0101

+1.959 x 10-3
Cs

Cn

Table 3.1: Wilson coefficients to the next-ieading order

relations between Cl and, C¿ are [35, 36, 37, 38],

and

r": ffc, (+ * G(m",t,,q\) ,

P" : #(rct -r", (i * G(m", t,,, q\)

G(*", tr,q') : n [' d,x x(r - rynú--"(]-- 
*)q'- 

-

Jo \ / p'

Herc q2 is the typical momentum transfer of the gluon or photon in the
penguin diagrams and G(m",, p, q2) has the following explicit expression [39],

C|: C, ,

CI: C" - P,13 ,

CI: C" - PrlS ,

Cl: C, * P. ',

CI: C"I P" ,

CL: C, ,

CL: Cn+ P" ,

CI: Cu+ P" ,

CL: C" ,

C'r.o: Crc ,

1+

1 1

L-44q'

(3.7)

ø" G:? #.(r.r#) t-+4n
q'

emG:-?(,.,#)Æ (3s)

Based on simple arguments at the quark level, the vaiue of q2 is chosen in
the range 0.3 < q'l*? < 0.5 [40,41]. From Eqs. (3.7,3.8) we can obtain
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rn : 0.3 : 0.5

3125 -0.3125

29

ICt +1.1w +rIffi

Table 3.2: Wilson coefficients for the current-current tree operators.

: 0.3 : 0.5

+2.433 x 10- t 1.543 x 1 i +2.120 x 10- *2.L74 x I 1,

C'4

C'5
-5.808 x 10-2 -4.628 x 10-3i

+1.733 x 10-2 + 1.543 x 10-3i

-6.668 x 10-2 -4.628 x 10-3i

-4.869 x 10-2 -r.552xr0-2i
+r.420 x 10-2 +5.174 x 10-3i

-5.729 x 10-2 - r.552 x l0-2i
c+
Ct8

c6

-1.435 x 10-n - 2.963 x 10-'i -8.340 x 10-b -9.938 x I0-5i
+3.839 x 10-a

-r.023 x 10-2 -2.963 x 10-si
+1.959 x 10-3

+3.839 x 10-a

-r.0r7 x 10-2 -9.938 x 10-5i
+1.959 x 10-3

Table 3.3: Wilson coefficients related to the electroweak and QCD-penguin
operators.

numerical values for C!. These values are listed in Tables 3.2 and 3.3, where

we have taken a,(mz) - 0.LI2, a"^(ma) : 71132.2, frù6 : 5 GeV, and

rrtrc: 1.35 GeV.

3.3 Effective l{amiltonian
In any phenomenological treatment of the weak decays of hadrons, the start-

ing pàint is the *"u,k effective Hamiltonian at low energy 128,29,30,34, 421.

ttls obtained by integrating out the heavy fields (i.e. the top quark, W and

Z bosons) from the Standard Model Lagrangian. It can be written as,

?{er r :9 f Vcx¡,,t1¡(p)O;(u), (3.9)
\/2 7

where Gr is the Fermi constant, Vcx¡,¡ is the CKM matrix element (see

Section i.z.z¡, C¿(p) are the Wilson coefficients (see Sectiol 3.2), o{p') are

the operators enteríng the Operator Product Expansions (see Section 3'1)

u,rrd ¡, ,"p.esents the rãnormalization scale. we emphasize that the amplitude

.o.."rporrding to the efiective Hamiltonian for a given decay is independent

of the scal. ¡r. Inthe present case, since we analyse B decays \nto ptr and into
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pK through p - r,; mixing, we take into account tree and penguin diagrams.

For the penguin diagrams, we include all operators Oa to Oro. Therefore, the
effective Hamiltonian used will be,

Gr
,/Z

v,uvio@ro\ + croÐ -VuVi\cooo * h.c., (3.10)
i=3

where e: d or s according to the ó + u or b -) s transitions. Finally, the
decay amplitude will be expressed as it follows,

?t:,3='

A(B-+ rr):#l

10

V"aVio c JPv loll B) + c,(PV loilB>

10

VuVîlcolrvlo,l?) * h.c., (3.11)
i=3

where (PVlO,lB) are the hadronic matrix elements. The notation PV means
Pseudoscalar Vector. They describe the transition between initial state and
final state for scales lower than p and includ€, up to now, the main uncer-
tainties in the calculation because of the non-perturbative approach.

3.4 Naive factorization

The computation of the hadronic matrix elements, (PVlOtlB), is not trivial
and requires some assumptions. The general method which has to be used is
called the "factorization" procedure 143,, 44,45]. This involves the approx-
imation of the matrix element as a product of a transition matrix eiement
between a B meson and one final state meson times a matrix element which
describes the creation of the second meson from the vacuum. This can be
formulated as,

\PV lo tl B) -(v lJ2'l}l (PlJulB)
or (PVlOilB) :(PlJ4¿10) (VlJalB) (3.12)

where the J¡.r are the transition currents. This approach is called naiue
factorization since it factorizes (PVIO¿IB) into a simple product of two quark
matrix elements, (see Fig. 3.5). Analytically, Fig. 3.5 can be written down
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âst
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(3.13)

A(B -+ PV) x VcxuC¿(p)(MrMrlO,lBl

l,r-". - 
c ¿ ( t ) ( M'l J,)o) ( M d ¿, I 

B )]

10t
i=l

o(

Lti, C,(p),.

= Iitj'Ci(p)* or

, (ol ' (ol

Figure 3.5: Naive factoÅzation, where M1 and M2 reptesent the final meson

states.

The justification has been given by Bjorken [46] and is the following: the

heavy quark decays are very energetic, so the quark-antiquark pair in a meson

in a final state moves very fast away from the localised weak interaction- The

hadronization of the quark-antiquark pair occurs far away from the remaining

quarks. Then, the meson can be factorized out and the interaction between

the quark pair in the meson and the remaining quark is very tiny.

Mo."orr"., by reordering the coiour indices (Fierz transformation) with

L f N"l f (w;t t is the effective number of colours), and also including the colour

octet contribution through the variable (¿ (since it is non-factorizable), the

result takes into account the colour-allowed and coiour-suppressed contri-

butions which can occur in the d.ecay at the tree level. .lú""/'f it defi.ned as

a parameter which, by assumption, includes all hadronization effects (they

cannot be factorized completely) and is written as,

11 : -*É;,with i=I,"',10, (3.14)
(wlrr),; 3 Þú
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where it is assumed that .lú""/"r ¡t the same for all operators O¿. Finall¡ and
this is the main uncertainty in the present approach, all of the Final State
Interactions (FSI) are not involved. Recall that this work is achieved by
applying a phenomenological treatment. In this approach, corrections asso-

ciated with the limit of validity of the factorization hypothesis are param-
eterized and may contribute to large uncertainties [a7]. However, it should
give a good estimate of the magnitude of the B decay amplitude in many
cases [48, a9]. We will see in the last part, how it will be possible to incor-
porate QCD corrections in order to include the FSI (at the first order in o")
into the factoúzation approach.
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,, S'i,l y auait une seule uérité, on ne pourcait pas faire cent toi'les sur le même

thèn¿e. "

Pablo Picasso

In this chapter, we describe the mechanism of p - ø mixing (coming

from the quark mass difference between the u and d quarks [50]) and its

implications for B decays (for asymmetries and branching ratios). We explain

the origin of the mixing, based on the Vector Meson Dominance model, and

how it has be"n determined (bV fitting the pion eiectromagnetic from factor

data).

4.! Vector Meson Dominance

The idea to incorporate the hadronic contribution of vector mesons in the

photon propagator (in other words, the photon propagator is mixed with an

intermediate state ¡propagator) was developed in the early 60's when nuclear

form factors lvere analysed by Nambu [51, 52, 53]. Later, in order to study

strong interaction corrections to photon mediated processes at low energy

(non-lerturbative QCD), the Vector Meson Dominance model [54] (vMD)

i., pioposed. It successfully describes the interactions between photons and

hadronic matter by assuming that all photon hadron couplings are governed

by vector -"ro.rr. without going into details, we just recall that vMD

1üff,fOf¡ is build on effective Lagrangian field theory, where the relevant

33
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terms are the following (for the process J I r+¡-, see Fig. 4.1) [55]

t: -+r*p" - eJrAp - gonnp,J, . (4.1)

(4.2)

The first term gives the coupling term (momentum dependent) between the
photon and the p meson at the 1 - p vertex and ensures that the photon
remains massless. The second term represents the direct photon hadronic
matter coupling (where "I, is the hadronic pion current), and the third term
shows the coupling between the p meson and the pion field. We also stress
that global gauge invariance is conserved in the Lagrangian used to develop
the VMD1 model [55, 56]. Hence, by applying this approach, it was possi-

e- IV

I

n*

7V

t

v

e+

T p

lc*e+

Figure 4.7: e+e- -+ r*n- described (upper diagram) in the s-channel. The
lower diagram represents the Vector Meson Dominance description for the
same process (similarly for e*e- -> lt+ p-).

ble to reproduce the process, e+e- + rtr-,, where the amplitude denoted,
Jvll+r+t-, includes the vector meson interaction (see Fig. 4.1):

1r4t->rrr- : -e(h - nz)rF*1qz¡ ,

where ptrpz are the pion momentum and,, Fn(q2), the pion electromagnetic
form factor taking into account all intermediate processes. Which can been
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defined by [55, 56],

35

F*(q') - 1- gr'r(q')

^ I i ,,'l
-g,'',(q') I-AexP'al , (4'3)rwl\a' 

Lq, - rn2, + irnrl.(rt- I J

where g- and gpr,, would be equal if we assumed universality (even though

expe.imentally this does not hold exactly). The third term of Eq. (a.3)

includes the ø contribution attenuated by a factor teal, A, and the Orsay

phase, / (both can be extracted from experiment). Other versions of the

VMD model (based on various Lagrangians) were established [55, 56]: mainly,

vMD2 and HLS (hidden local symmetry [57]). But all of them keep in mind

that the interaction between photon and hadronic matter is mediated by a

vector meson propagator taking the following form:

D - -9r' = .. =, . (4.4)ut'u - q2 _ mT t imyly(q2) ,

where rny aîd. fy are the meson mass and momentum dependent width'

4.2 p - (d, mlxrng

4.2.L p-u mixing formalism

It is by analysing data from the cross-section fot e*e- -+ t*t- (Fig. +.2) [58]

and .åfe.ences therein that p - u mixing parameters have been determined.

The interference resulting from the narrow resonant ø and the broad resonant

p produces a significative enhancement in the interaction around ,/i' x 780

MeV [58].
If we-refer to Fig. 4.1 (top diagram), the amplitude, M1+", which cor-

responds to the coupling of the photon to the pion pair is given by,

j7!1+rt -- u(k2)ie1þu(lc)i'D¡",(q)"F"(q")(kn - k")' , (4'5)

where k1 and Ie2 are the momenta of the electron and positron, and k3 and

ka a.je the momenta of the pions. F*(q') is the pion electromagnetic form

factor and. D,",(q) the photon propagator written as,

iD*.(q):-;þ,.*(€-ÐT), (4.6)
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Figure 4.2: Cross-section for e*e- -+ n*r- in the region where p - u mixing
effects are maximum i.e. where tß - *..

where ( defines the covariant gauge applied. Let us start by assuming that
the vector mesons couple to a conserved current, therefore its expression (for
one channel) is:

D
1

tu- e2_rn2_ner) -/pr l
(1 - r(q')) q,q,

(4.7)q2 rn2

where n@') is the one-particle irreducible self-energy. Now, by extending
the same formalism to two coupled channels, the full propagator involving
p - e mixing, can be expressed as [59],

n _L (t,gr,*a(p,u)qrq, tIo,(q2)To \ut, :; 
\ 

-"îr,,1q\¡'fr,' 
,onr, * a(u,iiorn,) , (4.8)

where we use the following definitions:

T,, : gp, - (qrqrf qt) ,

s, : Q2 - lIr.(qr) - m2_ : q2 - *r. + im.l.(q2) ,

sp : e2 - floo(q') - m'z, : q2 - *? + imol o(q2) ,

a(p,,) : hr(n?,k\ - lq' - noo(qr)lr,,) ,

o : n?r,(qr) - trt,, (4.9)

Il'o-(Q'), the momentum dependent mixing ampiitude which vanishes

-+ 0. We can now write down the amplitude, Mf+'o, vrhere we take
with,
as q2

I
I

I It f JlI
II lIiIr



4.2. p-uMIXING r),

into account the coupling between photon and vector mesons' ftp, ft,r, and

also the coupling gpøn between pr and the final pion pair (g.rnn similarly for

c,.,¡). Therefore, one gets,

Mj-nn : (Mu;,,+nn Mu;,r-+nn¡ or" (fr:::,) , (4.10)

where, p¡ and er are the pure isovector p and, isoscalar ø state. Dw is given

by,

D (Itv
llto IIo, f sos,

fIo,f sos, ll t, 9p, (4.11)

e-

e*

a

tt e-

lde+

a
a

1V

rf

a

a

I
(r)TYOt t

a
a

I

g IV

rt

a
a

a

T ro flp. P '.
a

e*

Figure 4.3: e+e- + n|¡r -: leading order diagrams (upper) and leading order

in isospin violation diagram (lower).

By expanding Eq. (4.10) one has,

Ml-nn - Mr,:-n^ !.¡4r'0, + M'I+*WM^:+PI

* Mo,r-nn[o.(.q') ¡4t+ur * Mi,-"" +JV1+u , (4.12)
'PSPS'-EU

where all the above terms are described in Fig. 4.3. However it is more

appropriate to analyse the p - u mixing in the physical basis rather than

tt å irårpio p,rr" buri, where the G parity can be violated either through the
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mixing pr-ur or the direct decay ø¡ into the pion pair. We recall that, in the
isospin basis, py and ar are exact eigenstates of isospin. MOW (Maltman,
O'Connell and Williams) [59, 60] defined a transformation, C, between the
physical basis and the isospin basis, which is the following,

c : (1 -er\
\ez i')' (4'13)

and one can therefore write the p and ¿¿ states explicitly as;

p:pr_eþr ¡

u:e2prlut, Ø.14)

where €1 and e2 ãte two mixing parameters. Since we require that the mixed
physical p - u propagator should not have poles, then e1 and e2 read as:

,r:W¡ €2:\*(9. (4.1b)
sr-sp sr-sp

It is assumed that, in the vector meson resonance region, the momentum
dependence of IIo,(q2) is negligible, which means thatIIr,(m2r) : IIo,,(m',) :
IIp- [61]. Then, II* will be treated as a constant and er : ê2: e will be
given by the expression,

lr,,
c- (4.16)

Sr-Sp

By inserting the transformation matrix,C, (with CC-r: /) in Eq. (a.10),
we can diagonalize the D* matrix propagator:

Jú7,-"" : (M';-"1t Jvlul+1t") CC-r

(n,1,!ì,',", "'îl::") cc-'1 (i,:::,¡ ' Ø,T)

which gives after computation, the amplitude, Mlt"" , expressed in the phys-
ical basis:

M1"-nn : (Mo,-*, Mi-^,) (t,;, ,/or.,) (fr::¡ , (4.1s)

where one can extract the corresponding amplitudes between both the isospin
and physical basis as follows:

Mrr'"" - Julr,:-"" ¡ eMf,r+"n ,

MTt"" - -rM',:tnn + M','n' ,

Mt-+p : Jt l't-+Pr * eM't+.r ,

Jylt+u : -eM1+Pr + Ml+uI (4.19)
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By expanding Eq. (4.18) one finally gets:

Jvl\"'nn : ML-*'!Mt+p + Mi'n* !rl-' . (4.20)* so * E.

We stress that M'I+" cannot be neglected since it provides one of the two

sources of G parity violation in the p - u mixing and has a strong influence

on fitting the pion electromagnetic form factor.

4.2.2 Electromagnetic pion form factor

20
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40

30

F rl'

700 800 900

center-of-mass energy squared

1000

Figure 4.4: Electromagnetic pion form factor data.

Starting from the definition of the pion electromagnetic form factor in-

cluding p - e mixing and the @t l zrn decay, one has,

F*(q')::U.,,, t*,) (n,,d::or, 
ol'kfl) (;:,:) , Ø'r)

where Dvv : DIyy (see Eq. (+.+)) since we are working to the first order

in isospin violation. In order to determine the value for flp,, we chose an

appropriate form factor:

¡,,,(") :4(") l'.#,(##)] Ø22)

where fr(r) is a function incorporating constraints on the form factor and

playing the same role as the term f o,'r9rrnnl"r.

Il
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By fitting the pion form factor data (see Fig. 4.4 162]), it is therefore
possibie to extract flr.,. Different fits [63, 64] have been realised and the
typical average p - u mixing magnitude is [65]:

no,@?,): -3500 + 3oo Mev2 - (4.23)

The average value also respects the experimental branching ratio for the
process u -+ 7TT [66, 67]. Finally, we emphasize that there is no possibility
to fix the value of p - ø mixing independent of experimental constraints.

4.3 p - c¿ mixing in .El decays

4.3.1 Inclusion of p - @ mixing in CP violation
Let A be the amplitude for the decay B + po(r)Mt -+ n*r- Mt (with
ML - {n,, K}), then one has,

!: (M¡r-r+lvrB) + (Mø-n+lnPlnl , Ø.24)

with fIr and HP being the Hamiltonians for the tree and penguin opera-
tors. We can define the ¡elative magnitude and phases between these two
contributions as follows,

1: (M1r-r+lïrlB) [1 + ,"nt 
"'óf ,

¡: (Mpr+n-lïrlB)11 + rei6e-ióf , Ø.25)

where ð and þ are strong and weak phases respectively. The phase / arises
from the appropriate combination of CKM matrix elements which it d -
argf(Vtv$)lV"rV;ry with q : {d,s} for B decays including either n or K.
As a result, sin/ is equal to sina (or sinT) with a (o. f) defined in the
standard way 124]. The parameter, r, is the absolute value of the ratio of
tree and penguin amplitudes:

(4.26)

In order to obtain a large signal for direct CP violation, \rye need some mech-
anism to make both sin á and r large. We stress that p - ø mixing has the
dual advantages that the strong phase difference is large (passing through 90o

at the a, resonance) and is well known [40, 4I,68, 69, 70,,7I]. Note as well
that working in the naive factorization approach, the only source of strong
phase is provided by p - ø mixing. With this mechanism, to first order in

r
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Mr Í'

B

(r)

Figure 4.5: B decays without (upper) and with (lower) p - a mixing.

isospin violation, we have the following results when the invariant mass of

rlr- is near the c.., resonance masst

(Myr-r+lT'l7) - -9'- ¡¡0,t,*?t, ,sps, sp

B

p0

IIpr

Mr

1Í-

r(

p0

1Í-

(M¡r-r+lH'lB) : ftfr,.n, + 9p

sp
Pp- (4.27)

Here úy (V : p or u) is the tree amplitude and pv the p^enguin amplitude

for producing a vector meson, Y, gp is the coupling for po + r+r-,IIr,, is

the effective p - ø mixing amplitude, and sy is from the inverse propagator

of the vector meson V,

sv:s-m2y*imvlv, Ø.28)

with f being the invariant mass of the n'+zr- pair. We stress that the

direct'coupling w -+ n*r- is efiectively absorbed into ir, ¡59, 60, 61,63,

66], leading tã the explicit s dependence of flr,. Making the expansion

II*(r) : frr,(*',) + (t - *'-)fI'0,@?,), the p - ø mixing parameters \¡/ere

determined in the fit of Gardner and O'Connell 165): Øeflr,(*',): -3500*
300Mev2, 9m fr'0,(m2) : -300 t 300Mev2 and r'r,(*",): 0'03 +.0'94'

In practiáe, the efiáct of itr" de¡ivative term is negligible. From Eqs. (4.25,

4.27) one has,

,e¿6eió -\p'P' 
* s'Po . Ø.2g)

TIp,'t. i s.tp
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e; 
= ,r 

"å(6ø*ó) 
,

tt 
-. o",t.

tp
Pp 

- 
p.i6p

)

P,
(4.30)

(4.31)

where 6..,6p and 6q are strong phases (absorptive part) at short distance.

one can rewrite Eq. @.29) and one finds the following expression,

,"i6 -- ,r"i6t
fr.r, + Bei6øs,

s.+fIpro¿eiîo

Letting,

d"i60 : r + gi, B¿t6o -b¡ci, rr"i6o - d+ ei, (4.32)

and using Eq. (a.31), we obtain the following result when 1/E - m;

reà6: - ut!-o'r- - =tc - ç - *z,a fØ"í;ggmfro)z +(f gmfro,+ gØefr.,,m.|.)t'
(4.33)

where C and D are defined as:

c : (r - m2, + føe fr,, - sem-,,r 
{r l* 

n,,r b(s - *?,) - "*.r,f
I - :- ll

- "l,r* iro, + bm,l, * c(s - *')) I
+ (f 9m fr.,* + ffi,r, + sØ 

- 
,,) 

{ "@O** b(s - *',) - "n .r.f

+d 9m frr, * bm,l. * c(s - *?,) (4.34)

and,

^D - (r - m2,+ føefrr, - ggmrto,) fr',+d(t-*?,)-cm,l,

+d
l-ø* 

n* * bm,t,r c(s - -3r] )

- (f -ø* iro, + ffi,r, + sØ 
- ,,r{ol* n,,* b(s - *',) - "*.r.f

-e 9m frp., I bm.l, * c(s - *',) (4.35)
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The quantities aei6",, þ"utu and. r'ei6n will be calculated later. In order to
get the cP violating asymmetry,a"r, sin/ and cosçl are needed, where / is

determined by the CKM matrix elements. In the Wolfenstein parametriza-

tion [18, 19], one has for the decay B + po(w)n,

sin/ -

cos/-
p(r-p -rf (4.36)
L-p lt+n'

43

(4.37)

and for the decay B + po(u)K one has,

sin ó : -rl
Y@ ¡'z'

cos/ - -p
* rt'

The values used for p and r7 wilt be given in the following chapter.

4.3.2 Inclusion of p - Q mixing in branching ratios

In the Quark Model, the diagram (Fig 4.5 top) describing the B -+ po Mt
decay (with M1 - {",K}) is the main contribution. In our case' to be

consistent, we should also take into account the p-ø mixing contribution (see

Fig 4.5 bottom) when we calculate the branching ratio, since we are working

to the first order of isospin violation. The application is straightforward and

we obtain the b¡anching ratio for B + po M¡

Ø(B + po M,) : ffillr;,or(at, az) - vl,,tl,(a3¡ - .' o,o)]

2

+ vf,,".A.[çar,or) - v[,"1f,ça",' '' , øro) (4.38)

where the ¡momentum takes the following form:

lf,l: mp * **r) B ffip - ffiM,
(4.3e)

2mp

In Eq. (4.38) G¡ is the Fermi constant, f¡, the total width B àecay,, @6, â,r

integàr'related to the given decay B -+ po M1(with M¡ - {",, K}) ayd V[,",

V[,"-ure the CKM matrix elements involved in the tree and penguin diagram

,eipecti,oety. Finally, ATr@u) and, Alr(a¿) are the tree and penguin amplitudes

which respect quark interactions in the B decay'

rnB_
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Chapter 5

Branching ratios for B decays
into p1r or pI{

,, Il y a en chacun de nous des calculs que nous nornrnons espérance. "

Platon

This chapter is devoted to the application of all the theoretical toois

described in the three previous chapters. We start by investigating branching

ratios in B decays including in the final state either a T or K particle. We

shall calculate branching ratios for the processes Bt,o + p+,o7r+'o and B+'0 -l
p*,oK*'o,, and shall compare with the experimental results.

5.1- Formalism

With the factorized decay amplitudes' rffe can compute the decay rates by

using the following expression [72],

lp'olt

@
t

f(B-+vP): (5.1)

where pl is the c.m. momentum of the decay particles (already defined, see

Chapter 4), mv is the mass of the vector V particle, ey is the polarization

vector with the condition ev'Pv : 0 and A(B -+ V P) is the decay amplitude

given by,

A(B + vP) : #ävÏ,;Pa;(v 
Ploll) ' (5'2)

45
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In Eq. (5.2), all variables have been introduced in a previous chapter (see

Chapter 3). The term denoted V[,¿P t"pr.sents the CKM matrix elements

involved in the tree and penguin diagrams, for the ó into z and b into s

transitions, respectively:

vl : lwili¿l V: : lVoufal
for and for i : 3,10

v{ : lwavi) V"' : lVuVi,l

The effective parameters, ø¿, which appear in the decay amplitude (see

Eq. (5.2)) are the following combinations of effective Wilson coefi.cients, Cl,

.1^,^t1/1t
o,zj: cL¡+ fucLt-r, azj-t:cl¡-r+ ¡,ycLi, fot j - 1,"' ,5 '

(5.3)

As we have already mentioned in Chapter 4, we take into account the p - u
mixing contribution when we calculate the branching ratio, since we are

working to the first order of isospin violation. Therefore, for recall, the
general expression for the branching ratio is given by:

ø(B*'o -+ p+'o Mfo) : ffi"r,llrt,olr't,az) - v[,"A!(as,' ' ' , o,o)]

21?,

2

+ v[,"][(ar, or) - v[*.1f,(a",. . -, ¿ro) (5.4)

where G¡ is the Fermi constant, l3+,0 is the total width B decay, and o¡ is
an integer related to the given decay. AÇ ald^Af, are the tree and penguin

amplitudes with I/ being either p or e. Mf'" is {K,n}. Finally, the term
involving fI' generates the p - u mixing.

5.2 Calculational details

5.2.L Factorization

with the Hamiltonian given in Eq. (3.10) (see chapter 3), we.are ready to
evaluate the matrix elements for BÈ'o -+ po(a)Mf'o where Mf'o is tt*'o ,ot
K+'o. In the factoúzation approximation 143,44,-451, either po(r) or Mf'o
is generated by one current which has the appropriate quantum numbers in
the Hamiltonian. For these decay processes, two kinds of matrix element

products are involved after f.actorization; schematically (i.e. omitting Dirac
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matrices and colour labels) (po(r)l(zu)lO)(øt+'ol(qtó)lB*'o) with q1 - {r, "},
and (M,+'0lþtqn)|O)(po(r)l(za)la+o) with q¿ : {z,s}. We will calculate

them in several phenomenological quark models.

The matrix elements for B + X and B + X* (where X and X* denote

pseudoscaiar and vector mesons, respectively) can be decomposed as follows

for the pseudoscalar pseudoscalar transition 173,,741,

(xlr,lB) : (0" * r. -'t#n) ,r,g,'¡.ú#kt"Fo(k\ ,

\ N_ ./ ¡t 
(b.5)

and for the vector transition,

(X-|Jp|B):#e,,poe*,P!Bpjç*V(k2)+t{,iø"+nxx-)A|(k2)

- ##Qe -r Psç*),A2(k'¡ - ffzrnx*' k,Ar(k')\

e* .k
k,+i 2my* .kpAo(k\, (5.6)

where ,I, is the weak current defined as Jr: 4l'(I - X)b with q :lt)d)s
and k : pB - pxlx*¡. e, is the polarization vector of X*. Fo, Ft are the form

factors related to the transition 0- -+ 0- and Ao, Ar, Az, As,V the form

factors which describe the transition 0- + 1-. Finally, in order to cancei

the poles a,t lc2 :0 the form factors respect the conditions:

r'(o) : Fo(o), A.(o) - Ao(o) , (5'7)

and they aiso satisfy the following relation:

Ar(k"):wAr(kr) Ar(k"). (5.8)

6.2.2 Form factors

The form factors Fu(k') and A¡(lc2) depend on the inner structure of the

hadrons. We will adopt here three different theoretical approaches. The flrst

was proposed by Bauer, stech, and wirbell73,74l (Bsw model), who used

the overlap integrals of wave functions in order to evaluate the meson-meson

matrix elements of the corresponding current. The momentum dependence

of the form factors is based on a single-pole ansatz. The second one was



48 CHAPTER 5. BRANCHING RATIOS .. .

developed by Guo and Huang (GH model) [75]. They modified the BSW

model by using some wave functions described in the light-cone framework.

The Bsw (GH) models will be labelled models 1(2) and models 3(4) accord-

ing to the form factors, Ft(k') and' As(k2), given in Eq. (5.9) where n = |
uið,2, respectively. The last model was given by Ball 176,771. In this case,

the form factors are calculated from QCD sum rules on the light-cone and

leading twist contributions, radiative corrections, and Stl(3)-breaking effects

are included. This model will be labelled model (5). Nevertheless, all these

modeis use phenomenological form factors which are parametrized by making

the nearest pole dominance assumption. The explicit k2 dependence of the

form factor is as 172., 73, 74, 75,76,771:

F{tc2): hr Ao(k\: hh

('- &)" 
''tL )tk2L - --'-t

rni

or

t - ao# *u" (fr)
h

Ao(lc2):

(5.e)

where n : l12, tuAo. Note also that rT4 ã,ta the pole masses associated with
the transition current, å1 and h¡u are the values of form factors at I* :0,
and d¿ and ô¿ (i :0,1) are parameters in the model of Ball.

5.3 Numerical inputs and experimental re-
sults

5.3.1 CKM values

In our numerical calculations we have several parameters: q2, N;f Í , and

the CKM matrix elements in the Wolfenstein parametrization. As men-

tioned in Chapter 2, the value of q2 is conventionaliy chosen to be in the

range 0.3 < q2lmf < 0.5. The CKM matrix, which should be determined

from experimental data, is expressed in terms of the Wolfenstein parameters,

A, À, p, and r? [18, 19]. Here, we shall use the latest values [78] which were

extracted from charmless semileptonic B decays, (lWbD, charm semileptonic

B decays, (lvo\, s and d mass oscillations, arn", Lm¿, and c P violation in
the kaon system (rx), (p,ry). Hence, one has,

À-0.2237, A:0.8113, 0.190 <p<0.268, 0-284<q< 0.366.
(5.10)
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a P"y
L04"47 19"32 2I
93',13 24'37 62'56
rl2'74 2I'20 46'66
99',66 2656 53',78

Table 5.1: Values of the CKM unitarity triangle for limiting values of the

CKM matrix elements.

These values respect the unitarity triangle as well (see Table 5.1)

6.3.2 Quark masses

The running quark masses are used in order to calculate the matrix elements

of penguin operators. The quark mass is taken at the scale ¡.r - m6 in B
decays. Therefore one has [79],

mu(þ - mo) :2.3 MeV , *o(p - *o) : 4'6 MeV ,

m"(þ - mu): 90 MeV ) rnuQt: mu) :4'9 GeV , (5'11)

which corresponds to m"(p': 1 GeV) : 140 MeV' For meson masses, we

shall use the following values [24]:

rnB+ : 5.279 GeV , rrt po : 5.279 GeV ,

rnKL :0.493 GeV , nt,Ko :0.497 GeV ,

îrlr+ :0.139 GeV , rrt,no :0.135 GeV ,

rnpo :0.769 GeV , ffi,:0.782 GeV ' (5'12)

5.3.3 Form factors and decay constants

In Tables 5.2 and 5.3 we list the relevant form factor values at zero momentum

transfer 173,,74,75,76,77, 80] for the B + K, B - p, and B -) zr transitions.

The different models are defined as follows: models (1) and (3) are the BSW

model where the q2 dependence of the form factors is described by a single

(n - 1) and a double-pole (n - 2) ansatz, respectively. Models (2) and (a)

are the GH model with the same momentum dependence as models (1) and

(3). We define the decay constants for pseudoscalar (/p) and vector (/y)
mesons as usual by,

(P(q)lqrtrtsqzlo) : -ilpQp ',

'Æ(v(q)lqflrqrlo) - fvmvrv, (5.13)

PrnintQmao

Prnøa¡\min

P^oo¡Tmoo
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fTtAo fft1 bs bL

model 1 0.280 0.290 5.2 5.32

model 2 0.340 0.625 5.27 5.32

model 3 0.280 0.290 5.27 5.32

model 4 0.340 0.625 5.27 5.32

5 0.372 0.305 1.400

Table 5.2: Form factor values for B -+ plt at lc2 :0

ht rn TrLl do d.t

model 1 0.280 0 5.4t
model 2 0.340 0.762 5.27 5.4I
model 3 0.280 0.360 5.27 5.41

model 4 0.340 0.762 5.27 5.4I
model 5 0.372 0.341 1

Table 5.3: Form factor values lor B + pK at le2 :0

with q, being the momentumof the pseudoscalar meson, rnv aîd ev being the
mass and polarization vector of the vector meson, respectively. Numerically,
in our calculations, we take [24],

f* :L32MeV, lx :160 MeV, fo = f, :227MeV. (5.14)

The p and ø decay constants are very close and for simplification (without
any consequences for results) we choose fp: Ír.

The numerical values for the CKM matrix elements Vl,;', the Wilson

coefficients , C¿, the p - u mixing amplitude frr,,, th. particle masses, rrtrv,pt

which appear in Eq. (5.4), have been all reported on Chapters 2, 3, 4 and 5,

respectively. The Fermi constant is taken equal to be Gp : 1.166391 x
10-5GeV-t [24] and for the total B ðecay width, fs(: Ilra), we use the
world average B life-time values (combined results from ALEPH, CDF, DEL-
PHI, L3, OPAL and SLD) [78, 81, 82]:

h

r3o :1.546 + 0.021 Ps ,

rsl = L.647 + 0.021 ps . (5.15)

-0.7520.266 0.437

bo(bt

0.410) 0.437(-0.361
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6.3.4 Experimental results

To compare the theoretical results with experimentai data, as well as to

determine the constraints on the effective number of colour, N;t t , the form

factors, and the CKM matrix parameters, vve shali apply the experimental

branching ratios coliected at CLEO [83,84,85,86,87], BELLE [88' 89,90,
gr, 92, g3,, 94,95, 96] and BABAR1 [98, 99, 100, 101, 102, 103, 104, 105]

factories. All the experimental values are summaÅzed in Table 5.4 (fot pr)
and Table 5.5 (for pK).

B BELLE

7t 10. +.2.r 24 +8 +.3* -2.O-O.7
<39 tI < 28.8 f

<10 <5
2.65 + 1.9 r.20 +.0.79 2.60 + 1.31

11 + 1.4 6. +0 + 0.5

Table 5.4: The measured branching ratios by cLEo, BABAR and BELLE

factories lor B decays into pr (10-1. Exp. data*, fit' and upper limitÍ.

CLEO BABAR BELLE

8.46
-3.4

+ 1.8 10+6+2* < 13.5

<L7 f <29 f
< 23.6

K+1 7.6 +2.8: (< 32 15. 4.6
.l +t.z*

1.89 + 1.41

3 + < 7.9 1.3 + 0.3 9.2+2.6 + 1.0

Table 5.5: The measured branching ratios by CLEO, BABAR and BELLE

factories for B ¿""uv, into pK (to--t¡. Exp. áata", fit' and upper limitf.

lWe note that BABAR [97] reported preliminary branching ratios for the channels

B(Bo + p+r+) (22.6+.7.8+

r.4!.

T+ 28.9 + 5.4+.4.3*27 +
< 5.5t 0.81.6

after this thesis was prepared
2.2) x 10-6 and B(Bo -> p+ x+¡ 1z.a11B+1.3) xlo-6
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5.4 Branching ratios for B!'o I pl'onrt'o

5.4.L Formulae

We begin by analysing processes such as Bt'0 ¿ på'on*,o and also B+ ->
,n'+. i*o investigateã 

"ur", 
include p - Q mixing: B- + pon--and B0 ->

pono.Three other decays (without mixing) arc B- -) p-¡ro,, Bo -+ p-T+
and. B- + eT-. In this section, we give the explicit tree and penguin

amplitudes2 for all these charmless B decays. Therefore, after factorization
one gets the following amplitudes3:
for the decay B- + pon- (ar:32 in Eq. (5.a))'

{zA[("t,or): ayf ofl1(m2o)+azf"Ao(*'*) , (5.16)

,,fzA!(o",... ,øro) : foFl(m2o){-". +}øaon) 1
* ,oto)

+ f"Ao(mT) aa - 2(ø6 -. or)
rn

(*,+m¿)(ma+rn,)

for the decay B- -> ur- (a¡ = 32 in Eq. (5.a))'

{Z'+[("t,or) = a1f ,F1(m])tazl*Ao(*,?) ,

* aro

* a¿* arc

(5.17)

(5.18)

(5.1e)

{zl!,ç"",. . ., øro) - f ,F1(m2o) 2(oz + au) (o, +ag) * (on -å",rr)
1+,

+ f"Ao(*?) -2(ou a or) (*,+m¿)(*t*m,)

for the decay Bo + pono (on:64 in Eq. (5.4)),

ZA[(auor) : a1f oF1(m2r) + arf*Ao(*'") ,

2A! (a",' ",a¡¡) : ¡rF1(m|) (3o, + 3øe a ø1s) +
1

-a4+,
m2"

(5.20)

f"Ao(*7) -ae*(2a6-as)
I

+ (-3or.* 3øe * øro)
22m¿(m6 * ma)

(5.21)

2Read F (*"0) as FrB'n(m2p) and Ao(*?) as,l!'c1m2,¡.
3Note that the integer o¡ includes the coefficient writter near to the tree or penguin

amplitudes on the Lh.s. of Eqs. (5.16)-(5.27).
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for the decay Bo + uno (a¡ - 64 in Eq. (5.a))'

ZA!(at, az) : - a1f ofi(m') + or¡* Ao(*7),

zAf,(a3,... ,¿ro) : fo1l(m]r{-tr""1ou) - on-f,çort as-r'.)}

53

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)

+ f"Ao(*?) -a¿* (2a6 - as)

for the decay Bo + p-r+ (oo = 16 in Eq. (5.4))'

Af(avor) -- a2frF1(m2) ,

A! (as,''', ¿ro) = (on* ørc)lo4t(m2r) ;

for the decay B- + p-ro (an = 32 in Eq. (5.a)),

tfzlf, ("t,, or) : a2 f o fi(mf,) + ai* Ao(*'"),

l#ñl *|r-t'z,.3as*""))

,fzt!ç"",.

f"Ao(*?)

. ,øro) : frFl(m2o)(on+øro) *

{-r, -'rlr", - 
Jas- oro) -t (2a6- or) l#ñl )

(5 27)

We can also calculate the ratio between two branching ratios: Ø(Bo ->
p+n+) and. Ø(B+ + pon+), in which the uncertainty caused by many sys-

tematic errors is removed. We define the ratio, Rn, as:

Rn: ø(Bo + p+ n+) (5.28)
Ø(n+ -+ pon+)

and, without taking into account the penguin contribution, one has,

r"Ao(*?)
) ('.

p0)IIRn:r#l(;_
¡rF1(m2r) Go-*7)lim,l. )t

_t

(5.2e)
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Figure 5.1: Branching ratio for B+ + por* for models I(2), q2lm3 : 0.9

G'l*? is used to calculate the Wilson coefficients) and limiting values of the
CKM matrix elements. Solid line (dotted line) for model (1) and max (min)
CKM matrix elements. Dot-dashed line (dot-dot-dashed line) for model (2)

and max (min) CKM matrix elements. Notation: horizontal dotted lines:

CLEO data; dashed lines: BABAR data; dot-dashed lines: BELLE data.

5.4.2 Results and discussions

In order to determine the range of N!Í Í , which is allowed by experimental
data, we have calculated the branching ratios for B+ -+ pont, B+ + plno,
Bo -+ p*nF, Bo + p0zr0, and B* + u¡rt. All the results are shown in
Figs. 5.1, 5.2.,5.3,5.4, and 5.5 for the corresponding branching ratios listed
above. Results are plotted for models (1) and (2), since each of them in-
cludes different form factor values, and hence this shows their dependence on
form factors. As experimental data, we shall use three sets of data from the
CLEO, BABAR and BELLE Collaborations, respectively. Since experimen-
tal branching ratios from CLEO are the most accurate, we shall use them to
extract the range of. N"ÍÍ. The other two, the BABAR and BELLE data,
will give us an idea of the magnitude of the experimental uncertainties. It is
clear that numerical results are very sensitive to uncertainties coming from
the experimental data. Thus, the determination of the allowed range of N"¡ ¡

will be done by using all the branching ratio results.

Let us start with the decay processes B- + por- and B- + p-ro. In
both cases, we have a large range for N"J Í and the CKM matrix elements
over which the theoretical results are consistent with experimental data from

-1

-]lç

\
\

ì\
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0.5

N:o

Figure 5.2: Branching ratio for B+ + p*ro for models I(2), q2lm3 :0'g
utrã [-iting values of the CKM matrix elements. Solid line (dotted line)

for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-

dot-dashed line) for model (2) and max (min) CKM matrix elements. Same

notation as in Fig. 5.1 for the horizontal line.

ÇLEO, BABAR and BELLE. For B- -+ p- ro, the lack of data does not allow

us to determine the range. However, experiment and theory are consistent

in both cases. For B- ) pon-, the models show considerable variation even

though they are ail consistent with the experimental data. Numerical results

for models (1,3) and (tr) are close, as are those for models (2) and (4).y"
emphasise tilat ihe efie"i of p -ø mixìng on the branching ratio B+ + pon+

".r, 
b" as large as 30%. As regards Bo + p-T+ and B0 ) pono, the results

and conclusions are different from those for B+ -+ por*. If we look at the

branching ratio for Bo + ptnF,, only models (2) and (a) are consistent with

the experìmental data over a large range of. NiJJ, whereas models (1,3) and

(5) are not. The strong sensitivity to the results in that case comes from

ihe fact that the decay branching ratios for B0 à p+n+ depend on form

factors more sensitively, because in this case only one form factor, F1(k2), is

involved. In ali the other cases, the amplitudes depend on Fr(k2) and Ao(k').

Therefore these branching ratios are less sensitive to the magnitude of the

form factors. Finally, for the branching ralio Ø(Bt + utr*), plotted in

Fig. b.5, all models give theoretical results in consistency with experimental

daIa. Once again, thl difference observed between models (1) and (2) mainly

comes from the form factot Fr(k2) (i.e. from the pion wave function used).

Our complete analysis of branching ratios shows that models (1,3) and (5)
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Figure 5.3: Branching ratio for B0 ) p+r+ for models I(2), q2lm3 : 0.9

and limiting values of the CKM matrix elements. Solid line (dotted line)

for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-

dot-dashed line) for model (2) and max (min) CKM matrix elements. Same

notation as in Fig. 5.1 for the horizontal lines.
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Figure 5.4: Branching ratio for Bo -+ poto fot models L(2), q2lm3 : 0'g

uttã ü-iting values of the CKM matrix elements. Solid line (dotted line)

for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-

dot-dashed line) for model (2) and max (min) CKM matrix elements. Same

notation as in Fig. 5.1 for the horizontal lines.
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l6

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4

N"tr

Figure 5.5: Branching ratio for B+ -+ wrt for models I(2), q2lml : 0.9

and limiting values of the CKM matrix elements. Soiid line (dotted iine)

for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-

dot-dashed line) for model (2) and max (min) CKM matrix elements. Same

notation as in Fig. 5.1 for the horizontal lines.

cannot give results consistent with all experiments and have to be excluded.

To remove systematic uncertainties coming from experimental results,

one can calculate the ratio between two branching ratios for B decays'

In the present case (with the data available), the ratio, 8,,, is between

Ø(B* -+ pon+) and Ø(Bo + p+r+). Results are shown in Fig. 5.6. We

observe that the ratios difier markedly between models (1,3,5) and models

(2,4). since models (1,3) and (5) have already been excluded, we will use

models (2) and (a) for the determination of the range for N"Ji. If we just

model 2 1.09;1. L.I2;l
model 4 1.10;1.68 1.11 1.80

maxrmum range 1.09;1.68 1.11;1.80

mrnlmum 1.1 1.63 r.L2;L.77

Table 5.6: Best range of N""// determined' fot q2f m3 : 0'3(0'5) and for

B -+ pn decays.

include tree contributions in the decay amplitudes, .R' becomes independent
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Figure 5.6: The ratio of two pr branching ratios versus N;tt ¡ot models 1(2)

urrà fo. limiting values of the CKM matrix elements: solid line (dotted line)

for model (1) with max (min) CKM matrix elements. Dot-dashed line (dot-

dot-dashed line) for model (2) with max (min) CKM matrix elements. Same

notation as in Fig. 5.1 for the horizontal lines.

of the CKM matrix elements. Penguin contributions lead to a relatively weak

dependence of. Rn on the CKM matrix elements. By comparing numerical

results and experimental data, we are now able to extract a range for N"f Í
which is consistent with both approaches (experimental and theoretical). To

determine the best range of N"tÍ, we select the values of N"ÍÍ which are

allowed by all constraints for each model. Finally, after excluding models

(1,3) and (5) for the obvious reasons mentioned before, 'we can now fix the

ippár urrd ih" lower limit of the range of N"ÍÍ (Table 5.6). We find that NjlJ
shãuld be in the range 1.09(1.1i) < N"ti < 1.68(1.80) for q'l*3 - 0.3(0.5).

5.5 Branching ratios for Bl'o + pt'o I{*'o

5.5.1 Formulae

After the analysis of branching ratios related to B + pr ' we now consider

the case B -+ pK. In this section, we start by enumerating the theoretical

decay amplitudes. We shall analyse five ó into s transitions. Two of them

involve p - a mixing. These are B- + po K- and B0 -+ po Ro. Two other

decays arc Bo + p-ft+ and B- + p-ko and the last one is B- à uK-'

a

---- .r

I

,l
I

¡l
lt

¿.
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We list in the following, the tree and penguin amplitudes which appear in
the given transitionsa.
For the decay B- + po I{- (oo :32 in Eq. (5.4))'

Jllf,lot,or) : a1f oF1(m2o) + azlxAo(*'x), (5.30)

'[zA! (o",.' ., øro) : f oF1(m]l{}ø,*',) }

* lx Ao(mfr{"^* ¿ro - 2(o"1 or) lffi)\,
for the decay B- -+ aK- (a¡:32 in Eq. (5.a))'

tfZ'1,[ç"t,or) : a1f ,F1(m2r) + azfxAo(*k) ,

,[ze!,çor,. .. , ¿ro) : f pFr(*Ð{r@r1 ou) +Lrt".,* rr)}

(5.31)

+ fxAo(*tx) -2(o" 1ou)
ffi'K

(*,+m")(ma+rn")

for the decay Bo + poko (oo:32 in Eq. (5.4))'

t[2,1f,ç"t,or): a1f o4r(m2) ,

for the decay Bo + uRo (a¡:32 in Eq. (5.a)),

tfz.l[ç"t, or) : aj o fi(mf,),,

(5.32)

* a+t arc (5.33)

(5.34)

(5.35)

(5.36)

tfzl!.ç"",..- ,¿ro) - foFl(mf,) 2(o" + ou) * 1

2
(o, + on)

2 1

toto
(5.37)

n'¿K
+ fxAo(*?x) aa-(2a6-or) (-"+m¿)(ma**o)

aRead F1(*2) as F.B-K (m|) and As(m2*) as ,ql*o(*'*).See footnote 3 as well
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for the decay B- + p-Ro (or:16 in Eq. (5.4)),

A[(at,az) : a2f oflt(m2r) ,

CHAPTER 5. BRANCHING RA?IOS .. .

(5.38)

Alþt,... ,an):

fxho(*k) 
{r. 

- 
t 

oro - (zou - ")l

a+ * dn - 2(ou -.r. or)

n'l

m,*m¿)(mu*ma)

2

(5.3e)

for the decay Bo + p+ K- (ou : 16 in Eq. (5.4))'

Af,(at,o") : a2f¡¡As(m?<) ,

A!(a2," ' , øro)

f *Ao(*'x)

(5.40)

(5.41)

Moreover, as \rye did fo¡ B + pî ) we can calculate the ratio between two

branching ratios, in which the uncertainty caused by systematic errors is
removed. We define the ratio ftr as:

Ro :4\-_',t o*^{=7! . þ.42)rott - Ø(n+ -+ poy+¡ t

and, without taking into account the penguin contribution, one has,

Rx:Hl (.m) ('.ffi) I 
'(543)

Finally, we define the ratio ,R, between the two ratios "8,, and ,Rr defined in
Eqs. (5.23) and (5.42), respectively, as,

o- Rnn: 
ù 

. (5.44)

Numerically, by using the experimental data from pn and pK, one gets a

ratio equal to R: 1.40 +.2.04. By simplification, 1rye can also just include
the tree contribution and one obtains therefore:

lo FrBt"(m2r) a,f ,FrB-R(m2o) + azÍ*Al*o(m2x)

7,f oFr."-"(*?) + a,¡*A!*e(m7¡

Further, since ø2 K øt, a rough estimation of -R can be read as,

R_ (5.45)
f rc Al'o(*"")

f o Fl-K(m2o)
R_

f x ,ql'o(*?)
N3 (5.46)
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6.6.2 Results and discussions

In order to determine the range of. N"f Í available for calculating the CP
violating parameter , ecp¡ in B+'0 -+ po Kt'o, we have calculated the branch-

ing ratios for B+ + pol{+, B+ -+ p+Ko, Bo -+ p+K+, Bo -+ poKo, and
B+ + uI{+. We show all the results in Figs.5.7,5.8,5.9,5.10, and 5.11,

where branching ratios are plotted as a function of N./l for models (1) and (2)

(different form factors a e used in models (1) and (Z)). BV taking (just as for
pzr) experimental data from the CLEO, BABAR and BELLE Collaborations,
listed in Table 5.5, and comparing theoretical predictions with experimental
results, we expect to extract the allowed range of N'f Í in B + p.K and to

make the dependence on the form factors explicit between the two classes

of models: models (1,3) and (5), and models (2) and (a). 'We shall mainly
use the cLEo data, since the BABAR and BELLE data are (as yet) less

numerous and accurate. An exception will be made for the branching ratio
B+ -> uKL, where we shall take the BELLE data for our analysis since they

are the most accurate and most recent measurements in that case. Neverthe-

less, we shall also apply all of them to check the agreement between all the

branching ratio data. The CLEO, BABAR and BELLE Collaborations give

almost the same experimental branching ratios for all the investigated decays

except for the decay B- -+ uK-. In the latter case, rffe observe a strong

disagreement between all of them since they provide experimental data in a

range from 0.1 x 10-6 to 12.8 x 10-6. Finally, it is evident that numerical

results are very sensitive to uncertainties coming from the experimental data

and from the factorization approach applied to calculate hadronic matrix
elements in the B + K transition. Moreover, for B ) pK, the data are

less numerous than for B -) Pr, so we cannot expect to get a very accurate

range of. N"Í Í .

For the branching ratio B+ -+ poK+ (Fig. 5.7) we found a large range of

values of N"Í f and CKM matrix elements over which the theoretical results

are consistent with experimental data from CLEO, BABAR and BELLE'

Each of the models (1,2,3,4) and (5), gives an allowed range o1 N'Íf . Even

though strong differences appear between the two classes of models, because

of the different form factors used, we are not able to draw strong conclusions

about the dependence on the form factors. For the branching ratio B+ ->
p+Ko, (Fig. 5.S), BELLE gives only an upper limit for the branching ratio

whereas BABAR and CLEO do not. Our predictions are still consistent with

the experimental data for all models, for a large range oL N'Jf ' In this case,

the numerical results for models (1) and (2) are very ciose to each other and,

we need new data to constrain our calculations'

If we consider our results for the branching ratio B0 -+ p+ K+ (plotted in
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Figure 5.7: Branching ratio for B* -) poK+, for models l(2), q2lml:0.9
and limiting values of the CKM matrix elements. Solid line (dotted line) for
model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-dot-
dashed line) for model (2) and max (min) CKM matrix elements. Notation:
horizontal dotted line: CLEO data; dashed line: BABAR data; dot-dashed
line: BELLE data.
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Figure 5.8: Branching ratio for B+ ) p+Ko, for models I(2), q2lm2u:0.9
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same

notation as in Fig. 5.7 for the horizontal line.
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Figure 5.9: Branching ratio for B0 + p+K+, for models I(2), q2lm|:0.¡
and limiting values of the CKM matrix elements. Solid line (dotted line)

for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-

dot-dashed line) for model (2) and max (min) CKM matrix elements' Same

notation as in Fig. 5.7 for the horizontal lines.

Fig. 5.9), there is agreement between the experimental results from CLEO

and BELLE (no data from BABAR) and our theoretical predictions at very

low values of N"ÍÍ. AII the models (L,2,3,,4) and (5), give branching values

within the range of branching ratio measurements if N""/'f ¡. less than 0.07'

The tiny difierence observed between models (1) and (2) comes from the

form factor A6(k2) (where Ao(k') refers to the B to p transition taken at

Ic2 : rnfu) since in that case, the amplitude computed involves oniy the

form factãr As(k2). For the branching ratio B0 + poKo shown in Fig. 5.10,

neither CLEO, BABAR nor BELLE give experimental results. Nevertheless,

from modets (1) and (2),ft appears that this branching ratio is very sensitive

to the magnitude of the form factot F1(k2) (in our case, F1(k2) is uncertain

because år : 0.360 or 0.762 in models (1) and (2), respectively) since the tree

contribution is only proportional to Fr. Moreover, from the range of allowed

values o1. NfÍÍ, ü¡e can estimate the upper limit of this branching ratio to be

of the order 4 x 10-6. Finally, we focus on the branching ratio B+ + uK+
which is plotted in Fig. 5.11 for models (1) and (2). We find that both the

"xperimental 
and theoretical results are in agreement for a large range of

,ru,lrr"s of N'if . But, mod.els (1) and (2) do not give similarresults because

the form factors F1, applied in these models, are very different' Moreover, the

dependence of the branching ratio on the cKM parameters p and 4 indicates
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and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
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Figure 5.12: The ratio of two pK branching ratios versus N;tt to, models

1(2) and for limiting values of the CKM matrix elements. Solid line (dotted

Iine) for model (1) with max (min) CKM matrix elements. Dot-dashed line

(dot-dot-dashed line) for model (2) with max (min) CKM matrix elements.

Same notation as in Fig. 5.7 for the horizontal lines.

that it would be possible to strongly constrain p and 17 with a very accurate

experimental measurement for the decay B- + uK- -

To remove systematic errors in branching ratios given by the B factories,

we look at the ratio, -R¡ç, between the two branching ratios ø(Bo -+ p+ K+¡
anð, Ø(B+ -+ poK+). The ratio is plotted in Fig.5.12 as a function of

N:rr, for models (l) and (2) and for limiting values of the CKM matrix
elèments. These results indicate that the ratio is very sensitive to both Àr""//

and to the magnitude of the form factors. The sensitivity increases with

the value of N"i¡ and gives a large difference between models (1,3) and (5)

and mod,elr (2) and (+). We found that for a definite range of lújJl, all

models investigated give a ratio consistent with the experimental data from

CLEO. It should be noted that ^Rr is not very sensitive to the cKM matrix

elements. Indeed, if we only take into account the tree contributions, 'R¡1 is

independent of the cKM parameters p and 4. The difference which appears

"o-ã. 
from the penguin contribution and has to be taken into account in

any approach since they are not negligible. To extract a common behaviour

for both B + ptr and B + pK decays, we calculate the ratio, -R, between

R,, and ,R¡¡, defined in Eqs. (5.28) and (5.42), respectively. In Fig 5.13'

the ratio is given as a function of Iü""/.r tor models (1) and (2). The r_esults

show that model (1) is agreement with the experimental data (CLEO) for
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B+pK {Lr;rr1
model (1) 0.66;2.68(0.61;2.68)

model (2) t.l7;2.8a!.09;2'82)

maximum range 0.66;2.S4(0 .6I;2.82)

minimum range 1.17;2.63(1.09;2.68)

Table 5.7: Best range of N"iÍ determinedlor q2fm? : 0.3(0.5) and for

B -+ pK decays.

a range of. N"Íl varying between 2.5 to 4.2, whereas it agrees from 2.8 and

3.45 for model (2). In addition to the CKM matrix elements and form factor

efiects (already discussed in detail previously), both models (1) and (2) have

a critical point (minimum value of the ratio .R) near N""// : Ät : 3.
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Figure 5.13: Ratio, .R, between.R, and R¡ç lor models I(2), q2lm2a:0-g
and limiting values of the CKM matrix elements. Solid line (dotted line)
for model (1) and max (min) CKM matrix elements. Dot-dashed line (dot-
dot-dashed line) for model (2) and max (min) CKM matrix elements. Same

notation as in Fig. 5.7 for the horizontal lines.

We have summarized for each model, each branching ratio and each set

of limiting values of CKM matrix elements, the allowed range of N"i Í within
which the experimental data and numerical results are consistent. To de-

termine the best range of N[f I ,, we have to find some intersection of values
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of N'Íf for each model and each set of CKM matrix elements, for which

the theoretical and experimental results are consistent. Since the experi-
mental results are not numerous and not as accurate as one would like, it
is more reasonable to fix the upper and lower limits of. N"lf which allow us

the maximum of agreement between the theoretical and experimental ap-

proaches. By using the limiting values of the CKM matrix elements we show

in Table 5.7, the range of allowed values of. N"ÍÍ with p - ø mixing. Even

though in the previous study for B à pn, we have restricted ourselves to
models (2) and (4) rather than models (1,3) and (5), here, we cannot ex-

clude one of the models (1,2,3,4) and (5) because of the lack of accurate

experimental data. We find that ¡t/""/J should be in the following range:

0.66(0.61) < Nuf ! < 2.54(2.82), where the values outside and inside brackets

correspond to the choice q'l*3: 0.3(0.5).

5.6 Summary

\)Ve have calculated the branching ratios B+ + pon*, B+ + ptno, Bo -+
p*¡rÍ, Bo + p0n0 and B+ -+ ¿,"¡zr1 and compared the results with ex-

perimental data coming from the CLEO, BABAR and BELLE Coliabora-

lioo.. We have shown that for models (2) and (4) there is a range lor NiÍÍ,
1.09(1.11) 1 N"Íf < 1.63(1.80), in which theoretical resuits are consistent

with experimental data. Models (1,3) and (5) are excluded since the form

factor Fr(k ) in these models cannot produce results consistent with ex-

periment. For a deeper investigation into this probiem, some resonant and

non-resonant contributions [106, 107, 108, 109, 110, 111] which may carry

bigger effects than expected in the calculation of branching ratios in pr rnay

have to be considered seriouslY'

As regards theoretical results for the branching ratios B+ + Po Kt , B+ -+
ptIio, Bo - piK+, Bo + poKo and B+ -+ uK+, we made comparison by

using experimental data from the same factories as for ptr. \Me found that it is
porribl" to have agreement between the theoretical resuits and experimental

tranching ratio dáta for B+ -) poKt, B+ -+ ptKo, B+ -+ @Kt, Bo +
p+ K+ , u"¿ R. For B0 + po Ko, the lack of results does not allow us to

draw conclusions. Only an estimate for the upper limit (4 x 10-6) has been

determined.
In comparison with the situation for B + ptr, it is not possible in the

case of B + pK, to exclude one of the models because of the lack of exper-

imental data. Nevertheless, Irye have determined a range of value of N'f J 
,

0.66(0.61) < N"ÍÍ < 2.84(2.82), inside of which the experimental data and

theoretical calculations are consistent for all the models' We have to keep in
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mind that, because of the difficulty in dealing with non-factorizable efiects

associated with final state interactions (FSI), which are more complex for
decays involving an s quark, we have weakly constrained the range of value

of N"ÍÍ.

giobal maximum range

global minimum range

0.66;2.84(0 .61.2.82)

1.17;1.63(1.12;I.77)

Table 5.8: Global range of N"e/J from both B decays.

Finally, if we take into account the allowed range of ¡\Icel'f determined from
decays such as B + pn and B + pK we find a maximum global allowed
range of Nce/J which should be in the range 0.66(0.61) 1 N"ÍÍ <2.84(2.82)
(see Table 5.8). This gives us a mean average value for IüJJ around 1.75.



Chapter 6

Direct CP violationvia p u)
oamrxrng

" Auec I'auion, nous anons appris la ligne droite. "

Antoine de Saint-Erupéry

After the computation of branching ratios in B + pM1, where M1 is
either K or r,, and the comparison with experimental data from three main

factories (BABAR, BELLE, and CLEO), we are now able to constrain the

investigation of C P violating asymmetry through the effective number of
colours, N:rr. This chapter first starts by analysing the CP violating asym-

metry, asprinthe process B*'0 + nir-nt'o. Then, we also shall study the

process B*,o + ¡r*n- I{*,o in a similar way in order to give some predictions

concerning direct CP violation in B decays.

6.1 Calculational details

The calculation of the C P violating asymmetry, including p - ø mixing,

has already been discussed in detail in Chapter 4. We just remind that the

asymmetr¡, acp, can be written as,

Al' - lÃ1"acp j -2r sin 6sin /:-- 1+2rcosócos/*12'
(6.1)

lAl2 + lAl2

where all quantities are explained in Chapter 4. As we see in Eq. (6'1), the

asymmetry, acp,t can be expressed in terms of r (the ratio between the tree

.rrd p"rrgoin amplitudes), and the strong and weak phases, ó and /, respec-

tiveiy. Therefore, to determine these quantities, we shall use (see Chapter 4

69
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for more details) the following expression which involves the p - ar mixing
amplitude,Ilo,:

,"i6 eió :
IIprp. * srpp

IIp-t. * s,tp
(6.2)

As regards the calculational details, we apply the factorization approxima-
tion to evaluate the matrix elements which arise in the penguin and tree
amplitudes. For the form factors F1(k2) an'ð, As(k2), we adopt, the same

models as 'vr¡e did for the calculation of branching ratios. More details can be
found in Chapter 5. Finally, all the numerical inputs (CKM values, quark
masses and decay constants) are also listed in Chapter 5.

6.2 Bl,o -> z-in-îçL,o

6.2.L Formulae

In this section, we apply the formalism derived in Chapter 4 and write down
all the analytical expressions necessary to calculate lhe C P violating asym-
metry parameter ¡ dcp. We first focus on the case where Mr - {"-}.

J-uase oI -E + 7t | 7f 1Í

Using the decomposition given in Eqs. (5.5, 5.6), one has for the tree operator
contribution,

tp: rnBtø,tlfcl * itnr,F,(*?) + Qi * it'rr^A"(*?)]. (6.3)

where p-, is the three momentum of the p. In the same way, we find t. : tp,
so that gives us,

e."i6o -t,ftp-L. (6.4)

After calculating the p and ø penguin operator contributions, one has first,

B¿i6o - Pe

P,

*eliÀ
P, { 

r"l * irru r,F,(*7) + r^Ao(*?)l

+|uc+* #"¿, + (c[* #"l,ll ÍoF,(*',)

-Kc;*it¡+(cá *i^tlffil
+ (c1o* Lut¿lÈroFr(*?) + ¡-tr(*?)l\ (6.5)
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The expression for the matrix element of the ø penguin operator is,

and the ratio between the a.r penguin and p tree (from which we can extract
the weak CKM matrix phase d) it,

r,eà60=-,.., = , , ,,P,, =rlffil. (6.6)' w 
Qi + fçcÐf ,r'(m2) t (CL + #Cl)f"Ao(*Ð lv"uviol 

' \"'-

7l

(6.7)

(6.8)

p, -- rnBtø,t{zfrø * ht, + (c'"* fi";l] r,F,(*?)

1-r-'^t c',) + (c'n + #";l] ¡ol1(m2o)

-rlrtl* #"tr, + (c'u* rcå)] 
I

m2*

*llr'+
*?f"Ao(

(*,+*¿)(ma*m")

:('- +)-' l#l ,

)

where the angles 7 and B arc defined in the unitarity triangle (see Chapt er 2).

To simplify the formulas rvl¡e used N" for /ú""/'r in Eqs. (5-3)-(5.11))

* (c'n * ir¿, ll-,+o(*'-) * f ,Ft@7)l

+ (c'ro* L*rrrlr.o"r*Ð -t f ,r,{*;,] } 
,

while the ratio of CKM matrix elements ratio is:

(r-p)'+rt'
(t-^rlz)\ffi

Case of .Bo -> zr*:r.-no

In a similar way, we write down the expressionsl necessary to calculate the

asymmetry when Mr - {to}. The p tree operator contribution for this given

decay is,

tp: møtiprfrcl + irtr](r,r,r*Ð + r-h@?)) , (6.e)

where all the variables are as previously defined. We find in this case that
t. # to, and we have:

o¿ei6o --!,:'.(*:?)+ !"a"(*:i.). (6.10)uç -joFr(*r)+f"Ao(mï)
lRead F1(rn2r) as F{*" (m?) ."¿ As(mz") as Ar'' @?)



72 CHAPTER 6. DIRECT C P VrcLATION .. .

After calculating the penguin operator contributions, one gets,

B¿¿sø_ry{_o,

-|trt+* å"¿l - ç¿* å"l.ll r*Ao(*?)

*|xt+ * itt, + (c'"* #"l,ll ¡,F,(*'o)

+tQL* it¡ -f,ttt* fr"+rl I

C's)lf ,F1(m'o¡ + f"Ao(m?))

2*?1" Ao@?)
(*o+m¿)(mø**o)

1
_!-
' ¡ú.

Once again the ratio of CKM matrix elements is given in Eq. (6.8) and the
ø penguin operator has the following expression,

pu : T,BtF,l{ - rltt"* itl¡ + Q;* ä"¿l] ¡,F,(m1)
t

(c+ c'") + (c[ +*""1.1] f,F,(*})

,'eà6n : -
P,

(ci + ilcn f oflr(*?) + f"Ao(*'"))

1
_J--' ¡tr"

liot*i',,-(cä-;ør] |
2m2,f"As(m2*

(*o+*¿)(*a**o)

(c'ro+ irrU,rr(*'o) + ¡-¡"(*?))\

- (cL* 
itl,lr-Ao(m'z.) 

¡ ¡or,(*',))

1
_J--'^t

1+,

*f,rc;,

(6.11)

(6.12)

1

2

c') lf"Ao(*'") + ¡rrr@?)) . (6.13)

6.2.2 Results and discussions

In our analysis, we are going to show the dependence on the CKM matrix
elements and form factors of the direct C P violating asymmetry in B decays.

We aim to include the latest values of the Wolfenstein CKM parameters, p
and 4. In the following numerical calculations, we tpply all the formalism
detailed previously and we investigate more precisely two channels of B de-

cay asymmetries. These are B0 -+ n*r-ro and B- -> ¡rtr-r-. We find
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Figure 6.I: CP violating asymmetrY¡c,cp, for B0 + r*r-¡r0, for q'l*?:
0.3, ¡ü;/J : 1.09(1.68) and limiting values of the CKM matrix elements for

model (1): solid line (dotted line) f.or N"JÍ : 1.09 and max(min) cKM ma-

trix elements. Dashed line (dot-dashed line) for lf""/'f - 1.68 and max(min)
CKM matrix elements.

that for a fixed N:f Í , there is a maximum value, a¡na¡¡ for the CP violating
parameter ¡ dCp,t when the invariant mass of the r*n- is in the vicinity of the

Ø resonance. In Figs. 6.1 and 6.2, we show the C P violating asymmetries for
Bo + r*r-ro,q'l*?:0.3 with 

^L// - 
1.09(1.68), and q'l*3 - 0.5 with

N:ÍÍ :1.11(i.80), and for limiting values of CKM matrix elements, respec-

tively. These results are shown for model (1), as an example. In Figs. 6.3

and 6.4, CP violating asymmetries are also given in the case B- + t*¡r-r-.
Both studies are done with the same approach. We investigate five models,

with five different form factors in order to show the model dependence of

acP.
As regards the maximum CP violating asymmetry for Bo + Tttr-To,,

dmøst varies from -51%(-3s%) to -84%(-69%) in the allowed range of p,rl

for q2lm!, - 0.3(0.5). From the numerical results listed in Table 6.1, for

N:#¿"- 1.09(1.11) and N:|J",:1.68(1.80), we can see that thefive models

t"tti"to two classes: models (1,3) and (5) and models (2) and (4). For models

(1,3) and (5), and for Nflj¿,:1.09(1.11), the maximumasymmetrY,,Q,no,,

is around -54%(-40%) for the set (p^o',îl*o") and around -69%(- 53.6To)

for the set (p^;n,\-;r,), leading to the ratio between them around 1.2s(1.34).

In each of these models and for N:#,": 1'68(1'80)' the maximum value of

the asymmetÍy, e,^o,, reaches -62-6%(-a8.6To) for the set (p^o,,rl*o,) t'o
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Figure 6.2: CP violating asymmetry¡ecp¡ for B0 + ¡rtr-no, for q'l*?:
0.5, lúl/ - 1.11(1.80) and limiting values of the CKM matrix elements for
model (1): solid line (dotted line) for N"Íi : 1.11 and max(min) CKM ma-
trix elements. Dashed line (dot-dashed line) for N""/'f : 1.80 and max(min)
CKM matrix elements.

around -77.3T0(-64.6%) for the set (p^;n,\^¿n). In that case, the ratio is
equal to 1.23(1.32). If we consider models (2) and (4), the maximum asym-
metry, atnøx¡ where N:#¿": 1.09(1.11), is around -63.5%(-a8To) for the set

(p*o,,\,no,) and around -78.5T0(-62%) for the set (p*;n,rl*i,-). This yields
a ratio of order L.24(L.29). When N:#",: 1.68(1.80), one has a maximum
of asymmetry around -71%(-56.5T0) for the set (p*o,,rl^o") and around

-8aTo(69%) for the set (p^;n,T^¿n),leading to a ratio around I.I8(L.22).
Now let us consider B- -+ rtr-n-. All the numerical values can be

found in Table 6.2. Once again, the models fall into two classes as in
Bo -+ n|¡r-¡ro. For models (1,3) and (5), and for N:#0" - 1.09(1.11),
one finds the maximum value of the C P violating asymmetry, o,,no,, around

-32.3%(-25.3%) for the set (p^o",T^o,) and around -43.6T0(-34.3%) for
the set (p^n,,q^;n). For Nffi,: 1.68(1.80), we find that the value of a^o,
is around -29.6%(-20.3To) and -40.3%(-27.6%) for the given maximum
and minimum sets of (p,7). The corresponding ratios between asymmetries
are around 1.34(1.35) and 1.36(1.36). For the second class of model (g.t"d-
els (2) and (4)), the maximtm C P violating asymmetrV, e^o,, for Ni{o* :
1.09(1.11), is around -33%(-30%) and around -50.5%(-40.5%) for the
maximum and minimum set of (p,7), respectively. Finally, for Nffi" -
1.63(1.80), one gets -3S.5%(-27.5%) and -52.5To(-38%). The ratio is

.. ti.
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Figure 6.3: C P violating asymmetrY, dcp, for B- + rrn-¡r- , fot q2 f m! :
0.3, Nj// : 1.09(1.68) and limiting values of the CKM matrix elements for

model (1): solid line (dotted line) for N"Íi : 1.09 and max(min) CKM ma-

trix elements. Dashed line (dot-dashed line) for N"f Í : 1.68 and max(min)
CKM matrix elements.

equal to 1.32(1.3b) when N#n^: 1.09(1.11) and is around 1.36(1.38) when

N:#",: 1.68(1'80)'
From all these results, many comments can be enumerated. Although

the maximum asymmetty,, a^o, still varies over some range in both cases

(B- + ¡rl¡r-¡r- and Bo + r*¡r-ro), we want to stress that by using

more accurate CKM element values than before, a more precise C P viç
lating asymmetry is obtained. The reason is primarily the matrix elements

Va and V,6 which are involved in the ô -+ d transition through the ratio

of p, to to. In our preliminary CP violation study where we used the val-

ues A - 0.815,),:0.2205,0.09 < p <0.254 and 0.323 <q <0'442,for
the process B- + T*.r-z--, we found that the ratio between maximum and

minimum asymmetry related to the minimum and maximum set of (p,q),

was around 1.6. By comparison, in the present work, this ratio is reduced to

1.3. The difference is related to the improvement in the measurement of the

CKM matrix elements, and shows the strong efiect of the CKM parameters,

p and 4, on limiting asymmetry values.

with regard to the cKM matrix elements, it appears that if we take

their upperli*it, we obtain a smalier asymmetr¡, ecp, and vice'versa. As

*e foond before, there is still a strong dependence of the cP violating asym-

metry on the form factors. The difference between the two classes of models,
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Figure 6.4: C P violating asymmetry, ecp, for B- -+ r*¡r-r-, for qz f m! :
0.5, N:rr : 1.11(1.80) and limiting values of the cKM matrix elements for
model (1): sotid line (dotted line) for N'ÍÍ : 1.11 and max(min) CKM ma-

trix elements. Dashed line (dot-dashed line) lor N"ÍÍ:1.80 and max(min)
CKM matrix elements.

(1,3,5) and (2,4), comes mainly from the magnitudes of the form factors. In
fact, the form factor F1(lc2), which describes the transition B -) zr, is mainly
responsible for this dependence. In both classes, we find a stronger depen-

dence of the C P violating asymmetry on the CKM matrix elements than
that on the form factors or the effective parameter N:f f . The difference

observed in our results between q'l*'a: 0.3 and qzlm2u: 0.5 arises from
the renormalization scheme of the Wilson coefficients in the weak effective
Hamiltonian. Finally, since Iüj// (treated as a free parameter) is related to
hadronization effects through the factorization approach, it is not possible

to determine its value accurately since non-factorizable effects are not well
known. That is why the asymmetry also varies in some range of N"Í J . It
is obvious that a more accurate value for N"iÍ (which requires a more ac-

curate approach with non-factorizable effects being taken into account), and

hadronic decay form factors (which requires better a understanding of the
pion structure and the B -| zr transition) are needed in order to determine
the CKM matrix elements.

In spite of all the uncertainties mentioned above, we stress that the p - u
mixing mechanism in the B -> pr decay can be used to remove ambiguity
concerning the sign of sin d. As the internal top quark dominates the b + d

transition, the weak phase in the asymmetry is proportional to sin a (-

,2
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Figure 6.5: sinó as a function of. N[fÍ, for B0 + n*t-¡ro, for q'l*! :
0.3(0.5) and for model (1). The solid (dotted) line at sinó : *1 corresponds

the case frr. : (-3500;-300), where p - 2 mixing is included. The dot-

dashed (dot-dot-dashed) line corresponds to flp, : (0;0), where p-ø mixing
is not included.
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Figure 6.6: sinó as a function of N"ÍÍ, fot B- -> ntr-¡r-, for q'l*'u :
o.rl1o.s¡ ald for mod.el (r). rng solid (dotted) line at sin6: *1 corresponds

the'case fr'. : (-3500;-300), whert p - LD- mixing is included' The dot-

dashed (aot-dot-aashed) line corresponds tofIp,: (0;0), where p-ø mixing

is not included.
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Figure 6.7: The ratio of penguin to tree amplitudes, r, as a function of
N:rr, for Bo + r*n-ro, for q'l^?: 0.310.5), for limiting values of the
CKM matrix elements (p,r¡) max(min), for flp, : (-3500; -300X0' 0)' (i.e.

with(without) p - ø mixing) and for model (1). Figure 6.7a (left): for
fo,: (0;0), solid line (dotted line) for q'l*3:0.3 and (p,4) max(min)'
Dot-dashed line (dot-dot-dashed line) for q2lm!: 0.5 and (p,7) max(min)-
Figure 6.7b (right): same caption but for np.: (-3500;-300).

sin/), where o : ôrB lffil. Hence knowing the sign of sind enables

us to determine that of sina from a measurement of the asymmetry, açp.
In Figs. 6.5 and 6.6 we show sinô as a function of. N"¡i for B0 -+ ¡rtn-no
and B- -+ rrr-r-, respectivel¡ when we have maximum CP violation.
In our determined range of NfJi, (1.09(1.68) < N"ÍÍ < 1.11(1.80)), one

finds that its sign is always positive for all the models studied and for all
the form factors. Therefore, by measuring the C P violating asymmetry in
Bt,o + T+T-z+'o decays, we can remove the mod(zr') uncertainty which
appears in the determination for o from the usual indirect measurements
which yield sin 2o.

In Figs. 6.7 and 6.8, the ratio of the penguin and tree amplitudes, as a
function of N"iÍ , is plotted for limiting values of the CKM matrix elements,
p,,r¡, for the processes B*'0 -) ntr-¡r*'0. Even though one gets a large value
of sinô around N:fJ = 1, for Bo + T*r-ro, without p - u mixing, one
still has a small value for r around this value of N"Í f . Similarly, we observe
the same phenomena for B- ) ¡r*n-¡r- when N;tt : O.r. In both cases,

the C P violating asymmetry ¡ ecp ¡ remains very small without p - e mixing.

....,

I
I
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Figure 6.8: The ratio of penguin to tree amplitudes, r, as a function of NeÍf
f.or B- + n*r-r-. Same caption for Figure 6.8a (left) and Figure 6.8b

(right) as in Fig. 6.7.

:1.0 1.11 : 1.68 1.80

-51
-bÐ

i

Prnøor\rno,
Pmin

mo

-64
-79

48

62

-84 -69

-7t -5
-69

-58Prodc ¡ \rnot
Pmin¡\mån

-51
-63(-51) -72(-60 )

Table 6.1: MaximúmcP violating asymmetry a^",(%) for B0 + ntn-¡ro,
for all models,limiting (upper and lower)values of the CKM matrix elements,

and q2lm!: 0.3(0.5).
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-1 1.11 :1.6 1.80

-51

-41

Pmat¡\*os

Pmac¡Tlmaø

Prnoo¡T*ot

Pmar¡\moo

Pmøc¡Tmaø

-45

-50

-45

Table 6.2: Maximum CP violating asymmetry a*",(%) for B- - r*r-¡r-
for all models, limitingvalues of th"e CkM mairix ãlãménts (upper and lo*"i
limit), and for q2l*3 - 0.3(0.5).

Thus p - ø mixing plays an essential role in both enhancing the direct CP
violation and rendering the analysis of the result free of ambiguity.

6.3 Bt,o + ¡r*r- I{r,o

6.3.L Formulae

After the study of direct C P violation in the b -> d transition, vre now
investigate the C P violating asymmetry, acp, in the ó + s quark transition.
We begin by calculating all the tree and penguin operator contributions2 in
the charged decay B+ -> rtn- Kt.

2Read F1(m2p) as Ff-K(m3) r"a Ao@k) as Af;-e1m2*¡
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Case of B- + r*zr- I{-
As usual, we start by computing the p tree operator contribution which takes

the following form,

f1 1l
to -- melf,f 

lf 
cl * ieSr,F,(*?) + (ci * lt'¡r"A"(*'à) , (6.14)

where f o and fyç arc the decay constants of the p and K respectively. In the

same 'way, we find ú, : tp, thetefore one has,

e,ei6o : I (6.15)

After calculating the penguin operator contributions for p and ø, one gets,

þ"nuu -ry{t"; * irr,.oo(*,*)

+|(tc+* #"¿l + e'"* å"1,1) r,F,(*',) + (c;o* Itar*Ao(*k)

and the ratio between penguin and tree operator contributions, which in-

volves CKM matrix elements, is given by,

r,ei6n : _ Pu

(Ci + frc)f opr(mz,) * (CL + frCl)f vaA6(m k)
(6. 1 7)

In Eqs. (6.16, 6.17), the ø penguin contribution, p, is:

p.: m'l;pr{r(tø * itn + QL* #"¿i) ¡oFv(m2o)

*'r(rt+* Itg + (c'n* 
å"1.1) ¡,r,@7)

* (t"l * ittl + Q;o* fr";l) rxAo(*'rc)

-, (r't * l'+, + (ct* fr øl) lffif tu oo{*'*)
)
(6 1 8)
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and the ratio of CKM amplitude which arises in the b + s transition is,

luov¡ 1

tml
11 11

^2 
yF ¡7 

^2
lsinBl

To simplify the formulas we used lú" for .lú// in Eqs. (5.14)-(5.24))

Case of .Bo + r*r- Ro

Finally, in the case of neutral decay (Bo * n+n- Ko), by applying the same

formalism one gets:

tp = mill¿rle'r* irntrrl@l), (6.20)

The computation of t,,r tree contribution gives t, : tp, therefore one has again,

o"i6o:I. (6.21)

The ratio between pa, and p, is expressed as,

o"u'u - ry{}@' * ita + Q'"* åq'r) ¡'r'@") +

(6.1e)

(- t"r n #";r +f;rci" * itt, + (zçc¿

and,

(6.22)

(6.23)^roi6n - - 
P.

' v 
Q'r+ frC'r)frF1(m'zr)

VuVi"

WuVï"

where p., gives, after calculation the following expression:

p, : m't;pr{, (rø * itt + e'u* å"¿l) r,F,(*3)

*t (rt+ * itt + e'n* fr"1,1) r,F,(*7)

* (rø * i'+, - 2(c'"* åqr) lffil
frc;r) rxAo 2

K* (rø * Its -'rrt;" * rn (6.24)
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Figure 6.9: CP violating asymmetrY, dcp, for B0 + r+¡r-R0, for q'l*î :
0.3(0.5), for N'ÍJ - 0.66,0.61 and for limiting values, max (min), of the

cKM matrix elements for model (1): solid line (dotted line) lot N"ÍÍ : 0.66.

Dashed tine (dot-dashed line) for .lú""// - O.Ut.

The CKM weak phase expression involved in this decay is identical to the

one given in Eq. (6.19).

6.3.2 Results and discussions

We have investigatedthe C P violating asymmetry,acp, for the two B decays:

Bo -+ poko + r+¡r-Ro and B- + poK- + n+¡r-_I{-. The resuits are

shown in Figs.6.9,6.10 and 6.11 for B0 + n+r-Ro, (o"r: [f(.Bo -+

r+r-Ko) - ilgo ) r-r+Ko)l/[f(Bo -+ r+r-R0) + flAo + n-zr+K0)]),
with q2fm| = 0.3(0.5) and for lrr""/'f equal to 0.61,0.66,2.65,2.69,2.82 and

2.84. Similarly, in Figs. 6.12, 6.13 and 6.14, the c P vioiating asymmetry,

acp¡ (: tf (B- -+ r+r- K-) - f 1A* -+ r-¡r+ K*)l/[f (B- + ¡r+r- K-) I
f (B* + nint K*)]), it plotted for B- + ntn- K-, where q'l*3: 0q0.5)
and for the same.rá1,r", of N"lÍ previously appiied for Bo + n+n-Ro. In
our numerical calculations, we found that the C P violating parametet, açp.,

reaches a maximum value, Qmax,t when the invariant mass of the n+zr- is in

the vicinity of the ø resonance, for a fixed value of /V./J. We have studied

the model dependence of ø with five models where different form factors have

been applied. Nrrm.rical results for B0 + r+¡r- R0 and B- -+ nl:n- K- are

listed in Tables 6.3 and 6.4, respectiveiy. It appears that the form factor

dependence of açp for all models, and in both decays, is weaker than the
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Figure 6.10: C P violating asymmetry, dcp¡ for B0 -+ n+r- R0, for qt l*3 :
0.3, for N;Ít : 2.69,2.84 and for limiting values, max (min), of the CKM
matrix elements for model (1): solid line (dotted line) for N;tt : r.Un.
Dashed line (dot-dashed line) for N;f t :r.tn.

/ú""// ¿"O"ndence.

For B0 -+ r+r- R0, we have determined the range of the maximum asym-
metry parameter 1 anraat when /ff// varies between 0.66(0.61) and 2.84(2.82),
in the case of q'l*'b:0.3(0.5). The evaluation of a^o, gives allowed values

ftom 37%(55T0) to -20T0Ç2a%) for the range of N"Íi and CKM matrix
elements indicated before. The sign of o,^o, stays positive until N""/J reaches

2.5. H we look at the numericalresults for the asymmetries (Table 6.3), for
N:#n,: 0.66(0.61) and q'l*?: 0.3(0.5), we find good agreement between all
the models, with a maximum asymmetry, a*o,, around 33To@5.6%) for the
set (p^o,,T*o,), and around,26%(33.2%) for the set (p^;n,0*¿n). The ratio
between asymmetries associated with the upper and lower limits of (p, 17) is

around I.26(I.37). If we consider the maximum asymmetry parametet) o,rndt)

for Nffi":2.84(2.82), we observe a distinction between the models. Indeed,
two classes of model appear: models (2) and (4) and models (1,3) and (5).
For models (2) and (4), one has an asymmetr¡¡ &^o,, around -6To(-7%)
and around -9%(-10%) for the upper and lower set of (p,rt), respectively.
The ratio between them is around 1.50(1.42). For models (1,3) and (5),
the maximum asymmetry is of order -Ia3To(-16.3To) for (p^o",r¡^o,) anð.

around -19.3%(-23.0%) fot (p^;n,T*n,). In this case, the ratio between
asymmetries is around i.34(1.41).
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Figure 6.Il: CP violating asymmetrV¡acp,for B0 + r+r-Ro,Lor q2f mf;:
0.5, for N:JÍ :2.65,2.82 and for limiting values, max (min), of-the CKM

matrix elements for model (1): solid line (dotted line) for N;tt :,'U,'
Dashed line (dot-dashed line) for N:rr :2-82.

N""J! _ 0.66 0.61 "J J :2-84 2.82
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mo

Pmøx¡Qnat
27

Prnoo¡Trnoc

Prnoct\mot
27

P^az¡Trno,

Table 6'3: Maxim..m c P violating asymmetrY a*o'(To) for B0 -+ r*n- Ko 
'

for all models, timiting values (uppér and lower) of the cKM matrix elements,

and for q'lm3: 0.3(0.5).
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el t : 0.66 0.61
^t

eÍJ 
- 2. 2.82

P^ot¡\moa

P^otr\moc

Pmoc¡\møt

Pmøs¡Tmøo

Pmøc¡Tmac

Table 6.4: Maxim:umC P violating asymmetry a*o,(%) for B- + r+¡r- K-
for all models, timiting values of the iXnn -airix ãiè*ãnt, (upper and lowei
limit), and for q'l*7: 0.3(0.5).

The first reason why the maximum asymmetry¡ amao¡ can vary so much
comes from the element 7.,¿. The other CKM matrix elements V¡6,V¿" and
W,, all proportional to A and À, are very well measured experimentally and
thus do not interfere in our results. Only V"6, which contains the p and 7
parameters, provides large uncertainties, and thus, large variations for the
maximum asymmetry. The second reason is the non-facto¡izable efiects in
the transition ö -+ s. It is well known that decays including a K meson (and
therefore an s quark) carry more uncertainties than those involving only a z-

meson (u,d quarks). If we look at the asymmetri es at Nff¿^, all models give
almost the same values, whereas at Nff"r, we obtain different asymmetry
values (with moreover a change of sign for the C P violating asymrnetry).
The C P asymmetry parameter is more sensitive to form factors at high
values of. N"Íl than at low values of N"lÍ. It appears therefore that all of
the models investigated can be divided in two classes, referring to the two
ciasses of form factors.

For B- + n+n-K-, w€ have similarly investigated the CP violating
asymmetry. The values of maximum asymmetry parametet, o,rro, for a range
of N'ÍÍ from 0.66(0.61) to 2.84(2.82), where q'l*?: 0.3(0.5) and for the five
models analysed, are given in Table 6.4. We found that for this decay, the C P
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Figure 6.12: C P violating asymmetrY¡ acp,for B- + n+n- K-, for q' l*'a :
0.3, for N;ft :0.66,0.61 and for timitingvalues, max (min), of.the CKM
matrix elements for model (1): solid line (dotted line) for N""l/ : 0.66.

Dashed line (dot-dashed line) for ¡f:// :0-61.

violating parameter, acp¡ takes values around 49%(46%) to -22%(-25%)
for the limiting CKM matrix values of p and 4 defined before. Once again,

the sign of the asymmetry parametgr, a1p, is positive if the value of N'ÍJ
stays úelow 2.7. Il we focus on Ni/i¿^ equal to 0.66(0.61), models (L,2,3,4)
and (5) give almost the same value which is around 46.6%(43.6%) for the

maximum values of the CKM matrix elements. For the set (p*;nrT^¿n),

the maximum asymmetty, o.*o,, is around 34.0%(33.8%). The ratio between

asymmetry values taken at upper and lower limiting p and 4 vaiues isaround

f.áZ1f.ZA¡. Let us have a look at the CP asymmetry values at Nffi,. As

we observed for the decay Bo -+ ¡rt n- Ro, all models are separated into

two distinct classes related to their form factors. For models (1,3) and (5)'

the value of maximum asymmetry, e,*o,, is around -15.6%(-17.6%) and

around -21%(-23.6%) for the maximum and minimum vaiues of set (p,n),

respectively. The calculated ratio is around 1.34(1.34)' between these two

asymmetries. As regards models (2) and (4), for the same set of (p,7), one

geis -11.5T0(-L3%) and -I7To(-18%). In this case, one has 1.47(1.38) for

the ratio. The reasons for the differences between the maximum asymmetry

parameter l dmatt are the same as in the decay Bo -> n+n- Ro '

By analysing the B decays, such as Bo + n+r- ko and B- + rrr- K- ,

we found. that the CP vioiating asymmetty, asp,, depends on the CKM ma-

I
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=
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Figure 6.L3: C P violating asymmetry¡ecp,for B- -+ rt¡r- K- , for q'l*? =
0.3, for N;Ít : 2.6912.84 and for limiting values, max (min), of the CKM
matrix elements for model (1): solid line (dotted line) for N:rr - 2.69.
Dashed line (dot-dashed line) for N:rr - 2.84.
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Figure 6.14: C P violating asymmetry¡acp,for B- -+ r*¡r- K-, for q'l^î :
0.5, for N;tt : 2.65,2.82 and for limiting values, max (min), of the CKM
matrix elements for model (1): solid line (dotted line) for N;tt : ,.UU.
Dashed line (dot-dashed line) for N:rr - 2.82.
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2.5

N:tr

Figure 6.15: sinó, as a function of NiÍf ,, for B0 + r+r-Ro, for q'l*?:
0.3(0.5) and for model (1). The solid (dotted) line corresponds the case

fr', : (-3b00; -300), where p - u mixing is included. The dot-dashed (dot-

dot-dashed) line corresponds to flp, : (0;0), where p - u mixing is not

included.

trix elements, form factors and the effective parameter ¡/""// (in order of

increasing dependence). As regards the CKM matrix elements, the depen-

dence through the element, Wt, contributes to the asymmetry in the ratio

between the ø penguin and the p ftee contributions. It also appears that for

the upper limit of set (p,?), we get the higher value asymmetr!, asp, and

vice-versa. With regard to the form factors, the dependence at low values of

N""// t, very weak although there ïvas a considerable difference between the

pli"^o-".rological form factors (models (2) and ($-and models (t, f ) and (S))

applied i.r ou. calculations. At high values of Iú""J/, the dependence becomes

strong and then, the asymmetry appears very sensitive to form factors. For

the effective parameter, Nlf Í,, (related to hadronic non-factorizable effects),

our results show explicitty the dependence of the asymmetry parameter on

it. Because of the energy carried by the quark s, intermediate states and

final state interactions are not well taken into account and may explain this

strong sensitivity.
Finally,resultsobtainedarq2lm2b:0.3(0.5),alsoshowrenormaiiza-

tion effects of the Wilson coefficients involved in the weak effective hadronic

Hamiltonian. For the ratio between asymmetries, results give an average

value of order 1.36(1.40) for B0 + n+r-Ro and 1.39(1.33) for B- ->
¡r+n-I{-. This ratio is mainly governed by the term 1/sinB, where the
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2.5

N:u

Figure 6.16: sind, as a function of. N"f Í for B- + r+n-K-, for q'l*?:
0.3(0.5) and for model (1). The solid (dotted) line corresponds the case

lo, : (-3500; -300), where p - c.r_mixing is included. The dot-dashed (dot-
dot-dashed) line corresponds to flp, : (0;0), where p - e mixing is not
included.

values of the angles a,B and ? are listed in Tabie 5.1. As afirst conclusion
based on these numericai results, it is obvious that the dependence of the
asymmetry on the effective parameter ¡ú""/J is dramatic and therefore it is
absolutely necessary to more efficiently constrain its value, in order to use

asymmetry, dcp, to determine the CKM parameters p and q.

We know that the effects of p - ø mixing only exist around the ø res-

onance. Nevertheless, at small values of NflÍ, i.e. - 0.6, (see Figs. 6.9

and 6.12), the curves show large asymmetry values far away from p - ø mix-
ing, which is a priori unexpected. In fact, if we assume that non-factorizable
effects are not as important as factorizable contributions, then ¡ú;// should
be much bigger. From previous analysis on some other B decays such as

B + Dn,B + ur)B -+ wK, it was found that N"ÍÍ should be around
2l1I2). Therefore, although small values of N"Íl are allowed by the ex-
perimental data, we expect that the value of N'l Í cannot be so small with
more accurate data. Thus, with a very small value of N"ÍÍ, non-factorizable
effects have been overestimated. This means that soft gluon exchanges be-
tween po(r) and K may effect p - u mixing and hence lead to the large CP
asymmetries in a region far away f¡om ø resonance. However, at \ß energy
very far from ø resonance, the C P asymmetries go to zero as expected.

In spite of the uncertainties discussed previously, the main effect of p - u

J2.5

I

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-l
I

,v
,Ë
+

R
1

Ie
l,O

'á



t

)
I

6.J. B:t,o ¿ v*n- 6*,o

1.5

91

l0

9

8

rv
'H 6
+

H15
lÉ^
q9
rJ

2

I

0

l0

2

6

4

0
2 2.5 11.522.53

N:O N:U

Figure 6.17: The ratio of penguin to tree amplitudes, r, as a function of
N:rJ, for B0 -+ r+r-R0, for qtl*?: 0.3(0.5), for limiting values of the

CKM matrix elements (p, ry) max(min), for flp, : (-3500; -300X0,0), (i.e.

with(without) p - ø mixing) and for model (1). Figure 6.L7a (left): for
ft'.: (0;0), solid line (dotted line) for q'l*?:0.3 and (p,7) max(min).
Dot-dashed line (dot-dot-dashed line) for q'J*?: 0.5 and (p,17) max(min)'
Figure 6.17b (right): same caption but for flp. : (-3500;-300).

mixing in B + pK is the removal of the ambiguity concerning the strong

phase, sin ó. In the b -+ s transition, the weak phase in the rate asymmetry

is proportional to sinl where'y: argl-(V"VSl(W"V;u¡1. Knowing the sign

of sin á, we are then able to determine the sign of sin 7 from a measurement

of the asymmetry,acp. In_Figs. 6.15 and 6.16, the value of sinð is plotted

as a function of .lú""/'r 1o. Bo -+ r+n- Ro and B- -+ n+r- K-, respectively'

It appears, in both cases, when p - a mixing mechanism is included, that

the sþn of sin ó is positive, for all models studied, until lvj// - 2.5 for both

B- + ¡r+r-I{- and B0 + ¡r+r-R0, when q'l*3:0.3(0.5). For values of

N""J/ bigger than this limit, sin á becomes negative. At the same time, the

sign of the asymmetry also changes.

In Figs. 6.17b and 6.18b, the ratio of penguin to tree amplitudes is shown

for B+,0 -+ n*r- K+,o, in the case oLIIp,: (-3500, -300). The critical point

around N1f t :2.7,referc to the change of sign of sin6. Clearl¡ we can use

u -".rorJ-ent of the asymmetry, açp, to eliminate the uncertainty mod(n)

which is usually involved in the determination of 7 (through sin27)' If we

do not take into account p - a mixing, the CP violating asymmetry, acP¡
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Figure 6.18: The ratio of penguin to tree amplitudes, r, for B- + ¡r+¡r- K- .

Same caption for Figure 6.18a (left) and Figure 6.18b (right) as in Fig. 6.17"

remains very small (just a few percent) in both decays. In Figs. 6.15 and 6.16

(for the evolution of sinô) and in Figs.6.17a and 6.18a (for the evolution of
penguin to tree amplitudes), for Bt'o ) î+T- K+'o, we piot sin ô and r when
fr',: (O,O) -i.e. without p-umixing. Thereisacriticalpoint at N'fl -I
(for.Bo + n+r-ko) and N:f Í :0.24 $or B- + ¡r+r-K-) for which the
value of sin ó is at its maximum and corresponds (for the same value of Nfr f ),
to the lowest value of r. Anywhere else, the value of sin ô is closed to zero.

The last results show the double effect of the p - u mixing: the C P violating
asymmetry increases and the sign of the strong phase ó is determined.

6.4 Summary

The aim of the present work was to apply recent values of the CKM matrix
elements, e.B. A,À, 17 and p, to study direct CP violation for B decays such

as B*'o -+ po(w)r+'o -+ 'î+z--z.+'o and B+'0 + po(u)K+'o -> T+T- I(+'o
where the p - c¿ mixing mechanism must be included. When the invariant
mass of the r+r- pair is in the vicinity of the c.l resonance, it is found that
the C P violating asymmetry, a6p, has a maximum o,rnas. To calculate the
CP violating asymmetry, a6p, we started from the weak Hamiltonian in
which the OPE separates hard and soft physical regimes. We worked in the
factorization approximation where the hadronic matrix elements are treated
in some phenomenological quark models. The effective parameter, lúj/J, was
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used in order to take into account, as well as possible, the non-factorizable

effects involved in B -+ pr and B -+ pKdecays. Although one must have

some doubts about factorization, it has been pointed out that it may be quite
reliable in energetic weak decays [48, 49, 113].

We started by analysing the direct C P v\olating asymmetry in the two

B decays: B- -+ ¡r-rtr- and B0 -+ n-¡rlno. We found that the CP vi-
olation parameter, dCp,t is very sensitive to the parameters p and 7 in the
CKM matrix, and also to the magnitude of the form factors appearing in
the five phenomenological models we investigated. For B0 -+ r-r*r0, w€

have calculated the má,ximum asymmetry 1 
(trrnatt as a function of the effective

parameter, N;Íf , with the limiting values of the CKM matrix elements. We

found that the CP violating asymmetty, o,*or, can vary from -37% to -84%.
For B- -+ ¡r-n*r-, w€ also determined the range for the maximum asym-

metry, ctrmaat namely -L7% to -53%. As we already determined in a first
preliminary study, the ratio between the asymmetries for limiting values of
the CKM matrix elements is mainly governed by 17. We found a ratio equal to
1.64 where the cKM values used were the following: A: 0.815, À :0.2205,
0.09 < p < 0.254, and 0.323 < q < 0.442. In the final work, one finds for

the same decay, a ratio equal to 1.30. The more accurate value for 17 has

reduced uncertainties on both the C P violating asymmetry and the ratio,
f(B* + r-n*nl)ll@o -+ n-n+¡ro).

We have also studieð, CP violation in B decay process such as B+'o +
poK+,o ) r+r- Kt'o. We have explicitly shown that the direct CP violating
asymmetry is very sensitive to the CKM matrix elements, the magnitude
of the form factors A6(k2) and F1(k2), and also to the effective parameter

lú"'// (in order of increasing dependence). We have determined a range for

thL maximum asymmetty, a^o",, as a function of the parameter N""/J, the

iimits of cKM matrix elements and the choice or q2lm!: 0'3(0'5)' For the

decay Bo + r+r- ko and from all models investigated, we found that the

largest cP violating asymmetry varies from *37%(+55%) to -20Y0(-2aTo).
As regards B- + rlr- K-, one gets +49%(+46To) to -22%(-25%). For

B+,0 ] rI ¡r- Kt,o, the sign of e,^o, stays positive as long as the value of NC"JJ

is less than2.7. In both decays (B + pK),the ratio between asymmetry

values which are taken at upper and lower limiting p and 4 values is mainly

governed by the termlf sinB. It appears also that the direct CP violating

ásymmetry is very ,"rrritirr" to the form factors at high values of. N"Í J .

We underline that without the inclusion of p - u mixing, we would not

have a Iarge CP violating asymmetrY, aCP¡ since ø6rp is proportional to

bothsinóandr (for B -+ ptrandB + pK). Without p-u mixing,

we found a critical point for which sinô reaches the value {1, but at the

same time, r becomes very tiny. Therefore, the asymmetry, a6p is also very



94 CHAPTER 6. DIREC'T' C P V IULA'I'TUN . . .

tiny. \Me emphasise that the advantage of p - ar mixing is the large strong

phase difference which varies extremely rapidly near the ct resonance. In our
calculations, we found that for Bt'o - T+T- K+'o, the sign of sin á is positive

until /ú""// reaches roughiy 2.5 when q'l*?: 0.3(0.5). For B*'0 -+ por+'o +
T*r-ir*'o, the sign of sinó stays positive.

By measuring asp for values of N[rÍ ,, within the limits given above, we

can remove the phase uncertainty mod(zr) in the determination of the CKM
angle c in Bl'0 )-+ nln-n*'o. In a similar way, it has been also possible to
remove the phase uncertainty mod(n) in the determination of the CKM angle

7 by analysing direct CP violation in B -+ r+¡r- I{. Thus by combining both
previous results, we can finally remove the phase uncertainty mod(zr') which
appears in the analysis of the CKM angle B through the study of b + c

transition and hence, to constrain the unitarity triangle condition.
The investigation of branching ratios such as BL'o -+ p+'o7r+'o and B*'0 ->

p!,o K*,o, allowed us to make comparisons between our theoretical results and
experimental data from the CLEO, BABAR and BELLE Collaborations (see

Chapter 5). We have applied five phenomenological models in order to show

their dependence on form factors, CKM matrix elements and the effective
parameter N;rr ttr our approach. In output, we determine for both decays

(B + pn and B + pK), the range for N"Íi which constrains the direct
CP violation asymmetry parameler,, asp. With more accurate CKM matrix
elements values, i.". p and. q, \¡/e are able to give more precise CP violating
asymmetries, and the main uncertainties remaining are from the factorization
approach and the hadronic decay form factors. The QCD factorization will
provide a more efficient way to deal with non-factorizable effects. With regard
to form factors, we have shown that some models for the B -+ ¡r transition are

not consistent with the experimental branching ratios, whereas for B 1 K,
we cannot draw firm conclusions.

Therefore, in the following and in order to go further in our investigation,
we shall determine in a covariant light cone framework, wave functions for n,
K, B and D. Then, we shall calculate form factors based on these functions
determined from physical observables. Finally, in the last part, we shall apply

QCD factorization, where the new form factors will be involved, to obtain
(better and more accurate) predictions on direct CP violation in B decays.
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Chapter 7

Covariant tight-Front
Dynamics Main properties

" La théorie, c'est quand on sai,t tout et que rien ne fonctionne. La prati,que,

c'est quand tout fonctionne et que personne ne sait pourquoi. "

Albert Einstei'n

In this third section of the thesis, we are going to apply the Covariant

Light-Front Dynamics (CLFD) formalism to determine wave functions for
pseudoscalar particles BrD,Krn and for vector particles p,a (see Chapter

8). Then, we will calculate transition form factors (see Chapter 9) for P -+ P

and P + V where P (pseudoscaiar) and V (vector) are the particles men-

tioned previously. In this first chapter, \ry'e recall the theoretical background of

Covariant Light-Front Dynamics. We will start by giving some basic prop-

erties of Light-Front Dynamics (LFD), then we will summarize briefly the

dynamical approach used in the covariant formulation of light-front dynam-

ics.

7.L Light-Flont DYnamics

The first requirement to build a dynamical theory is that it should be in-

variant under the ten generators of the Poincaré group. These generators

include space time translations (four generators), space rotations (three gen-

erators) and Lorentz boost (three generators). The timetransiation operator

is the Hamiltonian. Three forms of dynamics have been derived and defined

a long time ago, in one of Dirac's famous papers [114]. There are the instant

for-lth" point form and the front form (see Fig. 7.1 [115]). Among the ten

97
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generators of the Poincaré group, the ones which do not leave the light-front
plane u).t: cte invariant are called dynamical, i.e. they should depend on

the interaction. The other ones are called kinematical.

ct

The instrnt form

io- ct

x.- y
i.3- z

z

ct

The frontfo¡rt

fo - cl+z

x-- y
í.t - d-z

ct
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Figure 7.1: Dirac's three forms of dynamics.

The instant form describes in a four dimensional space, the evolution
of one system from one three dimensional plane, ú : coûstr to another one.

The point form describes the evolution of one system on any four dimensional
space like surface t2 -r'2 : const. A physical process can also be described in
the observer's system (t',*',A' , z') which is moving with velocity tr along the
z-axis in the laboratory system (t,r,A,z). Then, the evolution is investigated
from one plane ú' : const in the moving system (or ú { za f c2 : const if we

refer to the laboratory system) to another plane. If u -+ c, the wave function
is therefore determined on the plane t I zu f c: const which corresponds to
the equation for the light-front plane z = -ct moving along -z axis. In
this so-called front form, the coordinates are defined as (z¡,r,A,z-) where
z+:t*z and z-:t-2. Whilethefront formis interesting since the boost
operator along the z axis gets kinematical, the plane z+ : cte is not invariant
under all spatial rotations. The angular momentum operators are therefore
dynamical. In order to treat in a transparent way the dependence of these
operators on the dynamics, an explicitly covariant light front dynamics has
been derived by V.A. Karmanov [116, 117, 118, II9,120,I21.,I22, L23].
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7.2 Covariant Light-Front Dynamics

7.2.L Main properties

In the past few years, a Covariant formulation of Light-Front Dynamics

(ÇLFD) has been proposed 1122,, 123, I24l and applied to relativistic particle

and nuclear physics. This formulation is particularly useful for describing

hadrons, and all observables related to them, within the constituent quark

model. In CLFD 1122,723,1241, the state vector which describes the phys-

ical bound state is defined on the light-front plane given by the equation
()).r:0, where ø is an unspecified lightlike fou¡ vecto, (r' - 0). It defines

the position of the light-front plane. This approach is a generalization of

the standard Light-Front Dynamics (LFD) [125]. This latter can easily be

recovered with a special choice of the light-front orientation , u : (L,0, 0, -1).
The description of relativistic systems in the covariant formalism of LFD

provides several advantages as compared to the standard formulation. The

main properties are the following 1L22,I23, L24]:

o The formalism does not involve vacuum fluctuation contributions be-

cause of Lorentz time dilatation. The state vector describing the phys-

ical bound state contains a definite number of particle, described by

Fock state components.

o The Fock components of the state vector satisfy a three dimensional

equation, and the relativistic wave function has the same meaning,

namely a probability amplitude, as the non-relativistic one. This is

very convenient in the framework of the constituent quark model.

o Relativistic wave functions and ofi-shell amplitudes have a dependence

on the orientation of the light-front plane which is fully parametrized

in term of the four vector ø. Approximate on-shell physical amplitudes

also depend on ø, whereas, the exact on-shell physical amplitudes do

not depend on the orientation of the light-front plane'

In contrast to LFD, where the covariance is lost, CLFD proposes a formu-

lation in which the evolution for a given system is expressed in terms of

covariant expressions. Therefore, any four vector describing a phenomena

can be transformed from one system of reference to another one by using a

unique standard matrix which depends only on kinematical parameters and

on &r.
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7.2.2 Kinematical and dynamical transformations

The kinematical transformations are associated with transformations of the

coordinate systems, whiie dynamical transformations correspond to transfor-
mations of the hypersurface on which the state vector is defined.

Consider first the case of kinematical transformations. The transforma-
tion of the system of reference under both translation (x + æ' : r iø) and

infinitesimal rotation (*, + t'r: grp: ïri e,rx') transform the state
vector, ó-(o), where o : u)'t is the light-front time, as:

ó,(o) -+ ót ,(o'): lur,(o) + Ur,@)) ó,@), (2.1)

with Upo(o) : exp(iPo'ø) and Uf(g) - 1+ lf2Jf;,ep'. P0 and Jo arc
respectively the free part of the operators associated to the four momentum
P, and four angular momentum J* defined by,

Þ, : I T*u'6(u.r - o)daæ : Þl + Pît,
J

i*,: [ ru;,rot1tr)'t-o)dan: ior,* i'j':, (7.2)
J

where the int superscripts indicate the interacting part of the operators. In
Eq. (7.2),, Mfl, andT* are the angular and energy momentumtensors. The
free operator parts fully control all the kinematic transformations and do not
contain any interaction term. They describe the transformation of the state
vector under transformation of the reference system. The operators Pi"t and
ii"t contain the interaction Hamiltonian I/i"t(*):

Hi"t(r)6(w.x - o)dax ,

Hi"t (x)(x rtr)v - t vu) ,)6(w. x - o)da x (7.3)

The dynamical transformation of the state vector is completely defined by
the part of the operators containing the interaction Hamiltonian Ht"t(*)
according to the Tomonaga-Schwinger equation 1126l:

i6þl6o(x): Hi"'(*)Ó. (7.4)

These operators describe the transformation of the state vector under trans-
lations and rotations of the light-front plane. In the case of a rotation of the
light-front plane, it is easy to find 1122,I23, I24l for instance:

1

Ó.(o) .

(7.5)

a
ó.(o) ) ó,+¿.(o) : ó- l6ó.,, with óþ,

2
epu

0u
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It is then possible to express the interacting part of the angular momentum

operator, acting on the state vector, according to,

i';:0.@): L,,1r¡Ó,,(o) , (7'6)

where,

... .( ô a\
Lr"(r) : il ur\ 'fu-"#)' (7'7)

With this "angular condition", it is possible to determine (without any am-

biguity) the state vector for a definite angular momentum as well as the

dependence of $, on the orientation of the light front. Moreover, it allows

this determination in terms of kinematical transformation properties of the

wave function, Ietting the dynamical transformation of the system appear

through the dependence of the wave function on the orientation ø of the

light-front plane (see Refs. 1L22, I23, L24l fot more details).

7.2.3 ^S-matrrx
In CLFD, the ,S-matrix is calculated from the light-front graph techniques.

For technical details regarding CLFD graphs rules, we refer to the extensive

review in Refs. 1122,I23,7241. The ^9-matrix which gives the time evolution

of the wave function from one light-front plane to another in the direction of

the light-front time is written as:

s : r."*o 
[-o I ,r'rAo',') , (7.8)

where the ?-product orders the operators with respect to the light-front time

o:u).r¡and Ifft is the interaction part of the Hamiltonian. The.9-matrix
can thus be decomposed as follows:

^9 
: 1 + t I f-O r:t(x1)0(a'(" - æ2))H'.t(xr)0(,'(*, -'r))'''

0(u'(r*4 - *^))H':t(x^)daxv' ' 'dn,n' (7'9)

since the ,s-matrix is expanded in terms of (light-front) time ordered con-

tributions, all particles are on their mass-shell, while any intermediate state

is ofi energy shell. Thus, all amplitudes and equations of motion can be

expressed in t".-, of three-dimensional quantities (like the momenta for in-

stance). This enabies us to have a clear physical relationship between light
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front relativistic and non-relativistic amplitudes, as we shall illustrate in the
following sections. The final expression for the ^9-matrix takes the following
form:

,9: 1* l-:#+R(ur)dr' (7.10)

(7.11)

with R(c.rr) given by:

R(ur): D(-i)" I n,@, -,"tffi
n'

il.(r,, -,"1ffi4. . . it,(,, -,rn-,)
drn-t

2tri(r*-1- ir) '

Here iI, is the Fourier transformation of the interaction part of the Hamilto
nian. The full S-matrix and therefore any physical amplitudes do not depend
on ø but the off-shell energy amplitudes do.

7.3 Wave function
The particle is described by a vi¡ave function expressed in terms of Fock
components of the state vector 1127, L28,, L29l which respects the properties
required under any transformation and therefore respects the angular mG
mentum condition -see Eq. (7.6). Recall that the state vector is to be an
irreducible representation of the Poincaré group and is to be fully defined by
a mass, M , a fotr momentum, p, a total angular momentum, "I, and a z-axis
projection of angular momentum, À. The state vector describing a meson of
momentump, defined on a light-front plane characterized by c.r (with u-a :0
for simplicity), is given by:

Ilp,)),: ór^@) : (2n)3/2 Ql 1", ¡,"" (kr, kr,, p, u r) a! r(kl ) ø1, (k, ) | 
0)

" 
5(+)(kr I kz - p - '".r) exp(i,ro)2(u'p)dr

dtåt dslrz

(2tr)3/21ffi (2tr)3/21@

* (2n)3 / z 

l rl 1", r,, j,o,(kt, kz, lcs, p, ar) a!,(k, ) ø|, (k. ¡øj. 1t<r¡ ¡ 
o¡

* 5(a)(kr * lcz t lez - p - ur) exp(iro)2(a.p)

¿n d3k, d3kz dtfr, ... (7 1r\"' (2r)3 / 2 \Ee k Qn)3 / 2 JTÇ (2r)3 / 2 lTÇ
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where €k; : \ÆTæ and k¿ is the momentum of the quark i. ) is the
projection of the total angular momentum of the system on the z axis in the

rest frarne and ø1 ¡a2¡03 are the spin projections of the particles 1 to 3 in the

corresponding rest systems. If we retain the two body component only 1127,

L28,l2}lrfrom the delta function ensuring momentum conservation, one gets:

P:plwr:h*kz. (7.13)

To keep track of this conservation law, we shall represent on any diagram

(kt q2

9rQz (p)

(kù

Figure 7.2: Diagrammatic representation of the two body wave function on

the light-front.

(see Fig. 7.2) the four-vector ar by a dashed line (the socalled spurion line,

see l!22, I23, L24] for more details). We emphasize that the bound state wave

function is always an ofi-energy shell object (" # 0 due to binding energy)

and depends on the light-front orientation. There is no fictitious particle in

the physical state vector, although a momentum is assigned to the spurion.

The parameter r is entirely determined by the on-mass shell condition for

the individuai constituents.

7.3.t Various parametrizations

The twobody wave function Q(kr, k2,p,ur) written in Eq. (7.L2) can be

parametrizeð.in terms of various sets of variables. In order to make a close

connection to the non-relativistic case, it would be more convenient to intro'
duce another pair of variables 1122,I23,7241defined by:

k:L-t(p)k,= k,-#;[*,.- +ru^f , (7.r4)

L_'(P L_L(P
n-

lL-t(P)ul
:@

a.p
(7.15)
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T

where P : kt * lez, and .L-r(P) is the Lorentz boost. The relativistic,
relative momentum, k, corresponds, in the frame where kr f kz : O, to the
usual relative momentum between the two particles. Note that this choice of
variable does not assume that we restrict ourselves to this particular frame.
The unit vector n corresponds, in this frame, to the spatial direction of ø.

The second set of variables which we shall use in the following are the
usual light-front coordinates (2, Ra), which are defined by analogy to the
equal time function in the infinite momentum frame as:

u.let
a.p

Rt kt-rP,

and where .R1 is decomposed in its spatial components parallel and perpen-
dicular to the direction of the light-front , Rt : (Ao, Rt, R¡¡). We have by def-
inition R1.a:0, and thus Ef - -Ri. We can easily express these variables
in terms of the previous ones. All details can be found in Refs. 1122,123, t24].
The relations between (r, Rt) and (k2, n.k) are the following,

R'.,- : k2 - 1n'k)2 ,

*:L]r-@l . (2.16)--2L- ek I'
with e¡ : \M in the case of equal masses. The inverse relations read:

kr:R?++*', -m2 -
4æ(l - x)

n.k: lffil"'(i-,) (7.r7)

where k2 and n.k are the rotation and Lorentz invariants. The wave function
can therefore be expressed at any time as:

Õ(Rr, r) - õ(k', n.k) . (7.18)

7.3.2 Equation of motion

The two-body component lÞ is the solution of a three dimensional equation,
Eq. (7.19). It is shown schematically by the diagram of Fig. 7.3. For simplic-
ity, let us just first consider the case of a scalar system composed of two scalar
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particles. The wave function is scalar, and can be parametrized in terms of
o(ø, R1). The homogeneous equation which Õ should satisfy is given by:

Õ(r, Ra) :

1
Q(x' ,R'r)K(r', R'r; r,F-¡, M2)

d2R'rdx'
(7.1e)

(2n) 2*t(I - rt) '

where rn is the constituent quark mass (for two identical particles) and M is
the bound state mass. In this form, this equation is similar to the Weinberg

equation. The kernel K of the equation, defined graphically by the shaded

area in Fig. 7.3, depends on the dynamics of the system. In our case, we shall

use a kernel with one gluon exchange. This exchange is shown in Fig. 8.1

and will be discussed later in Chapter 8. The relativistic wave function is

(kt
(k) gr.

úlf (Ùr

ã'9, (p) ã,9¿ (p)

(kù

(kù

Figure 7.3: Two body relativistic wave function equation'

an equal-time wave function on the light-front which turns out to be the

non-relativistic wave function when c -) oo.

7.3.3 Normalization

As regards the normalization, the state vector which describes a physical

particle is normalized according to:

(p',\'1p,,À):2ps6(t)(P-P')N)'À, U'20)

where NÀ'À : D, N)'^ with Nj'À being the contribution from the n-body

Fock components. Its expression in terms of æ and R1 is given by 1122, t23'

(kt q,
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¡Í)') : (2tr)3 I 
"2^allJi',^"^e!1o,...,,o^

,,',(å*,,),(Ð", -') rftæ, s 2r)

where J, À, j¿, and ø¿ are defined as in Eq. (7.I2) and where O is the wave

function expressed in the Fock state decomposition (see Eq. (7.12)). In the
case where the total angular momentum is equal to zero ("I : 0), the nor-
malization condition for the corresponding pseudoscalar or scalar particles
becomes:

Ð*: 
t , (7.22)

where we take into account all the n-body Fock components. If the total
angular momentum is equal to one (-r : 1), the normalization condition for
the corresponding pseudovector or vector particles takes the following form:

¡ú)'r-e;Ø1p¡t;"!^)(p) , (7.23)

where 
"!))@) 

is the polarization vector for the system and. Il'is a tensor
written as,

I#' : -Ang" * Bnp'p" ICn(pPu" +p"*')

I Dn(pqu' - p'aP) * En
(t)þ tr)'

(r'p)' .#) (7.24)

In Eq. (7.24) An, Bn,, Cn, Dn and En are constants with ÐnCn : Dn Dn :
D, En: 1 and M is the mass of the system.

Although each contribution to the normalization may depend on ø (this
is the case for J : I but not fot J :0), the total result will be independent
of ø if all the n-body Fock components are included.



Chapter I
Meson wave functions

" II n'est pas certain que tout soi't certain

Blaise Pascal

Many theoretical frameworks are used to understand the internal struc-

ture of hadrons - for example we can mention QCD sum rules [130, 131, 132],

perturbative QCD [133, 134, 135], lattice QCD [136, 137], chiral perturbation

theory [138, 139], constituent quark model [140], heavy quark effective the-

ory [141], heavy quark symmetry and light-front quark models 1122,142,1431.
In our work we chose to follow the formalism of Covariant Light-Front Dy-

namics, detailed in the previous chapter. We will start by appiying this
formalism to determine in a phenomenological way the wave functions of
pseudoscalar particles such as B, D,,Krz- and the vector particles p, ø.

8.1 Pseudoscalar wave function

8.1.1 Structure of the bound state

The explicit covariance of our approach aliows us to write down explicitly the

g"rr"rui structure of the twobody bound state. For a pseudoscalar particle

composed of an antiquark and a quark of mass n21 and rn2 tespectively, it
has the form:

vps: luQrùlr,l+Ar+)rsu(kr), (s.1)- \/2' 'L ffi, u'P)

where u(k1) and A(kt) are the usual Dirac spinors, and A1 and A2 are the two

scalar components of the wave function. Note that the colour factor is not

t2

r07
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included in the wave function written in Eq. (S.1). The mass m, is defined
by rn, : ?# and is chosen here just for convenience. The representation

'm1+rn2
of this wave fulction in terms of the variables k and n is given by:

, 1 ./ ia'lnxkl \I!ps: ø'| (ø' + f oz)w, (8'2)

where to¿ is the Pauli spinor. One can easily express A1 and A2 in terms of

91 and gz. One finds for,,4,r:

r+ffi) '{At: *
Ocgt*ï
lc

n'¿r

€k,l rfll €k,2

k2

(e¡,t + mt)(e*,2**r)
(1_1\l
\er,, * -, e*,2I *, ) l

IfL2

X I

and for Az:

- n'k

( )')
(8.3)X

11
€nl * mt €r,z I mz

Az: -
Tk2

k

where one defines €k,i: \Ffr
The components g and 92 will be parametrized by gaussian wave func-

tions written as !¿ - 4r2a¿B¡exp(-B¿k2) where o¿ and B¿ are two parameters
to be determined from experimental data. In terms of the variables (", Rt),
we have for the relative momentum between two quarks of different masses:

,-z _ (R2t -f (*r(" - 1) - xm2)2)(R2¡ + (m{r - 1) + **r)') to t
4l!,1-r)ltt",+V-rW",+ il

8.L.2 Radiative corrections to the wave function
In our phenomenological study of wave functions, we shall start from a gaus-
sian parametrization of the components 91 and gz¡ ãs given above. However,
it is necessary to correct these wave functions in some way in order to incor-
porate the high momentum tail given by the one-gluon exchange mechanism
(see Fig. 8.1). We shall achieve this using perturbation theory, starting from
the zeroth order wave function parametrized as gaussian, and calculate the
corrected wave function using the equation of motion analogous to Eq. (7.19).

€*,t rk1 €k,2 (r ¡ 2l .t-) 
-'n, 

, (8.4)
\ e/',r a- ek,2,/
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(8.6)

(s.7)

kr

Y-
OT

oru

K
h

d3kr',

I

I

cyftv
(ÙT

h

ki

-k
o1

kz

kr

(ùfl \

\
k;

Figure 8.1: One-gluon exchange kernel.

This equation is, for spin 1/2 particles:

(" - M') u(k2)t9u(k) -
1 I(2n)t

with:

a(kt)Wr(tþL * m2)ti'(m, - þlt,l KP"u(k1)
2e¡i(I - *') '

n? +m?
I'IIs:-t

r.2r+*Z
1- r)

,e : #l#. o,hfr,, and re' = il#. o"L,o]r, (s 8)

The kernelr Kt'v can be written as KP' : -gp'K, with:

K : s2 I trr-(k, - ki))ó((kl - k'r+ urr - ar)2 - p\h

*f I o@'(k'r-kr))ô((ki-kr*art-a'')2 - u\L, (s'e)

r

lNote that a colour factor -f has to be added.
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which gives,

K,_
g'0(r.(kt - k'r))

where r and T' ate defined by,

s-M2
'l¿--

2 r'p

CHAPTER 8. MESON WAVE FU¡\TCTIONS

p, - (k, - k'r), * 2ru. (k, - k'r) - ie

r- g'ï(,'(ki -kt))' lr' - (k', - kr)' * 2r'u'(k', - kr) - i, ' 
(8'10)

s'- M2
and T' (8.11)

2 r.p
The two items in Eq. (8.9) cannot be both non-zero simultaneously. After
developing all scalar products, one gets the following final expression for K,
in the variables (r, R1):

K(arx'rRr, R'r; M) :

{ 
(-,' - t)(*'' + x' + ,(*' - t))*? - 2R'''Rr(' - r)*'

- M2a'(æ- lX' - r') + K'(,,Í',Rr,*l)) #4)-'r,"'- r) +

- M2r(n' - 1)(*'- r) + K'(*,0', Rr, *'J)æ:Ð) 
t

{ 
(-,"' - t)(*'* r * *'(* - t))*? - 2R",'R'("'- 1)"

@(r - x') ,

(8.12)

where,

K'(r,Ø',Rr,R't) : R2tn'(r' - 1) + Rlx(x - 1) + mTrxx'(x+ r'-2) .

(8.13)

ln order to extract the two components A1 and 42, one should proceed as

follows. We first multiply both sides of Eq. (8.6) by 
"(kr) 

on the left and
Ð(k1) on the right, then sum over polarization states. We then multiply both
sides successively by % ato.d þy, and then take the trace. We end up with
the following system of equations:

T:ltuØ, * m2)ú(fu- -,)] :
I f-r

G _ M\øF I r,lt'urz * mz)Ap,(tþ, - *,¡1u* ffi, (s.14)
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rlúx (lþz+m")r9(lþ'-*r)

1 (8.15)
(s - t1tlz

with

At",:1rUÍLlm2)ú'(mt-lþ')1,. (8-16)

In perturbation theory, we take A\,2: Al',rin the r.h.s. of Eq. (8.14) and

Eq. (8.15), where Al',, arc given by Eq. (S.3) and Eq. (8'a) with gaussian

wave functions for g,2. The correction to the wave function is then given by

solving the system of equations Eq. (8.14) and Eq. (8.15). We finally get:

Al.,r: A?',r* A'r,r, (8.17)

where,

2n) I rl'l'r,rftz t m2)A,'(þ'- *'¡f ""ffi ,

A'r,r: 
Ir' I"* l*r,r(r,r',R¡,R't)Ai 

* flr,z(r, r',,R-¡,Ri)43']

x K(x,t',,R.¡,n'r; Ø#ff*¡"r*ç, - ,¡, (s.18)

where the expressions for 11,2 and f)1,2 ar€ reported in Appendix A.

8.1.3 Physical constraints

Normalization

According to the spirit of the constituent quark model, the state vector is

decomposed in Fock components, and only the twobody comPonent is re-

tained. Since the state vector is normalized as:

(p',,\'lp,À) -2ps6(t)(P-Or¡6)'), (8.19)

it gives for a state of zero total angular momentum, the following normaliza-

tion condition [124]:

Nz:1: If ilrr,r,iú\,s"D, (8.20)
J D îr¡,

where D is an invariant phase space element defined by:

1 d3k I d2Rrd¿1 d3k'r'ì 
- 

------------:
(2")" (I - r)Ze¡,, (2r)3 e¡ (2n)3 2r(I - x)

(8.21)
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With the pseudoscalar wave function written in Eq. (8.1), the normalization
condition is therefore lL24]:

R'r+(m2xlm{ L - *))'
m2,x(I - x)

9fl2 (p)

2A

+ 4ArA2 * 4a(I - ,)AZ D . (8.22)

Decay constant

The pseudoscalar decay amplitude is given by the diagram in Fig. 8.2. Ac-
cording to the usual definition, the decay amplitude is f, - (0l4.,lPS) where

,I, is the JrJs current. Since our formulation is explicitiy covariant, we can

decompose f, in terms of all momenta available in our system, i.e. the
incoming meson momentum p, úd ar. We have therefore:

lr: lps p¡" * B u, , (8.23)

where -fps is the physical decay constant. In an exact calculation of l, B
should bezero. Since ,rs2:0, the decay constant can be obtained according
to:

lps:f'ø. G.24)u.p

Using the diagrammatic rules of CLFD, we can calculate f, from the dia-

q2
I(kt

w(kù 1)
9r

Figure 8.2: Decay diagram

gram shown in Fig. 8.2. One gets:

f 1

\/2Lrß o' * ArL
m'r Q'p

Dp

(8.25)

- -91a-

Tr %(rn, - lÍt)tr\ - ts)(lþ, * mz)
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Having calculated the trace, the decay constant is then given by:

113

rps:rn l"l{
(rn1(1 - r) + mzr) h*2x(l-*)Az D . (8.26)

n'¿r

Electromagnetic form factor

The electromagnetic form factor is one of the most useful tools with which we

can probe the internal structure of a bound state. Moreover, from the electro-

magnetic form factor at low Q' , it is possible to determine the charge radius

for a given particle. This physical observable is therefore very po\4/erful in
order to constrain the phenomenological structure of the wave function. The

Ieading order (impulse approximation) for the electromagnetic form factor is
shown in Fig. 8.3.

In CLFD, the general physical electromagnetic amplitude of a spinless

system can be decomposed as lt2+, t4+]:

Jo - (PSlØ,qlPS) : (p + p'), Fps(Q\ + ÏL^n(Q\ , ß-27)u.p

where Frs(Qr) is the physical form factor. In any exact calculation, B(Qt)
should be zero. We choose for convenience Q'q:0' This implies automat-

ically that the form factors Fps(Q2) and B(Q') depend on Q2 - -q2 only,

since from homogeneity arguments they can depend only on t ' plu'p' : l.
The physical electromagnetic form factot Fps(Q') can be obtained by con-

tracting both sides in Eq. (8.27) with ør' One then has:

Fps(Q\: !'+. (s.28)
2 r'p

By using the diagrammatic rules of CLFD, we can write down the elec-

tromagnetic amplitude corresponding to Fig. 8.3 where the photon interacts

with a quark. Assuming that quarks are pointlike, one obtains:

Flqt(Q2) - e'

with, eo,Ihe quark electric charge and where d is defined by:

ú - 1ot9I1o ',

I,*l D

(8.2e)

(8.30)
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(Ð T

(k)

q2 q2

9fl, (p) q, (kù (P QrQz

Figure 8.3: Electromagnetic form factor, Flnt(Q"), of a two body bound state

where the photon interacts with the quark. A similar diagram can be drawn

in the case of FIL@\ where the photon interacts with the antiquark.

with rl and t9' given in Eq. (8.8). After simplification one obtains,

(kt

(-t(t -x)+m2r) '+ R1 - cRr.A
A,A,,

+ 2(4A!2 + A\Az)

x(t - æ)ml

(-t(t -x)+mzæ)
rnr

The wave functions A" and A', depend on (ø', R'r), with fr : l.'tin the impulse
approximation. If we define the four momentum transfer qby q : (qorA, ql),
with A .0¿ :0 and g¡¡ parallel to ø, we have Q' : -q2 = 42, and thus

R', : Rr - zA. In the case where the photon interacts with an antiquark,
one gets:

F/''Q\_"uJoTr|_Ú(mz_øffi(*,-þ),9,(*'+lÐ)D.
(8.32)

Finally, for the electromagnetic form factor, Fps(Qt), one obtains:

Fpr(Q\ : Fï,s(Q,) + FIL@\. (8.33)

From the form factor, we can extract two major pieces of information: the
first is the charge radius of the bound state defined by:

(,îr) : -uf'rr,(e\lo,=o, (s.s4)

Fln (Q\ : 
", Irl

*4x(r-4e,e;f o. (8.31)
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and the second is the behaviour of the electromagnetic form factor at high

Q' G.". its asymptotic form).

Asymptotic behaviour of the electromagnetic form factor

It is now well accepted that the asymptotic behaviour of the pion form factor,

Fps(Q") - !lQ', is fully determined by the one gluon exchange mechanism.

This mechanism can either be considered explicitly in the hard scattering

amplitude, or incorporated in the reiativistic wave function of the meson.

Here *e adopt the second strategy. At asymptotically large Q2,, the form

factor is dominated by the contribution from the relativistic A2 component

in Eq. (8.1). The high momentum tail of the wave function is thus generated

by the one-gluon exchange kernel, as detailed in Section 8.1.2. We will assume

that the asymptotic behaviour of the kaon form factor is similar to that of

the pion.

Tbansition form factor

The quantum numbers of the zr transition amplitude, zr -) 1*1, are similar

to the deuteron electrodisintegration amplitude near threshold, as detailed

in Ref. lI24l. The exact physical amplitude has the form:

-iFt p : jeor,>,e" P\ Fn1 , (s.35)

where P : p* p' and q: p' - p. In any approximate calculation, the ampli-

tude Fro has to depend on a,. It should therefore be decomposed in terms of

ali possible tensor structures compatible with the quantum numbers of the

transition, as we did above for the decay constant and the electromagnetic

form factor. One thus has lL2al:

-iF r p : -| 
e o rr.r e' P1 F"1 + e 

o rr.r q' u1 B t * € p pmP' ø1 Bz

* (vre, -l voeòBs I (vouo j vrar)Ba - #(vrp * vopr)}l, (8'36)

where v, : êp.aB1u"qpf . From Eq. (3.36) we can extract the physical form

factor F"1 by the following contraction:

-iFnt - ffi"'o'^Q''^Frr' 
(s'37)

For the transition form factor to leading order, the two relevant diagrams

are indicated on Fig. 8.4 (F[o) ana Fig. 8.5 (F'rr), respectively' By applying
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D

(kt
(q)

q2 ^t

9rQz (p)

(kù

Figure 8.4: The leading contribution (Ffr) to the transition form factor,
n ) 1"'y (first diagram).

the diagrammatic rules of CLFD, \'ve can derive the corresponding amplitude
and one finds:

rß
Fio

2
("?,- 

"?o)

q2

T

tit

lrrrlrf* - þr)t,$L - u)r' * *)toUþr* -)] rn2-(p+q-kr)" (8.38)

where en is the quark electric charge. The second diagram which is necessary
to compute the transition form factor can be calculated similarly, and one
gets for {r,

Flo: k? - "3)

1",,

rß
2

[rr* - þt)lr@ - lþ', + rr')lr(lþz + m) (8.3e)

Other diagrams which should be taken into account at leading order either
correspond to vacuum diagrams or are equal to zerofor a.q: 0. The total
amplitude for the transition form factor therefore reads:

F*-,(Q\:{sG?,-"'o)

t.
2D

4e2o(r-x)-2F-¡.A+nQ2

[o,* 
zA2n(t- r) + A"V(r - ")] . (8.40)
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q2 (kt T

(p)
(k)

9r9z (p)

^{
ti' (kù

(q)

Figure 8.5: The leading contribution (Fjr) to the transition form factor,
r -+'y"'l (second diagram).

Axial anomaly The constraint from the axial anomaly is defined at Q2 -
0 GeV2. It gives the transition form factor when both photons are on their
mass-shell. One should have [145, 146,147]:

F*.(e"-o)- 1 
(s.41)') - 4tr2 fn

Asymptotic behaviour At high Q2, the tiansition form factor behaves

like IlQ2. In this limit, we can simplify Eq. (8.a0) and one obtains:

Q2 F*',(Q2) (8.42)

In the approximation ø : I12, the transition form factor can be expressed

as a function of the decay constant obtaining,

Q'F"-,(Q') : 
'/1k?, - "3)f" 

. (8.43)
Q2+*

8.1.4 Numerical results

Data

The wave function is expressed in terms of the scalar functions A1 arrd 42,

which means that we have to determine 5 parameters in our analysis. There

are two parameters per scalar function, A¿, and the strong coupling constant

as well. In order to have an accurate phenomenological investigation, we will

deal with only 3 parameters which are o and B from the scalar function A1

and the strong coupling constant from the one-gluon exchange' Therefore,

Qr

e2+* 
z'ßG'z, - "rr) I"Ilo' * 2A2æ(r - ,>ln

oyr *'l
li I
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the analysis will start by using a scalar function Ar and by applying the

kernel to it we will generate the scalar function A2 without any additional fit
parameter. We will separate our analysis into two parts. The first concerns

heavy particles, such as B and D, and the second focuses on light particles,

such as ¡r and K -

Regarding the particles B and D, it has been explained in Ref. [148] that
the relativistic component A2 goes to zero in the heavy quark iimit. We can

thus safety restrict our choice by taking only the scaiar function Ar as initial
aîsatz wave function. Since we work in a constituent quark model, we use the
following quark masses and decay constants for the numerical applications:

rrtrr : r;nb :4.930 GeV, and Tfi,2 :'trtu:0.35 GeV ,

rrt,1 : TT¿c:1.620 GeV, and Trtr2 : ffiu:0.35 GeV ,

fD - Q.225 + 0.028) GeV [149] , and /s : (0.200 + 0.030) GeV [150, 151] .

Unfortunately, there is no experimental data for decay constants of heavy
mesons. Therefore, we will use values for the decay constants f¡t and f3
extracted mainly from iattice QCD and QCD sum rules, even though it can

be observed that their values may vary according to the framework applied.
Note also that we modify slightly the value of ml in order to have mtlmz )
M. For the meson masses we take,

Mn - 5.279 GeV , Mo: 1.968 GeV .

The strong coupling constant is evaluated at the next to leading order ac-

cording to the heavy quark mass for the B and D mesons. Working in the
constituent quark modei framework, we will assume that the normalization
of the wave function is equal to one.

The second part of our analysis concerns the light particles zr and K. For

light quark systems like zr or K, one would have to consider both components
A1 and Az as initial ansatz. For the reason previously explained, (number
of parameters and simplicity) we will consider only as input the scalar wave

function A1 and we will obtain the relativistic component A2 through ra-
diative corrections. The initial scalar wave function for z- and K will thus
be determined using only three parameters: a, B and the strong coupling
constant, o". For the numerical applications, we take for the quark masses:

trù1 : ffiu:0.350 GeV, TTr2 -- ffiu:0.350 GeV ,

rrtl : Trt 
" 

:0.510 GeV, rrl2 - rrùu : 0.350 GeV ,

and concerning the meson masses, one uses:

Mn - 0.135 GeV , Mrc - 0.497 GeV .
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The coupling constant, cY", is determined according to the asymptotic be-

haviour of the electromagnetic form factor. Its value for the pion and kaon

will be discussed in the next section. Both particles 1{ and 7r ate more easily

constrained than B and D, because of the numerous available experimental
data. In our analysis, we will take into account the decay constant and the

observables extracted from the electromagnetic form factor. For the decay

constant, we take the following values:

f, :0.129 + 0.01 GeV ,

fx:0.159 + 0.01 GeV .

As has already been mentioned in the previous section, one important phys-

ical property and one specific physical behaviour can be obtained from the

electromagnetic form factor. These are the charge radius and the asymp-

totic electromagnetic form factor. We use for the charge radius the following

experimental values:

("?)"*o : (0.439 + 0.03) fm2 [tSz] ,

("?.)"*o : (0.340 + 0.05) tm2 [tSl] .

Recently, experimental data has been re-analysed for the pion asymptotic

electromagrr"ti" for- factor at high Q2. Usually, the value 0.3 GeV2 [154]
has been used for Q'F"(Q\ when Q2 becomes large. since the re-analysis

of experimental data sets from DESY [155] and those extracted from the

longitudinal cross section at Jefferson Lab [156], we will use the following

asymptotic limit:

tim Q2 F*(Q\ = (0.45 + o.1o) GeV2 .

Q2-+ø

Unfortunately, for the kaon electromagnetic form factor, we do not have any

accurate experimentai data sets. By assuming that the kaon is similar to the

pion by sy(3) symmetry, we will consider the same asymptotic behaviour

as for the pion, however with a iarger uncertainty. Thus one has:

ljm Q2Fx(Q\: (0.45 + 0.15) GeV2 .

Q'+æ

Finally, we will assume that the normalization is equal to one in the spirit of

the constituent quark model.

Discussion

By solving the system of physical constraints detailed previously, we have

ext¡acted the wave functions for the pseudoscalar mesons BrD,¡r and K'
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In order to compare the theoretical predictions {y} with the experimental
measurements {r L o,}, we defined the following ¡2 by:

(8.44)

We also define the light cone distribution amplitude",,Q(*) as a function of
the momentum fraction carried by one quark as,

f- d2R,a@): 
Jo ffid(',Rr) . (8.45)

We consider the normalization and decay constant as our input parame-
ters for the evaluation of the B and D mesons and we choose for the value

of the strong coupling constant (calcuiated to next leading order) that given
at the scale p, - rnb and ¡.r : TTLc for the B and D mesons respectively. The
average transverse momentum J@ is the only output in the case of heavy
mesons. For the pion and kaon wave functions, we consider in addition to the
two previous input parameters, the asymptotic electromagnetic form factor.
Then as output parameters, one obtains the charge radius, the transverse
momentum ffi and the asymptotic transition form factor (the latter
case is only valid for the pion).

B D K

x":Ð(T)'

or : 0.2804

h: L.4680
o" : 0.2190

at :0.2426
h:2.100
a" : 0.3200

or : 0.056

h: 31.L2
d, :0'92

or : 0.099

h: L9-0L

a" : 0'68

Table 8.1: Parameters 41,B1(G"V-') and o" for the B,DrK and zr wave
functions

The input parameters have been fitted and the results for the constants
at,, Pt and a" are listed in Table 8.1 for all of the mesons mentioned previously.
For the heavy quark systems, such as the pseudoscalars B and D, the values

of o1 and B1 arc strongly related to the value of the decay constant fap¡. ln
Fig. 8.6, the distribution amplitudes for B and D are shown. It can be seen

that the distributions O(ø) for B and D are peaked at high values of ø and
vanish at low values of ¿. This behaviour originates from the heavy c and
å quark masses. Their distributions reach the maximum when u is around
r7o" : 0.93 and xTo' : 0.86, respectively. This roughly corresponds to

2Note that O(ø) refers to the scalar function á1
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Figure 8.6: Pseudoscalar distribution amplitude. Full line, dotted line,

dashed line and dot-dashed line represent the distribution amplitude for

B, D, K and z- respectivelY.

the ratios mulMe and m"f Mp. Finally, the average transverse momentum,

\Æi, is equal to 0.530 GeV for the B meson and takes the value 0.413

GeV for the D meson. These results are listed in Table 8.2'

Now let us focus on light particles. We are mainly interested in the pion

and the kaon pseudoscalar mesons. Regarding the pion wave function, many

studies have been performed in the past and it is still under investigation.

we can refer to the Gaussian model [141, 157], the BSW approach [75] and

the B.F. (Braun and Filyanov) wave function [158, 159]. We can also cite

the very well known asymptotic form [160, 161, 162] and the c.Z.like wave

function 1161, 163, 164] (chernyak and Zhitnitsky). Note as well that wave

function âirttib,ttion amplitudes can be expanded in terms of Gegenbauer

polynomials, where their coeficients are calculated using Light Cone Sum

Rules (LCSR).
In order to determine the pion wave function, recall that we use as input

parameters the decay constant, the electromagnetic form factor at high Q2

and the normalization. As output parameters we obtain the electromagnetic

form factor at low Q2 (that gives us the charge radius), the Þjtion form

factor, the axial anomaly and the transverse momentum V'(R¿-r) The ce

efficients c¿r,,pr and a" which are necessary to obtain our wave function are

listed in Table 8.1. The distribution amplitude is shown in Fig. 8.6 as well as

'ata
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K7tDB
ln

ormalization
Decay constant (GeV)
Asymptoti c Q'Fps(Q2)

1.00

0.200

1.00

0.225
1.00

0.129
0.35

1.00

0.159
0.37

out t
Asymptotic F1

Charge radius (f-')
\M (cev)

X2

0.530
0.0

0.413
0.0

0.1

0.410

0.290
1.0

0.386

0.320
0.28

Table 8.2: Physical constraints for pseudoscalar particles
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Õ(x)o.o
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0.2 0.4 0.6 0.8 I

Figure 8.7: Difierent pion wave functions, asymptotic (dot-dashed line), C-2.
(dot-dotted dashed line), our work (dotted line).
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Figure 8.8: Pion electromagnetic form factor. Experimental data are taken

from Ref. [165] (solid square).

in Fig. 8.7 where comparisons3 can be made with the C.Z. and asymptotrc
pion wave functions. In Fig. 8.7 the C.Z. and asymptotic pion wave functions

are:

Q(r)'a^ : 6c(1 - n) ,

Q(*)"t : A(L-2r)2exp lm2
872r(1 - r)

where A and 7 are parameters that define the wave function. In Figs. 8.8' 8.9

and 8.10 are shown respectively, the pion electromagnetic form factor squared

at low Q2 , the pion electromagnetic form factor at high Q2 and finally the

transition form factor. For the electromagnetic form factor one obtains very

good agreement with experimental data at low Q2. The pion charge radius

gi.r"t by the slope of the electromagnetic form factor curve ãt Q2 : 0 GeV

is 
"qnal 

to (r2-) : 0.410 fm2. This is inside the experimental uncertainty

range. At high Q2 (see Fig. 8.9), the electromagnetic form has been frtted

anùtherefore it is consistent with the data sets [156]. We underline that we

take into account the one gluon exchange process which contributes strongly

to the quark momentum distribution at high Q2. We refer the reader to

i

T I

3The dist¡ibutions have been plotted in order to get a maximum equal to one-
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0.1

2

et(G"v')

Figure 8.9: Asymptotic pion electromagnetic form factor. Experimental data
sets are: full diamonds [172], full triangle down [155] and full square [156].

literature regarding the pion electromagnetic form factor [166, 167, 168, 169,

170] for comparisons. The transition form factor shown in Fig. 8.10, gives

good agreement with the experimental data [171] at high Q2 and it also

agrees with the theoretical limit. The only experimental constraint which is
not well reproduced is the axial anomaly. A summary of the results is given

in Table 8.2. Finally, we have also computed the transverse momentum for
which one obtains the following value: ffi: 0.290 GeV.

In a similar way to that for the pion, we investigate the structure of
the kaon wave function. We apply exactiy the same approach as outlined
previously, with the same input and output parameters except that we do

not use the transition form factor and the axial anomaly. In Figs. 8.11

and 8.12 are shown respectively the electromagnetic form factor squared at
low Q2 and the electromagnetic form factor at high Q2. The coefficient s ot, þt
and a" obtained by fitting the physical observables mentioned previously are

listed in Table 8.1. In Table 8.2 are given the values of our input and output
parameters.

For the electromagnetic form factor, we mainly focus on low Q2 since

we do not have enough accurate experimental data. However, we can check

our results at high Q2 because of assumptions (kaon is similar to the pion
by ^9U(3) symmetry) that give us an asymptotic value of Q2 F7ç(Q2) around
0.37 GeV2. We observe that our theoretical results and the experimental

0.5

0.4

0.3

0.2

q2rn{e2)

0
4JI0

I1
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et F,
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q'1c"v'¡

Figure 8.10: Asymptotic pion transition form factor compared to the
data [171]. The dot-dashed line is the analytical asymptotic transition form
factor from CLFD and the full line is the asymptotic behaviour of the pion
transition form factor.

data sets are consistent at low Q2 as well as in very good agreement with
other theoretical approaches, such as soft QCD [173, 174]. By calculating
the electromagnetic form factor slope at Q2 : 0 GeV one is able to obtain
the kaon charge radius. In our work one has (rfl-) : 0.386 fm2. As for the
pion, the charge radius is inside experimental uncertainty. Regarding the
electromagnetic form factor at high Q2, we have good agreement with the
expectation of obtaining a similar behaviour to the pion electromagnetic form
factor. This comes from the inclusion of the one gluon exchange that allows

the electromagnetic form factor to become flat and stable at high Q2.

Finatly the distribution amplitude of the kaon wave function is shown in
Fig. 8.6. We emphasize that the asymmetry in the distribution arises from

the s quark mass as expected. From the distribution amplitude, we can also

calculate the kaon transverse momentum which is around Æil = 0.320

GeV. The study of the kaon ends the analysis regarding the pseudoscalar

mesons. In the next section we investigate the vector particles such as the p

and c¿.

0
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Figure 8.11: Kaon electromagnetic form factor compared to data [153] (solid
squares) and to data [175](solid circles).
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Figure 8.12: Asymptotic kaon electromagnetic form factor
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8.2 Vector mesons

8.2.L Formalism

We shall now concentrate on the structure of vector mesons JP :1-. Fol-

Iowing the same approach as for the pseudoscalar mesons, the wave function
is decomposed in terms of all possible independent spin structures. One

obtains ll2al:

e)",,(kr,k2,p,ur) : \ñ "ì(p) 
a""(kr) ó, u",(kr), (s.46)

with:

Óp: 9t
(k, - k,

2m2
. 1 u)LL &, - kr)rþ
t 9z m'lp ¡ % ¡¿r+ 'Pn 2*p

i
- g5 

rnu.pJse¡",p1lc1,kzpu1 
I o"ffi, (s.47)

where e)(p) is the polari zation vector of the vector meson, and rn is the

mass of the quark and antiquark. 'We consider here only the case of equal

masses for the quark and antiquark. The wave functiona is determined by

six invariant functions pL-6 which depend on two invariant scalar variables.

This decomposition is similar to the deuteron wave function used in previous

studies 1176,1771. In terms of the variables k and n, the wave function takes

the form ll2al

V)r", (k, n) : 1finuL"rþ^(u,n)wo,, (s.4s)

with:

ú(k,,,) : r,fto* ht(ry-") *r,|{e"{"'o)-o)
1

+ f^;(3k(n'ø) + 3n(k'ø) - 2(k'n)ø)

* ,,|!ri[k x n] * r"#[[k x n] x ol , (s.4e)

where wo is the twecomponent Pauli spinor normalised to wlwo: 1, and o

are the usual Pauli matrices. The relation between Ú)(k, n) and /(k, n), is

the same as the relation between the spherical function Yt^(t) and n.

The coefficients of the spin structures in Eq. (8.a7) and Eq. (8.49) are

scalar functions of two indeplndent invariants, which we can choose to be k2

aNote that the wave function written in Eq. (8.47) does not include the colour factor
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and k.n, since these variables are only rotated by a Lorentz boost lI2a]. In
the non-relativistic limit, only two components remain, fi and /2, and they
only depend on k2. This can be easily seen if we keep track of the c factors,

and then let c go to infinity to obtain the non-relativistic limit. We shall

neglect in the first approximation the tensor component, fz,, so one is left
with the non-relativistic wave function ft = ÓNR(k2). The relation between

rr(kz¡, pz(k2¡ and /NR(k2) is given by [17S]:

ç'(k2)

ez(kz)

#õ,/ró**(k'), (8.50)

(8.51)
rn

'/ló**(u')4en

Finally, the wave function dt*(k') should be normalized according to [178]
and one obtains,

(8.52)

8.2.2 Decay constant

The vector decay diagram is similar to the one for the pseudo-scalar particles.
It is shown in Fig. 8.13. The decay amplitude Mt"p to produce a photon with

q2

9rQz (p) (kù v
e-

Figure 8.13: Leptonic decay diagram

polarisation ep from a vector state of polarisation ep can be decomposed in
terms of all possible tensor structures. Therefore we can write MPp lL78l as:

N2=L:* Iot*^(k')l'D

(kt

qt

- -91a-

Mpp : Falp-r ffi",,, * h"y * mrTo + Dogo , (8.53)
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where the tensors afp are defined as followed:

up uo P'PP&'t :9" 
M2 )

oTo : pqup * pqu, ,

oä' : pqup - p'a, ,

aTo : (t'(')e 
'

uo P'PPa'5: M"'

By algebraic manipulations [17S], $/e can isolate the physical amplitude F as

a function of MPP, and one obtains:

t : 1(t, - 2Iz* /¿ * /r) , where I¡: Mrpaïo . (s.54)-2

The decay amplitude can be calculated by using CLFD diagrammatical rules

and we obtain:

Mtrp: 'ß* lorrlo,{* - 
tþ')t,o - ts)(tþz + *¡)n . (s.55)

One can thus extract the physical amplitude, F, which can be written as:

,: 
Irl*F6NRçu\f 

o, (8.56)

where one has

729

u:-'y ['-,(;-'*)] (s5z)

For two identical quarks, the relative momentuñ, k, is defined by:

çz _ F.2t * m2_ _ rn2, (s.bg)Ir :4;¡¡a;¡- "0 )

and the non-relativistic wave function ó"*(k') is parametrized as a gaussian:

dt"(k') :rþ(*) l(r,R,1) , (8.59)

with {(r) given by:

,þ(*)=oexpl-r(ffi--')] (860)
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Here, o and B are two parameters determined from experimental data sets.

The function X(r, R1) has the form,

X(c, R¡) : 4r2 þ exp -p

with the following normalization:

Ri
axQ - r)

(8.61)

(8.62)
l"*

d'R.,- 1

2x(l - x @F
I(r,R1) :1 .

After averaging over the polarization states of the vector, one obtains for the
decay width:

f(v -+ e+e-) : #"?n\lFl' , (8.63)

where En is afactor arising from the electric charges of the constituent quarks,

M is the mass of the vector meson and o" is the electromagnetic fine structure
constant. In the non-relativistic limit, one obtains the following decay width
ft*(Y -+ e+e-),

ft"(y -+ e+e-) : gzn#o3n?ló*"(r: 0)l' , (8.64)

where dt"(") is written at the origin as,

dt"(" - o) : (8.65)

8.2.3 Numerical results

Data

Because of the lack of experimental data for the vector mesons on which we

are norvr/ focused, we will start our derivation by using a non-relativistic wave

function. The vector \ryave function, dt"(k'), is determined by two param-
eters, o and B, which are calculated from the two following constraints: the
normalization condition and the leptonic decay. In our numerical applica-
tions, \¡¡e use the constituent quark masses for u and d quarks as previously
defined. Regarding the vector masses, one takes:

a1/tr

-
2r/p

Mp:0.770 GeV , M, - 0.782 GeV .
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p a
a: 0.213

þ :5-840
a:0.204
É :6.589

Table 8.3: Parameters a,B(GeV-'?) for the p)e wave functions.

The leptonic decay is the only physical constraint which is used in our anal-

ysis. We apply the following experimental data for our simulations:

f""(p) : (6.77 t 0.32) KeV ,

f""(r) : (0.60 + 0.020) KeV .

The charge factor En which arises in the decay width formulation has the

following form:

(8.66)

where eu and ed are the quark electric charges. We also assume that the

normalization is chosen to equal one for all the vector mesons analysed.

As output, we will get the mean relative momentum square (k2), and the

averaged transverse momentum square (Ri)'

Discussions

In solving the system of physical constraints (normalization and leptonic

decay width) detailed in Section 8.2.1, we have determined the wave functions

corresponding to the vectors p and a.'. The parameters o and B inciuded in
our ansatz wave function have been listed in Table 8.3.

The distribution amplitudes for these vectors are plotted in Fig. 8.13. We

investigated the mesons p and ø where no radiative corrections have been

taken into account. As output results, we obtain the mean relative momen-

tum squar" (kr) and the averaged transverse momentum squared (R") for

all of the vectors studied. Their values are also enumerated in Table 8.4.

One defines in the non-relativistic limit the mean relative momentum

square of the bound state bY,

) : f,{", - e¿)', E?(r) : r¡{", 
+ 

"¿)'
E?(p

(k') : I"- #k'ld'"(k')l' ' (8'67)

Regarding the determination of the p and cll wave functions, the lep-

tonic decay width used as a constraint does not include radiative corrections
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Figure 8.14: Vector meson distribution amplitude: the dotted line and dot-
dashed line represent the results for the distribution amplitude of u and p,

respectively.

through the one-gluon-exchange. Their distribution amplitudes are plotted
in Fig. 8.13 and it appears that they are very close to each other as expected.

We are working within the constituent quark picture where the normalization
is equal to one for both vectors. The decay constant that is very similar for
p and u Uo : 22I MeV and l, : 2L8 MeV) is used as the second constraint
through the leptonic decay width. These two reasons mainly explain why
their distribution amplitudes are very similar.

The low values obtained for the mean relative momentum squared (an

output), (k2), (see Table 8.4) are in total agreement with the expectation
of large radii for the particles co and p. One calculated the mean relative
momentum and one obtains (k')l*? - I.420 for p and (k')l*?: I.224
for a. According to the parameters determined with the constraints detailed
previously, we have determined the averaged transverse momenta for pru.
Their values, which are listed in Table 8.4, respect the hierarchy created by
the constituent quark model, since the transverse momentum for p and ø
(0.459 GeV and 0.434 GeV, respectively) are bigger than those for zr and K
but smaller than those for B and D. This consistency over the quark scale

in the investigated vector and pseudo-scalar mesons is conserved.

Finally, we analyse the distribution amplitude iÞr(Rr) as a function of the

I
t.
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p u)

input

Normalization
Decay width (KeV)

1.00

6.77

1.00

0.60

output

I (cev) 0.459

0.L74

0.0

0.434
0.150

0.0

(k2) (Gev)'?

X2

Table 8.4: Physical constraints for vector particles.

transverse momentum Rr. This can be evaluated by the following expression,

1 r) E(æ,Ra) dz , (8.68)Õ,lR' ) = (2tr)32x(I - x)

where I(r, R1) and /(c) have been defined in Eq. (3.60) and Eq. (8.61)'

respectively. The distribution Q2(R1) is plotted for the vectors ø and p in
Fig. 8.15. For c¿ ar'd p, the distribution in terms of the transverse momentum
Rl is almost identical and indicates once again the similar constitution of
these two particles. We note that the average transverse momentumfor these

particles is around 0.35 at R" : 0 GeV and goes down to 0 near R1 - 1

GeV. It emphasises the properties carried by a system of light quarks.

Note also that taking the slope of the distribution amplitude iÞ2(R1) at the

hatf width, gives the constituent quark mass for the given particles. Hence,

one obtains a quark mass around 0.45 GeV for p and ø. That finalizes the

analysis of light vector mesons.

8.3 Summary
Here we focused on four pseudoscalar particles. Heavy quark and light quark

systems have been analysed through the mesons B,Drr,, and K. Regard-

ing vector particles, we have studied the p and ø mesons. In using all the

available physical constraints, we have determined the unknown parameters

involved. in our ansatz wave functions. According to the experimental data,

we have described meson particles by fitting our parameters and by includ-

ing one-gluon exchange (except for the p and ø). The physical constraints

(depending on the considered particle) that have been taken into account are
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Figure 8.15: Vector distribution amplitude as a function of R1. Dashed line
and dot-dashed line represent the results for ø and p respectively.

the electromagnetic form factor (asymptotic behaviour and charge radius),
transition form factor, decay constant and leptonic decay. The normalization
condition has also been utilized. As output results, we have calculated the
mean relative momentum square (k2), and the averaged transverse momen-
tum squar" (R3-). Now, since one has fully parameterized the wave functions
for BrDrr, and. K as well as for p and ûr, we are able to calculate the weak

transition form factors between them in the next chapter.
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Chapter I
Transition form factors

" Choisis toujours le chemin qui semble le meilleur même s'il paraît plus

dfficile: l'habitude le rendra bientôt agréable. "

Pythagore

Having determined the wave functions for the particles B, D,n,, K,p and

u1 we can now investigate the transition form factors between two pseu-

doscalar mesons and between pseudoscalar and vector mesons. We mainly
concentrate our study on B decays, however we also include D decays for
completeness. We begin our analysis with the semi leptonic decays of pseu-

doscalar into pseudoscalar mesons described in the usual formalism (i.e.

quark model) and in the CLFD framework. Similar investigations will be

made for semi leptonic decays of pseudo scalar into vector mesons'

.1- Weak decay form factors for P + P tran-
sitions

9.1.1 Usual formalism

Many studies have been done regarding the pseudoscalar pseudoscalar tran-
sition. Some of them have been performed in the quark model using heavy

quark theory [179, 180, 181, 182, 183], the light front formalism [141, 184]

and applying the Isgur-Wise function [iS5, 186]. Note also that in lattice

QCD [187, 188, 189, 190, 191, 192, 193], perturbative QCD [160, 194] and

QCD sum rules [76, 195, 196, 197] calculations were derived to analyse this
type of transition.

I
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The b and d decays are mainly controlled by the following weak current

"Ift¿¡ (enen though just Ç7pq61a¡ is relevant),

4tol: h'0 -'Ys)qalo, (9'1)

where g is a light or a heavy quark. As usual, one can define the physical

amplitude for the semi-leptonic decay X +Ylut by the expression:

M - G¡vz;n 
ezlJt"lPL)Jt;e , (g.2)

\/2

where l;n is the leptonic current and G¡ is the Fermi constant which takes

the value 1.166391 x 10-5GeV-". ln Eq. (9.2), \P2lJt'lPù is the hadronic ma-

trix element including the weak current as defined previously. The hadronic
matrix element can be given by the following decomposition:

(P2lJt"lP) : (P' t Pù'r+k') + (a - Pz)'f -(q') , (9.3)

where f+k') and /-(q2) are the transition form factors. Pr and P2 are

respectively the four-momentum related to the initial and final particle states,

involved in the hadronic current. By introducing another set of form factors
Fo(q') and F1(q2), the amplitude can be expressed by,

(P2lJt"lP) : Fr(q') h*Pz- f'*'un''1ry-l
M?-M;

q2
Y

(e.4)

In Eq. (9.4) M and M2 are the particle masses and q is defined âs q : Pt- Pz.

It is straightforward to derive the relationship between the two sets of form
factors. One obtains,

(e.5)

(e.6)

In the helicity basis, the form factors F (q') and F6(q2) represent the transi-
tion amplitudes corresponding to the exchange of a vector and a scalar boson

in the ú-channel. Note that at q2 - 0, one obtains F (q' - 0) : Fo(q' :
0) : "f+(q' 

: 0). This means that the exchange of either a vector or a scalar
boson are similar at q2 = 0 in the t-channel. It is also possible to compare
our results with the usual assumption of pole dominance which is currently
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applied when the whole q2 range is not accessible. In this case, the form
factors f+(q') are described by,

r+k\: ,, /*(o), ., . (9.2)
\r - q,lM;",")" '

where Mpoh denotes the meson mass and n refers to a singie pole or dou-

ble pole dominance. This latter expression has been derived according to
experimental data.

9.L.2 CLFD formalism

In the Covariant Light-Front Dynamics formalism, the exact transition am-

plitude does not depend on the light front orientation. However, in any ap-

proximate computation the dependence is explicit. But \¡i¡e can parametrise

this dependence since our formalism is covariant. Hence, the approximate

amplitude expressed in CLFD is given by the following hadronic matrix [148],

(P2lJt"lPL)cLFD : (F,t Pz)'f+(q')+(p,- Pr)'Í-(q2)+ B(q2)uu , (9'8)

where B(q') is a non-physical form factor which has to be zero in any ex-

act calculation. The last term represents the explicit dependence of the

amplitude on the light front orientation ø. In order to extract the physi-

cal form factor l+k"), without any dependence on ¿r, from the amplitude
(P^Jt'lPùcLFD ) we will proceed as follow. Firstly, we calculate the following
scalar products X,! and Z which are defined by,

X : (h + Pz)t".e2lJt'lPr¡cwn -
f*k\lrf*l + MÐ-n')* Êk\@? - MÐ+ B(q2)P,'u(r*a), (e'e)

!: (h - Pz)r'(PzlJ,lPr)cLFD -
f-(q')q' + f+Q\(M? - MÐ + B(qz)r'', (L - v) , (e'10)

and finally,

, _ ur-(PzlJ'VùcLFD : Í_(q\(L _ y) + f+(qr)(r+ y) . (9.11)
u'Pt r \¡ /\

In Eqs. (9.9, 9.10, 9.11) the term y defines the ratio between the two momenta

Pr and Pz times the lightlike four vector ø as,

a.Pz Mt + Pt'Pz 1

'ü:-:o u.P, Ml + Pt.Pz
, with Pr.P,

2
(M?+Mî-q'). (e.12)
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For q2 > 0, it is convenient to restrict ourselves to the plane defined by Q.d:_
0'. This condition is allowed in the system of reference where P1 ! P2 : Q

with Pro - Pzo f 0. From the scalar products x ,! and z we can isolate the

form factors .f+(q2) ftom B(q2). Then, one gets the expressions for the form
factors f+k'),

f*Q\: f)(y, q')ú+(a,e2,l,Y,z), (9.13)

where Q(V,q') is identical for both form factors /a(q2):

Q(v, q') : 1
(e.14)

al(@ - r)M? + q2)y - ut?@ - t)) )

and where the functions iú¿(y, e2, X ,,y, Z) have the following form:

ü-(y, Q2,,x,,!,2) :
!(y+1)2+x(y2-1)+

ü+(y, Q2,X,!,2) :

l(y'-1)+x(y-t)'+

lG - wluî - mî@- B) + q2@ - t¡]u

@-Ðml-m1@-1) +ø'@+r¡ z . (e.15)

The second step is to express the amplitude (P^JplP1)cLFD without using
the form factors f+@'). In CLFD the leading contribution to the transition
amplitude (P2lJplPùcLFD i" given by the diagram shown in Fig. 9.1.

(q)

q, q,

1)

9r9z (k) (P)(P) Qr ö'q;

Figure 9.1: Transition between two pseudoscalar particles (leading contribu-
tion).

/ ovc

/\

v \
(ùtr' \

By using the CLFD rules (see Ref. [12a]), one can derive the matrix
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elements from the diagram (Fig. 9.1) and one has,

(PrlJplP)cLFD -
fl

| ,,1-t,(*!,+ tþ)t,e - ts)(mz + rþz)út(m, - É,)] fin, (e.16)

where t9¡ is defined by:

-q - 
t lA''¡ ¡ a 4'I

"t 
: ftll. Ar,tfr) /5 and ,e¡ : :.,orglto. (e.17)

A;,¡ arethe scalar wave functions defined previously in Chapter 8. The indices

i : lr2 denote the scalar component of wave functions whereas the indices
j = I,2 refer to the initial and final meson, respectively.

Note that ø and Í' aîe the fraction of the momentum carried by a quark

q1 (spectator quark) as given by:

and t'

Finally, recall D is the invariant phase space element given by:

dtkt 1 d3k 1 d2Rrdø

W2xQ - u) '

u.let
,,

u'Pt
u'kt
a'Pz

(e.18)

(I - a)2e¡, (2tr)3 e¡
(e.1e)

Now, one can replace the hadronic matrix element (PrlJPlP)cLFD ) which

appears in the scalar products X,Y, Z defrned in Eqs. (9.9, 9.10, 9.11)' by the

hadronic matrix elements (P2lJt"lPL)cLFD calculated by applying the CLFD
diagrammatic rules and given in Eq- (9.16)' Hence, by using Eq. (9.13) we

are able to compute the form factors Í+(q') as a function of q2 and this over

the whole available momentum range 0 < q' 1 f^or-

9.1.3 Semi-leptonic decaY

The form factor f-(q') yields a contribution to the semi-leptonic decay which

is proportional to the lepton mass and therefore can be safety neglected in

first approximation in the calculation of the decay rate. Using this assump-

tion, the usual semi-leptonic decay rate is proportional to just the form factor

Fr(q') : Í+(q2) and takes the form,

l'11møz

f : fo I ¿, Ø' - t)"t'f'*þù, (9.20)
J n*¿n

D:#
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where 4 is defined as 4 - P1.P2f MLM¡. \min: L (zerc recoil) aÍtd\mao:
(tW? + Mt)l2MLM2 - these correspond to q' - t^o, : (M, - M2)2 and

q' : q?^¿n': 0, respectively. By writing the form factor h+(n) as a function
of f+(rù, h+(ù is normalizedto one at the point of zero recoil (7 - 1) and

its slope near 1 is the so'called Isgur-Wise function p2:

h+(ù:l- p'þt-t)+ol(rt-1)'l . (e.21)

The other parameters in Eq. (9.20) are:

ro:lvq,s"rffie^ with (:#, @.22)

where Vqrn, is the relevant CKM matrix element. An extraction of the CKM
matrix element could be made by comparing experimental data with thee
retical predictions for the semi-leptonic decay.

This work BSW model Lattice QCDSR
B+D

Fs 0.72 0.69

+T
Fo 0.35 0.33 0.28 0.30

-+
Fo 0.40 0.37 0.30 0.29

+T
Fo 0.67 0.69 0.65 0.50

->
Fo(O) 0.72 0.76 0.73 0.60

Table 9.1: Form factors for the pseudoscalar pseudoscalar transition. BSW
model [73,74,80], Lattice QCD [187, 188, 189,190, 191,192] and QCDSR [76,
195, 196, 197].

9.L.4 Numerical results for P + Plut
We calculated the transition form factors in the case of the pseudoscalar

pseudoscalartransitions, such as B + D,, B -+r, B -> K, D + r and D +
K. We are working in a constituent quark model where the CLFD formalism
is applied. The wave functions used to describe the particles 8,, D,, K, and zr
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have been determined using the same approach as that for the form factors

(we refer the reader to the previous chapter for all the details regarding their
determination) and have been constrained by several physical observabies

such as decay constant and electromagnetic form factor. We recall that all of

the wave functions include the effect of one gluon exchange, which provides

indirectiy radiative corrections to the transition form factor.

Each of the weak hadronic transitions mentioned previously are induced

by a charge current quark transition. The B -> D transition is induced by

b + c,the B -+ r' by b + d,the B -+ 1{ by b -> s, the D -+ n- by c -+ d, and'

the D + I{ by the c -+ s charged quark transition. In Table 9.1 we list the

form factors at q2 : 0, computed in our work, and comparisons with other

approaches (Lattice QCD, QCDSR and BSW) are shown as well. Because of

nq. 1O.f ¡ we expect to obtain similar results for Fs(q2) and F1(q2) at q2 - 0'

We observe that our results are qualitatively in agreement with the three

other frameworks, lattice QCD, QCDSR and BSW. However, it appears that
our results are closer to those obtained by BSW than those given bV QCDSR
and lattice QCD. This can be understood by the fact that both BSW and

our work are derived in a constituent quark model approach. This is not

the case for the QCDSR and lattice QCD formalisms. In the next section,

we investigate the weak transition form factors in the case of B -+ Vlu¡ and'

D -+ Vlu.

9.2 Weak decay form factors for P -> V tran-
sitions

Numerous studies of the weak decay form factors in P -+ V transitions can

be found in the literature. As for the P -+ P transition, different frameworks

have been applied. We refer the reader to theoretical approaches such as using

HQET [19S, 199, 182, 183], light front and Isgur-wise function [185, 186],

latiice qCf,l [187, 188, 189, 190, tgL,Ig2,193], perturbative QCD [160, 194]'

eCD ,rr* rui", [26, 1g5, 196, 197] and "exotic" analysis 1200,20I,202,2031.
All of them investigate the hadronic matrix elements that drives the weak

decay transition between two hadronic states'

9.2.L Vector current

Since the Lorentz invariance is maintained, one can define the hadronic form

factors as a covariant decomposition of hadronic matrix elements of vector

and axial currents. For a transition between a pseudoscalar and vector meson'

one has usualiy four form factors - three for the axial current and one for the
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vector current. We first focus on the vector current 7r, where Vp : Qz'YpQt.

In that case the transition can be written as:

(P2,elVrlP1) : 
ffie¡,,ope*'(P2)PT 

Pf Vk\ ' (9'23)

The form factor V(q') can be understood as the 1- intermediate state in
the transition 0- -+ 1-. It is sometimes more convenient to define the form
factor V(q') by,

(P2,elVrlP1) : ig(q')"¡",op c*'(P2XA + Pr)qP , (9'24)

where g(q') is related to the previous form factot V(qz) by the following
expression,

s(q'): ffi'(q') ' (e'25)

In Eqs. (9.23,9.24,,9.25), M¡ and P¡ arc respectively the mass and momentum
of the initial and final states. ,*'(Pr) defines the vector polarization with the
condition ,'(P")'Pz,:0 and Q: Pt - Pz.

We can also express the pseudoscalar-vector transition form factor in the
explicitly covariant light-front formalism. By analogy the amplitude of the

l- ---1-- ----L- - L- ---:r:-- :- -:-:l--¿- ¿L^ ^ -r-^-^:¿:^- mL^+-^-^:
PSeUCTO-SCall¿lf-VECùrUt l,I¿tlst¡r¡ij¡l tS Ë¡I¡.j.¡j.41,.L ùv üt.rc P - ^ 

úLo,trs¡ù¡ur¡. i-¡rç ùrdj.rÐi-

tion (1- lJrl0-) has the same structure since the decomposition is determined
by the kinematic components only. In our case, the spins and parities of the
particles are the same for (1-14,10-) and (0-lJ*ll-l.Therefore, in the im-
pulse approximation the corresponding amplitude of the pseudoscalar vector
transition for the vector part is given by ll24l,

(P2, elV)P1)cLFD : 
h"ro,.,e*p 

(P2)q' P] A(q'), (9.26)

with A(q2) a dimensionless scalar function. One has to decompose the
hadronic matrix element (P2,elV)P1)cLFD on the general invariant ampli-
tudes in order to show explicitly the dependence of the transition amplitude
on ar. Then, one obtains,

(P2,elV)P1)cLFD : e"o(Pz)Fo, Q.27)

where F* contains all of the possible terms that are a function of u lI24l:

-2Fr*: 
fu"rr,.rq" 

Pl A(qt) I err,.rq'u'Bt * e¡"pryP{a182

* (vo e, * vrq o) Bs * (vru, * vra o) B a - &(vo Pr, r v¡, P2 p) B 5,

(e.28)
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(a)

q2 q,

Qrgz (P) Q, (kù q,q; (P',e)

Figure 9.2: Transition between pseudoscalar and vector particles (leading

contribution).

1)

wilh Vo : êpaþtudq?P]. The terms, B¿ (i : 1,5), are scalar functions

(carrying no physical meaning) that are equal to zero in any exact calculation

but which, in any approximate calculation, paramettize the dependence of
the transition amplitude on a. By separating the ø-independent parts from

the non-physical ø-dependent ones in Eq. (9.28)' one can extract the physical

form factot A(q") and one finds:

A(q'):- Frr. (9.29)

Now one has to express F* by applying the diagrammatic CLFD rules in

order to determine (P2, elJrlP)cLFD (r"" Eq. (9.27)) without including the

form facto, A(q'). Then one has,

(P2, elJ )P1)?"" : eü (Pz) Fpp :

l,{h-.(&)r' l-a'r*;+ 
þ)t'@z+ tþz)

" (# + A,,,ft)ru{-, - *,,] *\r, (e 30)

where, þ0, the vector wave function is given by,

eororr^(lrr,lcz,Pz,ur) - t/* ,)(pr) ù"(kr) Óo u"'(kt) . (9.31)

we refer the reader to chapter 8 as well as Ref. [12a] for all of the defini-

tions regarding the vector wave function. Repiacing Frrin Eq. (9.29) by its
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expression given in Eq. (9.30) one obtains the physical form facto, A(q').
The relationship between the form factor derived in CLFD, A(q'), and in
the usual formalism, g(q'), ìs the following:

g(q,):-o!!3'). (e.82)
Mt

In a similar way and for completeness one can determine the relationship
between the form factors A(q') anð'V(q2). One has,

v(qr):i(M+-(_:)A(q'z). (e.J3)
M3

It is then possible to calculate the form factor A(q'), V(q') and g(q2) over

the full range of values for q2.

9.2.2 Axial current

After the extraction of the vector form factor, V (q2), we investigate the three
fn'm f¡ctnrs nntc.-l A".(û\. A..(a2\. A"(ê\- tha,t describe the axial transitionrv uvuvqr .^u\Y ,/, ¿^r\Y ,/r,^J\Y ,/,

between pseudoscalar and .r".to. particles. Their usual expression is the
following:

(
(P2,elA)P1) : { (M* M2)eiA1(q2)

l.

e"(Pz).Q t,- Wr;tn + Pr),A"(q') -zMr¿(&)'qø,(e"çn'¡- 
'r(n')) ) 

,

(e.34)

where the momentum transfer q is defined as q - Pt- P2, the axial current A,
is 4z'lp'yset and the zero q2-momentum condition Ao(0) : Ar(0) is required.
Moreover, the form factor At(qt) can be written in terms of A1(q2) and A2(q2)
by,

A"(q"):WA,k")-WA,(q'). (e.35)

The physical meaning of the form factors A¿(q2) is the foilowing: fu(q2) and
A"(qt) are related to the 1+ intermediate states, whereas Ao(q') refers to the
0+ state. We can also define another set of form factors in terms of ø1(q2)



9.2. FORM FACTORS FOR P + V TRANSIT/O¡ú ).45

(e.36)

(e.37)

(e.38)

(e.3e)

where the form factors o+(q') and f(q2) can be linked to As(q2),Ar(q'),
Ar(q') and A3(q2) by the relations:

and f (q2). They take the following expression:

(P2, elA ) P1) : - f (q') e|(Pz)

- ,*(Pr)-(P, - Pù 
lo*(n'XA 

+ Pr)o t o-(q')(P, - ,ù,f

f (q') : -(M, * M2)A1(q2) ,

o+(q'): # *Ar(q') ,

o - (q,) :'#lo*n' r- r. to' )]

The general transition amplitude regarding the axial current can be written
by analogy to that one for the n -41 transition. The transition (1-lJrl0-)
for the axial current, corresponds to the same change of parity as the tran-
sition (1+Url0-) for the vector current. Therefore, the transition amplitude
expressed in the covariant light-front formalism becomes as lL24l:

(P2,elJ)P1)CLFD -
ei4z){ntn'l ler'ùgi - Proe') + Fz(q2)lqoq' - ø'z0'ol + F"(q')Piq,\ '

(e.40)

Here, ,r(Pr) is the vector polarization of the outgoing particle with the con-

dition er(P2)Pl : 0. The amplitude describing the pseudoscalar vector axial

transition (written in light-front dynamics) is determined by three form fac-

tors F1(q2) ,, Fr(q") and F3(q2). We emphasise again that in any approximate

caiculation, this amplitude should incorporate the ø-dependent contribu-

tions. This is explicitly given by ll24l,

(P2,elJ)P1¡cnro:ei@z)Gl , (9.41)

where,

Õo,: Fr(q')l(P,q)gr* - Pzrqr) + Fr(q')løow - q'go*f

* Fs(q2) Pt t"ep * ¡' PzulP, o - qo|' P) I q") + C' Pr rQp I Btq2 w, P1, f u' P2

! B2P1¡"up ! B'rP2ru, * Bsarq, * Bausrap , (9'42)
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where Fr(q'), Fr(q') and F3(q2) are the three physical form factors- On the
other hand, A',C',, Bt, Bz, BL,, B" and B¿ are the non-physical terms used to
express the ø dependence. By solving Eq. (9.a1) we can extract the form
fu"tor. Fr(q'), Fr(q') and F3(q2), and ãan write them as a functi on of. G rr:

F,,,,"(q') :'#" 
{å lq,'¿, 

Ptou, + FÍ?)," eput" t rl,')," r,,'o

+ F{:),, q,,,f. p}¡ Fll),",,,0+ r{lì, spp + F{l)," P,oq,

+ rllJ,, Qplt" * Fll),, Prrqo+ FÍ,i:à PrrPrr\, (9'43)

where the analytic expressions for the kinematical terms Fj'ì,3 u,od the func-

tion Ff!, can be found in Appendix B. By analogy to the method applied

to calculate the term F*oin the amplitude related to the vector current V,
ïve can also derive GP' by using the diagrammatic CLFD rules:

(P2, elJ )P1)"r"' 
o : eilz)Gl :

l"{ ft,;qr,¡nl- a, f*; + tÍ) ? t ot u) (*, + tþ,)

" (# * o,,,h)r"ø,- *,,] *) D . (e.44)

Finally, one replaces in Eq. (9.43) the expression for G* giuenby Eq. (9.44)
and one obtains the form factors Fr(q'),Fr(q') and Fs(q2), derived in the
light-front formalism. The correspondence between the form factors øa(q2)

anð, f (q2), and fl=r,s(q2) are

o-(q') : -lrrk') + Fr(q') *'rrrk\l ,

a+(q2) :

rG') =

1

2
1

,

F (q')

Fr(q')

(e.45)

(e.46)

(s.47)l*l-Ml+n'f*q'p,(q")
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Note that the relationship between the form factors F¿=r,"(q'), and the usual

A¡(q2) is:

Ao(qr) : hlzø, r"{ør) + F1(q2)(Ml - 'Ðl ,

A,,(q') : Wlølzr,k\(u? - M;) - (F,(q') +zFz(q2¡¡nz] ,

1Ar(q'):inr(q')(M'+¡ar). (e.48)

By following this formalism, we can calculate ali of the form factots A;=s,s(q2)

over the full range of q2-momentum according, in terms of the form factors

F¿=r,t(q') derived in CLFD.

9.2.3 Semi-leptonic decaY

For completeness, we detail the semi-leptonic decay rate for the pseudo-scalar

vector transition. The usual definition can be written as:

f4møa ,^ Lr:ro t - dq(n'-r)'/'l (t* €'-2trù{n?(ù+H'*(,t)}*"3fnl] ,

r t L 
(e.4e)

where all of the terms proportional to the lepton masses have been neglected.

In Eq. (9.49) the upper limit for \møo: (M? + Mt)lzMLM2 where M1 and

M2 always define the ingoing and outgoing particle masses. The expressions

for the "bare" semi-ieptonic decay rate, ls, is the following:

ro = lvq,q,rffie', (9.50)

with ( : MzlMt a,nd Vqr* denoting a CKM matrix element involved in the

semi-leptonic decay. The helicity amplitud"r, I/o(?), H+(ù, which appear in

the semi-leptonic decay rate take the form:

| 
{,(n) - 2(n'-1xf'fn)'l , (e.bl)Ho(,ù- l(n -€Xl aE)Ar(r) -2(n' -1X:Þ/\- ' Þ/ 1+€l / \

and,

H+(rù: (1 + 6¡Ar(z) +2(n2 - t)'/'e
v(q)
1+€

(e.52)

A¿(ù and V(r7) are the previously defined form factors, expressed as functions

of a.'By comparing theoretical with experimental results regarding the semi-

lepionit decays, we are able to determine in a reasonable way the CKM

matrix elements, Vnrn, arising for a given decay'
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9.2.4 Numerical results for P -> VIv¿

By applying the formalism detailed previously we can calculate the weak

transition form factor in the case of a pseudoscalar vector transition. We were

focused on those like B ) p, B -> t*'l as well as D + p and D + ø. The first
two transitions correspond to a decay induced by the charge current b + d

quark transition whereas the last two transitions correspond to a c -> d quark

transition. We list in Table 9.2 our results obtained for the vector current,
i.e. the formfacto, V(q'), as well as those obtained for the axial current -
i.e. the four form factors Ar(q') (with i :0,,t,2,3). For comparison we also

Iist the results given by lattice QCD and the QCDSR formalism.

B+p
This work 0.34 0.32 0.30 0.29 0.32

BSW model 0.32 0.28 0.28 0.28 0.28

Lattice 0.37 0.30 0.27 0.26 0.30

QCDSR 0.34 0.38 0.26 0.22 0.38

B+u
This work 0.34 0.32 0.30 0.29 iJ.32

BSW model 0.32 0.28 0.28 0.28 0.28

Lattice
QCDSR
D+

This work 1.19 0.66 0 5 0.87 0.66

BSW model 1.23 0.68 0.78 0.92 0.68

Lattice 1.1 0.59 0.65 0.55 0.59

QCDSR 1.0 0.57 0.5 0.4 0.57

D +w
This work 1.19 0.66 0.75 0.87 0.66

BSW model 1.23 0.68 0.78 0.92 0.68

Lattice
SR

Table 9.2: Form factors for the pseudoscalar vector transition within the
BS\V model 173,74,80], Lattice QCD [187, 188, 189, 190, I91,I92,204,205]
and QCDSR [76, 195, 196, L97,206].

0v 0 , A,I 00 ) Ao(0) Atl

It appears, as in the previous case (P + P), that our results are in
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agreement with those from QCDSR, lattice QCD and the BSW model. The

small discrepancy which can be observed between all of the results may come

from the different formalisms applied but it is still smaller in the case of

P -+V than P -+ P.

9.3 Summary
Based on the covariant light front dynamics formalism, we derived the weak

transition form factors in the case of pseudoscalar pseudoscalar transitions

as well as pseudo scalar vector transitions. The wave functions (see Chapter

8) describing the particles B, D,T, K, P and ø have been taken into account

in our approach. This yields a dependence of the form factors on these wave

functions. It has to be noticed that our results for the form factors have

been shown at q2 - 0 oniy. In theory we derived all of the equations which

are necessary to obtain the behaviour of the form factors according to the

momentum q2. However, in practice we are not able to compute the form

factors over the full range of q2 because of problems related to numerical

simulations. This work is still in progress.

we also compared our results with QCD sum rules and lattice QCD. we
emphasize that both approaches have a limited range of applicability. QCD
sum rules gives correct results only at low q2, whereas lattice QCD gives

correct results only in the high q2 region. However, comparisons between all

of the transition form factors in both cases give good agreeme4t.

Knowing the values for the form factot. 4B¡",F'îK and Afto at' q2 : Q,

we can now focus on the final state interactions that arise in B decays and

make an estimate of them in the calculation of the hadronic matrix eiements.
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Part IV

QCD Factorization in B DecaYs
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Chapter 10

QCD factorization

" Auoir un système borne son horizon; n'en auoir pas est impossible. Le

mieur est d'en posséder plusieurs. "

Raymond Queneau

In this final part, we are explicitly taking into account all the final state

interactions at the order o" and we are evaluating them in B decays. QCD
factoúzat\on will be applied to reach this goal instead of naive factorization.
Form factors and wave functions determined in CLFD will also be used in
our analysis. In this chapter we introduce, in an extensive way, the formalism
of QCD factorization (derived by M. Beneke, G. Buchalla, M. Neubert and

C.T. Sachrajda 12071, socalled BBNS approach) necessary to calculate the

hadronic matrix elements arising in B decay amplitudes.

10.1 QCD factorization in B + PV decays

Factorization in charmless B decays involves three fundamental scales: the

weak interaction scale Myy, the ô quark mass scale rm6,, aîd the strong inter-
action scale Aqco. It is well known that the non-leptonic decay amplitude
lor B + PV is proportional to:

A(B + PV) xlC;(ù(PVIO¿(ùlBl , (10.1)

where we have omitted tfr. CXVf factor and Fermi constant for simplicity.

The matrix elements (PVIO;(ù|B) that depend on both rn6 and l\qcn,
contain perturbative and non-perturbative effects which are not accurately

estimated in the naive factorization. The coefficients C¿(p), include strong

153
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interaction effects from the scales Myr down to m6, and have been under

control for a long time. The aim is therefore to obtain a good estimate

of the matrix eiements without using naive factorization, where the matrix
element of a four fermion operator is directly replaced by the product of
the matrix elements of two currents, one semi-leptonic and another purely

leptonic. In QCD factoÅzation [208], assuming a heavy quark expansion such

as rmb Þ l\qco and soft collinear factorization where the particle energies

are bigger than the scale Açco, the matrix elements (PVIO¿(ùIB) can be

written as [209]:

[-lgvlo{ùlB) : (Plila)(vUrlo) 
I 
1 + t r*a! t o(ttqcol*u)1, (10.2)

LNJ

where r' refers to the radiative corrections in o" and j¿ arc the quark currents.

It is straightforward to see that if we neglect the corrections at the order 4",
we recover the conventional naive factorization. We can rewrite the matrix
elements lfVlO{ùlB), at the leading order in lt'qcof m6, in the QCDF
approach by using a partonic language and one has [209, 2L0,211,2I2,2L3,
2L4l

lrvlo;(u)lr) : Ff"Q) l, drr!,(x)þy(") + Al'" @) I"
d'vrlo@)óo@)

I 1

+ l"' 
t, I: o* 

Io' 
¿ar!'G,r,s)óe(€)óv(x)6,ço¡ , (10.3)

where þ¡a with ll/[ - V, P, B are the leading twist light cone distribution
amplitudes (LCDA) of the valence quark Fock states. The light cone mG
mentum fractions of the constituent quarks of the vector, pseudoscalar and B
mesons are given respectivelyby xry, and, (. The form factors for B + P and

B -+ V semi-leptonic decays evaluated at # :0 are denoted by Ff-"(0)
and Af;-v(O). Eq. (10.3) can be understood via Fig. 10.1 where a graphi-
cal representation of the factorization formula is given. The hadronic decay

P:Ivl,
V=M,

B +B
B

P=Nil, V=Mr

+

P=M'

Figure 10.1: Graphical representation of the factorization formula"
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amplitude involves both soft and hard contributions. At leading order, all
the non-perturbative effects are assumed to be contained in the semileptonic

form factors (Fig. 10.2) and the iight cone distributions amplitudes. Then,

non-factorizable interactions are dominated by hard gluon exchanges (in the
case where the O(ltqço lmu) terms are neglected) and can be calculated per-

turbatively, in order to correct the naive factorization approximation. These

hard scattering kernels [209, 2L0, 2I1,2I2, 2I3,214,2I5], T¿I¡, and T¿II, are

calcuiable order by order in perturbation theory. The naive factorization
terms are recovered by the leading terms of T¿!¡, coming from the tree level,

whereas vertex corrections (see diagrams (a-d) in Fig. 10.3) and penguin cor-

rections (see diagrams (g-h) in Fig. 10.4) are included at the order of a"inT¿I¡.
The hard interactions (at order O("")) between the spectator quark and the

emitted meson (see diagrams (e-f) in Fig. 10.4), at large gluon momentum,

are taken into account by T1II .

Figure 10.2: Soft corrections at the order o"-

ÀL Jú -\Á _þL

(a) (b)

Figure 10.3: Order o" corrections to the hard scattering kernels: vertex

corrections.

LO.z Effective l{amiltonian
Phenomenological studies in charmless hadronic B decays are based on an

efiective Hamiltonian. We refer to Chapter 2 lor details, definitions and

explanations and just recall that the Hamiltonian results from a sum of 1o

cai operatorc O¿(p,), times Wilson coefficients C¿(p), times the quark mixing

(d)(c)
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(e)

Figure 10.4: Order o" corrections to the hard scattering ke¡nels: penguin

corrections and hard spectator scattering.

matrix element Vor. In this part, we will use a Hamiltonian which includes

electromagnetic, Qz1, and chromomagnetic, Qa.er oPerators as well as anni-
hilation contributions, ó¿. This gives us,

?ten : #{"*r,(c t o; + c, oi)

- vuVi[,__p, 
"o 

o ¿ t c z t o z -, * c an""] -,F 
.n%uvi" 

f n r u, r w"b ¿] *, "
(10.4)

The definitions of the operators O¿ are recalled for completeness:

ol,: (p"b)v-e(4pp.)v-,q ,, 05 - @"b")r-¿(4ppp)v-A ¡

Os: (q,b,)r-oDo,@Bqòv-A ¡ Oa: (q,bp)r-o\q,(quBqòv-¿, ,

Os: (Q,b.)r-oÐn'@pqòvlA ¡ 06: (Q,bB)"-o\,0'(quBqòv+l ,

Oz : (Q,b.)r-oDr,9r"'r@bqp)v+.¿, , Oe : (Q,b)v-oDo,],e'n(dBø)v+e ,

og : (Q.b,)r-oÐn,t"|@bqòv-A , orc - (q,bfiv-oÐo,9re'n(dpø")v-e ,

(10.5)

where (|rqr)v+.q : Qrlr(1 L %)qr, a, B are colour indices, e'o are the electric
charges of the quarks in units of lel, and a summation over all the active
quarks, at the scale ¡l : O(ma), q' :'t),,d,src,ó, is implied. In Eq- (10.5) p
and g denote the quark u or s according to the given transition b + u or
ó -+ s. Expressions for the operators O71 and Oss arê,,

uOzt : ñ *u so r,(r + 'y5) Ft"'b ,

-ãoes : # *u sor,(r + .,t6)Gt""b. (10.6)

(h)(g)(Ð
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In Eq. (10.6) the definition of the dipole operators O71 and Ose corresponds

to the sign convention applied for the gauge-covariant derivative iDþ : i0þ *
g"Alt". Listed in Table 10.1 are the Wilson coeffi.cients, C¿, calc;,tlated at the
scale ¿r : Írtrb¡ in the Naive Dimensional Regularization (NDR) scheme [207,
2161. The following sections will present in detail the necessary formalism

used to factorize the hadronic matrix elements.

NLO Ct Cz Cs C+ Cs Ca

þ: rnb -0.190 1.081 0.014 -0.036 0.009 -0.0042

NLO Czla Calo Csld Crcla

p: rmb -0.011 0.060 -1-254 0.223

LO
-0.318 -0.151

Table 10.1: Wilson coefficients C¿ in the NDR scheme. Input parameters are

^S 
: 0.225Gev, mt(mt) : 167 GeV, rnb(rnb) : 4.2Gev, Mw - 80.4 Gev,

a: LlL29, and sin2|y, :0.23.

t}.z.t The QCD coefficients ø¿

The coefficients a¿ 1207 ,216] have been calculated at next-teleading order.

They contain all the non-factorizable effects at the first order in 4". In order

to ciearly separate every contribution, the coefficients a¿ õ"Íe written in two

parts:

ai: Qi,I * a;JI , (10.7)

where the first term includes the naive facto¡ization, the vertex and penguin

corrections, while the second term contains the hard spectator interactions.

According to the final states, the terms ø¿ have to be expressed for two

different cases: case A corresponds to the situation where the recoiling meson

M1 is a vector and the emitted meson M2 is a pseudoscalar, and vice-versa

for case B. For case A, the coefficients ø; take the form [207, 216],

at,r:t,*frj+ffv*)
a2,r:tr*quj+ffv*)

at,rr:fftru(BMr,Mr) ,

az,rr:fftrr(BMr,Mr) ,
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(13,1 :tr*ft
aX,t -- t^ * fr

T + 
CIO'VMf

41t I

L + 
Cry'VM]
4rJ

,_Tr;.1

C H(BML,M"),

C6H'(BM1,Mr),

}HAPTER 10. QCD FACTORIZATTON

nCpa,ctr3,II:-T

I olJ,a , a4,rr : fft"H(BMr, Mr) ,

Cal
-t¡\I" L

Csl
-t
^tLCal

-t
^tLCzl
-t

^tLCrc
¡/"

:Cs*

-a1 
r

-v6T

:Cz*

: Cel

Ctró,1

nCpa"
-ctr',II: N:

a7,I

aZ,r L - 6+:-) * ol,,,o , daJI:0 ¡

TCpa" n
-az,rr: fft"Ht(BMbMr) ,

a8,II :0 ,

1 - 
ci%-vç\,

+7f J

,T) * o!",,,, ,

l, *Tr*) , 's,rr:fft,rH(BML,M,) ,

l, * Tv*l + aLor,u ¡ (trto,rr : Úfft"H(BML, Mr) ,

(10.8)

al.o,t: C- + ff.

where the terms o?n,I,b,,ol,I,b,,a!,r,, and alo,I,b ate,

Da'r,t:+'#, ozr,t

ol,t I

asr:Csl

C sFa
4r

-p _ " Plì"i ^p _ " P'*i /1n oa'B¡,b= g,-i: ) al.o,I,b: *;i, (10'9)

where the subscripts 2 and 3 refer to the corresponding twist-2 and twist-
3 LCDAs of the mesons. In Eqs. (10.8) and (10.9) Vm,Viø represent the
vertex corrections, H,, H' describe hard gluon exchanges between the specta-

tor quark in the B meson and the emitted meson (pseudoscalar or vector).
Pf*,r,P'*,",,P',uì'i,Pe¡]i arc the QCD penguin contributions and electroweak
penguin contributions, respectively. These quantities contain all of the non-
perturbative dynamics and are a result of the convolution of hard scattering
kernels g, with meson distribution amplitudes, (Þ. The other parameters are

C¿ = C¿(p) (in NDR), a" : a"(þ) (next to leading order), C r : (N: -L) lzN.
with N" : 3. The vertex corrections Vv anð, Vj¡ involved in a¿J are given
by 1207,,2L6),

Vv :12 In& - tg +
p lo' 

o, s@)ar,r(x) ,

(10.10)Vío : L2 tnT - e + 
lo'a* 

sG - x)Q¡a(r) ,



10.2. EFFECTIVE HAMILTONIAN

with the kernel g(ø) having the following form,

159

(10.12)

óu(")
1,-* t

g(x) - 3
1 

- 
1)+

Inx - t¡rI-x )

+lzrir@) -rn2æ +y- (B + 2in)rnæ - (x<+ t - o)'l . (10.11)
L L_T J

We assume that one can neglect the higher order terms in the expansion in-
volving Gegenbauer polynomials for the leading-twist light cone amplitudes,
Qnr(*), given by,

av@):6r(1 - ¿) 1+t "Y1òcl/2(zx-r)n=l

where 
"Y 0ò are the Gegenbauer moments that depend on the scale p.

Cl/'çr¡ u." .o"ffi.ients defined such 
^" 

Cl/'(u): 3u for n : I and, Cll2çu¡ :
(312)(5u2 - 1) for n :2. since the corrections to the asymptotic form are

very small, we use Av@):6¿(1 - ø) and we obtain the result,

¡7¡L1
I d,r s(x) ou(Q : I dæ s(I - r) Q¡a(n) : -; - 3in . (10.13)
JoJoþ

Regarding the QCD penguin contributions, Pf,4,¿, one has 1207,2161',

Po¡,t,, : t,li'_u * 
? -c'(",)]

+ (c, -'utrli-i * å - Gu(o) - Gtt(r

+ I (a + c u +|" nc 
" 
+|"nc,o)li^T- c' (", )] -zcå[r

q=qt

)l

I"
I

dx

Pfø,": Ct

+!Q4* cat|;",cr+ rnU - Gu(so)

li^T +?s-ô'(",)]

+ (c, -lt; !- c*ror - ê,(1)]

p
q=q'

- zcå[r , (10.14)
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while for the electroweak penguin contribution", ffi* , one finds

P,,;:r* : (c, t N"cz) 
[är î *? -c'(",)]

)[ -f,c*ot- f"'t'i] *(
2+5fr"Cs * N"C+

I ( ¡r"ø + c q* N 
"c s* t r)1",1

q=q'

rmb

11

4

3
rnU-ç*(r,l] -n"c ;{, I" arffi ,

(10.15)

and

P',i'o* : (c, t N"cz)li^T *? -ôr(",)]

- (c"+ N"c,)li^T *?-'re*<ol -Lrc*Ol

+ )ì1n"c. * c¿-r N.c, + cu)|",I!^T- ônu(",)] - ¡¡"cír-r ,

q=qt

(10.16)

where the subscripts 2 and 3 refer to the corresponding twist-2 and twist-3
LCDAs of the mesons. ss : m?lmf is the mass ratio and can be equal to
su : sd.: 0,.s" : m?lm| or .e6 : 1. Atl active quarks at the scale p : O(ma)
are represented by q' : urd,,s,c,b. The functions G¡a(s) and G¡a(s) have

the following expressions:

G¡a(s) : dx G(s - ie,I - x) Q¡a(r) ,

I

t,

I,
1

Gnalt¡: dx G(s - ie,\ - x) Qe*(æ) , (i0.17)

where G(s,,x) takes the form,

2(L2s * 5ø - 3ø ln s) 4 (2s * x)

¡t
G(s,,æ) - -{ Jo 

O"u(I - u) ln[s - "Q - ")*]
-r T

9x 3r3/z
arctan 4s-r (10.18)
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Explicitl¡ in Eqs. (10.14-10.16), the terms G¡ø(t"),Gv(0) and G¡a(l) are

given analytically by,

Gnt(""): 
å - lmr" * 1"" + 16sl -!tf+-(t + zs" +2asl)

x (2 arcran vÆ - in) t r2s!(r - ä'") (2 arctan ,M - in)z ,

Gpr(o):l*7, ,

Gtt(r): T - J'fJn -+, (10.1e)

and the terms Gr(t.),Gv(t) and ôi¿(O) are give by,

G*(".): f ,t - 3"") - 3lts" * (1 - 4s")3/z(2arctan 'tr4- ")l
G*t(o):t* *To ,

G*(r)
2¡r 32

(10.20)
rß9

The vertex and penguin corrections to the hard-scattering kernels are eval-

uated at the scale ¡; - rnb. The imaginary parts arising in both penguin

functions g(ø) and G(s, x), give us two sources of strong rescattering phases.

Finally the hard scattering contributions, including chirally-enhanced contri-
butions in the coefficients o,i,rr) are written as 1207r2L61,

H(BV, P) -
fBfu óe(€)

H'(BV,P):

m2"A!'v (o)

fnfv
m2"Af;'v (o)

with the usual definitions for fp,Ír,AFtv(O) and rns. For case B where a

vector is emitted., the expressions for a¿ are similar to those in case A except

for the parameters of H(BV,P) and H'(BV,P) which take the form:

óp(*) ó"(a)
l"' 

o, 
l"' 

o, I"'
dy

dy
l"'0, l"'* I"

1

( 1-t l-a
óe(€) óp(*) y@, (10.21)( æ r-v

H(BP,v):ffi 
L'o, L'o* I"'

d,y
óøG) óv(*)

€ L-*
óp@)
I-y

2p,pl-æ fp@)
X + rmb r 7-y
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H'(BP,,): - Ir' 
o, l"' dr dy óe(Ð óv(")

(a
2ltp r óop(v) (t0.22)muI-rL-A

where the chirally enhanced factor is parameterized by the factor ¡t p :

^'rl(*, + rn2)1 with rn1 and m2 being the current quark masses of the

meson. The divergence coming from the twist-3 contribution is treated phe'
nomenologically by,

xn : [' ar!'rfu) : ft da - | : (r + ps eió*)rnry (10.23)"n Jo-"r-a Jo "r-y ' I\n \

In the above equation, the phase þ¡¡ and the coefrcient p¡¡ are chosen in an

arbitrary way. Because the gluon is ofi-shell the strong coupling constant

a,(p), the Wilson coefficients C;(p) and then the hard-scattering contribu-
tions l/(BV, P) or H(BP,,V) (with prime or not), involved in the terms ø¿,¡¡,

are evaluated at the scale *h : {Ñ;F, with Â¿ : 0.5 GeV rather than the
scale ¡; - rnb.

LO.2.2 The weak annihilation coefficients b¿

It has been shown in Refs 1217, 2I8) that weak annihilation contributions
should not be neglected in B meson decays, even though they are power sup-

pressed in the heavy-quark timit (Ìrqcolmu + 0). Moreover, their contribu-
tions could carry large strong phases with QCD corrections and hence, large

C P violation might be obtained in B meson decays. Annihilation contribu-
tions, at leading order in o", are given by the diagrams drawn in Fig. 10.5.

They do not appear in QCD factotization formuiae and they cannot be cal-

(Ð

Figure 10.5: Order as corrections to the weak annihilation.

culated within QCD-based factorization approach [209, 210, 21I, 2I2, 213,
214,2L51. Nevertheless, their contributions denoted by A(M1,,Mz)", are ap-
proximated in terms of convolutions of hard scattering kernels with light

(l)(k)(t)
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cone expansions for the final state mesons. Since they differ according to
the final states, A(Mr, M2)" is divided into two different cases: (recall) case

A is where Mt is a vector meson and M2 is a pseudoscalar meson. Case B
corresponds to the opposite situation. If we define o as the longitudinal mo
mentum fraction of a quark contained in M2 and y - 1 - y, the momentum
fraction of an antiquark contained in M1, then the diagrams related to the
annihilation contributions (without including the B decay constant) can be

expressed (for case A) in terms of 1207,2L6]

A{,,(V,P)" =0,

A!"V, P)" = n6,"

Ai(v,, P) : n6."

If we consider case B, one has:

A{,'(P,V)" : o ,

A!re,v) : -1r¿.

lo' 
o* 

I,'orov(")oË(y)

lo' 
o* 

l,'oroy(ø)op(y)

A:"(v,, p)" : -.res l"' 
o* l"' orq,r1"¡or(u) 

|
Aî(v, P)" : no, 

lo' 
o, 

Io' 
d.y ay@)ÞPr(y) (r0.24)

2t"p 2A

n'¿b æalL - ry )

2( v+1

l"' 
o, 

I"' 
oroþ(r)or,( ,)'z# -ora'

A\(P,V) : no, 
Io' 

o. I, dy ap@)av@)

dx d,y ap@)ay@)

ALe,v)o : no" 
Io' 

o* 
Io' 

d,y epp@)a"(t)'##h, (10.2b)

where Õv(") is the leading twist light cone distribution amplitude of the

vector meson p ot a and iÞ¡(ø) and iÞþ(ø) refer to the twist-2 and twist-

3 LCDA's (asymptotic forms) for the pseudoscalar zr or K. It Eqs. (t0.2+)

and (10.25¡, ttre superscripts i and f on Af (M1, Mr)" correspond respectively

to the gluon emitted from an initiai state or a final state quark. Finally,

the subscript k: (1,3) on A'.r(MrrM2)" describes the three Dirac structures

involved in the un.,ìhilution cðntributi ¡ns: (y -A) S ( V - A), (V - A)Ø (V + A)

A'r(P,V)o : -no" Io

1 1
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and (-2)(s - P) s (s + P). considering the case where LcDA's of light
mesons are symmetric under æ ) r, and assuming ^9U(3) flavour symmetry
conservation, one can simplify Eqs. (10.24) and (10.25) and one obtains the

following approximation for the weak annihilation amplitudes,

A\(V, P)" : - A:"(V, P)" = 18no"

Aî(P,V)" : -A:z(P,V)" = 18n c"

Aï(V, P)" : +Aie,,V)" = lrosrx

It(v, p)" : -t{(p,v)' = 6tra"rr(r*Z - ,^) , (10.26)

with the factor r, is defined by ,y'(p) - 2Mllmu(p)(*0,0t) +*0,0t)).
Following Ref. [209], the divergent endpoint integral ft ax lx is parameterized
by X¿. and will be treated as a phenomenological parameter with the same

value for all the annihilation terms A(Mr,, Mz)". That is, in a similar way to
X 7¡, the parameterization is the following:

xt: (1. + p¿ e;ó")rnu, (70.27\

with d¿ an arbitrary phase. Taking into account the flavour structure of the
various operators involved in the weak annihilation topologies, the annihila-
tion amplitude can be written as,

A"(B+PV)xfnfpfv t t veav|"b¿. (10.2s)
P=urc i=L14

In the above equation, fn,fp and lv refer to B, pseudoscalar and vector
meson decay constants, respectively. The coefficients ó¿ in Eq. (10.28) ex-

pressed in terms of linear combinations of A(Mr, Mz)", have the foilowing
form 1207,2161:

br(M', Mz) : ffcro\{rr, Mr)o ,

br(Mr, Mz) : 
ftcr,+n 

{ur, Mz)o ,

b"(Mr, M") : 
fr{r"or(Mr, 

Mr)' + csAL(ML, Mr)o

* lc, + ¡ú"cr] A!"(ur, *ù\ ,

(r^ - n*+) ,

(x^-n*+),

lrn - 
u(rZ + 2xA)] ,
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Cp

M
Cr
N:

bn(Mr, Mr) : {c^ei{wtr, Mr)o + c6Aî(Mt, ur)"}

165

bi (Mr, Mz) : CsA\(Mr, M") + CTAT(ML, M2)

* lc,+ ¡r"c] A!"Qvt,, *r"\ ,

bi* (Mr, Mz) : 
ft{trro\(Mr, 

Mr)" + c"A"(Mt, twr)} , ( ß.2s)

where br(Mr, M2) and br(Mr.,, M2) are the current-current annihilation pa-

rameters arising from the hadronic matrix elements of the effective operators

O1,2. b3(M1,Ma) andbn(Mt,M2) are the QCD penguin annihilation param-

eters (the most relevant effects) and blw (M1, Ma) ar'd bl* QWt, M2) are lhe
electroweak penguin annihilation parameters coming respectively from the

effective operators Os-o and Oz-rc. The quantities ó¿ depend on the final
state mesons through the terms A(Mt, M2)" defrned previously. It is crucial

to note that the terms A(Mt, M2)" are independent of the form of the B
meson amplitude because the momentum fraction of the quark spectator in
the B meson, f, has been neglected in front of Í,ÍrU and 9,, assuming hard

scattering. This approximation may need to be improved in future, however

it is expected to give the correct order of magnitude of the weak annihilation
effects.

1-0.3 Input parameters

10.3.1 Form factors, decay constants, cKM matrix el-
ements and quark masses

As defined. previously, Fo,r(k'),V(k') and 4s,1,2,s(k2) are the form factors

describing transitions between pseudoscalar and vector particles, where k2

defines the momentum transfer involved in the corresponding transition. \Me

refer the reader to Chapter 5 for the usual definitions and properties of the

form factors. In our numerical computations, we will use those calculated in

CLFD (see Chapter 9). Recall,for the caseof B -> pn,theirvalues are:

Fott" - 0.35 ,

and for B -+ pK ,, their values are:

Flr-* - o.4o ,

A3-o: 0.34 , (10.30)

A3'': 0.34 (10.31)
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The decay constants, f e, fn, lo, f x and the CKM matrix element parameters

A,À,p,,4, have the same values as those applied in Chapter 5 of Part I'
The quark masses that appear in the calculations, contribute to the QCD
p"r,grrì.r Pe*,n and,electroweak penguin corrections PorùI* , as well as the hard

scattering kernels Gv(tò and G¡a(so) via the term so : mllm\- For the

numerical applications we take the following quark masses:

ffiu:0:rnd:Trl,s:0 ¡ rnc:1.45 GeV, and rnb:4.6 GeV. (10'32)

The evaluation of the hadronic matrix elements of the (S + P) S (S - P)
operators, via the equation of motion and the twist-3 LCDA's of the mesons,

yields a chirally enhanced factor proportional to the quark masses (which are

renormalization scale dependent). The quark mass values have already been

listed in Chapter 5.

10.3.2 Light cone distribution amplitude (LCDA) of
the mesons

QCD factorization involves the light cone distribution amplitude (LCDA) of
the mesons 1207,216] where the leading twist (twist-2) and subleading twist
(twist-3) [2i9] <iisi;ribuiion ampìii;udes ar.e taken into aeeourtt. For a lighi
pseudoscalar meson the LCDA is defined as,

(P(k)lQQ2)q(z)10) :

I I'"* "i(tk'22*Ek'2"{#rrr"t 
x) - ttp'yslrt,r, - o,,tcpz'ry] 

} 
,

(10.33)

where f p is a decay constant, þp is the chiral enhancement factor and z :
22 - zt Õp("), Qor(*) and Õþ(r) are the leading twist and subleading twist
LCDA's of the mesons, respectively. All distributions are normalized to
one. Neglecting three-particle distributions such as quark-antiquark-gluon,
it follows from the equations of motion that the asymptotic forms of the
LCDA's must be used. They take the forms:

op(t) : 6ø(1 - t),, Qer(x) : L, a"r@): 6ø(1 - x) . (10.34)

For the LCDAs of the vector mesons) the usual definitions applied here are,

¡l
(}lQQ)o,"q(z)lv(k,))) : t(e)k,-r)kr)f+ | d, "-i'k''al@), (10.35)

Jo
'^'- *, 

Itoo, "-i,k.'af;ç*¡ , (10.86)(}lq!)t,qQ)lv(k,À)) : k- níf,
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where e is the polarization vector. O#(") and O$(u) are the transverse and

longitudinal quark distributions of the polarized mesons. Assuming that the
contributions from Oü(") are power suppressed, Qv(r) takes the following
form,

@v(") :o[1ø) :6ø(1 -x). (10.37)

For the wave function of the B meson, we will use the distribution amplitude
determined in CLFD (see Chapter 8). To conclude this chapter, the end-

point divergences parameterized by the terms X¿ and X¡¡, and included in
hard spectator scattering kernels and weak annihilation contributions, will
be treated by taking the following values: the phases Ót and þ7¡ ate equal

to 0o and the constants p¿ and 4r¡¡ are equal to one. Despite the fact that
several studies 1220,22L] have fitted Ót and d¡¡ from different experimental

data, we shall use conventional values for them since the uncertainties carried

by ó.t,u are large. Recall that theoretically speaking s¡,¡7 could vary in the

range {-180, +180}.
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Chapter 11

Branching ratios for B decays
into plr or pI{ in QCDF

,, II n',y a pas rnoaen de contenter ceul qui ueulent sauoir le pourquoi des

pourquoi. "

Leibniz

Now that we have introduced QCD factorization, !1'e can .pply this for-

malism to the calculation of the branching ratios for the decays B -+ pn and

B -> pK. Hence, we can again (see chapter 5) compare our results with
experimental data providing by BABAR, BELLE and CLEO.

1-1.1 Generalities

Investigating the branching ratios fot B decays is not an easy task since

we have to deal with the high to low energy scale invoived in the hadronic

matrix elements that arise in the B decay amplitude. Many studies have

been performed in the past regarding this subject. We could refer (for the

QCD factorization framework) to that for B decays into two vectors 12221'

into two pseudo.scalars [223], into pseudoscalar and vector 12241, into two

pions and into pion kaon 12251... Branching ratios have been analysed in an

ãxtensive way by using the naive factorization formalisrrr 1226,227,2281 as

well as in perturbative QCD factorization 1229,230,23L1. Before beginning

the analysis of branching ratios fot B decaying into pt or into pK, we shall

make a few comments regarding our approach'

169
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. As in Chapter 10, the input parameters such as the parameters of the

CKM matrix, A,À, p and q, the decay constants fn,lrc, Í0, f., the quark

masses rnu)rnd)rnb)rns) and the B life-time values TBo)TB+ (as listed in
Chapter 5) will be used in our numerical applications.

o Regarding the form factors involved in our calculations, we shall use

those listed in chapter 9 and determined in the CLFD approach. we
fix the value for the form factor As(kz) which describes the transition
B + p, and we keep free the other form factor \(kz) - that describes

the transition B -> 7r or B + K - since its value is not determined
with the same accuracy and stili needs improvement.

o Because of the complexity of the QCD factorization method and the
difierent uncertainties carried by many parameters included in the for-
mulation (for example, the phenomenological parametrization of the
divergent point integral, X¡ ü Xs,in the annihilation and hard scat-

tering contributions, respectively), we shall fix all of the parameters

such as QA,H, ÓA,H ) except the form factor F (k') and the CKM matrix
parameters p and 4.

Â ^^^-li-^ l^ ^-atriarrc ofrr.lioo ,11Loto nrrmar^rlc fif c her¡e hean rnnlierl tnf rvvv¡ u¡¡rö

experimental data and where various constraints have been obtained,
we expect to have reduced the effects of uncertainties in our results
and hence, we will just focus on the uncertainties included in -F1(k2),

p and ry. Recall that the values of ,4. and À are very well determined
and do not need more accuracy. Note as well that we replace 

^t 
by

N:f f in the QCDF formulation since the colour octet contributions
cannot be neglectedl and are not exactly factorizable. Therefore their
contributions are taken into account through the variable {¿ into /ú""//
(see Chapter 3). We shall use, according to results obtained in naive
factoization, the average value for N'Jf that is equal to 1.5 in the case

of B + pn and around 1.75 in the case of B + pK. Thus we shall
express all of our results as a function of the form factor F (k") and as

a function of the CKM parameters p and r¡.

o As when naive factorization was applied, we shall include the p - u
mixing contribution every time that it can contribute - i.e. in all of the
B decay channels such as B -+ poM,with M being K or n.

o It has been shown that annihilation contributions could play an impor-
tant role in B decays. Even though they are power suppressed in QCD

lNote that we used /ü" = 3 for the calculation of o, and C¡
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f.actorization, they may give large strong phases due to QCD correc-

tions and then, they cannot be neglected. Although we did not include
them in the naive factorization, we will take them into account in our
second approach.

o It has also been pointed out that charming-penguin contribution ef-

fects could have been underestimated and may affect the evaluation of
hadronic matrix elements. It is assumed that charm-anticharm inter-
mediate states can be created by the weak interaction and may turn
into non-charmed final states by strong rescattering. Nevertheless, we

will not include these contributions because they are not yet under

good control, and carry large uncertainties and unknown parameters.

o Finally, in order to compare our results with experimental data and

to determine the constraints on the form factorc F!t", F'B*K and

the CKM matrix parameters p and Tt we shall use the experimental
branching ratios of B -> Pr, B 4 pK, B + pt and B +uK ftom
BABAR, BELLE and CLEO. We refer the reader to chapter 5 for their
listed values. At the time, we will have an opportunity to check the
agreement (or not) between naive f.actorization and QCD factorization
according to the experimental results.

LL.z Branchittg ratios for B + Pir

LL.Z.L Weak annihilation contributions

We analyse processes such as Bt'o ) pl'on+'o and also B+ -+ art. Two

of them include p-u mixing: B- -+ p0ø- and Bo + polo. The three

other decays without p-u mixingeffects are B- 1p-no, Bo + p-r+ and

B- + w¡r-. Recall that the branching ratio of B + PV decays can be

written in the B meson rest frame as,

Ø(B-+pv):O*Hltçn-rv)+A(s-+rnl , (11.1)

where lprl it a kinematical factor referring to the c.m. momentum of the de-

cay particles. ,4(B+ PV) is the amplitude coming from the tree and penguin

diagrams and A"(B+PV) is the annihilation amplitude. We emphasise that

annihilation contributions depend strongly on the value of the phase þ¡ that
could be subject to discussions. In this section, rrye give the explicit annihi-

lation amplitudes for all these charmless B decays. Their contributions are

add,ed to the tree and penguin amplitudes. We refer the reader to Chapter
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5 for the explicit tree and penguin amplitudes. Note that there is a factor

*nlpol that needs to be added to obtain the correct branching ratios accord-

ingly to Eq. (11.1). Moreover, an inversion between o1 and ø2 has to be made

to follow the usual definition of the tree diagram contributions. Below, we

Iist the annihilation amplitudes:
for the decay Bo -+ p-r*,

A' (Ê + p-,,+ ) : ftf " f- h{r*r;ru¡n+, p- )

+ (V,uVi¿ + VaVåt) [rr(o-, 
rr+) + bn(n+ , p-) + bn(p- ,n+)

-Iurru,'+) * b?(n*, p-) -lu"rw,".)] ) , (11.2)

for the decay Bo + pono,

for the decay Bo + uro,

A(Ê +por-o) : 
ffir"r-r,{rrrflu,(ro,,,.o) 

+ a,('0, po)]

t tt/ -t/* t tl.1/*t h r^o -0\ r ¡,-¡,-o ^0\ .!nA.(*o ^o\ r ,h.( no -o\-T-\vzÞvudI lcbrcd,)Lw3\y ),, J I v5\,¡ ,y ) t uv4\', )l') | 4v4\f )'t I

- Irf þo,no) - t^u* 
(no, p\ + Iuf bo, po) + Tuf þo,"')] ) ; (11.s)

A' (Ê +u.f) : ffit" nf,{n rflu,(,, no) + ó,(2..0,,)]

+ (v,ov.i¿ + Vffùl - ur(,,0, a) - bs(u,no)

+ruu3-çno,u) +Iu*@,,n') + Trr-(no,r¡ +|uyç,,"')] ) ,

for the decay B- + pon-,

(11.4)

A (B- + po'-) : ff f" r- r,{n rflur6-, po) - ur(po, n-)f

+ (V,uV. ¿+VovJ) [u.(,.-, 
p\ -b"(po,?r-) + bî(n-,po) -b"{(po,"-)]} 

'
(11.5)
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(11.6)

for the decay B- -+ an-,

A'(B- +wn-) : |Í"f,f,{n uflur6-,u) + bz(u,n-)]

+ (V,$,i¿+VIVJ) 
lur(rr-, 

u) +bs(u,?r-) + bî(n-,u) +b'{(a'"-)]} 
'

for the decay B- -+ p-To,

A"(B-+p-'o) : fff"r-r,{rrrflu"Ø- ,no) - ur(no, p-)f

+ (v,uv, ¿ + Vuvi¿)lu[U, no) - b"(no, p-) + bi þ-,oo) - u? ("o, p-))

Atl the coefficients b¿ have been defined in the previous chapter. The ex-

pressions for the cKM matrix elements vø,v.ì¿,%¿ and vj¿ can be found

in Chapter 2. As in Chapter 5, we shall also calculate the ratio between

ø(Bo + p+r+) and Ø(B+ + pon+), since in that case, the uncertainties

caused by many systematic errors are removed. Recall, we define the ratio

R- as,

Rn=
Ø( Bo + p+n+)

(11.8)
Øp+ -+ por+) '

LL.2.2 Results and discussions

Assuming that all of the parameters involved in QCD factorization have been

constrained by independent studies where the input parameters related to

factorization lvere frited, we concentrate our efiorts on the form facto, FPt"
and the CKM matrix parameters p and 4. In order to reach this aim, we

have calculated the branching ratios for B decays such as B+ -> pont, B+ +
pxno,,Bo + ptnrr?o -> p0n"0 and B+ -> c.rn+, where the annihilation and
'p-a 

mixing contributions were taken into account. All the results are shown

in Figs. L1.1, LI.Z,11.3, 11.4, 11.5 and 11.6, and the branching ratios are

plottãd as a function of the form factor Fr"-" and as a function of the values

äf p u,r,a 4 as well. By taking into account experimental data from CLEo,
gÁgen and BELLE collaborations, and comparing theoretical predictions

with experimental results, we expect to obtain a constraint on the form factor

)
rr.7)
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Figure 11.1: Branching ratio for B+ -+ pont, for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM ma-
trix elements. Notation: horizontal dotted lines: CLEO data; dashed lines:
BABAR data; dot-dashed lines: BELLE data.

Fr."-n as well as some limits for the CKM matrix element parameters p and
q. Because of their accuracy, we shall mainly use the CLEO and BELLE
data for our analysis rather than those from BABAR. Our results should
depend more on uncertainties coming from the experimental data than those
from the lactoúzation approach (as opposed to naive factorization) applied
to calcuiate hadronic matrix element (pnlJrlBl.

For the branching ratio B+ + pont (Fig. 11.1), we found total consis-

tency between the theoretical results and experimental data from CLEO and
BELLE. However, these results allow us to determine a limit (between 0.3

and 0.50 with an average value around 0.42) fot the value of the form fac-
tor FrBt" whereas they do not allow us to constrain for the CKM matrix
parameters p and r¡. The weak dependence of the branching ratio on the
form factor, Fft", is related to the tree and penguin amplitudes which are
mainly go,o".nãd by the form factot Aî'o rather than FrB*". Therefore,
this branching ratio cannot be used as an efficient test to constrain the form
factor Fr"tn. Note also that the comparison with BABAR data shows an
agreement between theory and experiment at a little over one ø but for a
value of FrBt" bigger than 0.4.

For the branching ratio B+ -+ pt¡ro (Fig. 11.2), CLEO gives only an
upper limit for the branching ratio, whereas BABAR and BELLE do not.
According to this upper limit, the value of the form facto, FrB-n is to be lower



11.2. BRANCIIING RATIOS FOR B + pß 175

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

r{"'.)<-þ

Figure 11.2: Branching ratio for B+ -> ptno, for limiting values of the

CKM matrix elements. Solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.1 for the horizontal line.
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Figure 11.3: Branching ratio for Bo -+ p*r*, for limiting values of the

CXffn matrix elements. Solid line (dotted line) for max (min) CKM matrix

elements. same notation as in Fig. 11.1 for the horizontai lines.
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Figure 11.4: Branching ratio for Bo + poro,for limiting values of the CKM
matrix elements. Solid line (dotted line) for max (min) CKM matrix ele-

ments. Same notation as in Fig. 11.1 for the horizontal lines.
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the form factor pB+r and could be an efficient test to constrain the value of
FP'". For the branching ratio B0 ) p+r+ (shown in Fig. 11.3), BELLE,
BABAR and CLEO give coherent experimental data. The decay amplitude
related to this branching ratio is proportional to the form factor FrB*' and

thus allows us to constrain the form factor. Requiring agreement between

experimental values and theoretical results yields a mean average value for
Fr"tn equal to 0.28. Note that for these first three branching ratios their
dependence on the CKM matrix elements p and 4 is strong. Hence we expect
to be able to determine limits for their values when more B decay channels

are taken into account.
For the branching ratio B0 + p0no (Fig. 11.4), BABAR, BELLE and

CLEO only give an upper limit for the branching ratio. Moreover, the branch-
ing ratio does not appear to be very sensitive to the CKM matrix elements
p and q. We therefore need new data to go further in this case. Finally,
we focus on the branching ratio B+ ) art, plotted in Fig. 11.5. There is

no agreement with the CLEO data for values of the form facto, FPt" lower
than 0.2 whereas there is a good agreement with BABAR and BELLE for
a large range of values of Fft". BABAR gives an average value of FrB+"
around 0.35. Note that the sensitivity of the branching ratio to the CKM
matrix elements is bigger than that to the form factot FP'" and this does

not allow us to draw any conclusions regarding the value of Ff-".
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Figure 11.5: Branching ratio for B+ -+ ur+, for ümiting values of the CKM
matrix elements. Solid line (dotted line) for max (min) CKM matrix ele-

ments. Same notation as in Fig. 11.1 for the horizontal lines.

To remove systematic errors in branching ratio data given by the B fac-

tories, we can look at the ratio .R,,, between the two following branching

ratios: ø(Bo + p+r+) and Ø(B+ -+ pon+). In Fig. 11.6 we show the ratio
ft,, as a function of the form facto, FPt*. All the B factory data are in
good agreement with theoretical predictions. The results indicate that the

ratio is weakly sensitive to the CKM matrix elements p and 4 whereas it
is strongly sensitive to the value of FrB+". Comparison with BELLE data

allows us to obtain a value for Ff'" of between 0.15 and 0.37, with BABAR
it is between 0.05 and 0.20 and with cLEo it is 0.08 - 0.42. According to the

first conclusion for the value of F!t", it seems to us that the value of the

form facto, FPt" which describes the transition B -+ n taken at lc2 : rn2p

might be around 0.3-0.4. Based on this result taking into account only the

branching ratio B 4 Pr, it is also possible to give some predictions con-

cerning tÍe branching ratios for the decays B0 -+ p+ro and Bo + pono-

Their f,redicted .raloes are the following: ø(Bo + p+no) x 17 '5 x 10-6 and

ø(Bo+pono)<1x10-6.
It has to be pointed out that the annihilation contributions in B decays

play a major role sin"e they contribute significantly to the magnitude of

lhe amplitude. As an example, in Fig. 11.7 we show the annihilation con-

tributions for the branching ratio B- -+ pon-. The annihilation diagram

contribution to the total decay amplitude strongly enhances (in a positive or

negative way) the branching ratio B- -> pon- according to the value chosen

l4
€912

X

€ro
*l 8
g
Á6
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Figure 11.6: The ratio of two pn branching ratios for limiting values of the
CKM matrix elements: solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.1 for the horizontal lines.
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Figure 11.7: Annihilation contributions to the branching ratio for B+ -+
po K+, for limiting values of the CKM matrix elements. Same notation as in
Fig. 11.1 for the horizontal iines. Ap-' and Ao arethe po amplitude including
p - u mixing effects and annihilation contributions, respectively.
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for the phase /¿. This contribution could be bigger than that of p-u mixing
but carries more uncertainties because of the endpoint divergence (see Chap-

ter 10). We emphasise that these two contributions (p -, mixing effects

and annihilation contributions) are not just simple corrections to the total
amplitude but they fully contribute to obtain a correct description of the B
decay amplitude.

We emphasize as well that the value of the form facto, FrB'n determined

in covariant light front dynamics fully satisfies this analysis since FrB*' is

equal to 0.35 in CLDF. Finally, the results obtained by applying QCD fac-

torization are qualitatively in agreement with naive factorization used in the

first part of this thesis. However, the QCD factorization approach is more

powerful since we are able to calculate the branching ratios as a function
ãf tn" uncertainty related to one physical parameter, the form factor Fr"tn,
rather than one phenomenological parameter, the effective number of colours

N:f f . According to this analysis of branching ratios for the B + pn decays,

the value obtained for the form facto, Fr.Btn would support the BSW model

rather than the GH model. In the next section, \rye are going to analyse the

branching ratios B + pK and then draw some conclusions regarding the

form factot Fr"'K.

L1.3 Branching ratios for B + PI<

11.3.1'Weak annihilation contributions

Now, let us consider the case where M is a kaon (i.e. B + pK). As in
the previous section, where five ó -+ u transitions were analysed, here we

investigate five b -) s transitions. These are the following B decays: B- -+

poK-,-Bo + po(o, Bo + p-K+, B- -+ p-Ro andfinally B- +uI{-. As

usual, the reader will find in Chapter 5 all of the expressions for the tree and

penguin amplitudes related to the analysed decays. Recall the inversion of ø1

witÈ øz anðthe factor *alpol for the branching ratio formula in Eq- (11.1).

In the following, lrye enumerate the annihilation amplitudes which will be

included in the usual branching ratio amplitude for the five decays mentioned

previously:
for the decay Bo + p+ K-,

rn fe fx Ío (V"uV], + VuV!,) [*tK_ p+Gr
)

-Tu*ru-,n.)] ) ; (11.e)
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for the decay Bo -> po Ro,

for the decay Bo -> ,Ro,

CHAPTER 11. BRANCITING RATIOS ...

(11.10)

(11.11)

(11.12)

(11.13)

J

V"bV;"b2(K", p-)

A(d -+poî) : -ffr"r*r,{{wrv;" + vil}) [b.(d, po)

-Tut-rr,nï] ) ;

A'(Ê -+uf ) : ffnr*n{Mur;" + vuv!,)lu.qÊ,,¡

-turrrÍ,r)] ) ,

for the decay B ) uK-,

A' (B- +u K- ) : ff n f * f,{wur;"urçK-, r)

+ (v,il,T, + Vuvl,)iur(r.-, u) + b"{ (K-, ,)l i '

for the decay B + po K- ,

A(B--+po K-) : fff "Í*h{u,uu:"ur(K- 
, po)

+ (v,øv|, + VilJ)lurø- , po) + b""*(K-, r')] )
for the decay B- -+ p- Ro,

A(B-+p-ñ.l:ftf"nf,{

+ (Wuv,T" +Vuvå) la,{P, p-) + by(î,r-)] } . (11.14)

AII of the terms involved in the above expressions can be found in Chapter 9.

We shall evaluate the ratio, ,B¡ç, between the two branching ratios Ø(Bo ->
p* K+) and Ø(B+ -+ po K*) as follows:

D _ø(Bo+p+K+¡Rx:ffi (11'15)
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Figure 11.8: Branching ratio for B+ -+ poKt, for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM ma-

trix elements. Notation: horizontal dotted line: CLEO data; dashed line:

BABAR data; dot-dashed line: BELLE data.

To end this analysis, we shall also calculate the ratio, .8, defined as the ratio
between .R,, and Ër, by

_Rno--:. (11.16)n: RK'

LL.3.2 Results and discussions

This section aims to discuss the numerical results of branching ratios lot B
decays such as B -+ pK. The branching ratios for B- à po K- , Bo + Po Ro,

Bo -+ p- K+, B- -+ p- l{o and B- + uK- have been calculated in the QCD
f.actoriøation framework rather than in the naive factorization approach, as

in chapter 5. Results are plotted in Figs. 11.8, 11.9, 11.10, 11.11, II.I2
and 11-13. Annihilation contributions and p - co mixing efiects have been

included in the B ðecay amplitudes.
We shall compare our theoretical predictions with experimental data pro

vided mainly by CLEO since the BABAR and BELLE data are less nu-

merous and need some improvement. Nevertheless, for the branching ratio

B- + uK- we shali take the BELLE data, which are the most recent and

accurate measurements in that case. It is also necessary to notice that all of

these branching ratio data are less numerous and carry more uncertainties

than those of B + ptr. Allof the branching ratios are plotted as afunction

F,Oo-

*1 0.8
caú o.so

0.4

0.2

0
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Figure 11.9: Branching ratio for B+ + p+Ko, for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.8 for the horizontal line.

nf the t:'ancitinn forrn fe,cto, p'B-+K - where FF+K describes the transition
B + K at lc2 : m2r. In order to constrain the value of this transition form
factor, we shall use some experimental data and hence we expect to obtain
some limits regarding its value. As usual, we also show the dependence of
the branching ratios on the CKM matrix parameters p and r¡.

For the branching ratio B- + pof (see Fig. 11.8), theoretical results
and experimental data from CLEO and BABAR are in good agreement.

BELLE only gives an upper limit for this branching ratio which is still con-

sistent with our results. Note, that the dependence of the branching ratio
on the form factor, FrB-K,, is stronger than that on the CKM matrix pa-
rameters p, and.7. Nevertheless, no firm conclusion can be drawn from this
branching ratio except for a lower limit for the form factor Ff'* that is

around 0.33 (assuming the_ la^rgest range of experimental data). For the
branching ratio B- + p- I{o plotted in Fig. 11.9, we observe a total lack of
dependence of the branching ratio on the form factor FrB->x that explains
the flat curves. This lack of dependence on Ff+x can be seen as well from
the tree and penguin expressions. Only BELLE gives an upper experimental
limit and that is consistent with our results. Moreover, the variation of CKM
matrix elements p and q has a very weak influence on the branching ratio
predictions. This channel cannot be used to constrain both the form factor
FrB+x and the parameters p and 7. Similarly, the branching ratio for the
Bo + p- K+ decay (see Fig. 11.10) is independent of the form factor Fr"-*
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Figure 11.10: Branching ratio for Bo + p*KÍ, for limiting values of the

CKM matrix elements. Solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.8 for the horizontal lines.
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Figure 11.11: Branching ratio for Bo + PoKo, for limiting values of the

CKM matrix elements. Sotid line (dotted iine) for max (min) CKM matrix
elements.
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Figure IL.I2: Branching ratio for Bt + aKt, for limiting values of the
CKM matrix elements. Solid line (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.8 for the horizontal lines.

and no constraint regarding this forsr factor can be extracted. \ffe obser'¡ed.

that the branching ratio is mo e dependent on the parameters p and 4 than
in the previous case but it is still not sufficient to derive information about
the sensitivity of the branching ratio sensitivity to these parameters. We also

mention that our theoretical results are not in agreement with experimental
data from CLEO and BELLE. More investigations are needed in that case.

Next we consider the branching ratio Bo + poKo shown in Fig. 11.11.

Since there is no experimental data from BELLE, CLEO or BABAR, no

conclusions about the form factor Ff+x can be drawn. Due to the strong

sensitivity of the branching ratio on Fr"-* and to the weak dependence on

the CKM parameters p and 4, it would be useful to have new data to constrain
the transition B -+ K. In Fig. 11.12 the branching ratio B- + uK- is

plotted. It turns out that our result is in agreement with BABAR and

CLEO data for values of FltK lower than 0.75 whereas lies outside the one

ø range for BELLE. The curves have a strong dependence on the form factor
Ff-*. Assuming that the experimental data from BABAR and CLEO are

more accurate than those from BELLE, it yieids an upper limit for the form
factor around 0.55 (BABAR) and 0.75 (CLEO).

By calculating the ratio .R¡ç between ø(Bo + p+ K+¡ and Ø(B+ -+
poK+), systematicerrors can be removed. This ratio is shown in Fig. 11.13

as a function of FPt* and fo¡ limiting values of the CKM parameters p

and 4. It appears that an agreement between experimental data provided by

0.20.10
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Figure 11.13: The ratio of two pK branching ratios for limiting values of the

CKM matrix elements. Solid tine (dotted line) for max (min) CKM matrix
elements. Same notation as in Fig. 11.8 for the horizontal lines.

CLEO and our results is almost found whatever the value of the form factor

FP-* is. Assuming that FP-* is similar to Fl+" we can also compute the

ratio .R between the two previous ratios .B' and -R¡ç and the result is shown

in Fig. II.L . Like the ratio .E¡ç, the ratio .R indicates that the upper limit
for the value of the form factot F|--K has to be around 0.45. Note that this
limit can be applied on Fft" as well dúe to the assumption made previously.

From this analysis, some conclusions can be drawn. First, it seems that
the GH model, where FrB-+x : 0'762 at k2 : mzo, does not lead to agree-

ment with the experimental results in the QCD factorization framework. It
appears as well that the BS\M model might give a better approximation of

this form factor transition than the GH model. Nevertheless, in the B + pK
channel, we cannot effectively constrain our free parameter FtB-+rc because

of the lack of experimental data. However, rrrre are able to give a predic-

tion regarding the branching ratio Bo - eo 
Ko w-hgre data is currently not

available. According to our analysis, ø(Bo -> Po Ro) might be lower than

3 x 10-6. This prediction is consistent with our results obtained by using

naive factorization in Chapter 5. As for the branching ratios for the B + pn

channel, we observe a qualitative agreement between the naive factorization

and QCD factorization even though the second method can give more theo

retical predictions.
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rl"-*)<.þ

Figure lL.I4: Ratio, .R, between .R,, and Rr limiting values of the CKM ma-

trix elements. Solid line (dotted line) for max (min) CKM matrix elements.

Same notation as in Fig. 11.8 for the horizontal lines"

tL.4 Surnmary

We have mainly calculated the branching ratios in two difierent channels,

B -+ ptr and B ) pK. These calculations have been performed by applying
the socalled QCD Lactorization approach, which takes into account explic-
itly the radiative corrections, at order o", coming from the hard scattering
contributions. Our results are shown as a function of the form factor Fr."-n,

in the case of B + ptr,, and as a function of the form facto, FrB-K' in the
case B ) pK, since these transition form factors could carry large uncer-

tainties according to different models (BSW and GH models). We have also

included uncertainties from the CKM matrix parameters, p and 7, in our
theoretical predictions. In order to constrain in an efficient way the form
factors Fr"-n, Fr"t* and the parameters p and T¡ we have compared our
results with experimental data coming from CLEO, BABAR and BELLE.
Since these experiments do not always give the same experimental branching
ratios, we have tried to focus on those which are the most recent and accurate
depending on the branching ratio analysed.

Regarding theoretical results for the branching ratios B+ + pont, B+ ->
pLno,Bo + pxrÍ,Bo -+ poro and B+ + ,i'rr+, we found that the BSW
model provides a good agreement with experimental results whereas the GH
model does not. It has been possible to obtain a best fit for the form factor
describing the transition B -+ n at le2 : m7 that is Fr"tn : 0.35. Moreover,
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predictions for the branching ratios B+ -+ p+ro and Bo -+ p0n0 have been

made as well. These are Ø(B+ -+ p+ro) x 77.5 x 10-6 and Ø(Bo -+ po¡ro) <
1 x 10-6.

For the branching ratios B- + po K- , Bo + po Ro, Bo + P- K+ ,, B- -+
p- Ro and B- -+ wK-, it has not been possible to determine precisely the
value of the form facto, F..B'K that describes the transition B -+ K . At least,
we found that the value for the form factor might be less than 0.65. This
once again supports the BSW model in comparison with the GH model. A
prediction for the branching ratio B0 + po ko has also been made: Ø(Bo -+
poF{o)<3x10-6.

We would like to emphasize that QCD factorization gives more accurate

results than naive factorization as expected. However in a qualitative way

naive factorization is still able to give the cor¡ect order of magnitude for the
branching ¡atios analysed in our case. This does not mean that it is true
for all types of B decays. Secondl¡ the form factors pB+r and F,B*K for
the transitions B -) n and B + K, calculated in the covariant light front
dynamics framework, are in total agreement with the experimental data.

Recall that we found the following values for the form factors when the CLFD
approach was applied: Fl,fiirp¡(*') - 0.35 and Fl,/fro¡(*t):0.40. We

refer the reader to Chapter'9 for more details. Unfortunately, it is not possible

to constrain efficiently the parameters p and 4 with an analysis based only on

the channels B -+ pr and B -+ pK, because of the lack of experimental data'

We need more accurate data if we want to improve the values of the CKM
matrix parameters p and ?. We need also to inciude more B decay channels

such as B -+ K*n,B à K*n,B -+ K$ fo be able to obtain constraints

on the parameters p and 4. The conclusions drawn from this analysis are

going to help us to determine the c P violating asymmetry paramet@r, d,6p,

more precisely than when naive factorization was used. The next and final
chapter introduces our asymmetry predictions for the direct CP violation in

B decays into the channels pn and pK.
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Chapter Lz

Direct
decays

CP violation in B
in QCDF

" On ne peut se pl,sser d'une méthode pour se mettre en quête de la uérité
d,es choses. "

René Descartes

we end our analysis by investigating the direct cP violating asymmetry,

a6p, in B decays, limiting our study to the decay B + t+r-M, where as

usual, M is a kaon or a pion. Isospin violation is taken into account through
p - u mixing and QCD factorization is applied in this work instead of naive

factorization.

Lz.L Asymmetry in B decays including anni-
hilation contributions and p - c^r mixing
effects

It has been shown in the first part of this thesis that the p - u mixing effects

strongly enhance the direct C P violating asymmetry parametet asp. When

the invariant mass of the n*r' pair is in the vicinity of the a; resonance, it
is found that the CP violating asymmetty,, açp, reaches its maximlrm) Q'nLac-

We refer the reader to Chapter 4 for more details about p - a mixing and

to Chapter 6 for its use in the determination of tbe C P violating asymmetry

parameter ¡ acp¡ within the naive factorization approach. We emphasise that

in this framework (i.e. naive factorization) the asymmetry¡ acP¡ is very small

(near to 0) without the p - Q mixing effects. Remember that large direct

189
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asymmetry requires at least a large strong phase difference and only p - u
mixing can provide it within naive factorization.

It has also been pointed out that annihilation amplitudes could contribute

significantly to the total decay ampiitude. However, their determination still
needs to be improved and cannot be derived directly from the usual QCDF
framework. Despite this they were included in our analysis of the branching

ratios, where their contributions have been controlled by using a default value

for the phase, /o. We shall not include them in the following work since

their effects could provide large uncertainties in the direct CP asymmetry.

The reader may refer to Chapters 9 and 10 for discussions regarding the

annihilation contributions.
Nevertheless, for completeness ïve detail below how these annihilation

contributions can be included in the usual calculations of asymmetry in-
cluding p - Q mixing. As seen in Chapter 9, Section 9.2.2, the coefficients

b¿(Mr, Uz) - that describe the annihilation contributions - are expressed in
terms of functions, A'¡(V,,P)', with the Wilson coefficients, Ch, related to the

tree and electroweak (or QCD) penguin diagrams. Recall that the functions
Ai(V,P)o arise from the convolution of hard scattering kernels with leading

twist light cone distributions.

^ 
ll ^f +L^ l^+^:l^ ---^-l:-- 4l,o ^^l^,,loli^¡ af +l-o /1 P r¡inlefinrr âc\/mryìê-a\¡t iJr iJ¡j.g L¡uüa¡¡ö rç6@ru¡u6 u¡¡9 vø¡úuaúù¡v¡¡ v¡ ù¡¡v v

try parameter, a6p,, can be found in Chapters 4 and 6. However we will
emphasise one technical detail about the inclusion of the annihilation am-

plitudes in the total amplitude. It is known that C P violating asymmetry
needs a strong phase difference, d, coming from the hadronic matrix and a

weak phase difference, /, coming from the CKM matrix to obtain dhect C P
violation. In Chapter 4 the equations that define the ratios between the tree,

to,,tr,, and penguin pp,P,, amplitudes \4/ere derived. They take the following
form:

p! 
=rr"i(6e*ó), 

y:o"i6o, oo 
=Be¿60. (12.1)

tp tp P.

Following the previous discussion in Sect. 10.2.2, we can separate tree (fu,,b2)

from penguin (ó3, bl,bn,ó!.) contributions in the annihilation amplitude.
Therefore, we rewrite Eq. (12.1) as,

,: ! o: : ytei(6et.ó), W : .,ei6o,, þ+ = Be¿60, (L2.2)te+ti te+ti p-*p",

where t"o,t",,pi and pi, a¡e the tree and penguin annihilation contributions,
respectively for the (pU) and \uM) amplitudes. The expressions for tf,,t",,pi
and p", for every decay channel on which Irye are going to focus can be very
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easily determined. We refer the reader to Appendix C for their expressions.

As mentioned in the title of this chapter, the tree and penguin amplitudes
involved in the decay channel B + n+n-M are calculated in the QCD fac-

torization framework. Their expressions are proportional to the coefficients

,r (o Ct) and are listed in Chapter 6. The reader will replace the coeffi-

cients, aflF, dete.mined in naive factorization by those obtained in QCDF,
o?"o' , in Chapter 9. It is a straightforward substitution since the gloþ3,1

expression for the tree and penguin amplitudes does not change; simply, øflF
, OCDF
Decomes ¿È

L2.2 CP violation in Bl'o ) r*r-îr!'o
In this section, we analyse the direct C P violating asymmetry parameter,

açp, in the decay channeis B- + po(r)n- -+ r*n-t- as well as B0 ->
po(r)no + r*n-ro-
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Figure 12.1: cP violating asymmetry, açp, for B- -+ rlr-r- for lim-

iting values of the CKM matrix elements and for different values of the

form factor ff'"(m|¡. Solid line (dotted line) for max CKM matrix ele-

ments anð. F!+"(*'oi:0.3 (0.5). Dot-dot-dashed line (dashed line) for min

CKM matrix elements and Flt"(m2o):0.3 (0.5). For comparison, we plot

the asymm etry asp determined in naive factorization. (Dot-dashed and dot

dash-dashed lines for minimum and maximum asymmetry values.)

In Figs. 12.1 and I2.2 we show the cP violating asymmetries for B- ->
po(r)r--+ r*r-r- and Bo + po(r)no -+ ¡r*r-r0 respectively, as a func-

I
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tion of the energy t/5, th" form factor FtB-"(ml) and the CKM matrix
element parameters p and 4.

770 780

{s ltvtev¡

790 800

Figure 12.2: CP violating asymmetry,, asp, for B0 -+ rrr-r0 for limit-
ing values of the CKM matrix elements and for different values of the form
factor Fft"(mi). Solid line (dotted line) for max CKM matrix elements

and FrB-" (*") :0.3 (0.5). Dot-dot-dashed line (dashed line) for min CKM
mat¡ix elements and FrB*'(*?) : 0.3 (0.5). For comparison, we plot the
asymmetry acp determined in naive factorization. (Dot-dashed and dot
dash-dashed lines for minimum and maximum asymmetry values.)

Focusing first on Fig. 12.1, where the asymmetry for B- -> po(u)r- -+
rlr-r- is plotted, we observe that the C P violating asymmetry parameter,
(rçp, cãrL be large and can even reach 20To-30% outside the region where the
invariant mass of the r+r- pair is in the vicinity of the t,'; resonance" This is
the first consequence of QCD factorization, since within this framework the
strong phase can be generated not only by the p - u mechanism but also

by the Wilson coefficients. We recall that the Wilson coefficients include all
of the final state interactions at order o". This shows as well that the non
factorizable contribution effects are important and can modify the strong
interaction phase. Because of the strong phasel that is either at the order
of o" or power suppressed by Lqcof m6, the CP violating asymmetry,, açp,
may be small but a large asymmetry cannot be excluded. Note that at the ø
resonance, the asymmetry parameter a6p is around -I0To. In comparison,

lln comparison with QCDF, pQCD predicts large strong phases and direct CP asym-
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we show on the same figure the asymmetry parameter, asp,, obtained by
applying naive factorization. The results are quite difierent between these

approaches because of the strong phase mentioned previously.

The second observation is that the form factor FrBt"(mf) contributes
very strongly to the asymmetry. If the form factor FrBt"(m2) is equal to 0.3

then the asymmetry reaches 8% f.ar away from the ø resonance whereas when
FrBt"(*7) is equal to 0.5 the asymmetry reaches 18%. This comes directly
from the hard scattering contribution (included in the Wilson coefficients)
that is dependent on the form factol FLB+"(rn2p). Finally, it appears that
the asymmetry is dependent on the CKM matrix parameters p and 4, as

expected. Note that this dependence is qualitatively as large as that for the
form facto 1 FLB," (rn2p).

rf-')tmþ

Figure 12.3: siná as a function of the form factor Fl-"(mf,), for B- +
n*r-r- (fult line) and Bo + r|¡r-ro (dashed line) for the case frr- :
(-3500;-300), where p - Ø mixing is included.

In Fig. I2.2, the asymmetrY, acp, is shown for Bo + po(a)no -+ rlr-ro -

As for the previous case, we observe a strong sensitivity of the asymmetry to
the form factor FrBt"(mzo) as well as the CKM matrix element parameters p

and 17. The C P violating asymmetry is predicted to be large, around -40T0
without the p - c¿ mixing effects. Again we show the comparison with naive

factorisation, where there is agreement near the ø resonance. However, we

emphasise that the resuits are quite different from those obtained by using

the naive factorization framework where the strong phase only arises from

p-ø mixing and hence allows for a large asymmetry only neal a, and nowhere
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else. With the knowledge of the asymmetry it wili be possible to constrain

the form factor Fr"t"(*"r).' 
As mentioned, one of the main reasons for the interest io p - cu mixing

is to provide an opportunity to remove the phase uncertainty mod(n) in
the determination of the CKM angle o in the case of the ó -) u transition.
Knowing the sign of the CP violating asymmetry at the ¿¿ resonance gives

us the angle a without any ambiguity. This provides an efficient test for the

Standard Model. In Fig. 72.3, we present the evolution of sinó as a function
of the form factor FrB'"(m|), for B- -+ r*¡r-n- and for Bo + rrr-no.
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Figure 12.4: CP violating asymmetty, asp, for B- + r+r- K- for lim-
iting values of the CKM matrix elements and for different values of the
form factor FrBtK(m2r). Solid line (dotted line) for max CKM matrix el-

ements and F.B'K(*7) = 0.3 (0.5). Dot-dot-dashed line (dashed line) for
min CKM matrix elements and F.B-K(*?):0.3 (0.5). For comparison, we

plot the asymmetr¡ acp determined in naive factorization. (Dot-dashed and

dot dash-dashed lines for minimum and maximum asymmetry values.)

L2.3 CP violation in Bl'o è zr*¡r-I{l'o
After the analysis of the CP asymmetry in Bi'o -> po(r)n+'o ¿ ¡tv-¡t'o,
we finally conclude our work by focusing on the asymmetry in B+'o ->
7r+r- K+,o. Plotted in Figs. 12.4 and 12.5 is the direct CP violating asymme-
try,, asp,for B- -+ po(u)K- + r*n-K- and for Bo + po(u)ko + T+T- Ro
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Figure L2.5: C P violating asymmetr¡, dcp, for Bo + r+r- R0 for limiting
values of the CKM matrix elements and for different values of the form
factor F.B-K(m2o). Solid line (dotted iine) for max CKM matrix elements

and Fra*K (*?) :0.3 (0.5). Dot-dot-dashed line (dashed line) for min cKM
matrix elements and FIB*K (*') : 0'3 (0'5)' For comparison, we plotted
the asymmetry asp determined in naive factorization. (Dot-dashed and dot

dash-dashed lines for minimum and maximum asymmetry values.)

respectivel¡ for limiting values of CKM matrix parameters p and 7 and for
different values of the form factor FrB-K(m2).

In Fig. L2.4, weshow the CP asymmetryfor B- -+ po(r)K- + t+¡r- K- .

Similar conclusions can be drawn to that of previous case, regarding the sen-

sitivity of the asymmetry paramet Q:, a6p,, on the form factor Ff tK (m'?") and

the CKM matrix element parameters p and 4. There is no agreement for the

value of asymmetry between naive factorization and QCD factorization at

the c-r resonance except that the C P violating asymmetry reaches its maxi-

mum in the vicinity of ø in both cases. However, when the asymmetry goes

to zero far from the ø resonance in naive factorization, it is around 10% in

QCDF.
The c P asymmetryfor Bo -> po(u)Ro + r+n- k0 is plotted in Fig. 12.5.

The p - ¿¿ mixing effects still enhance the asymmetry near the ø resonance'

However, we notice that outside this "window" the asymmetry remains large

in QCDF, whereas it goes to zeto in naive factorization. As usual, the asym-

metry depends strongly on the form factor Ff 'K (m2r) and the CKM matrix

pu,ramet"ìs p and 4. Si*ilr.ly to the case of B+ -+ r*r-lrt, a measulement
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Figure 12.6: sinô as a function of the form factor Ff'K(m'r), fot B- +
n*n- K- (full line) and Bo + r+r- Ro (dashed line) for the case frr,- :
(-3500; -300), where p - e mixing is included.

of the asymmetry would yield a constraint on the form factor FrBtK(m2r)
and thus on the wave function describing the Kaon.

As we did for B decaying into Íitz. we can remove the ambiguity for the
determination of the angle .y that arises from the conventional determination
of sin 21 in indirect C P violation. In Fig. 12.6 sin ó as a function of the form
factor Fr"'*(*'r), for B- -+ nr¡r-K- and B0 + ¡r+r-Ro is shown. We

notice that the sign of sinó does not change over the range of Ff-K(m2).
This is very useful since we are then able to check the picture of direct CP
violation within the Standard Model by measuring the asymmetry in case of
B decaying into ¡rrK.

As already mentioned, we obtain a large asymmetry in some decays in

QCDF because of the large strong phase arising in the Wilson coefficients.
The function G(s,ø), given in Eq. (10.1S), depends on the ratio s : m?lm2u

and on the fraction of momentum æ. However, it has no dependence on the
invariant mass, 82, of the virtual gluon in the penguin diagram -unlike the
case of naive factotization (see Eq. (3.S) in Chapter 3). As a result, when
s : 0, i.e. fo¡ u and d quarks, Gm(O) given in Eq. (10.19) (after integration
of G(s, ø) over ø) acquires a large imaginary part. The QCD penguin contri-
bution written in Eq. (10.14), Pe¡¡,,, depends on Gu(O). Therefore the effect

of the large imaginary part appears in the QCD penguin contributions, in
particular in the term involving C1 in Eq. (10.14).
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Figure 72.7: C P violating asymmetr¡,, dcp, for_B- -+ ¡rln-r-. Comparison

(dót-dash-dashed lines for various values of Ff+"(m?) : 0.¡ (0.5)) is made

in the case where Tm(G¡¡(0)) : 0 but only for the term involving C1 in
Eq. (10.la). See Fig. 12.1 for the other definitions.
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Figure I2.8: c P violating asymmetry,, dcp, for B- + r*r-r-. comparison

(dãt-dash-dashed lines for various values of Fl'"(m;) : 0.3 (0.5)) is made in

ìh" 
"ur" 

where øa from QCDF is replaced by that given in naive factorization.

See Fig. 12.1 for the other definitions.
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If the imaginary part of Gu(O) is removed, we obtain results similar to
those found in naive factorization. As an example, Fig. 12.7 shows lhe C P
violating asymmetryt aCp, for the decay B- -> r*r-r- where the imaginary
part of Gv(o) is taken to be zero but only for the term involving ct in
Eq. (10.14). As a result, no large cP violating asymmetry is obtained far
from the t,'l resonance. For the same decay, Fig. 12.8 shows the case where

we replace the value of øa determined in QCD factorization by that given

in naive factorization [37, 36, 35]. In other words, the dependence on q2 is

included in the function G(*", p,,q2) [39]. Once again, no large CP violating
asymmetry is found far from the t,'l resonance. In these two illustrations,
we obtain a convergence of the CP violating asymmetry¡ dcp¡ close to zero

outside the c,.¡ window.
From these investigations, it is clear that the omission of any 92 depen-

dence in G(s, r) (Eq. (10.13)) is the reason for the difference between the

QCDF and the naive factorization approach. In fact, the effect of this dif-
ference is negligible for the branching ratios considered in Chapter 11, and
is only significant for CP violating asymmetr¡ asp,because that is propor-
tional to sin 6. Apart from this, the corrections associated with hard scatter-
ing introduced in QCDF are satisfactorily convergent, producing relatively
-*^ll ^^--^^+:^-^ +^ -^:,,^ f^^+^-:Êâ+:^- E1^- +L- f',+,,-^ :+ :. ^-"^:^l +^ "'^*kÐlIIAIr UVIIçL,ü¡VIIù UV trOM ¡OVUVII¿@U¡V¡¡. ¡ V¡ u¡¡V rqUU¡Vt ru rù u¡ uv¡@r uv rYv¡

towards a consensus on the most appropriate approach to the calcuiation of
the quark loop contribution shown in Fig. 10.4 (g).

We determined within the QCD factorization framework the C P violat-
ing asymmetry parameter a6p in B decays into three particles. The com-
putation of both asymmetry and branching ratios reveal once again that,
unfortunatel¡ uncertainties play a major role in hadronic physics. However,
thanks to the experimental branching ratios provided by many facilities in
the world, it could be possible to strongly constrain our predictions. The fol-
lowing section presents how and which conclusions can be drawn regarding
our parameters.

12.4 Constraints

Ali these studies about direct CP violation and branching ratios in B decays
have been performed by involving some free parameters such as form factors
Ff'" (*'), Fr"t* (*3). By comparing experimental data with theoretical
predictions for branching ratios we dete¡mined some constraints concerning
these free parameters. We were mainly focused on the efiective number of
colours, N;f t,, the form factors FrBt"(mzr) and Ff*K(mzo) as well as the
CKM matrix element parameters p and 4. In the following section, we draw
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Figure 12.9: Fit of branching ratios for the decays B + pK, B + uK)
including the uncertainties from the CKM matrix parameters p and 7 and

the experimental data provided by BELLE and CLEO.

some conclusions about these constraints.

L2.4.L Constraints on form factors

Form factors play a major role in the factorization method (naive or QCDF)
since they represent the transition between two hadronic states where the

energy transition scale can vary from heavy quark to light quark masses (if
we consider b + u or b + s). Their computation is non trivial and may

carry large uncertainties, according to which model you are using. We refer

the reader to Chapters 5 and 8 for a list of avaiiable form factors determined

within difierent frameworks such as QCD sum rules, heavy quark limit,lat-
tice QCD or light cone QCD... The reason why we kept the form factors

FP-"Onr) and Ff*K(m2) fuee came from the necessity to constrain indi-

.".tly bui efficiently the wave functions describing the pion and kaon mesons.

These two light particles are subject to intensive research because of their

complex physical proPerties.
Ii has to be noticed that to constrain a form factor requires constraints

on the effective number of colours, N;f t . Therefore it is not possible to draw

conclusions about one without the other. In Figs. 12.9 and 12.10 we show

the results for the form factorc Ff 'K (ml) and Fr"t"(*t), respectiveiy' We

have fitted all the branching ratios for B decaying into ptr, into pK , into wK

or into øa' with the experimental data provided by the CLEO and BELLE
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facilities. We have excluded the data from BABAR since they are currently

not numerous and accurate enough. We have included uncertainties for the

CKM matrix parameters p and 7 and we have applied the QCD factorization
method where all of the final state interaction corrections arising at order a"
are incorporated. Finatly we emphasize that the following results are model

independent.
In Fig. I2.9 we show the constraints for the form factor F.B'K (mzo) as

weil as the effective number of colours N;tt . Based on their experimental

data, we observe that the common region for BELLE and CLEO is very

small. The form factor Fr"'* (*to) is allowed to vary between 0.3 and 0.65.

At the same time, the efiective number of colours can vary between 1 and

I.75. Their mean average values arc Fl-K(m2) = 0.47 and N:f r :1.40.
As we have already mentioned in the previous chapter, these results seem

consistent with the BSW model rather than the GH.model. However, it is

not possible to draw any strong conclusions regarding Fr"t* (*'r) since the
experimental data for the branching ratios in B decays such as B -> pK or
B -+ uK are unfortunately not accurate.

1.5 2

eff
c

Figure 12.10: Fit of branching ratios for the decays B -> Pr, B -+ ur'î)

including the uncertainties from the CKM matrix parameters p and 7 and
the experimental data provided by BELLE and CLEO.

In Fig. L2.I0, the constraints for the form factor, Fr"t"(*'o), and the
effective number of colours, N:i Í , are plotted by using the same fit method
as that for B -+ pK. In contrast to the previous case, we found a large
common region between BELLE and CLEO for the B decay into pn. From
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our analysis,, Ff t"(ml) varies between 0.3 and 0.57 and N:l I caî take values

from 1.25 to 2.25. Their mean average vaiues are FrB*"(m2o) : 0.43 and
N;t t : 1 . 75. These results which have a higher confidence level than those

for decays B -> pK give a strong constraint on the form factor FrBt"(mzo)
and hence on the pion wave function. Once again, if we consider the average

values, it appears that the BSW model is in better agreement with our results

than the GH model.

The results obtained for the form factorc FrBt"(m2r) and F.B-K(mf,) re-

duce one of the main uncertainties in the factorization process that may
enhances results in asymmetry. Those obtained for the effective number
of colours , NtÍ i , confirm previous analysis where naive factorization was

applied for the same decays. Together, they increase the precision on theo
retical predictions and allow us to focus on the most significant parameters

that govern the direct C P violating asymmetry within the Standard Model.
Next, we discuss the CKM matrix parameters p an'd r¡-

L2.4.2 Constraints on the CKM matrix parameters p
and ?

It is well known that the CKM matrix parameters p and 4 are the main "k"y"
to C P violation within the Standard Model. Recall that the weak phase is

mainly governed by the parameter 4 that provides the imaginary part which
is absolutely necessary to obtain an asymmetry between matter and anti-
matter. Based on our analysis, we are not able from branching ratios for

B + pn and B + pK to efficiently constrain the CKM matrix parameters

p anð. r:,. In fact, the common region allowed by cLEo and BELLE for
branching ratios in both cases B + pT a¡rd B ) pK does not constrain the
parameters p and q. As input parameters for p and 7, we used the values

0.190 < p <0.268 and 0.284 1 q 10.366. The common region obtained in
our analysis fully satisfies these limits.

However, we can try to get some constraints by only taking into account

the mean values for the form factorc Ff-*(m?), Fr"'*(m2o) as well as the

efiective number of colours N;f t . The results are listed in Table L2.L. A.c-

cording to our work, we find the following limits: 0.214 < p < 0.251 and

0.300 < q < 0.351. This reduces by around 47% and 62T0, rcspectively, the

allowed ranges for the parameters p and 7. These results seem promising but

they only include the branching ratios from the BELLE and CLEO facilities

for the channels B -> pzr,, B + pK and are available for the mean values

for our constraints. It is clear that the ranges obtained in our work for the

CKM parameters p and 4 satisfy all of the experimental data, since we have
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BELLE and CLEO

o

B+ptr
B+pK

pmin :0.205, Pmac :0.251

Pmàn :0.214, pmar :0'268

common region Pmin:0.274, Pmo.o :0.251

n

B-+pn
B-+pK

T¡nôn :0'300, Tlmaø :0.351

Tmin : 0.284, \moo : 0.366

common region \min :0.300, rlmas : 0.351

Table 12.1: Limits for the CKM matrix element parameters p and ?.

used as inputs, the initial values (0.190 < p < 0.268 and 0.284 < n < 0.366)

for the CKM parameters derived by fitting branching ratios and asymmetry
data for numerous decay channels.

It has to be noticed that our results regarding the ionstraints for the form
factors, Fr"tn and FlB-+¡(, as well as those for the CKM matrix parameters, p

and 4, are calculated in using the mean value of the input parameters. For ex-

ample, the variation of the quark mass values on the results are negligible. If
now we consider a variation of the parameter p¡¡ and the corresponding phase

/¡¡, (used in the calculation of the hard-scattering contributions, H(BV, P)
and H(BP,I/), see Chapter 10) the effect on the results is small enough to
be ignored. We can draw the same conclusion for the parameter P,l (used in
the calculation of the annihilation contributions, A(P,V) and A(V,P), see

Chapter 10) as for the parameter pr. Finally, the phase, d/' correspond-
ing to the parameter, ph is the only main parameter which can affect our
results. A variation up to 30To of this parameter may change significantly
our results. We have to mention as well that our fits have been performed
by using several experimental branching ratios which can be subject to some

variations in the future. Therefore, our results are strongly dependent on
these experimental data.

Through our analysis of branching ratios in B decays, we have constrained
the form factors, FrB-"(*?), Fr"-*(*l), the efiective number of colours,
N:iÍ,, and the CKM matrix parameters p and 7. By determiningthe sign
of sin a for the transition ä + u, the sign of sin 7 for the transition ó -+ s
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and by an independent method sin þ, we can see if there really is a unitarity
triangle like is the prediction of the Standard Model. Now we have to wait
for morè experimental data regarding branching ratios and asymmetries in
B decays in order to provide more accurate results. We expect that our work
will be helpful in the quest to gain further knowledge of direct CP violation
in B decays.
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Chapter 13

Concluston

" Les théories seruent à irci.ter les philistins, à sé,d,uire les esthètes et à faire
rire les au,tres. "

Amélie Nothomb

Direct CP violation in .B decays

We have investigated direct C P violation in B decays, such as B + z-rr
and B + nnK. Because of the energy scale involved in these transitions,
the calculation of the hadronic matrix elements that arise in the B decay

amplitude is non trivial and requires several physical assumptions. The ef-

fective Hamiltonian is the starting point of any phenomenological treatment
of the weak decays of hadrons. It can be mainly written as a product of
CKM matrix elements describing the change of flavour, with Wilson coeffi-

cients describing the short distance physics and operators describing the long

distance physics. The main difrculty is then to express the hadronic matrix
elements which represent the transition between the meson B and the final

state.
As a first approach, we used the secalied "naive factorization" method

where the hadronic matrix is governed by the product of a decay constant

times a transition form factor between the meson B and one of the two final

mesons. Through the Wilson coefficients, this method includes a few of the

final state interactions but not all of them at the order o". The colour octet

contribution is reproduced by an effective number of colours. By applying

this framework we have calculated the branching ratios fot B -> pn and

B + pK and we have extracted some constraints for the effective number of

a

205
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colours treated as a free parameter. Comparing our theoretical results with
experimental branching ratios provided by BELLE, BABAR and CLEO, we

have been able to determine a limited range for this free parameter. With
this value we then computed the direct CP violating asymmetry parameter

a6p for decaysl such as B + nrr and B ) nnK.
We included p-, mixing in order to analyse its effect on this asymmetry.

The mixing through isospin violation of an u to p, which then decays into
two pions allows us to obtain a difference of the strong phase reaching its
maximum at the u resonance. p - Q mixing provides an opportunity to
remove the phase uncertainty mod(zr') in the determination of two CKM
angles, a in the case of B -> pn and 7 in the case of B + pK. This phase

uncertainty usually arises from the conventional determination of sin 2a or

sin 27 in indirect CP violation.

In order to decrease uncertainties involved in our calculations, we evalu-

ated the transition form factors used in our work. To obtain these form fac-

tors, we first investigated the wave functions related to the particles playing
a role in the decay. By working in an explicit covariant light front formalism,
we determined the wave functions related for the particles r, P,@, K, B wherc
the decay constant, electromagnetic form factor, charge radius and normal-
ization were applie<ì to constrain our parameters. Based on these funetiorrs,
we calculated the transition form factors between pseudoscalars and between
pseudoscalar and vector mesons.

To end our analysis we replaced naive factorization by QCD factorization
where all of the final state interactions at the order @s are included. Assum-

ing some properties (i.e. heavy quark expansion) lie at the energy scale of B
decays, this allows us to determine a good approximation to the non factor-
izable terms which arise during the usual hadronic matrix calculation. Note
that if we neglect corrections at the order os we recover naive factorization.
We then investigated the branching ratios for B I Pnt,B -> pK,B -> an
and B I uK by apptying this method. Comparisons were made with ex-
perimental results from BABAR, BELLE and CLEO. As in the first part,
we then computed the direct C P asymmetry violating parameter a6p in the
decays B + rrn and B -+ ¡rrK.

Having reduced all of the uncertainties entering the calculation, we have

constrained the form factors FrB+' and F'B*K. At the same time, we eval-

uated the efiective number of colours N:f f . Using the fit obtained for the
branching ratios ptr and pK, arrd assuming that the values for the parameters

,4. and À are accurate enough, we extracted some limits regarding the CKM

lDirect CP violating asymmetry, acp, in B + zrnK decays has been investigated
where the Xcg resonance 12321is included. A large asymmetry is predicted.



207

matrix parameters p and 7. Finally, knowing the sign of the asymmetry in
B decays into rrn or into nnK, we provide an efficient test to constrain
the value of the angles a and 7 in the unitarity triangle. This gives the
opportunity to check the picture of direct CP violation within the Standard
Model.

Main results
o Factorization

As we said previously we used two approaches in order to factorize
the hadronic matrix involved in the amplitude, the so-called "naive
factorization" and .QCD factorization" methods. We have calculated
the branchingratios for B ) pr, B + pK, B + wn and B + aK,, and
compared the results with experimental data coming from the CLEO,
BABAR and BELLE Collaborations.

By apptying the naive factorization method we have shown that the
range for lüJ/ in which theoretical branching ratio results are con-

sistent with experimental data is 1.09(1.11) < N"f Í < 1.63(1.30) for
B + pr and is 0.66(0.61) 1NeÍi <2.84(2.82) for B -+ pK. Finally, if
we take into account the allowed range of N"f J determined from decays

such as B -+ pr and B + pK we find a mean average value for N""//
around 1.75+f.i.
By applying the QCD factorization method, we have shown that the
range allowed for the form factor, FtBtn, in the case of B + pr,, is
0.30 < pB->t < 0.57 and is 0.30 < Fr"t* < 0.65 in the case of B + pK
for the form factor, FrB-K. It has been possible to fit the form factor
describing the transition B -+ T at le2 : m3 that is-FrB+" : 0.35.

Similarly we obtained for the transition B ) K, Ff+x :0-47 at

k' -- *'0. We recall that we found the following values for the form
factors ih"tt the CLFD approach was applied: Ff,friro¡(*'r): 0.35

""d Ff,fifro¡(^"r) - 0.40.

Moreover, predictions for the branching ratios B+ + p+n'o and Bo ->
pozro have been made as well. These arc Ø(B+ + p+no) x 17-5 x-1^0-6
'and 

Ø(Bo + poro) ( 1 x 10-6. Regarding the branching ratio Bo +
poRo, one has ø(Bo + poRo) < 3 x 10-6.

We would like to emphasize that QCD factorization gives more accurate

results than naive factorization as expected. However in a qualitative

way naive factorization is still able to give the correct order of magni-

tude for the branching ratios analysed in our case.
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. p- (¡, mrxrng
In order to obtain a iarge signal for direct CP violation, we already

stressed that p - ø mixing has the dual advantages that the strong

phase difference is large and varies extremely rapidly near the c, res-

onance. When the invariant mass of the r*r- pair is in the vicinity
of the u resonance, it is found that the CP violating asymmetry, asp,

has a maximum a*o, wheteas it goes to zero outside the a, resonance

in the naive factorization method and may remain large in the QCD
factorization method. The direct C P violating asymmetry, ø6rp, has

been analysed in the B decays Bt'o -> po(r)t+'o + r*n-tr'o as well

as B*,0 -> po(u)K+,o + T+T- K+'o where the p-u mixing mechanism

must be included.

\Me found that the cP violation parameher, açp, is very sensitive to
the parameters p and 7 in the cKM matrix, and also to the magnitude
of the form factors. We found that the CP violating asymmetly, ø^o',
can vary ftolrr- -3770 to -84% for B0 + r-ntro and -L7To to -53T0
for B- + n-¡r*r-. In the case of Bo + n+n- Ko we found ø-o'
varying ftol:r- *37T0(+55%) to -20T0(-24To) and ftom *49T0(+46%)
to -22%(-25T0) for B- + rrr- K- .

By measuring the CP violating asymmetry, a¿p, where the effects of
p - u mixing are taken into account, we can remove the phase uncer-

tainty mod(n) in the determination of the CKM angle a in B*'0 ->
¡r*7.-r't'o. In a similar way, it has been also possible to remove the
phase uncertainty mod(n) in the determination of the CKM angle'y by

analysing direct CP violation in B + r+r-K. Therefore the interfer-
ences generated by the p - u mixing allow us to eliminate the phase

ambiguity on the unitarity angles o and 7.

Finally, even though it is not possible to constrain effciently the pa-

rameters p and r7 with an analysis based only on the channels B + pn

and B è pK,, we have determined a range of values fot p that is
0.2L4 < p < 0.251 and that is 0.300 < 7 < 0.351 for r¡. We recall
that the results listed previously about the form factors, Fra*' and

FP'R, as well as those for the CKM matrix parameters, p and q) are

stable against reasonable variation of the input parameters used in our
analysis.

It is clear that the inclusion of p-u mixing into the calculation of direct
C P vio\ating asymmetry, asp, provides the opportunity to go further
into the knowledge of C P violation since we can indirectly check the
unitarity triangle (UT) by measuring experimentally the direct asym-
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metry. We expect that the CLEO, BABAR and BELLE Collaborations
will be able to provide soon useful data regarding our analysis.

In the future...
o This work could be extended to more B decays. It would be very

interesting to constrain our parameters by investigating other channels

than pn and pK for branching ratios and asymmet¡ies. By including
more channels such as B + K*n,,B I K"n.,B -+ K$, we will use

more experimental data and hence be able to obtain better constraints
on our parameters.

o We largely focused our analysis on the case of B decaying into pseudo

scalar plus vector mesons where the p - ø mixing efiects were included.

We have also anaiysed (but not included in this thesis) the results

for B decays into two vectors, such as p and K*. This analysis is

very promising and we refer the reader to the publications 1233,,234]l
for more details2. This work was performed in collaboration with the

LHCb experimental group of Clermont-Ferrand.

o In the QCD factorization (QCDF) framework, hard scattering and an-

nihilation contributions need further investigation. Clarifying these

points would be very helpful in avoiding any over or under estimation

of our theoretical predictions. For example, it is important to solve

the problem reiated to the end point integral divergence which is pa-

rameterized without any strong physical motivation. Moreover, the

annihilation contributions are not derived within the QCDF method.

To obtain a consistent framework, it would be better to find a way to
include them in QCDF.

o It has been shown in the previous chapter that the reason for the large

c P violating asymmetry outside the ¿.r window in QCDF is the large

strong phase included in the QCD penguin contribution through the

term-G¡ø(O). It is clear that the omission of any q2 dependence in

G(s,x) (Eq. (10.13)) is the reason for the difference between the QCDF
and the naive factorization approach. For the future, it is crucial to

work towards a consensus on the most appropriate approach to the cal-

culation of the quark loop contribution shown in Fig. 10.a (g). clari-

2Recently, BELLE [235, 236] and

for B decays into two vectors which
BABAR [237] published new branching ratio results

are in total agreement with our work.
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fication of this point would be helpful to obtain more accurate results

for the CP violating asymmetry, asp, in B decays-

o The work performed in CLFD (Covariant Light Front Dynamics) is

very promising since it shows that this formalism can be applied to
most kinds of phenomenological studies. Even though this framework
still needs to be improved, it provides excellent results for the wave

functions and transition form factors investigated in this thesis. It
would very be interesting to extend this analysis to more particles, in-

cluding baryons. As such, we are not restricted just to particle physics,

but can investigate phenomenological applications in nuclear physics

as well.

Beyond the Standard Model...
To explain the predominance of matter over antimatter in our universe re-

quires CP violation. It is well established that C P symmetry is not an exact

symmetry in nature, because for example it is observed that the baryon num-
ber of the universe does not vanish. B decays seem to be one of the most ideal
toois with which to investigate CP violation, since all of the three famiiies
of quarks can be involved through the CabibbeKobayashi-Maskawa matrix.

Within the Standard Model, the CKM parameters A, À, p aD:d 4 consti-

tute all of the fundamental quantities which can be described by the so'calied

Unitarity Triangle [22]. The better we know this triangle and its shape, the
better we will be able to infer the intervention of any'new physics which fu-
ture theoretical predictions and experimental data may reveal. Even though
a correct understanding of C P violation is expected within the Standard
Model, we do not have to exclude any other possibilities [238] to explain CP
violation in B decays. Some other sources beyond the Standa¡d Model might
be found such as those based on left and right symmetric model [239] and

Higgs model 12401. We can also mention supersymmetry 124I,242,243, 2441,

bariogenesis [245] and the neutrino sector l2a6l as an opportunity to explore

CP violation.
In any case, the understanding of C P violation remains a great challenge

and, without any doubt, needs a strong interaction between experiment and
theory if we want to develop a deeper understanding of our universe.
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The kernel, one-gluon exchange
in CIFD

,, on ne fait jamais attention à ce qui a été fait; on ne uoit que ce qui reste

à faire. "

Marie Curie

In this appendix, we present the complete expressions for the functions X¿

and 0¿ used to determine the radiative corrections in the calculation of wave

functions including a one-gluon exchange. We refer the reader to Chapter 8

for all of the definitions.

4.1 F\rnctions Or,,

For f,)1,2(ø, o', Ra, R'r) one has the following expressions:

Or(r, t',F-¡,Ri) :
1

-1(-l + r)(-r + r')x'!m2tm2u(-r+ î')û'-mr(-r ¡ æ')

-2R2¡æ'+m3@-"r'))

Ri
x (zn'r1- L + t') + m|(-r+ ø)ø') + *"*'(

*r(-r+ ø)(-1 + r') * TTL2îtl)+2 (

2tr

R't'Rt (A.1)
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ez(*,r', Rr, R,î) : :=--- I -r*r*rR"(-l t r)r *' - Rrr(_t + c)z I
*\er + æ)2(-t + n')r' * mlx2(-r + /)t' + 2rt2l(*tt-t * r)r *

n'r(-r + r)n') + *!rt"rl-f -t * x)r + æ' + 2(-3 + æ)xx'

+ (-1 + ax)æ'2) + *",1-*7f, + 2(-r + z)ø)(-1 + ,')x' +

n', ("'1r - 2r')+ 3(-1 + *')r'* æ(-1 * 6x' - n.\)l * 2lmtm2(-1 + x)x'r

*?(-t + a)2(-t + *') - mlæ2x'+ R" (-, * x * r' - r..')l*t *t)
(4.2)

^.2 
F\rnctions Xt,z

For ¡1,2(r, r',F-¡,R'r) one has the following expressions:

Xr(t,,/,R-¡,,Rî) : izn!n', + m!(-t+ ø)(-1 + *')'*'ni(-t * ø')æ' I
+ *7ro (*7*ç-t + ,') * 2rt2tæ') ! mlm2r' (" - tt + ,)r' * *")

- mtmz(-L + *')*'(r*', + m?r(-x+ r')) - m2t(-t + a')

x lzn]1- r * a')2 + m'"r' (t - x' +ø(-t * r¿)l

* 2(m1 - m")(mt(-l + x) + m2a)(-1 + ø')r'R't.R¡ (A.3)

Xz(x,r', Rr, R,'.,-) : 
{-t,-t 

+ r)'

(-1 + r')'*' - *1*t{ 1 + ø)2(-1 + *',)*o * mlm2(-l + *',)

lú(, + 2(-L + x)x)xn + Rl- (-rf -t + ")* + 2(-L ¡ n)xnt ¡
(-3 + ax)xn)] + *,r' Þ"'r("tt -r i x)x+ R'?r(-r + *')')



A.2. FUNCTIONS xt,, 2r3

+ mla2(-r + ï)2 + mzrFt2r(-t * 4æ *2(L+ (-5 * a)x)x'

+ (-1 + aa)an)] - -ïf -r + ,')*'l*\ft + 2(-rf u )ø)(-1 + *') t
n', (s - sx' * 2x(-r * x t rt)l - *r(-L + {lzn'ln3-(-l t x)r

+ *' (znn x' ¡ mfx2x' + *!È'r(-x' + 2x(-r r x *rrî))] t2(m1 - *r)

'i*i +ml(-r**)'-u(2È2r+mi,))(-1 + ;)r'H'"') . (4.4)
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Appendix B

Transition form factor in CI,FD

" Le monde et la science ont leurs données propres, qui se touchent et ne se

pénètrent pas. L'une nous montre à quel but nous ileuons u'iser, l'autre, Ie

but étønt donné, nous donne les moyens de I'atteindre. "

Henri Poincaré

In this appendix, we present the complete expressions regarding the cal-

culation of the transition form factor in the case of pseudoscalar vector tran-
sition. Atl of the terms used in this section have been defined in Chapters

7, 8 and 9. We refer the reader to these chapters for their defi.nitions. The

functions Fli) ur"the kinematic terms involved in the transition form factor.

8.1_ F\rnctions FÍi) , F;i)

The function, Fr(i) take the following form

FÍ') _
1

1

y(

X (2

r)( v

v

yq2

yq2
F{')

(v

)

21

)2M3q2(q"y2

M;-M?)-q2(v2-r)
)

FÍ'):

215

@-t
¡(a)
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¡{s) : ¡(s)

APPENDIX B. TRANSITION FORM FACTOR .

4) y(4)

2-(a-t + q'(2(a - l)s - 1)

q'(((v - 2)a + 2)Mt - 2(M? + qz(a - t))v M3 + ( M? - q2)2a2
- qna2 + M?(Mg v -l)'+ q"v')

FÍU)

F{')

Fr(a)

rÍ')

Itr - rll
l-ø)
frr - yll
lon'I
Itr - rll
l rT)

t?l
ls+lLvq'l

y(a)

y(z)

¡(s)

¡(s)

¡(to)FÍ'O) : (8.1)

where the terms ¡(j) ¡s¿¿ ¿g

¡(t) : 2qra(qty, _ mî@ _ 1)r) ,

v(z) - 2q'y(M3 - Mly') ,,

y(z) : XG) ,,

y(+) : XQ) ,

y(s) : o"({t, -2)a +2)Mî -2(M? + q2(y -t))yuî + (M? - f),v,) ,

¡(0) - -2q's' (((y - r)Ml * q')y - mï@ - 1)) ,

y(z) - 4q'(y - t)s" ,

¡(a) - 4qry, ,,

¡(s) _ xF) ,

¡(to)- @-¡Xtl. (8.2)

The functio.r, Fr(i) can be expressed in terms of ftrt and X(i) as follows,

Ftit * ¡{rl : Y(i) .
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8.2 F\rnctions F{i)

The functioot f{') are defined as,

4') : -@ - rX(y - r)(M? - M;) + q2(y + 1))4 ,

F:') : -þ' - u?(v - r)')F¿ ,

4'r - @ - t)((y - 1), Mî + q'(r - 2(y - Ðùm3
+ qna" - Mi(Mî(a - L), + qrvt)) ,

F:n) :-(1 - v)(v'M\ + (uî((v - Ðv+ 1) - q'v')Ml + rw]çtt| - q')),

¡1ur - -ol2)((M * Mr)' - q')((u' - Mr)' - q')(v - 1)4 ,

4ur _ (y - r)(tty - r)Ml + q,)y - mî@ - r))q ,

F:') - -2(v - Ð(mi@ - Ð' - q'v') ,

¡{'r : p!') l@ - 1) ,

¡jnr : Ft') ,

4'o): @-ÐF,{r), (8.3)

where Fl: (a - 2)Mt + (M? - q')y) and the expression f". Ff,l, is written
as:

FÍ,0),": +q^l$@ - 1) - ((y - r)M? + n)u]' . (8.4)

8.3 Transition form factor diagrams

2r7

Þ

Figure 8.1: Diagrams included in the case of the weak decay pseudoscalar

pseudoscalar transitions (a).

The one gluon exchange process included in the calcuiation of wave func-

tion (see Chãpter 8) allows us to take into account the following diagrams

^It A

I

v
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in the investigation of the weak decay transition (see Chapter 9). Note that
all of the diagrams which can include a one gluon exchange process are not

calculated in our work but only those shown in Figs. 8.1, 8.2 and 8.3. We

refer the reader to Chapters 7, 8 and 9 for all of the definitions'

\

Figure B.2: Diagrams included in the case of the weak decay pseudoscalar

pseudoscalar transitions (b).

Þ-

(

Figure 8.3: Diagrams included in the calculation of the weak decay pseu-

doscalar vector transitions.

v

F

^
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Appendix C

Annihilation amplitudes in
B + T+7r-M

" Il A a un ué.ritable agacernent à essaAer de trouuer le mot précís pour les

pensées que I'on a. "

Charlie Chaplin

In this appendix, we present the complete expressions for the annihilation
amplitudes in B -+ n+r-M where M is r or K. We refer the reader to
Chapters 10 and 11 for all of the definitions.

C.1 TYansition b -> u

d ->no po

tî : br(po,no) + br(no, po) ,

pî : bs(po, ro) * br(ro, po) + 2ba(no,,po) + 2ba(po,ro)

- å( -biØo,no) - biØo,po) + b?(no,po) + u'f (po.,"o))

d +no,
tZ:bt(r,rro) + b1(no,w) ,

p". : -b"(no, r) - fu(u, ro)

(c.1)

* tz}y 
t"o, ,) * b"{ (r ,"0)) + Tþr O' ,, a) + bf, (u, ,ro))

2t9

(c.2)
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B- +r- Po

ti : br(n' , po) - bz(po ,n-) ,

ni - bs(n- , po) - br(po,?r-) + bî("- , po) - b""-(po ,n-) . (c.3)

B- +r-w

t". : bz(n-,,r) + b2(u,r-) ,

pi" : bs(r- ,u) + bs(u,r-) * bi'(n- ,w) + b"{ (w,r-) . (c.4)

C.2 Transitionb+s
7.-dpo

ti:o,
ni - bs(î, po) -Tu":ff ,, r"¡ . (c.5)

d-f,
tI:o,
p". : bs(Ê,u) -rlu";çf ,r¡ . (c.6)

B- +K- Oo

ti = br(K- , Po) ,

pi : bs(K-, po) t bi' (K-, po)

B-+K-u

t",: bz(K-,u) ,

pi : bs(K- ,u) + b{ (K- ,u)

(c.7)

(c.8)
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We investigate in a phenomenological way direct CP violation in the hadronic decays B ='0- ø 
+ zr- K* '0

where the effèct of p-r.r mixing is included. lf 
^f!l 

$ e effective parameter associated with factorization) is

consfrined using the most rec;nt experimental branching ratios (to pop, p=K=, p=P, p0K= and o¡Ka)

from the BABAR" BELLE and CLEO Collaborations, we get a maximum CP violating asymmety a'o' in tlte

nnge -25o/o to *49o/o for B- -¡+ r¡-K- and -24% to +55%o for E0-¡* ¡r-P. We also find that CP

violation is strongly dependent on the CabibboKobayashi-Maskawa matrix elements. Finally, we show that the

sigr of sin ô is always positive in the allowed nnge of Iflf and hence, a measurement of direct CP violation

ìn B!9-¡+ ¡-K='0 would remove the mod(z) ambiguity in argf- llß4b/l/*V;bf.

DOI: l0.ll03ÆhysRevD.66.096008 PACS number(s): ll.3o.Er, 12.39.-x, 13.25.Hw

!- TNTRODUCTION

The study of CP violation in.B decays is one of the most

inrportant aims fq¡ the B factories. The relative large CP
violating effects expected in A meson decays should provide

efficient tests of the standa¡d model through the Cabibbo-

Kobayashi-Maskawa (CKM) matrix. It is usually assumed

that a nonzero imaginary phase angle 7 is responsible for the

CP violating phenomena. This is why, in the past few years,

nr¡merous theoretical studies and experiments have been con-

ducted in the .B meson system [1,2] in order to reduce uncer-

tainties in calculations (e.g. CI(M matrix elements, hadronic

matrix elements and nonfactorizable effects) and increase

our understanding of CP violation within the standa¡d model

framework.
Di¡ect CP violating asymmetries in B decays occur

through the interference of at least wo amplitudes with dif-
ferent weak phase { and stong phase â. In order to extract

the weak phase (which is determined by the CKM matrix
elements) through the measurement of a CP violating asym.-

metry, one must loow the strong phase ô and this is usually
not well determined. In addition, in order to have a large
sipal, we have to appeal to some phenomenological mecha-

nism to obtain a large ô. The charge symmety violating
mixing between p0 and a can be extremely imFortant in this
regard. Iu particular, it can lead to a large CP violation in .B

decays, suih "r 3!'0- p0(o)K!'o-r+ n- y='0, because

the sfong phase passes through 90o at the <,l resonance

[3-5].

*Email address: oleitner@physics.adelaide.edu.au
lEmail address: xhguo@physics.adelaide.edu.au
I Email address: athomas@physics.adelaide.edu.au

VLe have eolleeted tåe latest da-ta for å to s transitions

concentrating on the CLEO, BABAR and BELLE branching

ratio results in our approach. The aim ofthe present work is
multiple. The main one is to consfrain the CP violating cal-
culation in .B ='0* p0( o) K!,0 - t+ t-Kl'o, includbg p-,
mixing and using the most recent experimental data for .B

+pK decays. The second one is to extract consistent con-
süaints for B decays into p(P^S) where PS can be either ø or
K. In order to exüact the strong phase 4 we shall use the

factorization approach, in which the hadronic matrix ele-

ments of operators a¡e saturated by vacuum inter¡rediate
states. Moreove¡ we approximate non-factorizable effects by
intoducing an effective number of colors, Àfll.

In this paper we investigate five phenomenological mod-
els with different weak forrn factors and determine the CP
violating asymmetry, a, for B!'0-p07l.o'¡K='0-ln+ ¡r-K*'o
in these models. We select models which a¡e consistent with
all the data and determine the allowed range for lf!Í
10.66(0.61)<ñ!r<2.84(2.82)1. Then, we study the sign of
sin ô in this range of ñll for all these models. We also

discuss the model dependence ofour results iu detail.
The remainder of this paper is orgnnizsd as it follows. In

Sec. II, we present the form of the effective Hamiltonian
which is based on the operator product expansion, together
with the values of the corresponding Wilson coemcients. In
Sec. III we give the phenomenological formalism for the

CP violating asyÍunetry in decay processes including p-rrr

mixing, where all aspects of the calculation of direct CP
violation, the CKM matrix, p-ar mixing, factorization and
form factors are discussed in detail. ln Sec. IV we list all the
numerical inputs which are needed for calculating the asym-
mery, a, in 8='0-p0(ø)K!'0-r+t-K='o. Section V is
devoted to results and discussions for these decays. In Sec.

VI we calculate branching ratios for decays such as .B1'0

05 5G282r /2002/66(9y096008( r 9)/$20.00 ó6 096008-1 @2002 The American Physical Society
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--+p!'0y'!'0 ¿a6 þ!+toK= as well, and present numerical
results over the range of ÑlI which is allowed by experi-

mental data from the CLEO, BABAR, and BELLE Collabo-
rations. In Sec. VII, we summa¡ize our results and determine

the allowed range of lf!/ which is consistent with data for
both pø and pK decays. Uncertainties in our approach and

conclusions a¡e also discussed in this section' '

II. THE EFFECTÍVE IIAMtrJTONIAN

A. Operator Product exPansion

Operator product expansion (OPE) [6] is a useful tool
innoduced to analyze the weak interaction of quarks. Defin-
ing the decay amplitude A(M---+F) as

A(M--+F)æC¡(P')\F\1 ¡(P')lM), (l)

where C¡(¡r,) a¡e the rùy'ilson coefficients (see Sec. II B) and

O ¡(p,) lhe operators given by the OPE, one sees that OPE

separates the calculation of the amplitude, A(M-->F), tnto
two distinct physical regimes. One is related to hard or short-
distance physics, represented by C¡(t") and calculated by a

perflubative approach. The other is the sol or long-distance

regime. This part must be treated by non-perturbative ap-

prãaches such as the l//V expansion [7], QCD sum rules [8]
or hadronic sum rules.

The operators , O ¡ , âÍê local operators which can be writ-
ten in the ge,neral form

o n: (î ¡1 ¡4 ¡)(d *l ,zq ù, (2)

where l,¡ and f ,2 denote a combination of gamma matrices

and q the quark flavor. They should resPect the Di¡ac struc-

ture, the color structure and the types of quarks relevant for
the decay being studied. They can be divided into two

,Ðd
(w=
. The

current-current operators related to the tee diagram are the

following:

Oi:l "t*0 - 7)u ps p"tþ(l - ys)bo,
(3)

Oì: q y r(r - "t)uî yP (t - T) b,

where a and p are the color indices. The penguin terms caû

be divided into two sets. The first is from the QCD penguin

diagrams (gluons are exchanged) and the second is from the

etectroweat penguin diagrams (Z and Zu exchanged). The

Feynman diagmm for the QCD penguin diagram is shown in

fii. Z ana the corresponding operators are written as fol-

lows:

O s: ã y p(r - y)b2 l' yr(t * ys)q',
q'

(s)

o ø:d ot t (r - y)b p2 qbyþ\ + y)qL,
q'

where q' :u,d,s,c. Finally, the elecEoweak penguin opera-
tors arise from the two Fe¡æman diagrans rqnesented in
Fig.3 (Z,y exchanged ûom a quark line) and Fig. 4 (Z,y
exchanged fiom the Wlne). They have the following exPres-

sions:

3_
or="-zqynl - Ðb¿ eo,-q' 7P11* ys)q', (6)

q'

3_
o s:'tA "y r(1 - Ðb p? e q,A'pyþ(r + l)qL,

3_
o r= "-zq y r(l - Ðb> e n,f, ' yull - "ys) q',

3_
o,o='rl,y *(t - Ðb pZ e o,lþf Q - v)q'",

q'

where eo, denotes the electric charge ofg'.

prfYsrcAl, REVTEW D 66, 096008 (2002)
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FIG. l. Tree diagram for8 decays.
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FIG. 2. QCD penguin diagram, for I decays.
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Vst

z.t¡

FIG. 3. Electroweak-penguin diagram for.B decays.

B. Wilson coeftcients

As we mentioned in the preceding section, the Wilson
coefficients l9f, Ct(t"), r€present the physical contibutions
from scales higber than ¡¿ (the OPE describes physics for
scales lower than ¡r). Since QCD has the property of
asymptotic freedom, they can be calculated in perturbation

theory. The Wilson coefficients i¡clude conüibutions of all
heavy particles, such as the top quarþ the Zbosons, and the

charged Higgs boson. Usually, the scale ¡r is chosen to be of
order O(m) for I deeays. Wilson coefficients have been

calculated to the next-to-leading order (NLO). The evolution
of C(p.) [the manix that includes C¡(tt)] is given by

C(tt)=U(p.,M¡)C(My), (7)

wherc U(p,,My) is the QCD evolution maEix:
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TABLE I. Wilson coefficients to tle nextJeading order (see the

reference in text).

C¡(p') for ¡¿:5 GeV

240

rL

9r

q2
Vir

w
tlo

b

ca
c4

c1
cs

cr
c2

+0.0174
+ 0.0373

- 1.050x l0-s
+ 3.839x l0-4

-0.3t25
+ 1.1502

cs
c6

cs
Cto

+0.0104

-0.M59

- 0.0101

+ 1.959x l0-3

a,(Mw)
4¡r

(8)

with "Ithe matrix summa¡izing the next-toJeading order cor-
rections errA f-to(p,,M*) the evolution matrix in the leading-
logarithm approximation. Since the strong iûteraction is in-
dependent of quark flavor, the C(¡r) are tåe same for all B
decays. At the scale þ=mb=5 GeV, C(¡l) take the values
summa¡ized in Table I UO,ll].

Vst
vL

z¡{

FIG. 4. Electoweak-penguin diagram (coupling bewæn Z, "y,

and Z) forB decays.

u ( t", u ù =1, - # 4* t *,u ùlt -

To be consistent, the matrix elements of the operators,
O¡, should also be renormalized to the one-loop order. This
results in the effective Wilson coefficients, Cj , which satis$
the constaint

C ¡(m ) (O ¡(m ùl : C', (O ¡1""", (e)

where (O¡)""' a¡e the matix elernents at the tee level.
These matrix elements will be evaluated in the factorization
approach. From Eq. (9), the relations between C! and C ¡ are

Il0,ll]

Ci:Ct, CL=Cz,

Cl=Cs-P"/3, CL=C4IP*

C's:Cs-P"13, C'5:C5*P", (10)

Ci:C7+P", C'a:Cs,

C$:CeI P", Clo:Crc,

where

P,= ( a,l8t) C 2ll0l9 + G (m 
", 

p,q2)f ,

P ": 
(a 

"^l9zrx3 
Cr + C2)[ I 0lg + G (m 

", 
p,qz)],

(lt)

G(m",p,q2)=+ ft ar*G-t
ml'x(l - x)q2

p2
(r2)

and

a
9r

a

q,r

b

w

Here q2 is the typical momentum tansfer of the gluon or
photon in the penguin diagrans arrd G(m",¡t,q2¡ has the
following explicit expression [12]:

09ó008-3
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TABLE II. Effective Wilson coefrcients related to the tee operators, electoweak and QCD penguin

operators (see the reference in text).

c! ø21nf,=g.t ø21nf,=g.5

c
ci

-0.3125
+ 1.1502

+ 2.433x10-2+ 1.543X l0-3t
- 5.808x l0-2 -4.628x 10-3t
+ 1.733x10-2+ 1.543x l0-3t
- 6.668x l0-2-4.ó28x l0-3 j

- 1.435x lO-4 - 2.963x l}-s i
+ 3.839x l0-4

- 1.023 x to- 2 - 2.963x lO- s i
+ 1.959x lO-3

- 0.3125

+ 1.1502

+ 2.t2ox lo- 2 + 2.17 4x to- 3 i
-4.869x l0-2- 1.552x l0-2t
+ t.42oxlo-2 + 5.t74x l0-3t
- 5.729x10-2- 1.552x t0-2t

- 8.340x 10-s- 9.938x l0-st
+ 3.839x l0-4

- 1.O17x l0-2-9.938x l0-st
+ 1.959X 10-3

c
c
c
c

c
c
c
c t0

nl
t- 4-

q2

(r3) 
n"^ri='=llr/,bn,(c,,i+c2oî)-rr,r4i, c,o,)

product expansion (see Sec. II A), and p represents the

renormalization scale. We emphasize that the amplitude cor-

responding to the effective Hamiltonian for a given decay is

independent of the scale p. In the present case, since we

analyze dtrect CP violation in ^B decays, we t¿ke into ac-

count both tree and penguin diagrams. For the penguin dia-
grams, we include all operators 03 to Op. Therefore, the

effective Hamiltonian used will be

*H.c., (15)

and consequently, the decay amplitude can be expressed as

follows:

q2

l-

2l ^1\ l-"ImG= - l\r*rA)rrl ,-oF-

Based on simple arguments at the quark level' the value of
q2 is chosen in the range 0.3<q2lml<0.5 [3,4]. From Eqs'

(10)-(13) we cat obtain numerical values for Ci . These

values are listed in Table II, where we have taken a"(mz)
:0.112, a"r(mt):l/132.2, m6=5 GeY, and mc
:1.35 GeV.

C. Efiective E¡miltonian

In any phøromenological treaünent of the weak decays of
hadrons, the starting point is the weak effective Hamiltonian

at low energy [13]. It is obtained by integrating out the heavy

fields (e.g. the top quarþ l/ and Z bosons) from the st¿nda¡d

model Lagrangian. It can be written as,

?r"fi:#Z vr*rc,(t")o¡(tò, (14)

where G¡ is the Fermi constant, Vç¡v is the CKM matix
element (see Sec. III A), C¡(¡r) are the rWilson coefficients

(see Sec. llB), O¡(p,) a¡e the operators from the oPerator

2
ReG:; +,-:-,r.(,.,r)

l+
X l-

A @ - P n :fflr, or¡,r r, q, vl oil B, + c 2< P Yl oil Br)

r0 I
-v,ov¡*"Z. c,(Pttlo,lB)f+H.c., (16)

where (PYlOrlf) are the hadronic matrix elements. They
describe the tansition between the initial state and the final
state for scales lower than p and include, up to now, the

main r¡ncertainties in the calculation since they involve non-

perturbative effects.

IL CP VIOLATION N tË!-p0(a¡)7ç!'o+'¡+'¡-yt9

Direct CP violation in a decay Process requires that the

two CP conjugate decay processes have different absolute

0960084
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with Ill and HP being the Hamiltonians for the tree and

penguin operators. We can define the relative magrritude and

phases between these two contributions as follows:

tr : (x n- f ltr lB)ll + r ei 6 e¡ ö1,

(23)

l=(Rf rr-lHrlE¡U + rei6e-iÔ\,

where â and f are strong and weak phases, respectively. The

phase ,f arises from the appropriate combination of CKM
matrix elements, and {:arg[(l/,bli)/(Y"b(")]. As a re-
sult, sin { is equal to sin 7 with 7 defi¡ed in the standard

way [18]. The parameter, ¿ is the absolute value of the ratio
of Eee and penguin amplitudes:

<po(ùxlnPla]l (24\

242

values for their amplitudes [14]. Let us sta¡t from the usual

definition of asymmetry,

I(B*F)-f (E-F)
a(B-F\: 

- 

(17)u\P '" l7B-F¡+f(F*F)'

l{n-Ð12 -lÃ(B-Ð12a(B-F\:* (18)q\P '' ' ¡t'1n-'r¡12+lÃ18-F¡12'

where l(B+Ð is the amplitude for the considered {ec9¡
which in general can be written as A(B---+F):lAle¡6r+iÖr
+lAzlei62+¡Ó2. Hence one gets

a(B+F)

- 2l A tll A zlstî( þ 1 - Q) sn( 6 1 - 6 2)

I,e tl2 + zl,t. rllt2 | 
cos( f ¡ - dz) cos( â¡ - 6) + lA 212'

(le)

Therefore, in order to obtain direct CP violation, the CP
asymmetry parameter ¿ needs a strong phase dffirence, 61

- â2, coming from the hadronic maltx and a weak phase

dffirence, Öt- Ö2, coming from the CKM matrix.

A. CKM mefrix

In phenomenological applications, the widely used CKM
matrix parametization is the Wolfenstein parametrization

[15]. In this approach, the four independent parameters are

lr,A,p arrd t¡. T\en, by expanding each element of the ma-

Trix as a power series of the parameter À:sin 8"=0.2209.(0"
is the Gejl-Mann-tevy-Cabibbo angle), one gets [O(À4) is
neglected]

l^t- r\'
-T

Al\3(l - p- iÌt)
(20)

where 7 plays the role of the CP-violating phase. In this
parametrization, even though it is an approximation in À, the

CKM matrix satisfies uitarity exactly, which means,

tL*r'î'c**:î:î'¿a¡a'y'1ç¡a. Ql)

B' P-ar mi*ing

In the vector meson dominance model [16], the photon
propagator is dressed by coupling to vector mesons. From
this, the p-ar mixing mechanism [17] was developed. Let I
be the amplitude for the ðecay B--+po1loo)K+r+ r-K, then

one has

r=
(po(o,)KlHrlB>

In order to obtain a large sipal for di¡ect CP violation, we
need some mechanism to make both si¡ ô and r large. We

sfiess that p-ø mixing has the dual advanøges that the

sEong phase difference is large þassing tbrough 90o at the a¡

resonance) and well loown [4,5]. rüith this mechanism, to
first order in isospin violation, we have the following results
---L^- rL- :----J^-¿ 

-^-^ ^f -+ -- 
:^ -^^, .L-w[EIl uç [valall u6) vr 1¡ ¡¡ ¡ù ¡lgd u¡v @ rlrvu@wv

mass:

Vcxu: r -f,x'
-A\2

A\.2

I

(K zr- # lzrln¡ : 9Lfr' o.t.+ fu t o,

Qs)

(xn- ù lnPla¡ : Lfr eat,* frn o.

Here ty (V=p or <o) is the tree amplitude ætd pv the pen-
guin amplitude for producing a vector meson, l/, g, is the

coupling for po-¡+¡-, fr', is the effective p-ar mixing
amplitude, and sy is from the inverse propagator of the vec-

tor meson Z,

sv:s - m2v* imyl v, Q6)

with .,F being the invariant mass of the ¡r+ ¡¡- pair. We
sfiess that the di¡ect coupling o)-'ît'ît- is effectively ab-

sorbed into fir, [tl], leading to the explicit s dependence of

fr',. Making the expansion fr',{t)=frtr,1m2,¡+ 1s

-*z-¡fr'0,{^2,), the p-o mixing paraneters were deter-
mined in tne fit of Gardner and O'Connell [20]:
nefr p,(mz)=- 3500+300 Mev2, l^fi o,{nf,): -too
=300 

Mevz, and fi'p,@2):0.03+0.04. In practice, the

effect of the derivative tenn is negligible. From Eqs. (22),
(25) one has

,"'a"'6-fi!"'P'*s"Po. (27)
flortr+srto

(22) Defining

096008-5
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P.@:r,ei(6q+6), b:or,uo, b=pri6p, (2g)
tp tp P,

where áo,áp arrd 6q are sEong phases (absorptive part).

Substituting Eq. (28) into Eq. (27), one finds

,"ia-. r, 
"iaofip'*-7e¡69:r 

,
s r*Ilorae'on

243

where

aei6o=f, pei6ø:b+ci, r'eíôø=dlei, (30)

and using Eq.Q9), we obtain the following result when 1ß

-fr.i

pHySIcAL REVTEWD 66, 096008 (2002)

C. Factorization

rü/ith the Hamiltonian given in Eq. (15) (see Sec. II C), we
are ready to evaluate the matrix elements for .B='0
---, p01i.o¡K=,0.In the factorization approximation [21], either
p01or¡ or Kr'o is generated by one cu¡rent which has the
appropriate quantum numbers in the Hamiltonian. For these
decay processes, two kinds of matrix element products are
involved after factorization (i.e. omitting Di¡ac matrices and

color tabels): (p0(a)l(iu)loxr=pl(;å)lr=p) and

(K=þl@14ùl0xp0(ú,l)l(tó)la='o), where q¡ and 42 could
be ø, s or d. We will calculate them in several phenomeno-
logical quark models.

The matrix elements for B--+X and B-+)( (where X and

ll denote pseudoscalar and vector mesons, respectively) can

be decomposed as follows [22]:

Qe)

^20-^2x<x1r*lB>: Pa*
¡z

k F{k2)
lL

e'ß

mB*my,

k

(3 l)

Here C and D are defined as

ç: (s - m2,* ¡vtefr o;1alnefr o.+ b(s - m2,) - cm.Î ,l

- elxmfi r.* bm ,l ,+ c(s - m2.)l\

+ QtJmfr o.+ m .l .){efff.efr r,+ b{t - *2,) - cm ,1 ,f

+dlxmfio.+bm,l,+c(s- ^2)f\, (32)

and

p: 
1s - n2,+ 1vtefr r;{eîfr"fi o.+ d{t - 

^2.) 
- cm,Î .l

+ dlJmñ, o,+ b m,1,+ c (s - mz,¡l\

- glmfr o,+ m.î,){dlßefi o,+ b (s - ^2.) - 
cm'| .7

- elxmfir,+bm,î.+c(s-*Tl\. (33)

o"i6o, pe¡69, atd r'eì6t will be calculated later. In order to
get the CP violating asymmetry, a, stn Q and cos @ are

needed, where d is determined bythe CKM matix elements.

In the V/olfenstein parametrization [15], the weak phase

comes from lY,t4JV"oV*r"] and one has for the decay .B

-po1ro)K,

sind=

*fftr-Fo(kz), (35)

and

2
<r lJ pl B> : * e p, p" e" p þ"* v (k2 )

tlt 3+ lflYt

C+iD

(s - n2.+ ¡rnefr o,)' + g3 *fr, o,+ m,l,)2

(34)

cosó= +.
1p" + tÌ'

The values used for p arrd n will be discussed in Sec' IV A'

+ ei(ma+mx')A/.k2\

e
x(PB+ Px') pA2(k2) - 

-," 
2my,.krA

k- '(Ê)

e'-k+i 
o;2nr.kpAo(k"),

(36)

A^(k2')=^t* ^* n r(or)-*t- ^* AzGz). (3g)__)\,,/ 2mr 2mr

An argument for factorization has been given by Bjorken

[23]: the heavy quark decays are very energetic, so the

quark-antiquark pair in a meson in a final state moves very
fast away from the localized weak interaction. The had¡oni-
zation of the quark-antiquark pair occurs far away from the

where J, is the weak current, defined as J*=QTP(\
- ys)å with q=u,d,s anð k:Po-Pxg\' e,, is the polar-
ization vector of )-. Fe and F1 are the form factors related

to the transition 0--+0-, while 16, At, Az, A3 and V are

the form factors that describe the Eansition 0-- I -. Finally,
in order to cancel the poles at q2: g, tÏe form factors respect

the conditions

F¡(0):Fs(0), A3(0)=As(0), (37)

and they also satisfu the following relations:

096008-6
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remaining qua¡ks. Then, the meson caû be factorized out and

the interaction between the quark pair in the meson and the

remaining quark should be tiny.
In the evaluation of mafrix elements, the effective number

of colors, lflf, etters through a lietz transforrration. ln
general, for operator O¡, oflg can w¡ite

tt\^
tp=nBlipl\ci+ N"ci)f.r\nþ, (40)

where/o is the p decay constant [and to simpliff the formu-

hs we úse N" for Ñll in Eqs. (a0)-(50)1. In the same way,

wefindtt=Io'I 
o"rr":l. (41)

After calculating the penguin oPerator contributions, one has

r,eiõ,=-j = 
p-, lryl, Ø2)r Y '- 

(t'- å.,) f f ,@')lv'otr'"1' 
\'-l

and

BIBLIOGRAPHY

PHYSTCAL REVTEW D ó6, 096008 (2002)

(46)

244

,10, (39)

where f¡ describes non-factorizable effects. We assume (¡ is

universal for all the operators O¡. We also ignore the final
state interactions (FSI). Afrer factorization, and using the de-

composition in Eqs. (35),(36), one obtains, for the Process

fio-po1ø)Ro,

^?ç
(m6+m¿)(m¿*m")

where /6 is the K decay constant. ln Eqs. (42), (43), P, has the following form:

Fe,e e:!ù-(;[(.r. *;",) . ("r. t.',)fæu,,7,*{(',. 
"",) 

-l("i,.*".t)

.[ -,(,æ í,t)* ( 
";* 

"",)]l
jr-n,r.'-r),

ll
w!\'=t*6t 

with i=l'

o,: - di À{r[ (.,. ir,)* ( r; *

.[(',. í,,)-,(,t.ft,t

(43)

u',) ], t u*7, * ilþ,.u., ) 
* ( .; * Ln" ;)1t,, u*1,

)il
.l(',. 

".,)- 
å('1,. 

"'t)fr*n,,*i,j, 
,*,.2¿*Ao1m2*)

(m6*m ¿1mr)

and the CKM amplitude entering the å-s transition is

(45)

with B defined as the unitarity triangle as usual. Similarly, by applying the same formalism, one gets for the decay B-

-po1a¡K-,

lv,u4"l t l r I

17,*n| tJffi:FisinBl'

,,: 
^,t ;,tl(c i + fr c ;þ ¿, øþ + (c ¡ lc 7) ne, t,, ?) 

]

In the same rilay, we find t @= t p, therefore one has, again,

aei6o:l

The ratio between penguin and tee operator contributions, which involves CKM matrix elements, is given by

096008-7
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r'eì6q=

and finally,

where the ø penguin opsrator con[ibution, p,, is

I). Form f¡ctors

The form factors F¡(t2) na A¡Qê) depend on the inner
structure of the hadrons. We will adopt here th¡ee different
theoretical approaches. The fi¡st was proposed by Bauer,

Stech, and Wirbel (BSW) [22], who used the overlap inte-
grals of wave fi¡nctions in order to evaluate the meson-

meson matrix elements of thç corresponding cunent. The

momentum dependence of the form factors is based on a

single-pole ansatz. The second one was developed by Guo

and Huang (GH) [24]. They modified the BSW model by

using some wave functions described in the light-cone

framework. The last model was given by Ball [25] and Ball
and Braun [26]. In this case, the forrn factors are calculated

from QCD sum rules on the light-cone and leading rwist

contibutions, radiative corrections, and,SU(3)-breaking ef-

fects are included. Nevertheless, all these models use phe-

nomenological form factors which a¡e parametrized by mak;

ing the neãest pole dominance assumption. The explicit k2

dependence ofthe form factor is as122,24-271:

F{k2):
hl

PHYSTCALREVTEW D 66, 096008 (2002)

245

þ,. l,t)r, rnz) +( 
'; 

. f, 'l ) 
lrAoØ'r)

P, (48)

;)lr,r,t-',t* ( . ;o * Lnc 
;) t -n ¡*itC

N"

(4e)

p .= *,ti,tfz[ ( 
", 

. ír r)* ( .; * 

"., 
) ]ff ,,*7, * ilþ,. ír; ) 

. ( .; . l, *))r r,,-7,

. 
[ 
( r,. *t., ) 

* ( .;,* 

"., 
) | *n,,^'*, - rl ( .,. ïr,)* ('; * 

"., 
) ] [

-za
(m,*mr)(m6*mu) o(*2*)

(s0)

hFíK\:

Ao(k\:

l-dt
k2

^2p

ibt
^?t

hno

¡z
2r

(51)

k2l-d¡3+bs
n'B

¡z
I _-t)

mi

n,

where n:1,2, m1o and my a¡e the pole masses associated

with the tra¡sition cu¡rent, h1 and h4 a¡e the values of forrr

factors at qr2 : 0, md d, and à¡ (i : 0, I ) are parameters in the
model of Ball.

IV. NIJMERICÀL INPUTS

A. CKM v¡lues

ln our numerical calculations we have several parameters:

Q2,N", and the CKM in
paranretrization. As me is

conventionally chosen 5.

The CKM matrix, which should be determined from experi-

TABLE III. Values of the CKM unitarity triangle for limiting
values of the CKM matrix elements.

hAo
a p v

(P^¡n,,1.¡n)
(P^¡n,4^or)
(P^or,'l^¡r)
(P^o, '4^ot)

|Mo47
930 13

7120 14

99066

19"32
24"31
21"20
260 56

5621
62"56
46066
53'78

or

Ao(kz)=
¡rz

09ó008-8
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TABLE IV. Form factor values for B' P and B +K at q2 --0 (see the reference in tex$'

hno ht ñAo frtl do@) boQ.,)

model (l)
model (2)
model (3)
model (4)
model (5)

0.280

0.340

0.280

0.340

0.372

0.360

0.762

0.360

0.762

0.341

5.27

5.27

5.27

5.27

5.41

5.41

5.4t
s.4t

1.400(0.410) 0.437( - 0.361)

mental data is expressed in terms of the tü/olfenstein param-

eters, I , À, p, and 7 [15]. Here, we shall use th€ latest values

[28] which wero extacted from charmless semileptonic B

ã"*yr, (lV,bD, charm semileptonic.B decays, (lZ"al), s and

d mass oscillations, Lmr, Ãm¿, and CP violation in the

kaon system (rò,(p,rù.Hence, one has

\:0.2237, I : 0.81 13, 0.190<p<0.268,
(s2)

0.284<q<0.366.

These values respect the unitarity triangle as well (see also

Table III).

B" Quark masses

The running quark masses are used in order to calculate

the matrix elements of penguin operators. The quark mass is

taken at the scale p-mb in I decays. Therefore one has [29]

mu(p:mo):2.3 MeV, md(p=mb)=4.6 MeV,
(s3)

m"(p:mo)=9o MeV, mo0.¿:mù=49 GeY,

which corresponds to m"(p: I GeV)= 140 MeV. For me-

son masses, we shall use the following values [18]:

ms=:5.279 GeY, m3o:5.279 GeY,

m¡=:0.493 GeY, mp:0.497 GeY,

mr=:0.139 GeV, zrro=0.135 GeV,

moo:0.769 GeY, m,=0.782 GeY.

C, Form f¡ctors ¡nd decry consts¡ts

In Table IV we list the relevant form factor values at zero

momentum Eansfer 122,24-26,30f for the 8+K and B'+p
Eansitions. The diffe¡ent models a¡e defined as follows:
models (1) and (3) a¡e the BSW model where the q2 depet-
dence of the forrr factors is described by a single- and a

double-pole ansatz, respectively. Models (2) and (4) are the

GH model with the same momentum dependence as models
(l) and (3). Finally, model (5) refers to the Ball model. We

define the decay constants for pseudo-scalar (/p) and vector
(/y) mesons as usual by,

\P (q)lã t pv sq zlol = il pq p ,

(55)

{z V k)l q t y uq 2lo) = f ym y e y,

with q u being the momentum of the pseudo-scalar meson,

my aid ey berng the mass and polarization vector of the

vector meson, respectively. Numerically, in our calculations,

we take [18],

/r=160 MeV, fo-f':221 MeY. (56)

The p and <rr decay constants are very close and for simpli-
fication (without a.ny consequetrces for results) we choose

.f p=f ,'

V. RESTJLTS A¡fD DISCUSSION

rùVe have investigated the CP violating as¡rmmetry, a, for

the two 8 decays: fia-p0Fa--ln*t-P and B--paK-
-,t¡+,t¡-K-. The results are shown in Figs. 5 and 6

for El-*n*t-fl, (¿=[I(80-'t¡*¡-Fo)-f(80

- t- ø+ I()l / f[(80 -- r+ t-.fl¡ + r1r0-' zr- t* t(¡ 1¡,
wherc k2lml=0.:(o.s) and for ¡fll q"t to 0.61, 0.66,

applied for E0-r¡r+r-Ro. tn our numerical calculations,

-t0

no 7ú 800 tlo nî ß0 8/t0

./s(ucÐ

FIG. 5. CP violating asymmery, a, for Eo-t+¡-fl, for
kztn]=9.3, fo¡ ñlI=0.66,2.69,2.84 and for limiting values, max
(min), of the CKM matrix elements for model ( I ) : dot-dot-dashed

line (dotdash-dashed line) for N"!l:9.66. Solid line (dotted line)

for lflr:2.69. Dashed line (dot-dashed line) for ñll=Z.gq.

4

30

'¡a æ
êê.

"; ro

9o

(s4)

ta'

,
i'\

\./
'{=:'- .'-
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TABLE IV. Form factor values fo¡ B-p and B+K at q2:g (see the reference in text).

hno hr ñAo rtt¡ do(dì åo(år)

model ( t ) 0.280 0.360 5.27 5.41

model (2) 0.340 0.162 5.27 5.4t

model (3) 0.280 0.360 5.27 5.4r

model (4) 0.340 0.762 5.27 5.4r

model (5) 0.372 0.341 1.400(0.410) 0.437(-0.361)

mental dat4 is expressed in terms of the Wolfenstein param-

eters, l, )t, p, and Ìl Usl. Here, we shall use the latest values

[28] which were extracted from cha¡¡rless semileptonic .B

decays, (lV"bD, charm semileptonic I decays, (lZ"¿l), s and

d mass oscillations, Lm, Amd, atd CP violation i¡ the

kaon system (er),(p,q).Hence, one has

It: 0.2237, I :0.81 13, 0.190<p<0.268,
(s2)

0.284<r7<0.366.

These values respect the unitarity triangle as well (see also

Table III).

B. Quark masses

The running qua¡k masses are used in order to calculate
the matrix elements of penguin operators. The quark mass is

taken at the scale p-mb in B decays. Therefore one has [29]

mu(p:mt):2.3 MeV, n¿(þ:¡nt):4.6 MeV,
(s3)

mr(þ:mo):9O MeV, mr0t:mo\:4.9 GeV,

which conesponds to m"(¡.c: I GeV¡= 140 MeV. For me-

son mr¡sses, we shall use the following values [18]:

ms=:5.279 GeY, meo=5.279 GeY,

rø¡=:0.493 GeV, mp:0.497 GeY,
(54)

rarr:0.139 GeV, zro=0.135 GeV,

moo:0.769 GeY, m,:0.782 GeY.

C. Form f¡ctors ¡nd decay constants

In Table fV we list the relevant form factor values at zero

momentum Ea¡sfer 122,24-26,30] for the B+K a¡d B'+p
transitions. The differeot models are defined as follows:
models (l) an<t (3) are the BSW model where the q2 depen-

dence of the form factors is described by a single- and a
double-pole ansatz, respectively. Models (2) aod (4) a¡e the

GH model with the saÍre mometrtum dependence as models
(l) and (3). Finally, model (5) refers to the Ball model. We

define the decay constants for pseudo-scalar (fp) and vector
(fy) mesons as usual by,

(P(q)lã t pvss zlo> = i.f Ps P ,

(s5)

,l-z <v (q)lq t y rq 2lo) : f ym y e v,

with q, being the momentum of the pseudo-scalar meson,

my and ey berng the mass and polarization vector of the
vector meson, respectively. Numerically, in our calculations,
we take [18],

/¡=160 MeV, fp-f,=221 llleY. (56)

The p and a decay constants are very close and for simpli-
fication (without any consequences for results) we choose

.f p=.f ,.

V. RESUI.JTS AI\D DISCUSSION

We have investigated the CP violating asymnetry, a, for

the two ^B decays: E0-p0fl-lr*¡-P atd B--poK-
-n+¡¡-K-. The results a¡e shown in Figs. 5 and 6

for E0-¡¡+¡-f;o, (ø=[I(80-¡r*¡¡-fio)-I(80
-z- zr+14)l/ff (80-ù ø-.P¡ +1140 -.zt- t* I(¡l),
where k2/m2o:0.3(0.5) and for ñll 

"crol 
to 0.61, 0.66,

2.65,2.69,2.82 and 2.84. Simila¡ly, in Figs. 7 and 8, the
CP violating asymmetry, a, (=ll(B-+rr+¡-K-)
- f (B* -- t-¡* K* )l/tf (B- - ¡r+¡-K-) + I (B+
--zr- t+ K*)l), is plotted for B- --n+ a-K-, where

k2lm!=g.31g.5) and ior the same values of Àfl/ previously

applied for E0--z¡+ n-ßo. tn our numerical calculations,

Æ

30

'¡a zo
ocl

";,

ço
-r0

no 780 790 800 810 8m $0 w
rlS (ucÐ

FIG. 5. CP violating asymmetry, a, fo¡ Eo-¡r+zr-P, fot
k2tm!=9.3, for ñ!1:9.66,2.69,2.84 and for limiting values, mær

elements for model (1): dot-dot-dashed

Jä#å;trhïllfti,!.;:ff'*o
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\
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TABLE VI. Mærimum CP violating asynmetry a^o,(%o) for
3- + ¡+ r- K- for all models, limiting values of the CKM matrix

elements (upper and lower limit), and for k2/ml=0.3(0.5).

ñ!l¡,:0.66(0.6r) tf!1,,=2.8aQ.82)
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try parameter, a-o, foÍ a range of 
^f{f 

from 0.66(0.61) to

2.84(2.82), whete k2lm!:0.3(0.5) and for the five models

analyzed, are given in Table VL We forurd that for this decay,

the CP violating Pararneter, a, takes values a¡ound

49%(46%) to -22%(-25o/o) for the limiting CKM matrix

values ofp and 7 defined before. Once again, the sign ofthe
asymmetry parameter, a, is positive if the value of N" stays

below 2.7. If we focus on N!{,, equal to 0.66(0.61), models

(1), (2), (3), (4) and (5) give almost the s¡me value which is

arotmd 46.6%o(43.6%) for the mæ<imum values of the CKM
matrix elements, For the set (pr¡n ,T^¡n), the marimum
asymmetry, a, is around 34.0%(33.8%). The ratio between

asymmetry values taken at upper and lower limiting P úd 1Ì

values is around 1.37(1.28). Let us have a look at tùLe CP
asymmetry values at lf{{,,. As we observed for the decay

E0--t¡+¡¡-F0, all models a¡e separated into two distinct
classes related to their form factors. For models (l), (3) and

(5), the value of ma¡<imum asymmetry, aro, is a¡ound

-15.6%(-17.6%) and a¡ound -21%(-23.6%) for the

maximum and minimum values of set (p,7), respectively.

The calculated ratio is around |.34(l .34), between these two
asymmetries. As regards models (2) and (4), for the same

set of (p,n), one gets -11.5%(-13%o) arlð -l7o/o
(- l8%). In this case, one has 1.47(1.38) for the ratio. The

reaso¡ls for the differences between the mædmum asymme-

lry paramet€r, aãar) are the same as in the decay E0

-¡*'¡¡-fo.
By analyzing the I decays, such as EÛ--t¡*ri--F atd

B- -r+ ¡- K-, we fourd that the CP violating as),mmetry,
a, depends on the CKM matrix elements' form factors and

the effective parameter ¡flÎ (^ order of increasing depen-

dence). As regards the CKM matrix elements, the depen-

dence through the element, Zu¿, contributes to the asynme-
try in the ratio between the ar penguin contributions and the

p tree contributions. It also appears that for the upper limit of
set (p,q), we get the higher value asymmeüy, c, and vice
versa. rWith regard to the fomt factors, the dependence at low
values of ñll i" very weak although the huge difference
between the phenomenological form factors [models (2) and

(a) and models (1), (3) and (5)l applied in our calculations'
At high values ofÀf,// the dependence becomes strong and

tlen, the asymmety apPea¡s very sensitive to form factors.

For the effective paranetet tflr (related to had¡onic non-
factorizable effects), our results show explicitly the depen-

dence of the as)ry¡metry parameter on it. Because of the en-

ergy carried by the quark s, intermediate states and final state

interactions a¡e not well taken into account and may explain
this strong sensitivity. Finally, results obtaineÀ at kzlm?,
:0.3(0.5) also show renonnalization effects of the Wilson
coefficients involved in the weak effective hadronic Hamil-
tonian. For the ratio between asymmetries, results give an

average value of order 1.36(1.40) for ^B-0-ø+zr-ß{ and

1.39(1.33) for B--n+¡-K-. This ratio is mainly gov-
erned by the te¡m llsnp, where the values of the angles a,

I aú I a¡e listed in Table III.
As a first conclusion on these numerical results, it is ob-

vious that the dependence of the asymmetry on the effective

248

model (l)
P^or rT-ot
Pn¡a '4n¡n

model (2)
P-or,4^o,
Pn¡n,4m¡¡

model (3)
Pmox t4m¿x

Pn¡n,4min

model (4)

P^ox,T^o,
Pni¡,4n¡¡

47(4s)
34(35)

4s(41)
33(32)

47(44)

34(35)

4s(42)
33(32)

- 15( - 17)

-21(-23)

-ll(-13)
- 17( - 18)

- 15(- 17)

-20(-23)

- 12( - 13)

- l7(- 18)

model (5)
p,o,,T^o, 49(46) - l7(- 19)

ñ . ?611sì -22( -25\rmtn t .t mtn

(p,z) is a¡ound 1.26(1.37). If we-consider the ma,ximum

asymmetry parameter, a^o,, fot lf!I*=2.8C(2.82), we ob-

serve a distinction between the models. Indeed, two classes

of models appear: models (2) and (a) and models (l), (3)

and (5). For models (2) nd (4), one has an asymmetry,

o^^, aroùrid -6o/o(-7yo) and around -9%(- l0%) for
the upper and lower set of (p,?), respectively. The ratio
between them is ¿tround 1.50(1.42). For models (l), (3) and

(5), the mæ<imum as)'mmetry is of order -14-3o/o
(- 16.3%) for (p^o,,T^or) and a¡ound - 19.3%
(-23.0o/o) for (p^¡n,en¡n). In this case, the ratio between

asymmetries is a¡ound 1.34(1.41).
The first reason why the maximum asymmetry' tmox ) can'

vary so much comes from the element Yu6. The other CKM
matrix elements Vú, Y," and Yr, all proportional to A and

À, are very well measured experimentally and thus do not

interfere in ow results. OnIy I/u6, which contains the p and

? pa¡ameters, provides large uncertainties, and thus, large
va¡iations for the ma¡<imum asymmetry. The second reason

is the non-factorizable effects in the transition å-rs. It is
well krown that decays including a K mesotr (and therefore

an s quark) carry more uncertainties than those involving
oúy a 7r meson (u, d quarks). If we look at the asymmetries

at ñ!!,,, all models give almost the same values, whereas at

ñ!1,,, we obtain different asymmetry values (with, more-

over, a change of sign for the CP violating asymmeey). The

CP asymmetry parameter is more sensitive to forur factors at

high values of lflr than at low values of \flr. It appears

therefore that all of the models investigated can be divided in
two classes, referring to the two classes of fonn factors.

For B--¡¡+z¡-K-, we have similarly investigated the
CP violating asymmety. The values of mærimum asymme-

096008-l l
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FIG. 10. sinô,asañ¡nction of lflr,forB-+'t¡+tr-K-, for
k2tn2r=9.319.5) and for model (l). The solid (dotted) line at

sin á=+l corresponds to the case fr0.=(-3500;-300), where
p-ar mixing is included. The dot-dashe.d (doþdot-dashed) line cor-

responds to fr0,=(0;0) where p-ø mixing is not included.

atd E0-r+¡¡-.fl, when k2/nl=9.319.5). For values of
ñ!! Aiggû than this limit, sin â becomes negative. At the
same time, the sþ of the asymmetry also chânges. In Figs.
ll(b) and l2(b), the ratio of penguin to tree amplitudes is

shown for B!'0-¡+rl--K!'0, in the case- of fip@=
(-3500,-300). The critical point around lf!r=2.7 rëterc
to the change of sigrr of sin â. Clearly, $'e can use a measr¡re-

ment of the as1m.metry, a, to eliminate the uucertainty
mod(tr) which is usually involved in the determination of 7

t0

o2 .,

0005llJ
Nj

22.5t

t5

Ntñc

FIG. 9. sinô, as a function of lfll , fo¡ Eo-¡*¡-F, for
kztn2o=9.319.5) and for model (l). The solid (dotted) line at

sin ô:+l corresponds to the case fio,=(-3500;-300), where

p-or mixing is included. The dot-dashed (dot-dot-dashed) line cor-

responds to frr,=(0;0), where p-ø mixing is not included.

parameter lflr is d¡amatic and therefore it is absolutely nec-

essary to more emciently constain its value, in order to use

asymmetry, a, to determine the CKM Pa¡ameters p úd rl.
We loow that the effects of p-<o mixing only exist around ú)

resonatrce. Nevertheless, in Figs. 5, 6, 7, and 8, at small

values of Àf,f, e.g. :0.6, the curves show large asymmetry

values far away Êom ú, resonance, which is a priori vnex-
pected. In fact, if we assume that nonfactorizable effects are

not as important as factorizable contributions, then Àf,l/
should be much bigger [see Eq. (39)]. From previous analy-

sis on some other.B decays such as B-D'¡¡, B--+a¡, and

B-aK, it was found tlat ñlr should be around 2 [31].
Therefore, although small values of l\rlf are allowed by the

experimental
pect that the
accurate data.

I the large CP aslmmetries a¡e confined in the or resonance

region. Witn " very small value of Àf,l/, nonfactorizable

effects have been overestimated. This means that soft gluon
exchanges between p01al¡ and K may affect p-c.r mixing and

hence lead to the large CP asymmeties in a region far away

from a¡ resonance. Howeveç when lF is very far from a¡

resonance, tJle CP asymmetries go to zero as expected.

In spite of the uncertainties discussed previously, the main
effect of p-al mixing in B-¡r+ n-K is the removal of the

a.mbigulty conceming the stong phase, sinô. In the å-+s
tansition, the weak phase in the rate asymmetry is propor-

tional to sin 7 where 7: úgl- (V ¡,Viù I (y 
^Vi,ùl ' 

Know-
ing the sigrr of sin â, we are then able to deterurine the sigrt

of sin 7 from a measwement of the asymmetry, a. In Figs. 9

and 10, the value of sin â is plotted as a function of Ñlf for

E0 -t t¡+ t- R0 a¡d B- - t¡+ ¡- K- , respectively. It ap-

pears, in both cases, when p-<rr mixing mechanism is in-
cluded that the sign of sin ô is positive, for all models stud-

ied, until Àf,l/ reaches 2.69(2.65) for both B- "+¡+ ¡- K-

0505 2253 I 2253

0.8 I

6

4

o

{, o.u

Iè
hq

Ë 
o'o

(b)

05trs2L53
N"tû(a)

FIG. ll. The ratio of penguin to fee amplitudes, r, as a function

of ñlJ, for B0 - r* n- P, for k2 I m2r=0.3(0.5), for limiting val-

ues of the CKM matrix elements (p,Z)max (min), for io.
:(-3500;-300X0,0) [i.e. with (without) p-r,r mixing] and for

model (l). (a) For fio,:(0;0), solid line (dotted l:rr'e) for k2/n2,

=0.3 and (p,rùmar< (min). Dot'dashed line (dot-dot-dashed line)

for k2lm2r=9.5 and (p,4)max (min). (b) The same caption as (a)

but for frr,=(-3500; -300).

I
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I
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K

B

B

(r)

1l'

FIC. 13. B decays without (upper) and with (lower) p-ø mixing.

where the effective paramæters, 4¡, which a¡e involved in the

decay amplitude, are the following combinations of effective
Wilson coefficieots:

K

ß+

Íc-

ñ+

051t52L53
Ntdc

05t1.522.53
Ntñ

c(b) p(a)

flprFIG. 12. The ratio of penguin to tree amplitudes, t for 8-
-¡+ ¡- K- . We have the sane capion for (a) and (b) as in Fig.

ll.

(tbrough sn2¿).If we do not take into account P'a mixì¡%,
the CP violating asymmetry, 4, remains very small (iust a
few percent) in both decays. In Figs. 9 and l0 (for the evo-

lution cf sin $ and in Figs. ll(a) and l2(a) (for the evolution

of penguin to tee amplitudes), for B!9-+r+¡-¡t'0, we

plot sin áand r when ño,:(0,0)-i.e' without p-or mixing.

There is a critical point at I'f!Î:l (for B0-t+ n-^d¡ ana

¡flÎ : O.Zq (for B - - r+ zr-K- ) for which the value of sin ô
is at its mar<imr¡m and corresponds (for the same value of
ñ!l¡, to the lowest value of r. The last results show the

double effect of the p-ø mixing: the CP violating aliymme-

ty increases and the sip of the stong phase â is deter-

mined.

VI. BRANCEING RÄTIOS FOR .BÈJ*pol!'o

À Formalisn

With the factorized decay amplitudes, we can compute the

decay rates by using the following expression [27]:

ti^13 lun-vp\12|(B--+YP)=*l#l , 67)
Szrm'yl ev'Pa 

I

where /o is the c.m. momentum of the decay particles de-

ûned as

B (m1+m2) (mt-m
(s8)

2mn

mt (mù is the mass of the vector þseudo-scalar) V(P) par-

tÌcle, ey is the polarization vector and A(B+ ZP) is the

decay amplitude given by

azj-t=CLj- ,*@"L¡ for ¡:1,...,5.

All other variables in Eq. (59) have bee¡r introduced ea¡lier.

In the Quark Model, the diagram (Fig. 13 top) gives the main
contribution to the 8-p0rK decay. In our case, to be consis-

tent, we should also take into account the p-at mixing con-

Fibution (Fig. 13 bottom) when we calculate the branching
ratio, since we are working to the first order of isospin vio-
lation. The application is sraightforwa¡d and we obtain the

branching ratio for B--+poK:

a2¡:C'rr+ 
@CLi-r,

(60)

I

BR(a-, poK) = #l¡r!,tþu. r,a z)

- r!tþ@2, . . . ,ars)'J+lY{e!,@r,or)

-tflr. 
I

2

-v!,l,l1at,...,aro)a

p
P

A(B+1P)=#,àrv{'Pa,Qrrlo,lnl, (5e)

tlro-^2r¡+imrl .l'
(61)

In Eq. (61) G¡ is the Fermi constant, l¡ is the total width B
decay, and a¡ is an integer related to the given decay. Al, and

APy arc the ûee and penguin amplitudes which respect quark

interactions in the ,8 decay. V!'P lin Ec. (59)] or Y! ,V: ln
Eq. (6t)] represent tle CKM matrix elements involved in the
tee and penguin diagrams, respectively:

096008-13
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rrl --lv,uvi,,l for i : t,2,

V!=lV,oq"l for i=3,. . .,10.

B. Calculational details

In this section u¡e enumerate the theoretical decay ampli-
tudes. We shall analyze five å into s transitions. Two of them

involve p-ar mixing. These a¡e B- - oo *- ^d 
E0 - p0 R0 .

Two other decays are E0-p-K* atd B--p-P a¡rd the
last one ¡s ¿--arK-. We list in the followi¡g the tee and
penguin amplitudes which appear in the given tra¡sitions.

For the decay B---+pgK- ldk:32 in Eq. (ó1)1,

.,lie[la t,az)= a Lf f í^2¡ + oztf*'lo@I), (63)

.J-z.a!{ot, . . .,atù=f f ,r^';l}ør*or¡l+¡*'eog'*¡

x{ oo+ oro- Z(a5+ ag)
t

m 2
K

Ì,
(64)

(mu*mr)(m6Imu)

for the decay B- --+aK- lat:32 in Eq. (61)],

Jl,lî"@ r,a ) = a I f Jnz¡ + a f x'l o@î),

257
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(62)',1-z,tP'1ar' . . .,a tù:.f f ,t";fz6r+ ù +f,@r+ oùJ

+f KAo@zK) aa- (2a5- as)

X
I
,oro

.,!-z,lf,1or, . . .,a r¡) = f ,F {n2r) 2(a3+a)+7þ1+ae)

(70)

for the decay B--p-F la*:16 in Eq. (61)1,

A[kr,où=azf pFí^f,), (7r)

,tf,(at, . . . ,ato):.f xAotr'r¡l"r- f,ays- eo5- os)

t ---i-ll, e2)'lø"+*¡ø¡*¡lJ;
for the decay B0-p*K- lat:ß in Eq. (61)],

A[@r,a):alxAo@T), Q3)

-aPo@ z, . .', a to) =.f rA s1^'K¡f o a + o 1e- 2 (a 6* a s)
(

I 'i .ll. (74)"fml'
Moreover, we can calculate the ratio between two branching
ratios, in which the uncertainty caused by many systematic
errors is removed. We define the ratio.R as

BR(.Bo-p=K=)
R= _ (7s)

BR(B=-poKÈ)'

and, without taking into account the penguin contribution,
one has

^:el 
('*"¡'''<^it\

f¡o l\ a¡f¡çAs(n'àl

* I ,* l" \ l-'. (76)
\' ' (rr-rt,)+in.r,ll

C. Numeúcd results

The numerical values for the CKM matix elements Zf,'P,

the p-a mixing anplitude frr' and the particle masses

my,p, which appear in Eq. (61), have been all reported in
Sec. IV. The Fermi constant is taken to be G¡
:l.16639lxl0-5 GeV-2 [18], and for the total width .B

decay, f¡(= l/rB), we we the world average I lifetime val-
ues [combined results from ALEPH, Collider Detector at

Fermilab (CDF), DELPHI, L3, OPAL and SLAC Large De-
tector (SLD)I [28]:

"I

(65)

(66)

+fKAo@2K) -2(as+ ø5)

Xlffiia4*a ,r)

for the decay B'-pofl lø¡,:32 in Eq. (61)],

,t-z,l[t" r, a 2) 
: a 1f ,F {m2o), (67)

3
,t-zlPo{ot, .. .,ars):f pFJm2r) ¡(az+ ae) +fKAo@zK)

X aa- (2a5- as)

K
X @+rn)Øt+n)l

for the decay E0-ø,fl la¡=32 in Eq. (61)1,

,fz,q|fo r, a ) = a ¡f oF {mzo),

(68)

(6e)

,ot,
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TABLE 1¡¡I. The measr¡red branching ratios by CLEO, BABAR and BELLE factories for B decays into

pK (l0-ó) (see the reference in text).

CLEO BABAR BELLE

p0K=

p=I(
ptK=
Por{

BR(p!r+)
nR(poK=)
tu¡,K!

16.011!*2.3" (<32)b

1.89! l.4l

3.21?:lro.s" (<7.e)b

8.+01!'!t 1.8" (<l?)b 10+6=2c (<29)b < 13.5b

<æ.6b
ts.eli.åll:3"

l.4l | åt 0.3" s.z!|1lt r.o"

Tit.
Ðpper limit.
cExperimental data.

reo:1.546!0.021 ps,

(77)
re+:1.647+0.021 ps.

To compare the theoretical results with experimental data,

as well as to determine the constraints on the effective nun-
ber of color, tflr , tle form factors, and the CKM matrix
parameters, we shall apply the experimental branching ratios

collected at CLEO [32], BELLE [33-35] and BABAR

f36,37f factories. All the experinental values are surlma-
rized in Table VII.

lflr avulable for cal-

,Å.8='o--poK='o, u,€

¡s¡ pr-poK!, B!
-p!P, B0-p!Ka, B0--p0I{, and B!-oK=. we
show all the results in Figs. 14, 15,16,17, and 18, where

branching ratios are plotted as a function of ÑlJ for models

(l) and (2) [ditrerent form factors a¡e used in models (l)
and (2)1. By taking experimental data from CLEO, BABAR

l.8xl

and BELLE Collaborations, listed in Table VII, and compar-

ing theoretical predictions with experimental results, we ex-

pot to extact the allowed range of lflÎ fu N-+pK and to
make the dependence on the form factors explicit between

the two classes of models: models (l), (3) and (5), and mod-
els (2) and (a). We shall mainly use the CLEO data, since

the BABAR and BELLE dalaare (as yet) less numerous and

accurate. An exception will be made for the branching ratio
B!--oK!, where we shall take the BELLE data for our
analysis since they are the most accurate and most recent

measurements in that case. Nevertìeless, we shall also apply
all of them to check the agreement between all the branching
ratio data. The CLEO, BABAR and BELLE Collaborations
give almost t}te same experimental branching ratios for all
the investigated decays except for the decay B- -+aK- . ln
this later case, we observe a stong disagreement between all
of them since they provide experimental daø in a range from
0.1x 10-6 to 12.8x 10-6. Finally, it is evident that numeri-
cal results a¡e very sensitive to uncertainties coming from the

experimental data and from the factorization approach ap-

ç{èI{eú
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FIc. 15. Branching ratio for Bt-p=I(, for models (l) [(2)],
k2/nzr=9.3 and limiting values of the CKM matix elements. Solid

line (dotted line) is for m'oaet 1t¡ and max (min) CKM matrix

elements. Doþdashed line (dot-dot-dashed line) is for model (2)
and max (min) CKM matrix elements. Same notation as in Fig. 14,

but only experimental upper limis a¡e available.
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FIG. 16. Branching ratio for Bï-ptK=, for models (l) [(2)],
k2tm2r=9.3 and limiting values of the CKM marix elements. Solid
Iine (dotted line) is for model (l) and max (min) CKM matrix

elements. Dot-dashed line (dot-dot-dashed line) is for model (2)
and max (min) CKM matrix elements. Same notation as in Fig. 14.

plied to calculate hadronic matrix elements in the 8*K
transition. Moreover, for B+pK, the data are less numerous
tha¡ for B+p¡t, so we cannot expect to get avery accurate

ratge of lflr .

For the branching ratio B3-p0K= (Fig. 14) we found a

large range of values of Ñlr andCKM matrix elements over
which the theoretical results a¡e consisterit with experimental
data from CLEO, BABAR and BELLE. Each of the models,
(t), (2), (3), (4) and (5), gives an allowed raage of lflr '
Even though sFong differences appear between the two
classes ofmodels, because ofthe different used form factors,
we are not able to draw süong conclusions about the depen-

dence on the form factors. For the branching ratio 8=

-rp=Ko (Fig. 15), BELLE gives only an upper branching

ratio limit whereas BABAR and CLEO do not. Our predic-

l.4x

l.2x

0.8 I 1.2 1.4 1.6 1.8 2 22 2.4

N 
otf

c

FIG. 18. Branching ratio for B!-aK!, for models (l) [(2)],
k2ln2"=9.3 and limiting values of the CKM matix elements. Solid
line (dotted line) is for model (l) and max (min) CKM matix
elements. Dot-dashed line (dot-dot-dashed line) is for model (2)
and max (min) CKM matix elements. Same notation as in Fig. 14.
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FIG. 17. Branching ratio for Bo-pol(, for models (l) [(2)]'

k2tn2r=9.3 and limiting values of the CKM matrix elemens' Solid

line (dotted line) is for model (1) and max (min) CKM matix
elements. Dot-dashed line (dot-dot-dashed line) is for model (2)

and max (min) CKM maüix elements.

tions a¡e still consistent with the experimental data for all
models, for a large nrrge of Ñll .ln this case, the numerical
results for models (l) and (2) are very close to each other
and we need new data to constrain or¡¡ calculations.

If we consider our results for the branching ratio .80

- p=K= þlotted in Fig. 16), there is agreement between the
experimental results from CLEO and BELLE (no data from
BABAR) and our theoretical predictions at very low values
of \f{r and the CKM matix elements. All the models (l),
(2), (3), (a) aod (5) give branching values within the range

of branching ratio measurements if lflf is less than 0.07.

The tiny difference observed between models (l) and (2)
comes from the form factor A¡(kz) lwhere As(kz) refers to
the 8 to p n that case the

amplitnde factor Aç(kz).
For the br Fig. 17, neither

CLEO, BABAR nor BELLE give experimental results. Nev-
ertheless, from models (l) and (2), il apperirs that this
branching ratio is very sensitive to the mapitude of the form
factor Fr(l?) fin our case, F¡(t2) is uncertain because å1
:0.360 or 0.762 in models (l) and (2), respectively] since

the tree contribution is only proportional to F1. Moreove¡
from the range of allowed values of Àf,lt, 1\'e can estimate

the upper limit of this branching ratio to be of the order 20
x 10=6. Finally, we focus on the branching ratio B=

-aK! which is plotted in Fig. 18 for models (l) and (2).
We find that both the experimental and theoretical results a¡e

in agreement for a largã mnge of values of Àf,l/. But, the

models (l) and (2) do not give similar results because the

form factor F¡, applied in these models, is very different in
both cases. Moreover, the de,pendence of the branching ratio
on the CKM parameters P Md rl indicates that it would be

possible to strongly constr¿in p úd rl with a very accurate

experimental measuremerit for the decay B- ---+øK- .

To remove systematic errors in branching ratios given by
the B factories, we look at the ratio, .rR, between the two
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TABLE VIIL fot k2/m7

=0.3(0.5) and for of lflJ ae-

termined previousl FinallY glo
bal range of lf!Í from both .8 decays (lower).

B+pK

model (1)
model (2)
maxrmum range

minimum range

B+pfr

0.66;2.68(0.61;2.68)
l.r7;2.84(r.09;2.82)
0.66;2.84(0.6r:2.82)
t.t7;2.68(t.09;2.68)

{Ìf!,

1 2

Ntüc

model (2)
model (4)
mð(rmum range

minimum range

Clobal range

l.O9;1.63(l .t2;1.77)
1.10;1.68(1.1 l;1.80)
1.09;1.68(l.l l;1.80)
t.l0;1.63(r.12;l-77)

uf!+
FIG. 19. The ratio oftwo pK branching ¡atios versus tflI for

models (1) [(2)] and for limiting values of the CKM matrix ele'

ments: solid line (dotted line) is for model (l) with ma;r (min)

CKM matrix elements. Dot-dashed line (doçdot-dashed line) is for

model (2) with max (rrin) CKM matrix elements. Same notation as

in Fig. 14.

global maximum range

global minimum range

0.66;2.84(0.6r:2.82)

1.l7;t.63(1.12;1.77)

foiiowing branciring ratios; BR(.ô0-1!K+) and BR(.81
-- po K=, . The ratiols plotted in Fig. l9 as a fr¡nction of li'lÎ
for models ( 1) and (2) and for limiting values of the CKM
matrix elements. These results indicate that the ratio is very

sensitive to both Ñlr 
^¿to 

the mapitude of the form fac-

tors. The se,nsitivity increases with the value of Ñll *¿
gives a large difference between Eodels (l), (3) and (5) and

models (2) and (a). We found that for a definite range of
tflf , Anmodels investigated give a ratio consiste,nt with the

experimental dat¿ fiom CLEO. It should be noted that R is
not very sensitive to the CKM matrix elem€nts. Indeed if we

only take into account the tree contributions, R is indepen-

dent of the CKM parameters p and 7. The difference which
appears comes from the penguin contribution and has to be

taken into account in any approach since they are not negli-
gible.

We have summa¡ized for each model, each branching ra-

tio and each set of limiting values of CKM matrix elements,

the allowed range of Ñlf within which the experimental data

and numerical results are consistent. To determine the best

range of Ñ!Í , we have to find some intersection of values of
ñlr tor each model and each set of CKM matix elements,

for which the theoretical and experimental results are consis-

tent. Since the experimental results are not numerous and not

as accurate as one would like, it is more reasonable to fix the

upper and lower limits of Àf,l/which allow us tle mæ<im"m

of agreement between the theoretical and experimental ap-

proaches. By using the limiting values of the CKM matrix
elements, we show in Table VIII, the range of allowed values

of Àfl/ with p-ar mixing. Bvea 1þe,rgh in oru previous study

for B- pt¡, we have restricted ourselves to models (2) nd
(4) rather tha¡ models (l), (3) and (5), here we cannot
exclude one of the models (l), (2), (3), (4) and (5) due to the

lack of accurate experimental data. IY€ find ttrat Àf,l/ shout¿

be in the following range: 0.66(0.61)<ìf!r<2.84(2.82),
where the values outside and inside brackets correspond to

the choice k2/n!:9.319.5). Finally, if we take into account

the allowed range of Ìf!Í determined for decays such as B

-pn aad B-pK we find a minimum global allowed rangg-

of'^f!r which should be in the range l.l7(1.12)<ìf!r
<r.63(1.77).

VfI. ST'MIUARY AI\ID DISCUSSION

We have studied di¡ect CP violation in decay Process
such as 3t'0-ro0¡ç!'0-n+r-y!'0 with the inclusion of
p-ar mixing. When the invariant mass of the ¡+ r- pair is in
the vicinity of the ¡.¡ resonance, it is found that the CP vio-
lating asymnery, a, has a maximum a.-*' We^have also

inveligate¿ the-branching ratios B0*p0 I(, B0-rp!K=,
B=--p=K0, B=-p0Kt, uvt¿ B!+aK=. From our tleo-
retical results, we make comparisons with experimental data

from the CLEO, BABAR and BELLE Collaborations. rñy'e

have applied five phenomenological models in order to show

their dependence on fonn factors, CKM matrix elements and

the effective parameter Ñlr ¡ our approach.

To calculate the CP violating asymmetry, a, and the

branching ratios, we started from the weak Haniltonian in
which the OPE separates hard and soft physical regimes. rWe

worked in the factorization approximation where the had-

ronic matix elements a¡e treated in some phenomenological
quark models. The effective paraneter, lfll , was used in
order to øke into account, as well as possible, the non-
factorizable effects involved, tn B-pK decays. Although
one must have some doubts about factorization, it has been

pointed out that it may be quite reliable in energetic weak
decays [38].

With the present work, we have explicitly shown that the

direct CP violating asymmetry is very se,nsitive to the CKM

096008-17
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matrix elements, the magnitude of the form factors Ao(kz)
aad F{kz), and also to the effective pa¡ametor lfll (n or-
der of increasing dependence). lile have determined a range

for the maximum asymmetry, emor, ß a function of the
parameter ñ!¡ , te limits of CKM matrix elements and the

choice of kz/ml=9.319.5). For the decay E0+Í+ln-R0
and from all models investigated, we found that the largest

CP violating asymmetry va¡ies from +37%o(+55o/o) to

-20%(-24%). As regards B--+¡r+¡r-K-, one gets

+49%(+46%) to -22%(-25%). For Bt'o

-, ¡+ ¡¡- K* '0, the sign of a.o, stays positive as long as the

value of i/" is less than 2.7. In both.decays, the ratio between
asymmetry values which a¡e taken at upper and lower limit-
ing p and 7 values is mainly governed by the terrn l/sinp. It
appears also that the di¡ect CP violating asymmetry is very
sènsitive to the form factors at high values of Ñlf . We un-

derline that without the inclusion of p-ø mixing, we would
not have a large CP violating as)¡mmetry, a, since a is pro-
portional to both sin â and r. We found a critical point for
which sin â reaches the value * l, but at the same time, r
becomes very tiny. We emphazise that the advantage of p-a
mixing is the large strong phase difference which va¡ies ex-

üemely rapidly nea¡ the ú, resoûance. In oru calculations, we
for¡nd that fo¡ B!,0-rn+ t¡- K!'0, the sigrr of sin âis positive

urttrl Ñlt reaches 2.69(2.65) wher. k2ln!:0.3(0.5). Then,

by measuring ¿ for values of Àf,l/ lower than the limits given

above, we can remov€ the phase uncertainty mod(ø') in the

determination of the CKM angle y.
As rega¡ds theoretical results for the branching ratios

B=--p0È=, B=-p=fl, B0-p=K=, B0--p0f and Ba

pHySTcAL REVIEWD 66, 096008 (2002)

+aÊ, we made comparison with data from the CLEO
(mainl/, BABAR and BELLE (for B!-coKt¡ Collabora-
tions. We found that it is possible to have agteement between
the theoretical results and experimental branching ratio data

for B=-poK!, B!-p!IC, B!---+aK!, B0--p!K=, and
R. For 80-+p0K0, the lack of results does not allow us to
draw conclusions. Only an estimation for the upper limit
(20x 10-6) has been determined. Nevertheless, we have de-

termined a range of value of lflr, 0.66(0.61)<lf!!
<2.84(2.82), inside of which the experimental data and the-
oretical calculations are consistent. We have to keep in mind
that, because of the ditrculty in dealing with non-
factorizable effects associated with final state interactions
(FSI), which are more complex for decays involving an s

quarþ we have weakly coosüained the range of value of
ñlr.

From the CP violating asymmetry and the branching ra-
tios, we expect to determine the CKM matrix elements. In
o¡der to reach our aim, all uncertainties in our calculations
have to be decreased: the tra¡rsition form factors for B---+p

and B---+K have to be well determined and non-factorizable
effects have to be treated in the future by using generalized

QCD factorization. Moreover, we strongly need more numer-
ous and accurate experimental data in B---+pK decays if we
want to understand di¡ect CP violation in -B decays better.
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\Ue study dtræt CP violation in the hadronic decay B! - po ra, including the effect of p- a mixing. rWe

frnd that the CP violating asymmetry is strongly dependent on the CKM matrix elements, especially the

Wolfenstein paraureter 7. For fixed rV" (the effective parameter associated with factorization), the CP violating

asymmetry ¿ has a maximum of order 30o/o-50%o when the invariant mass of the r+ r- pair is in the vicinity

of the a¡ resonance. The sensitivity of the asymmetry a to lV" is small. Moreover, if ¡f" is constrained using the

latest experimental branching ratios fiom the CLEO Collaboration, we find that the sip of sin ô is always

positive. Thus, a measurement of direct CP violation in B= - p0¡= would remove the mod(z) ambiguþ in

ar{-[f ¿116lV,¿(,¡].

DOI: 10.1103/PhysRevD.63.056012 PACS numbe(s): ll.3o.Er, 12.39.-x, 13.25.Hw

I.INTRODUCTION

Even though CP violation has been hown of since l9ó4,
we still do not know the source of CP violation clearly. In
the sta¡rdard model, a non-zero phase angle in the Cabibbo-

Kobayashi-Maskawa (CKM) matix is resPonsible for CP
violating phenomena. In the past few years, ûumerous theo-

retical studies have been conducted on CP violation in the B
meson system [1,2]. However, we need a lot of data to check

these approaches because there a¡e many theoretical

uncertainties---æ.g. CKM matix elements, hadronic matrix
elements and nonfactorÞable effects. The futr¡re aim would
be to reduce all these uûcertainties.

Dtrect CP violating asymmetries in .B decays occur
through the interference of at least two amplitudes with dif-
ferent weak phase f and strong phase â. In order to extract

the weak phase (which is determined by the CKM matrix
elemeots), ooe must l¡ow the sEong phase â, and this is
usually not v/ell determined. In addition, in order to have a

large signal, we hav€ to appeal to som€ phenomenological

mechanism to obtain a large ô. The charge slmmety violat-
ing mixing between p0 and o can be extemely inportant in
this regard. In particular, it can lead to a large CP violation
in .B decays such as B!---+p0(a)n!-Í*¡t-Ì!, because

the strong phase passes through 90o at the <rl resonance

[3-5]. Recently, CLEO reported new data 16-) on B+ pr.lt

*Email address: xhguo@physics.adelaide.edu.au
tEmail address: oleitner@physics.adelaide.edu.au
Ì Email address: athomas@physics.adelaide.edu.au

is the aim of the present work to analyze direct CP violation
in Bt-p0(a)t!-r+n-r=, including p-ar mixing, us-

ing the latest data from the CLEO Collaboration to consEain
the calculation. In order to extract ûe sfiong phase 4 we use

the factorization approach, in which the hadronic mat¡ix el-

ements of operators rire saturated by vacuum intennediate
states.

In this paper, we investigate ûve phenomenological mod-

els with different weak form factors and determine the CP
violating asymmetry for ,B=-rpo( a)r!-Tr+ r- o= in
these models. We select models which a¡e consistent with
the CLEO data and determine the allowed range of N"
(0.93(0.94)<¡/"<2.01(1.95)). Then, we study the sip of
sin ô in the range of N" allowed by experimental data in all
these models. We discuss the model depelrdence of our re-

sults in detail.
The remainder of this paper is org¡nizsd as follows' In

Sec. II, \ile present the form of the effective Hamiltonian and

the values of Wilson coemcients. In Sec. III, we give the

formalism for the CP violating as]¡mmeûry in 8+

-po1lo¡ln*-it*,î-ît+, for all the models which will be

checked. rüy'e also show numerical results in this section
(asymmety, c, and t}re value of s!nQ. In Sec._IV, we calcu-

htè branching ratios for B*-p0n* ¿¡¡l B0+p+t- and
present numerical results over tle range of /V" allowed by the

CLEO data. In the last sectiofi, we summ¿¡rize our results and

suggest furthsr work.

II. TEE EFFECTTVE HAMILTONIAN

In order to calculate the di¡ect CP violating aymmety in
had¡onic decays, one can use the following effective weak

63 056012-l @2001 The American Physical Society05 s6-282r t200 | / 63(s) t0560 t2(t2y$ I 5.00



BIBLIOGRAPHY

X.-H. GUO, O. LEITNER, AND A. $/. THOMAS

Hamiltonian, based on the operator product expansion [7]:

ü -ct[ ru 
" 

t =' : Él rà," " 
o'I o(c Pi + c 2oi)

r0 I
-Y,rYf.à c,o,l+H.c., (l)'ì=3 I

where c¡(i: l, . . . ,10) a¡e the Wilson coefficients. They are

calculable in renorrralization group improved perturbation
theory and a¡e scale dependent. In the present case, we use

their values at the renormalization scale þ:nrb. The opera-

tors O¡ have the following form:

Oi= q,yr(l - y)u pl pyq(l - y)b 
",

Oi: ã y *(l - y)uuyqQ - T)b,

Oz:ãyp(l- Ðb> q'yþ(l- ys)q' ,

o+:ão7p(r- ùbp2 qþyr(t- ys)q'.,

o s:d y pQ - øoì d' yn(r * ys)q',

o a= Q- o7 p(r - Ðb pì øþP(r + y)qL,

or:þ y r0 - øuì e n,f, ' yq(r + y5)q',

o r=þ "y n0 - rr)b uì e n,f,'pyþ(r + y5)q'",

3-s
o n:=zq t *0 - rt)bì e o,Ç' yt'1| - ys)q',

3-s
o ro=il "y *(1 - tt) b e) e o,-q'py\ (l - y ) q'",

PHYSICAL REVIEW D 63 056012

cz= - 1.050X l0-s, c¡=3.839X 10-4,

cs: -0.0101, clo= 1.959x 10-3.

To be consistent, the matrix elements of the operators Ot
should also be renormalized to the oneloop order. This re-
sults in the effective Wilson coefficients, c,l , which satisff
the consEaint

c ¡(m )(O ¡(m6)l= c!(O,|""", (4)

where (O¡)¡'"" is the matrix element at the üee level, which
will be evaluated in the factorization approach. From Eq. (4),

the relations between c! ardc¡ are [8,9]

^, - ^ ^l - ^Ll-ç1, ç2-ç2,

259

cl: c a- P "/3, c'a= c a+

c's: c s- P rl3, c'6= c5t

cl:c7+ P", c|=cg,

c$:ce| P", clo:crc,

Ps

P,,

(5)

where

with

(2)

(3)

)
8,G:;

J

P,= ( a,l8 t) c 2(10/9 + G (m 
", 

p,q2)),

P 
"= 

(a.-/9n)(3cr + cz)(10/9 * G(m",p,qz)),

G(m ", tr,qz) : + [' at*@- t)
ml-xQ-x)qz

)
lt-

Here q2 is the t¡pical momentum transfer of the gluon or
photon in the penguin diagrams. G(m",þ,q2) has the fol-
lowing explicit expression [10]:

"#-"-^#.(,.,#)

where a arid p are color indices, and q'=tt, d or s a¡e

qua*s. In Eq. (2), Oi md Oi arc the tree level operators,

OrOe are QCD penguin operators, md O7-Orc a¡ise from

electroweak penguin diagrams.
The Wilson coefficients, c¡, ãrè known to the next-to-

leading logarithmic order. At the scale þ:ûrb=5 GeV, they

take the following values [8,9]:

ct: -0'3125,

2l ^1\iG=- l\r*rA) ^71- 4+.
(I'

Based on simple arguments at the quark level, the value of
42 is chosen in the raoge 0.3<qzlml<0.5 13,41. From Eqs.

(5),(6) we can obtain numerical values for ci .

when q2/m!=o.3,

X

l+

l-

(6)

cs=0.0174,

cz:l'1502,

c¿: -0.0373,

co: - 0.0459,cs = 0.0104,

0560r2-2
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ci:-0.3125, ci:l-1502,

cl: 2.433x10-2 + 1.543 x I 0-3 i,

ci: - 5.80g x l0-2 - 4.628x lo-3 i,

c's: l.73zxlo-2 + 1.543 x 10-3i,

cå : - 6.668x lo-2 - 4.628x lo- 3 i,

ci: - 1.435x10-4 - 2.963x l0-5i,

cå:3.839x l0-4,

c'g: - l.o23x lo- 2 - 2.963x l0- s i,

cío= 1.959x l0-¡, (7)

and when Q2/m!=9.5, one has

ci: -0.3125, cL:\.LSOZ,

c't: 2.l2ox lo-2 + 2.17 4x lo- 3 i,

ci: -4.86gxlO-2 - l.552xlO-2i,

c's: 1.420x10-2 + 5.174x lo-3i,

cL: - s.lzgxlo-2 - 1.552x lo-2i,

ci = - 8.Eq}xl0-s - 9.938x l0- st,

cå = 3.839x 10-4,

c's= -l.ol7x l0-2-9.938x l0-si,

cío= 1.959x l0-3, (8)

where we have taken a,(m7):0.112, a"^(m6):11132.2'
m6=5 GeY, arrd m"= 1.35 GeV.

Ífr. cp vroLATIoN tr{ ¡+-p0(a¡)r+-a+n-r+
A. Formalism

The formalism for CP violation in had¡onic B meson de-

cays is the following: Let A be the amplitude for the decay

B+ -¡r+ t- n+, and then one has

1:(n+ r- r+lnrln+l+(r+ r- t+lHPlB+|, (9)

with fIT atd HP being the Hamiltonians for the tree and

penguin operators, respectively. 'We can define the relative
mapitude and phases between these two contibutions as

follows:

¿ : (r+ r- t* lHrlB 
+ lU + rei ô eiö\,

i : (n+ r- r- lírlB- rU + r e¡ 
6 e- ¡ö1,
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where ô and { are strong and weak phases, respectively- The

phase { arises from the appropriate combination of CKM

matrix elements, which is Q:argl(V,e\ù/(Y"a4r)1. As a

result, sin f is equal to sina with a defi¡ed in the standard

way [1 l]. The parameter r is the absolute value of the ratio

of Eee and penguin amplitudes:

(po1ro¡ø* lnPln*¡ (12)r=
lpo1(,¡n*lnrln*¡

T\e CP violating asymmetry, ø, can be written as

l¿l'-lÃl' - 2r sin âsin { (l 3)a=øñ+=
I *2r cos âcos {*r2

It can be seen explicitly from Eq. (13) that both weak a¡rd

stong phase differences a¡e needed to produce CP violation.
In order to obtain a large signal for direct CP violation, we

need some mechanism to make both sinô and r large. We

stress that p-ar mixing has the dual advantages that the

stong phase difference is large þassing tbrougtr 90o at the

ar resonance) and well lcrown [4,5]. With this mechanism, to
first order in isospin violation, we have the following results

whea the inva¡iaat srass of ø+ø'- is near tìe ¿¿ reson¿ìnce

mass:
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(t- n+ r+ llrlB \ : Lfr o,t,+ |t o,

(n- n* t* IHPIB\ :Lfr eu.* ffo o.

Here, tfY=p or or) is the tee amplitude and py is the

penguin amplitude for producing a vector meson, V, g o is the

coupling for p0-¡+¡-,frpris the effective p-a mixing
amplitude, and s y is from the inverse ProPagator of the vec-

tor meson 4

sv:s-m2v*imyly, (16)

with rF being the invariant mass of the r+ t- pur.
'We stress that the direct coupling o)--rû*Ì- is effec-

tively absorbed into fro. [12], leading to the explicit s de-

pendence of fr',. Making the expansion fror{t)
=frp,(m2)+ (t- 

^2.¡fi'0.{^I), 
tn" p- <o mixing param-

eters were determined ii tle nt of Ga¡dner and O'Connell

[13]: nfrp.(m2)= -35001300 Mev2, ffre,(m2,)
:-300+300 Mev2 and fr;,{^'.):0.03+0.04. ln prac-

tice, the effect ofthe derivative term is negligible. From Eqs.
(10),(14),(15) one has

(14)

(1s)

fIo^pr*s¿to
froJr+ s,to(10)

(ll) Defining

0560t2-3
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P,:r, 
"i{ôo+6¡, 

t}=or,t", PP : pri6ø, (lS)
tp tp P.

where 6o,6p and 6q are sFong phases, one finds the follow-
ing expression from Eq. (18):

(le)

It will be shown that in the factorization approach, we
have aei6o: I in our case. Letting

pe¡6a=b+ci, r'eiù=dlei, Q0)

and using Eq. (19), we obtain the following result when 16

-flai

26t
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B. Calculational details

With the Hamiltonian given in Eq. (l), we are ready to
evaluate the matrix elements for B+ -- pÙ(a) ø+. In the fac-
torization approximation, either ttre po(<o) or the ø+ is gen-

erated by one crrrent which has the appropriate quantum

numbers in the Hamiltonian. For this decay process, two
kinds of matrix element products a¡e involved after
factorization. Schematically (i.e. omitting Dirac matrices

and color labels) (p0(¿,¡)l(u ¿)10>(Í+l(ãb)lB*) -d
(ø+l(ãz)10)( po(a)l(uÐln*). w. will calculate them in
some phenomenological quark models.

The matrix elements lor B+X and B-)( (where X and

,f denote pseudoscalar and vector mesons, respectively) can

be decomposed as [15]

(x1r,lB>:( or*o*-^tr =^Ir) 
r,tr'l

\ r lp

-2.-^2-* frftt uFo(k'), (25)

Qr)

where

ç = (s - m2,+ frfr. r,) {d]ftfr o.+ b (s - m2,) - c m,1 .f

- elJfi.o.+ bmrf. .+ c(s - mz,)l|

+ (xfr0,* m.I,){e[frfio, + b1s- m2,)- cm,1,f

+ dÍf,fr,e.+bm.l.+ c(s- *';)1,

p=(s-m2.*ltfro,X"lnfr o.+ d(s-m2,)- cm,1 ,]

+ dl:lfr. p,+ bm,l ,+ c(s - *2,¡1¡ - 1lÍl o,* m ,l ,)

x{dLnfr. p.+ b (s - m2,) - c m.T,f - elJfi' r,* b m.l,

+c(s-mz,)ll. Q2)

C+Di
'' - (t - ^'.+rtfrp.)2+ 

( Jfr.,.+ m,T.)z'

pe¡6e md v'¿¡6e wTll be calculated later. Then, from Eq.

(22), we can obtain rsinâ and rcosâ. In order to get the CP
violating asymmetry, a, in Eq. (13), sin { and cos @ are

needed, where / is determined by the CKM matrix elements'

In the rWolfenstein parametrization [14], one has

2
<f lJ þl B> : 

-- 
e þ, p" e" p Prp"* V (k2 )' mB* trll¡*

I e*'k+il ei(ne+mr)Aík')- 

--
t ' m61-mYt

x(P B+ P)"),"A2(k2)

e*.k, ì
- 

-2my,.kþh&\J
e'.k+i*nx'.kpAo(k\, (26)
k2

where ../, is the weak cr¡¡rent (J*=Ç7P}-"y)b wilh q
:ü,d),'k=pa-px(r¡ and e, is the polarization vector of
,F. The form factors included in ou¡ calculations satisff
.Fr(O):Fo(0), l3(0)=ls(O) and Ar\kz)=l1mt
+' n *,) /2n *'lA (k2)-- l(n u - m p) /2m y'lA z&2) . Using
the decomposition in Eqs. (25), (26), one has

./I\
t o: *'1i,11\" i + 

nc'r)¡ ¡ íni)
I | \ ^l+l c'r+;"ilf *lo@',)1, Q1)\ - N"'l-" - -l

wherefo arr!frare the decay constarits of p and 7¡' respec-

tively, and io it tn. three momentum of the p. In the same

way, we ñnd t.:tp, r" 

Trlr: r. (2s)

After calculating the penguin operator contibutions, one

has

sin d= (23)

(24)cosf:

0560r24
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r'eì60: -
P.

wher€

and
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e e, 
6 

ø =!{ ( 
" 
t. *r ", ) F r f, t @'z,) + r,¿ o@r)t + 

t 
l,-, "*r ", ) 

. ( 
" 

; . fi " 
1,) fr,r, r *'0,

-[(",. å"t). (",. 
"",) 

]l
* ( 

" 
io* i";)lit r,@',) + r Á o@Ðfl,

zm!14oØ2,)
+m¿)(m6* mu)

o,: 
^ 

ut o,tfrf ( ", 
. *" ", ) 

* ( 
" ; 

* f" t)]t,r,r^7,. rl,- ;.å ", ) 
. ( 

" 
t . i "' I þ r,, ^1,

_,i(",-i",)-(",-"",)][ffi*(";*|,;)v*,,n,,¡+¡ort{m,))

* ( 
" 
io* i" ;)lt " 

x^',t - f,¡ F,r^',r)1,

(" t ft" t) r,, rm)) + (" i* f," t )t*,,*',,

(2e')

rr1Ê'¡:+, Ao(k\=4, (33)'kzkzr--; l-A:

where lr ¡ = 0.330(0.625), h,a o: 0.28(0.34), m 1 
: 5.32 GeY,

m4=5'27 GeY,

for model 3(4) [15,18,19]:

where å ¡ 
: 0.330(0.625), h 4: 0.28(0.34), m 1: 5.32 GeV,

m1o:5.27 GeV, for model 5 l20,2lf:

Ft(k\=
hl

lv,otrl ,l<r- 1. r.2\-'lsinTl

lv"o\,l 0-t?/4Jfif,t \' 2 I I'inÉl
(30)

C. Nunerical results

In our numerical calculations we have several parameters:

q2, N" and the tein

far"to.eiratioo. 2 is

conventionally c 0.5.

The CKM matrix, which should be detennined from experi-
mental data, has the following forur in term of the Wolferi-
stein parameters, A,lt,p,q la]:

1^t- rY

-I

,q.x3(t- p-¡¡l)
(3 1)

where O(Àa) corrections are neglected. We use )t=0.2205,
I = 0.815 and the range for p and 7 as the following 116,17l:

0.09<p<0.254, 0.323<r¡<0.442. (32)

The form factors F{mzo) nd As(n2r) depend on the inner
strucfllre of the hadrons. Under tlte nea¡est pole dominance
assumption, the k2 dependence ofthe forrr factors is:

for model l(2) [15,18]:

where å¡:0.305, h,ao=0.372, a1=0.266, bt:-0.752, ao

:1.4' bo=0.437.
The decay constants used in ou¡ calculations are:. f o:f ,:221 MeY nd f ":130.7 

MeV.

x e\3þ-iq)

r: ,-f,^,

- Alr2

Al\z

I
¡z

l-a11+b,
tflI

þto
Ao(k\= (35)

¡zl-as--;*
m-B

,r( k2

æ)"
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a(q1)
3{

7rÐ

PHYSICAL REVIEW D 63 056012

TABLE I. Maximum CP violating asymmetry a^o, (%o) for
B* -7¡+ 1¡- 7r+, for all models, limiting values of the CKM ma&ix
elements (upper and lower limit), ard for k2lm2r=0.3(0.5).

N",r"=0.98(0.94) N",or:2.01(7.95)

263

-20

-50

model I

P-or,4^ot
Pnin,lnin
model 2

pas¡,1maz

Pnìn,Qnin
model 3

Pnox ,flmox

Pnín 'Tnin
model 4

Pnox rflnax

Pnì¡,1n¡n
model 5

Pnox rInox
Pnìn,fln¡¡

-33(-27)
-s2(-43)

-36(-29)
- 57( - 48)

-32(-26)
- 51( -43)

-36(-29)
- s7( - 48)

-2e(-24)
- 48( - 40)

-29(-23)
-47(-37)

-37(-28)
- se(- 46)

-29(-23)
-47(-37)

-37(-28)
- 5e(-46)

170

.rS lVcV¡

FIG. l. Asymmetry, 4, fol k2lml=0.3, iv"=6.9312,01) and

limiting values of the CKM matrix elements for model l. Solid line
(dot line) stands for .lV"=0.98 and max (min) CKM matrix ele-

ments. Dashed line (dot dashed line) stands for N"=2.01 and max
(min) CKM matix elements.

In the numerical calculations, it is found that for a fixed
N", there is a mæ<imum valrre, anox, for the CP violating
parameter, 4, when the invariant mass of the ø+ ø- is in the

vicinity of the o¡ resonance. The results are shown in Figs. I
and 2, for kzlm!=9.319.5) and N" in the range 0.98(0.94)
<¡/"<2.01( 1.95)-for reasons which will be explained later
(Sec. IV). We investigate five models with different form
factors to study the model dependence of a. It appears that

this dependence is srong (Table I).
The mæ<imum asymmetry parrimeter, 4u¿¡, va¡ies from

-24%(- l9%) to - 59o/o(-48%o) for JV" in both the chosen

rarige k2lm7=0.3(0.5) and the range of cKM matrix ele-

ments indicated ea¡lier. If we look at the numerical results

for the asymmetries (Table I) for N",o':2.01(1.95) and

k2tm2o:9.319.5), we obtain for models l, 3, and 5 an asym-

r (%\

7m

{s (t¡evl

FIC. 2. Asymmetry, a, for k2lm2o=0.5, rv"=g.9a1l-95) and

limiting values of the CKM marix elements for model l. Solid line
(dot line) sta¡lds for N"=0.94 and ma,x (min) CKM matrix ele-

ments. Dashed line (dot dashed line) stands for N":1.95 and max

(min) CKM matrix elements.

-24(-t9)
-39(-3r)

meüy, e^o,, aror¡nd -27.3%(-21.6%) for the set

(p^o,,T^or), and a¡ound -4.3%(-35.0%) for the set
(p^¡n,tì^¡n). We find a ratio equal to 1.62(1.62) between the
asymmetries associated with the upper and lower limits of
(p,rù.Ttre reason why the maximum ¿¡spmetry, amax, caß.

have large va¡iation, comes from the b-d transition, where

1ø nd Yu6 appeal. These a¡e functions of (p,¡Ð and con-
tribute to the asymmeqy [nq. (3t)] through the ratio between
the ar penguin diagram and the p tree diagra^m.

For models 2 atd 4, one has a mÐ(imum asymmetry,
amox, atotJrrð -37o/o(-28%) for the sel (p^o,r¡^ot) and

around -590/o(-460/o) for the set (pr¡n ,On¡n). We find a
ratio between the asymmetries equal to 1.59(1.64) in this
case. The difference between these two sets of models comes

from the maenitudes of the form factors, where I'¡(/<2) is
larger for models 2 and 4 than for models l, 3, and 5. Now,
if we look at the numerical results for the asymmetry for
N",¡n=0.98(0.94), we find, for models l, 3, and 5, k2lml
=0.3(0.5), and the set (p^¿a,Tnor), an asymme$, tmqx,
a¡or¡nd -31.3%(-25.6%), and for the set (P^¡n,7Ì^¡,) wê

find an asymmeüy, duax, around -50.30/o(-42.0%). In
this case, one has a ratio equal to 1.61(1.6a). Finally, for
models 2 ard 4, we get -36%(-29%) for the set

(p^or,7ì.or) md -57o/o(-48o/o) for the set (P-¡n,rl^¡n)
with a ratio equal to 1.58(1.65).

These results show explicitly the dependence of the CP
violating asymnetry on form factors, CKM matix elements

and the effective pa¡a¡rieter N". For the CKM matrix ele-

ments, it appears that if we take thei¡ upper limit, we obtain

a smaller as)¡rnmetry, a, and vice versa. The difference be-

tlv¿eer. k2lm!=0.3(0.5) in our results comes from the renor-

malization of the matrix elements of the operators in the

weak Hamiltonian. Finally, the dependence on .|y'" comes

from the fact that N" is related to hadronization effects, and

consequently, we cannot exactly detennine N" in our calcu-

Iations. Therefore, r¡/e treat N" as a free effective pa¡ameter.

0

-30

-¡{l

11lt

,.'

!!t:

056012-6
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TABLE II. Values of the CKM unitarity riangle for limiting
values of the CKM matrix elements.

(p,rì)-¡n (P,n)^o,

86002

19050

74043

89"23
30064

60011

As regards the ratio between the asymmeties, we have found
a ratio equal to l.6l(1.63). This is mainly determined by the

ratio sinT/sinp, and more precisely by r¡. lt Table II, we
show the values for the angles a,tþ,T.From all these nu-
merical results, we can conclude that we need to determine
the value of N" and the hadronic decay forrr factors more
precisely, if we want to use the asymmetry, a, to constrain
the CKM matrix elements.

In spite of the uncertainties just discussed, it is vital to
realize that the effect of p- a mixing nlhe B+ pzr decay is
to remove any arrbiguþ conceming the stong phase, sin â
As the interual top quark dominates the b'-+d Eansition, the
weak phase in the rate asymmetry is proportional to sin a
(= sin d), where a : argl - (l/,¿4ol l/,¿\,ùf, and knowing
the sip of siná enables us to determine that of sina from a
measur€ment of the asyrrme$, a. We show in Fig. 3 that
the sign of sin â is always positive in ou¡ range, 0.98(0.94)
<¡/"<2.01(1.95), for all the models studied. Indeed, at the
ø+ø- invariant mass, where the asymmetry pa¡aÍleter, ¿,

reaches a maximì¡m, the value of sin â is equal to one-
provided p-ar mixing is included-<ver the entire range of
N, and for all the forrn factors studied. So, we can remov€,
with the help of asymmetry, ø, the uncertainty mod(z),
which appears in a from the usual indirect measurements [5]
which yield sin2ø. By contrast, in the case where we do not
take p-rrl mixing into account, we find a small value for
sin â. In Figs. 3 and 4 we plot the role of p- ø mixing in our

0.4

0.2

sinõ 0

a
p
v

2 2-\ -l

(a) Nc (b) N"

FIG. 4. Evolution of the ratio of penguin to tree amplitudes, r,
for k2ln2r=9.310.5), limiting values of the CKM matrix elements

(p, z) max(min), fr ,,= ( - 3500; - 300X0,0), [i.e. with(without)

. Figure 4(a) (left): for fr",:(0;0),
k2lm2r=9.3 nd (p,t¡) inax (min).

ed line) stands for k2/m2"=9.5 ^6
(p,q) mu (min). Fieure a(b) (¡ight): same caption but for fr',
=(-3500;-300).

ealculations. We stress thal even though one has a large
value of sin â around N": I with rro p- @ mixi.g, one still
has a very small value for r (Fig. 4). Hence, the CP violating
asymmetry, ø, remains very small in that case.

IV. BRANCHING RÀTIOS FOR B+-po¿r+
AND Bo-p+¿r-

À Formalism

With the factorized decay amplitudes, we can compute
the decay rates by using the following expression [19]:

FIG. 3. Determination of the strong phase difference, sinô, for
kzln2t:9.319.5) and for model l. Solid line (dot line) at sin á:*l
stands for fr0,=(-3500;-300) (i.e. with p-ro mixing). Dot

dashed line (dot dot dashed line) stands for fro.=(0;0), (i.e. with
no p- a mixing).

A(B-+lrP) z

(36)
e'Pa

where

B (nr+ mr)2ll B (^r- 
^r)')

2ms

is the c.m. momentum of the decay particles, m¡(m2) is the
mass of the vector þseudoscalar) Z(P), andA(B-VP) is
the decay amplitude

Gr
A(B --+ v P) =Ë,ì, v['P a ¡(YPlo ¡lBl.

Here V['P is CKM factor

l4=lV,oQol fot i=1,2

arø V!:1Y,6\¿l îor i=3,...,10

lp"lt l

1(B+VP)= --l8nmþl

06

Pp (37)

42

4A

{.ó

{.8

-t

0 0.5 3I.5

\

0560r2-7

(38)



BIBLIOGRAPHY

X.-H. GUO, O. LEITNER, AND A. W. THOMAS

where the effective parameters a¡e the following combina-
tions:
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I
azi: cti+ n""i.,-, ,

I
azj-t:c5j-t* *"ir, 

for 7: l, . . . ,5

arLd (VPIOlB) is a matrix element which is evaluated in the

factorization approach. In the quark model, the diagram

coming from the B* -- p0 n* decay is the only contribution'
In our case, to be consisten! we should also take into ac-

cor.rnt the p-<o mixing contribution when we calculate the

branching ratio since we are working to the fi¡st order of
isospiu violation. Explicitly, we obtain, for B* - p0 n* ,

BR(B+ -por+)

- G'rleJP 
lÍvrrþlo,,or)- rlAf,o@t,. . .,¿ro)l

32rIr*l'' "'

+lvIAl@ t,a) - r!.t!@s,. . -,a rc)l

\
FIG. 5. Branching ratio for Bo-p*Í- for models l(2),

k2lm2r:9.3 and limiting values of the CKM matix elements. Solid
line (dot line) stands for model I and ma;< (min) CKM matrix

elements. Dot dashed line (dot dot dashed line) stands for model 2

and max (min) CKM matix elements.

B R(Bo + P+ t) = ?ili:l' lv['n'l*k z)
I b1ÎI ¡o

-v!.ttØv,...,orc)12, (40)

where

'tf,*@)=a¡f ,F{m2r),

lf,*@2,' ' ' ,arc):(a4* at)f ,F{m2)-

Moreover, we can calculate the ratio between these two
branching ratios, in which the uncertainty caused by many
systematic errors is removed. We define the ratio .R as

BR(B0--+p+ rr-)¡: _ (41)
B R(B+ - po zr+)'

and, without taking into account the penguin contribution,
one has

2f r*llq f*ao@2,)\
^=_tt 

_T_-___t

I¡o | \ øz ¡¡r1ni) I

tî'î'
eúa

1.6È¡15

05r

fro'
(3e)

2

X
(s o- mz.)+ im,1

where the tree and penguin amplitudes are

,t-z'lþt" r, a 2) 
: a tf f lnz¡ + a f ,,1 o@I),

.,1-z.nþ{ o t,' . ., a rc) 
: a +l - .f f, í ^2) 

+ f ,a o@2,)f

* ",rllt¡,<^þ+fd;o@Ð]

+ 
31 

@ + a ù f cF, (n2o) - 2 (a 6 + a s)

,l, ^T4i'^?) ,1.
l(m,+ m¿)(mb+ mu\l'

J-z.lI@ r,aù : a í f J^2¡ + o f ,A o(-2,),

I'll
{zq\@ r,. - ., a rù :lz 

1 a 3 * a 5) * 1 t a t + a sl lf ør {nl)

,[ mjoao(m2,) I2(a8+aòlm@)
+ aaNf 44s(m2n)+f PFJzzp)l

+ o,ol¡ ¿ 01.Ð - lf or,t^'ol],

where (pollul0)=tlJ-2f o^oeo and (r+lidl})=if "p*'
For Bo- p* ¡r- we obtain

X l+
fr0.

(s o- m2,) + im.Î t' (42)

B. Numerical results

The latest experimental data from the CLEO Collabora-

tion [6] are

B R(B+ - p0 tr+ ) : ( 10.413:1+ 2.1) x l0-6,

B R(80 --+ p+ n- ) : (27.6!1'|'! 4.2) x to- 6,

056012-8

R=2.65!1.9
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3.5
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t5

I

0-5

05r \
FIG. 6. Branching ratio for B*-p0¡* for models l(2),

k2/m2r:9.3 and limiting values of the CKM matrix elements. Solid

line (dot line) stands for model I and mu (min) CKM matrix

elements. Dot dashed line (dot dot dashed line) stands for model 2

and max (min) CKM matrix elements.

\
FIG. 7. Calculation of the ratio of the t.u'to p'Í branching ratios

versus,/V" for models l(2) and for limiting values of the CKM
matrix elements. Solid line (dot line) stands for model I with max
(min) CKM matix elements. Dot dashed line (dot dot dashed line)

stands for model 2 with max (min) CKM matrix elements.

4455
0.5 ll52L5 3J44,555.56

TABLE ltr. Summary of the range of values of N", which is determined from the experimental data for

va¡ious models and input parameters (numben outside (inside) brackets arc fot k2/m2b=0.3(0.5)). The

notâtion: (numbeçnumber) means that there is an upper and lower limit for N" . (numbeç **) means that

there is no upper limit for il" in the range lf" [0;10]. ( - ; -) means that there is no range of N" which is
consistent with experimental data.

B+ BO .R

model I
P 

^ox 
,flmot

Pnìn 'Tmin
Pn¿x,fln¡t

Pmin '0max
model 2

Pmox r4mox

Pn¡¡;4nîa
Paax '4min
Pnin rQmax

model 3

Pmox,T^ox

Pnin,4ni¡

Pao¡ 'Tøin
Pmin,4mox
model 4

P nox '4mox
Pn¡n ¡4m¡n

Pmo¿ 'Tn¡n
Pa¡n '4nox
model 5

P-o* r?^ax

Pniz,4nin
Pmox,lìmìn

Pm¡n '4mox

0.76l.1.69(0.73;1.62)

0.52; 1.04(0.49;0.98)

0.61;1.25(0.59;1.20)

0.69;1.46(0.66;1.39)

1.44;3.06(1.40;2.95)

1 .00;2.01 (0.96;1.90)

t.r5;2.32(1.12;2.22)

t .32;2.78(l "2s;2.60)

0.74;t.65(0.72;1.60)
0.51;1.02(0.49;0.98)

0.60;1.22(0.57:1.r9)
0.67;1.43(0.6s;t.37)

t.4l;3.04(1.36:2.92)
0.98;1 .96(0.94;1.87)

l.l4;2.29(r.t0;2.21)
1.30:2.14(1.24:2.59)

0.75:2.18(0.73;2.10)
0.50;1.08(0.47;1.03)

0.58;1.38(0.s5;1.34)
0.66;t.71(0.64;1.62)

5.50;**(-;-)
-;-(-;-)
-;-(-;-)
-;-(-;-)

0.5a;1.33(0.5a;1.38)

l.l0; ** (1.15; **¡
0.70; ** (0.72;**¡
0.63;2.77(0.62;3.t2)

0.92;2.57(0.90;2.52)
0.97:2.88(0.94:2.76)
0.92;2.58(0.9t;2.54)

0.95;2.7s(0.90;2.66)

0.86;1.89(0.84;1.86)

0.92;2.09(0.89;2.01)

0.87;1.89(0.85;1.8ó)

0.90;2.00(0.84;1.94)

0.92;2.65(0.92;2.60)

0.97;2-95(0.94;2.85)

0.93:2.66(0.92;2.6r)
0.92;2.79(0.92;2.71)

0.86;1.91(0.85;1.87)

0.90;2. l0(0.89;2.03)

0.86; L92(0.85; 1 .88)

0.89;2.01(0.86;1.95)

1.03; ** (1.02; **¡
1.09; ** (1.06; **)
1.03; ** (1.02; **)
1.04; ** (1.04; **¡

(-;-)
(-;-)
(-;-)
(-;-)

0.56;1.4(0.57;1.52)
l.16; ** (1.23; **)
0.72; ** (0.74; **¡
0.64:3.49(o.66;4.03)

-;-(-;-)
-;-(-;-)
-;-(-;-)
-;-(-;-)

0560r2-9
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TABLE IV. Determination of the intersection of the values of N" which are consistent with various

subsets of the data for all models and all sets of CKM matrix elements [numbers outside (inside) brackets a¡e

for k2lm2o=9.3(0.5)]. The notation: - ( -) means that no common range of lü" can be extracted from the

data.

{/V"}¡- n {N"}¡o {/v.}r, n {¡r"}n {¡r"}¡o n {iv"}¡

model I

P.ox r?mox

9nin tTnìn

Pnox;flmin
Pnin,flmax
model 2

Pmot,4^o*
Pnin,?mìn

Pn¿x r?min

Pn¡n ,4max

model 3

P nox r4mox
p¡¡¡,îlnin
9n¿t rTm¡¡

9n¡n,Tmox
model 4

P mox ,4m¿x

Pn¡n,înìn
Pmox rQm¡¡

Pmia 'fJmax
model 5

P^or,4^o,
p 6¡n ,rlnin

Pnox,fln¡z
Pmìn s1møx

-(-)
-(-)
-(-)
-(-)
-(-)

1.10;2.01 (1.15;1.90)

r.ts;2.32(r.12;2.22)
1.32;2.78(1.25;2.60)

I .41;1 .44(1.36;r.52)

t .16;1.96(1.23;l.87)

I .14;2.29(r.10;2.21)

1.30;2.74(1.24;2.59)

0.92:1.69(0-90;1.62)
0.97; L04(0.9a;0.98)

0.92;r.25(0.91;r.20)
0.9s;1.a6(0.90;1.39)

1.,14;1.89(1.40; 1.86)

1 .00;2.01 (0.96; 1 .90)

l.l5;1.89(1.12;1.86)
1.32:2.00(t-25:'1.94)

0.92;1.65(0.92;1.60)
0.97; 1.02(0.94;0.98)

0.93:t.22(0.92;1.19)

0.92:1.43(0.92:1.37)

l.4l;1.91 (1.36;1.87)

0.98; I .96(0.94; 1.87)

l.l4;1.92(1. l0;1.88)
1.30;2.01(1.24;1.95)

1.03;2.18(1.02;2.10)

-(-)
l.03;1.38(1.02;1.34)

t.oaj.7r(1.04;1.62)

0.86;1.33(0.84;1 .38)

l.l0;2.09(1.l5;2.01)
0.87;1.89(0.85;1.86)

0.90;2.00(0.84; I .94)

0.86;1.a4(0.85;1.52)

l.16;2.10(1.23;2.03)

0.86; l.92(0.85;1.88)

0.89;2.01(0.86;1.95)

-(-)
-(-)
-(-)
-(-)

-(-)
-(-)
-(-)
-(-)

(-)
(-)
(-)
(-)

-(-)
-(-)
-(-)
-(-)

-(-)
-(-)
-(-)
-(-)

We have calculated the branching ratios for B0-P+ ¡- and

for B* - p0 n+ for all models as a function of N" . In Figs' 5

and 6, we show the results for models I and 2 in order to

make the dependence on form factors explicit.
The numerical results a¡e very sensitive to uncertainties

coming from the experimental data. For the branching ratio

B0 - p+ n- (Fig. 5), we have a large range of values of Nc

and CKM matrix elements over which the theoretical results

a¡e consisterit with the experimentâl data from CLEO. How-

ever, all models do not give the same result: models 2 a¡d 4

afe
Nc
ma
clu
small.

If we consider nr¡merical results for branching ratio B+

two
the
are
this

branching ratio is very sensitive to the magritude of this

form factor lF (k2) is related to å r 
:9.33¡ or 0.625 in mod-

els (1,3) aîd (2,4), respectively]. On the other hand, for the

decay B+ - pon' *, both F{kz) and Ao(k\ a¡e included in
the tee and penguin amplitudes, and this branching ratio is

Iess sensitive to the magnitude of the form factors.
If we look at the ratio ¡1 between these two branching

ratios, 8R(B+ -p0Í+) and BR(80+p+ø-)-shown in
Fig. 7-the results indicate that R is very se,nsitive to the

magrritude of the form factors, and that there is a large dif-
ference between models l, 3, and 5 and models 2 and4-We
investigated the ratio .R for the limiting CKM maEix ele-

ments as a fi¡nction of N", finding that R is consistent with
the experimental data over the range 0.98(0.94)<N"
<2.01( 1.95) [the values outside (inside) brackets corespond

to the choice 42lm2r=9.319.5)1. It should be noted that 'R, in
particular, is not very sensitive to the CKM maFix elements.

The small difference which does aPpear comes from the pen-

guin contributions (which may be neglected). If we just take

into account the tee confübutions i¡ our calculations,lR is

clearly independent of the CKM matix slements [gq. (+Z)].

From a comparison of the numerical results and the ex-

perimental data, we cat exmct a range of N", within which

ã[ results rire consistent. In Table III, we have summarized

the allowed range of ¡/c for B* - P0 n+ , B0- p+ t- and R,

0s6012-10



ENHÄNCED DIRECT CP VIOLATION fN 8--p0ø=

TABLE V. Best range of JV" determined from Table fV for

k2/nl=9.3ç9.5). One takes the maximum interval of N"' fiom

Table W, for each model (2,4). To determine the maximum (mini-

mum) range, one considers all models (2,4) and the largest (small-

est) range of N.. In comparison, we show the range of N" deter-

mined without p- ø mixing.

{N.} with mixing {l["] without mixing

BIBLIOGRAPHY
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try, a, is very sensitive to the CKM matrix elements and the

magnitude of the form factors, and we have also deterrrined
a range for the mæ<imr¡m asymmetry, a mox , as a function of
the parameter N", the limits of CKM matrix elements and

the choice of k2/m!=9.3(0.5). From all the models investi-
gated, we found that CP violating asymmefy, aro, vaties
from -24o/o(-79o/o) to -59o/o(-48o/o). We sEessed that

the ratio between the asymmetries associated with the limit-
ing values of CKM matrix elements would be mainly deter-

mined by 7. Moreover, we also stressed that without p-ar
mixing, we cannot have a large CP violating asJmmefry, ¿,

since a is proportional to both sin âand r. Even though sin â
is large a¡ound ¡/c: l, r is very small. As a result, we find a
u"ry-s.alt value for the CP violation in the decay B=
-- pQ ¡! (of the order of a few percent) without mixing.
Once mixing is included, the sip of sin â is positive for
li" :0.9S(0.9a)<¡f"<2.01(1.95). Indeed, at the zr+zr- in-
variant mass, where the aslmmeüry, a, is maximum, sin â
= * I independent of the parameters used. Thus, by measur-

ing a, we can erase the phase uncertainty mod(ø') in the

determination of the CKM angle a, which arises from the

conventional deternrination of sin 2¿.
The theoretical results for the branching ratios, B+

--p0¡* ard Bo-p+rr , were compared with the experi-

mental data from the CLEO Collaboration [6]. These calcu-
lations show that it is possible to have theoretical results
consistent with the experimental data without needing to in-
voke contributions from other resonancesl24,25f. This data
helped us to constrain the magnitude of the va¡ious forrt
faciors neede.d in the theoretical calculations of.8 decays.l

We determined a range of value of N", 0.98(0.94)<¡i"
<2.01(1.95), inside of which the experimental data and the

theoretical calculations a¡e consistent for models 2 and 4.
We will need more accurate dat¿ in the future to further

decrease the uncertainties in the calculation. If we can use

both the CP violating asymmetry and the 6¡¿¡çhing ratios,
with smaller uncertaiuties, we expect to be able to determine
the CKM matrix elements more precisely. At the very least
it appears that one will be able to unambiguously detemri¡e
the sigr of sin ø and hence, remove the well known discrete
uncertainties in a associated with the fact that indirect CP
violation determines only sin2a. We expect that our predic-
tions should provide useful guidance for fuhre investigations
and urge our experimental colleagues to seriously plan to
measr¡re the rather dracratic direct CP violation predicted

here.
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lWe note that BABAR reported preliminary branching ratios for
this channel after this pape¡ was prepared [26]. These results are

consistent with the CLEO values.
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model 2

model 4

mÐ(rmum r¿rnge

minimum range

1.00;2.0 I (0.96; I .94)

0.98;2.01 (0.94;1.95)

0.98;2.01 (0.94; l.9s)
1.00;2.01(0.96;1.94)

0.85; 1.74(0.85; 1.74)

0.84;1.76(0.84; I .7s)

0.84; I .76(0.84; I .75)

0.85;1.74(0.85;1.74)

for models 1,2,3,4 a¡d 5, according to various choices of
the CKM matrix elements. To determine the best range of
iy'" , we have to find some intersection of the values of i/" for
each model and for each set of CKM matrix elements, for
which the theoretical and experimental results a¡e consistent.

This is possible and the results are shown in Table IV. In our
study, it seems better to use the range intersection

{¡f"}¡.n{¡/"}¡ rather than {N"}¡on{N"}¡*, for fixing the

final interval iy'", since the experimental uncertainties a¡e

smaller in the former case, and since we are working to the

ûrst order of isospin violation (p- rD mixing). Finally, after
excluding models l, 3 and 5, which are Dot consistent with
all the experimental data we are able to fix the upper and

lower limit of the range of N", using the limiting values of
the CKM matrix elements (Table V). We find that lf" should

be in the range 0.98(0.94)<N"<2.01(1.95), where ìy'".¡,
aîd N"ro, correspond to (p^¡r,rlr¡) aîd (P.ot,/ì.ot),fQ'
spectively.

V. STJMMARY A¡ID DISCUSSION

The first aim of the present work was to compa¡e our
theoretical results with the latest experimental data from the

CLEO Collaboration for the þ¡¿¡çhing ratios .B+-poz+
ard B0 -. p+ r-. Our next aìm was to study direct CP vio-
lation for the decay 3+-p0(tt)ni-.'Í*Í-ît+, with the

inclusion of p- a mixing. The advantage of p- ø mixing is

that the stong phase difference is large and rapidly varying
near the ú, resonance. As a result the CP violating asynme-
Try, a, has a mæ<imum, a.o, wheî the inva¡iant mass of the

n+ r- pur is in the vicinity of the ø¡ resonance and sin â
= * I at this point.

In the calculation of CP violating asymmetry parameters,

we need the Wilson coefficients for the tree aod penguin

operators at the scale m6. We worked with the renormaliza-
tion scheme independent Wilson coefficients. One of the ma-
jor uncertainties is that the had¡onic matrix elements for both
tree and penguin operators involve nonperturbative QCD.
We have worked in the factorization approximation, with ly'"

teated as an effective pa¡ameter. Although one must have

some doubts about factorizatior¡ it has been pointed out that
it may be quite reliable in energetic weak decays 122,23).

lWe have explicitly shown that the CP violating aslmme-

056012-l l
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AbstracL Based on the Q"""i"r"iifjl::åtJäffind-e analyse the branching ratios for the channel

r't"(m?p)'-d p.opos"
ameters p and tI.

1. NATVE FACTORIZATION

The investigation of.B decays requires a knowledge of both the soft and ha¡d interactions

which control the dynamics of quarks and gluons. Because the energy involved in B
decays covers a large range, from m, down to LACD, it is necessary to describe the

phenomenon with accuracy. Recently, the BELLE,IBABA& and CLEO facilities have

been providing more and more data which can be compared with theoretical results and

hence increase our knowledge in this area'

In any phenomenological treatment of the weak decays ofhadrons, the starting point is

the weak effective Hamiltonian at low energy U,2,3,4, 5]. It is obtained by integrating

out the heavy fields (e.g. the top quark, Il and Z bosons) from the Søndard Model
Lagrangian. It can be written as,

4rr:+>rcrpq,0t)o¡(tt), (1)eJJ \/2'l "^'

where G. is the Fermi constant,VcKuis the CKM matrix element, C,(¡t) are the Wilson

coefficients, O,(p) are the operatôrJentering the Operator Product Expansion and ¡r
represents the iénormalization scale. [n the present case, since we analyse diræt CP
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violation inB decays rnto pn,we take into account both tee and penguin operators and

the effective Hamiltonian is,

trîf=' : 
?rlr"orrr(cgt 

+ c2q) - v,uvi,Tc,o,)+ n-"., a)

where 4 : d. Consequently, the decay amplitude can be expressed as follows,

A(B + PV): 
#lr,rrr,(r¡rr1q1u) 

+crlevlqlB)) -
l0

*h.c., (3)
¡=J

where (PflOtlB) a¡e the hadronic matrix elements, and P(fr) indicates a pseudoscalar
(vector) meson. The matrix elements describe the transition between initial and final
state at scales lower than ¡r and include, up to now, the main uncertainties in the

calculation because it involves the non-perturbative physics.

The computation of the had¡onic matrix elements, (PVlOrlBl, is not trivial and re-
quires sonae assumptions. The general method which has been used is the so-called

"factorization" procedure [6,7,8], in which one approximates the matrix elernent as a

product of a transition matrix element between a B meson and one final state meson and

a matrix element which describes the creation of the second meson from the vacuum.
This can be formulated as,

<Pr lo tlB) :(t/ lJ2ilo) (Pl4 ìlBl,
or (PVlo,lB) :(Pl"/4,10) (I/l4lB), (4)

where the J¡¡ arc the transition currents. This approach is known as naive factoriz¿tion

since it factorizes (Pl/lO¡lB) into a simple product of two quark matrix elements, (see

Fig. l). Anal¡ically, Fig. I can be written down as,

l0
A(B -+ PV) * 2 v, *,,,F J tt) (M { 2l O ilB)

i=l
lro I* l> rcxrq,0t)(Mtlr2il0)(M2l4,lB) I . (s)
Lr=t J

A possible justiñcation for this approximation has been given by Bjorken [9]: the heavy
quark decays are very energetic, so the quark-antiquark pair in a meson in the final
state moves very fast away from the localised weak interaction. The hadronization of
the quark-antiquark pair occurs far away from the remaining quarks. Then, the meson
can be factorized out and the interaction between the quark pair in the meson and the
remaining quark is tiny.

vrbtlr-q>ct(PvlolB)
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I,lj' c'(p)"

= >"j' c(p)'

FIGURE 1. Naive factorization, where M, md Mrrepreserit tlte final meson states.

The main uncertainty in this approach is that the ûnal state interactions (FSI) are

neglected. Corrections associated with the factorization hypothesis are parameterized

and hence there maybe large uncertainties [10]. In spite of this, there a¡e indications
that should give a good estimate of the magnitude of the B dæay amplitude in many
cases [1 l, l2f.In order to improve the estimate of the hadronic matix elenient, we will
briefly present in Section 2 the formalism of QCD factorization, which is an extension

of naive factonzation We will see how it is possible to incorporate QCD corrections

in order to include the FSI at the fi¡st order in ø" into the factorization approach. In
Section 3, we will list our numerical results for the branching ratios related to the

channels 
'n 

-+ pn and B + an.In Section 4, we will constrain the form factor ^{8+u
and propose bourda¡ies for this form factor depending on the CKM matrix elernent
parameters p and 4. Finally, in the last section we will summarize our analysis and

draw some conclusions.

2. QCD EACTORTZATION

Factorization in charmless B decays involves three fundamental scales: the weak inter-

action scale M¡y, the ä quark mass scale m6, îrndthe strong interaction scale Àp6,p. It is
werrknownthát*""";;;*iî;;d;i,i^:r;:,'isproportionarto:(6)

wherewe have omittedthe C<fnf f""t-*¿ Fermi constantfor simplicþ The matrixel-
ements (eV lO,(¡t)lB) contai
uated. The coefficients Ç(¡r)
to mu and is under control. The aim is there
elerríents without assuming naive factorization.In QCD factorization (QCDF), assum-

ing a heavy quark expansion when m6)) ltçco and soft collinear factorization where
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V=Mz

+B +
B

P--Mz V=Mr P=Mr

FIGURE 2. Graphical representation of the QCD factorization formula.

decay arnplitude involves both soft and hard contributions. At leading ordeç all the non-
perturbative effects are contained in the form factors and the light cone distributions
arnplitudes. Then, non-factorizable interactions are dominated by hard gluon exchanges
(in the case where the O(n
batively, in orderto corect
kernels U3, 14, L5, 16, 17,
bation theory. The naive factorization t
coming from the tree level contributions, whereas vertex corrections and penguin cor-
rections a¡e included at higher orders of a" in f[.'fhe ha¡d interactions (at order O(ø"))
between the spectator quark and the emitted meson,ztlarge gluon momenh¡m, a¡e taken
into account by ftII.
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the particle energies are bigger than the scale Àgso, the matrix elements @frl0,(¡t)ln)
can be written as [13]:

(prtlo,(¡lla) : (plir lB)(vljzlo)lr +!naf + oQ'Eçol*r)], (7\

where r, refers to the radiative corrections in û" and ¿ a¡e the quark currents. It is
straightforward to see that if we neglect the corrections at the order d", we recover the

conventional naive factorization in the heavy quark limit. We can rewrite the matrix
elements (PtrlO,(þlA), at the leading order in Ìtsçpf m6, in the QCDF approach by
using apartonic language and one has [13, 14,15, f6, 17, l8]:

\pvlo,(¡t)lB¡ : rf+P(mÐ !o' 
arr¡çr)Qv@)+A!k'+t/ (m?p) 

Io' 
orrlØi,ob,)

n 
Io' 
o, 

Iot 
o* 

Io' 
ayr{t((,x,y)Qn6)Qv@)þp(y) , (8)

where @, (with M = l/,P,B) are the leading twist light cone distribution amplitudes
(LCDA) of valence quark Fock states. The light cone momeritum fractions of the con-
stituent quarks of the vector, pseudo-scalar and B mesons are given respectively by
x1y1 an c deeaYs evaluated at
I? :0 understood viaFig.Z
where given. The hadronic

B
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2.1. The QCD coefficients a,

The coefficients a, 120, 2ll, have been calculated at next-to-leading order. They

contain all the non-factorizable effects at order in ø". In order to clearly separate every
contribution, the coefficients øi are written as the sum of,

a¡: a¡¡* a¡¡¡ t (9)

where the first term includes the naive factorization, the vertex and penguin corrections,

while the second term contains the ha¡d spectator interactions. According to the final
states, the terms a, have to be expressed for two different cases: case A corresponds

to the situation where the recoiling meson M, is a vector and the emitted meson M,
is a pseudoscala¡, and vice-versa for case B. For case A, the coefficients ør take the

form [20,21],

ot,r:ct-&j+ffr;,
ar¡:c2*fulr*TrÀ,
azl:c3.fuj+ffvì,
aeo, : ca * fult *TrrÀ + ol,,,u,

osl:cs.fulr-Tnl,l,
oPut -- cø. &lt - tT) * ol,,,u,

at,t:cj-&lr-Trlr),
ooa,r : cs. &1, - 

rT) * aPs¡,6,

as,r:cs.#j+ffv; ,

aPto! : c rc + &l +ffrfi * oo*,,,0,

where the tems al 
Ã0, 

al,t,o, ol,r,t 
^d 

ooro,r,o u",

atr:ffirrrçBM1,M2) ,

a2,rr:ffirrrrBMt,M2) ,

a3lr:ffirrrrBM1,M2) ,

a4,rr:ffirrrçBMtMz) ,

- a 
s rr : ffi , rrr' (BMt, M2),

a6,il:0,

-a.,il:ffirø'(BM¡,Mz) ,

aB,II:0,

ae,rr : ffi , rr,, (BM t, M2),

aror : 
ffirrrrBMt,Mz), 

(lo)

ol,,,u - 
c'u' PPM'I

4n N;fi'
cpøo PPu,z

4rEW
ÞPt4
'M,Zwd

9n

olþ=

,b

pp,ew
^ M,2wd

%,b
ol,, ooror (l l)
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In Eqs. (10) and (ll) VM,Vla represent the vertex corrections, H,Ht descnbe ha¡d

gluon exchanges between the spectator quark in the.B meson and the emitted meson

þseudoscalar or vector). Po*.r,Pfr.r,Porìi,Pe¡i arc the QCD penguin contributions and

electroweak penguin contributions, respectively. These quantities are a result of the

convolution of hard scattering kemels G, with meson distribution amplitudes, Õ. We

refer the reader to Refs. fl3,14, 15, 16, 17, l8l for more details. Other parameters are

C, = C,(¡t) (in NDR), a"- = d"(p) (next to leading order), and C, = (M - l) I 2N" with
Nc:3'

3. NT]MERICAL RESTJLTS

Assuming that all of the parameters involved in QCD factorization are constrained by
independent studies where the input parameters related to factorization were fitted,
we ôoncentrate our efforts on thg form faclor F.B+E depending on the CKM matrix
Darameters p and n. In order to reach this aim, we have calculated the branching ratios
'forBdecays 

suchas.Bå -+ pon+,fl -+ p+n0,fl -+ p+n+,fl -+ p0n0 andB+ -+ an*
where the annihilation and p - al mixing conhibutions were taken into account. All the
results a¡e shown in Figs. 3, 4 and 5, and the branching ratios are plotted as a function
of the form factor FrB+n and as a function of the values of p and 4 as well.

By taking into account experimental data from CLEO [22, 23,24, 25, 26, 27f,
BELLE Í28, 29, 30, 3 l, 32, 33, 34, 3 5, 361 and BABAR 137, 38, 39, 40, 41, 42, 43, 4f ,

and comparing theoretical predlctions with experimental results, we expect to obtain a
consftaint on the form factor F',B+u depending on the CKM matrix element patarneters
p nd n . Because of the accuracy of the data, we shall mainly use the CLEO and BELLE
data for our analysis rather than those from BABAR. We expect that our results should

depend more on uncertainties coming from the experimental data than those from the

factorization approach (as opposed to naive factorization) applied to calculate hadronic
matrix element (pnlJplB) since in B decays, I f mo conections a¡e very small.
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For the branching ratio B+ + pon+ (Fig. 3), we found total consistency between
the theoretical results and experimental data from CLEO and BELLE. However, these

results allow us to determine an upper limit (benveen 0.40 and 0.65) for the value of
the form factor F!+". The weak dependence of the branching ratio on the form factor,

Frtto, is related

form factorlf+
an efficient way to constrain the form facto

BABAR data shows agreement between
than 0.5.

For the branching ratio.B* -+ p+no (Fig. 3), CLEO gives only an upper limit for the

branchingratio whereas BABAR and BELLE do
of the form factor Ff+E must be lower than 0

ratio is strongly dependent on the form factor

constraint for the value of.f+z. For the branching ratio ^Bt -> pi¡+ (shown in Fig. 4),

BELLE, BABAR and CLEO give consistent experimental data. fhe decay amplitude
related to this branching ratio is proportional to the form factor Ff+n and thus allows

us to constrain the form factor effectively. Requiring agreement between experimental

values and theoretical results yields a central value for.Ff+t which is about 0.3. Note

that for these th¡ee branching ratios their dependence on the CKM matrix elements p
and 4 is strong. Hence we expect to be able to determine limits for their values when
more.B decay channels a¡e taken into account.

4
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side). Solid line (dotted line) for mo< (min) C iM matrix elernents. Notation: horizontal dotted lines:

CLÉO ¿ata; horizontal dashed lines: BABARdata; horizontal dot-dashed lines: BELLE data

For the branching ratio.ðf0 + p0n0 (Fig. 4), BABAR, BELLE and CLEO only give

an upper limit for the branching ratio. However, the branching ratio does not appear to

lower than 0.25 whereas there is a good a
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value of F',B+u. Note that in this case the sensitivity of the branching ratio to the CKM
matrix elements is bigger than that to the form factot FrB+t and does not allow us to

draw any conclusions regarding the value of .f+r.
To remove systematic errors we

can look at the ratio Ro of the and

Ø(B+ -+ porÊ).In Fig. 5 we sh -+".

All the B factory data are in good agreement with theoretical predictions. The results

indicate that the ratio is not sensitive to the CKM matrix elements p úd n whereas it
is very sensitive to the value of FrB+r. Comparison with the data shows that FIB+f is

between 0.13 and 0.30 (BELLE), 0.05 and 0.20 (BABAR), and 0.10 and 0.35 (CLEO),
respectively. Aszuming that the value of F!+ft at P : n| is around 0.30, we have

Ø(80 + p*ß0)xl4.2x 10-6 andø(fl -+ p0n\ < I x 10-6.
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FIGITRE 5. Branching ratio for 8+ -+ ax+, for limiting values of the CKM matrix elements (Iæft
hand-side) . The ratio of nvo pr branching ratios limiting values of the CKM matrix elements (Right
hand-side). Solid line (dotted line) for max (min) CKM matrix eler¡ents. Notation: horizontal dotted
lines: CLEO dat4 horizontal dashed lines: BABAR dat4 horizontal dotdashed lines: BELLE data"

It has to be pointed out that the annihilation contributions in B decays play an

important role since they contribute significantly to the magnitude of the amplitude.
The annihilation diagram contribution to the total decay amplitude strongly modifies
(in a positive or n"gátirne way) the branching ratio B- -+ pÙn- according to the value
chosen for the phase @r. This contribution could be bigger than that of p - at mixing
but ca¡ries more uncertainties because of its endpoint divergence. rWe emphasise that
these two contributions (p - @ mixing effects and annihilation contributions) are not
just simple corrections to the total amplitude, but a¡e important in obtaining a correct
description ofB decay amplitude.

4. F'ORM EACTORFTE+'E

Form factors play a major role in the factorization method (naive or QCDF) since they
represent the tansition between two hadronic states. Their computation is non trivial and
may carry large uncertainties, depending on models being used. These models include,
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say, QCD sum rules, heavy quark effective theory lattice QCD and light cone QCD.
With the available experimental data for the branching ratios, it is now possible for us to
constrain Ffto ina model-independentway in QCDF.

It has to be noticed
we show the ¡esults r
we require that all the
the experimental data provided by CLEO and BELLE. We have excluded the daø from
BABAR since they are cunently not numerous and accurate enough. We have included
uncertainties from the CKM matrix element pafafneters p (0.190 < p < 0.268) and 4
(0.284 < 4 < 0.366) and we have applied the QCD factorization method where all of
the final state interaction corrections arising at order ø, are incorporated. We emphasize

that the results a¡e model independent.
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dê

Ë
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FIGT RE 6. F!-n æ a tunction of NífÍ. Plot obtained by comparing theoretical results from QCFD
with o(perimentäl daø from BELLE anð CLEO for the branching ratios I -+ px and B -+ arz. The plot

includes the uncertainties from the CKM matrix element parameters p and 4.

V/e found a large common region between BELLE and

p n. From our anaþsis, ff ' " @?p) varies between 0.3 and 0

from 1.25 to 2.25. Their central values ate fl+n(m?r) :
rezult obøined for the form factor F!+"@2ì reduces one of the main uncertainties

in the factorization process. That obtained for the effective number of colours, iy'ff,
confirms previous analysis where naive factorization was applied for the same decays.

It is w;il loown that the CKM matrix element parameters p and 4 are the main
,,key'' to CP violation within the Standa¡d Model. Recall that the weak phase is mainly
govLrned by the parameter 4 that provides the imaginary part which is absolutely

ã*"..ury to obtain ari asymmety between matter and antimatter. Based on our anaþsis,
rù/e are not able to efficiently constrain the CKM matrix parameters p nd n from the

branching ratios for B -+ ptt.In fact, the common region allowed by CLEO and BELLE

data for branching ratios for B + ptt does not constrain the paraneters p and 4. ln
the analysis we uied the values 0.190 < p < 0.268 and 0.284 < n < 0.366 145, 461,

to which the common region corresponds. Howwer, we can try (as an example) to get
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and 4 by only taking into account the central values for the form
for the 

"-ff""tiroe 
number of colours N|f'f . AccolffiEto our work,

limits: 0.205 < p <0.251 and 0.300 < 4 < 0.351.

5. CONCLUSION

The calculation of the hadronic matrix elements that appear in the.B decay amplitude
is non trivial. The main difrcuþ is to express the hadronic matrix elements which
represent the transition between the meson B and the final state.

rüe have investigated the branching ratios for B -r pn,B -+ c¡tt within the QCDF
approach. Comparisons were made with experimental results from BABAR, BELLE

g ratios in å decays, we have constrained
number of colours, NÍî-f .Mrore accurate

s in.B decays will provide more accurate
results, which will be helpful in gaining further knowledge of direct CP violation in.B
decays.

This work could be extended to more B decays. It would be very interesting to
consbain our pararneters by investigating channels other than pn for branching ratios
and asymmetries. By including more channels, we will use more experimental data
and hence be able to obtain better results for our pararneters. In the QCD factorization
frameworþ annihilation contributions could be zubject to discussions. Clarifuing this
point would be very helpful in obøining more accurate theoretical predictions. For
example, it is important to solve the problem related to the end point integral diver-
gence [3] which is parameterized without any strong physical motivation. Moreover,
the annihilation contributions have not been included within the QCDF method. To
obtain a consistent frameworþ it would be better to find a way to include them within
QCDF.
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