

Homomorphisms of Semi-Holonomic Verma Modules : An Exceptional Case

Justin Sawon Department of Pure Mathematics

University of Adelaide

Thesis submitted for the degree of Master of Science in the Faculty of Mathematical and Computer Sciences.

September, 1996

Contents

1	Introduction	1
2	Preliminaries2.1Almost Hermitian Symmetric Structures2.2The Weight System of E_6 2.3The Weyl Group2.4 1 -graded Lie Algebras2.5Decomposition of Tensor Products2.6Homogeneous Vector Bundles	3 3 6 7 9 13
3	Invariant Differential Operators3.1Invariant Differential Operators and Jet Bundles3.2Semi-Holonomic Jets3.3Invariant Operators in Curved Space3.4Verma Modules3.5The Stucture of Verma Modules3.6The Central Character of a Representation3.7Semi-Holonomic Verma Modules	 15 16 18 19 21 24 26
4	 Holonomic Case and Translation 4.1 Classification of Homomorphisms of Verma Modules	31 33 35 37 40 41 46 48 54 64
5	Semi-Holonomic Case5.1Lifting of the Initial Data5.2The Translation Principle in the Semi-Holonomic Case5.3Non-existence of Lifts of the First Exceptional Family	67 67 68 71
6	Conclusions and Outlook	75

A	Lowering Operators for E_6 with Commutation Rules	79
в	Composition Series for the Fundamental Representations	81
C	Weyl Group Orbits of Highest Weights	83
C	C_1 Weights of W	83
	C.2 Weights of W^*	84
D	Classifying Patterns	85
D	D 1 The Hasse Diagram	85
	D.1 The flasse blagram	86
	D.2 The Regular Patterns	87
	D.3 The De Rham Sequence	01
	D.4 The Singular Patterns	88

Abstract

Verma modules play an important part in the theory of invariant operators on homogeneous spaces. If G is a semisimple Lie group and P a parabolic subgroup of G, then there is often a differential geometry for which the homogeneous space G/P represents the flat model. An example is conformal geometry, where G is the special orthogonal group $SO(n, \mathbb{C})$. A Verma module homomorphism will corresponds to an invariant operator on the flat space. The obvious question is: how can we generalize these operators to cases where there is curvature?

In this thesis we will look at a variation of Verma modules called *semi-holonomic* Verma modules, introduced by Eastwood and Slovák. They have studied the conformal case in detail, but here we will investigate instead the exceptional case of $G = E_6$. We will investigate when a Verma module homomorphism lifts to a semi-holonomic Verma module homomorphism. When this happens, we can deduce that there is a curved analogue of the corresponding invariant operator.