

DYNAMIC MODELLING OF INDUCTION MACHINES

Özdemir Göl

SUBMITTED FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY

in the

Department of Electrical and Electronic Engineering at the

University of Adelaide

Awarded 1993

March 1993

TABLE OF CONTENTS

Abstract	v
Statement	vii
Acknowledgement	viii
Nomenclature	ix

1	INDUCTION MACHINE MODELS		1
	1.1	Prologue	1
	1.2	This Thesis	4
	1.3	Conventions and Notations	6
	1.4	Maxwell's Field Equations	8
	1.5	Possible Modelling Approaches	10
		1.5.1 Field Approach	11
		1.5.2 Circuit Approach	14
	1.6	Solution Techniques	18
		1.6.1 Analytical Methods	18
		1.6.2 Numerical Methods	18
	1.7	Scope of Application for Models	19
	1.8	Object of Thesis Revisited	20

2.	HIGF	I FIDE	LITY HARMONIC CIRCUIT MODELS	22
	2.1	Rationale for High Fidelity Circuit Modelling Space Harmonics		22
	2.2			23
		2.2.1	Airgap m.m.f. of a Single Coil	23
		2.2.2	Airgap m.m.f. of a Coil Group	29
		2.2.3	Total Airgap m.m.f.	35
		2.2.4	Airgap Flux	41
		2.2.5	Induced e.m.f.s	42
		2.2.6	Modelling Ramifications	45
		2.2.7	Harmonic Truncation	46
	2.3	Curre	nt Displacement	48
	2.4	Core I	Losses	60
		2.4.1	Hysteresis Losses	60
		2.4.2	Eddy Current Losses	64
	2.5	Satura	ation	76
	2.6	The H	ligh Fidelity Harmonic Circuit Model	82
	2.7	Time	Harmonics	87
		2.7.1	Supply Harmonics	88
		2.7.2	Current Harmonics	91
	2.8	Perfor	rmance Prediction Using the Model	96
		2.8.1	Sinusoidal Supply	99
		2.8.2	Non-sinusoidal Conditions	102
3.	DYN	AMIC	MODELLING	108
	3.1	Induc	tion Machine Dynamics	108
	3.2	Dyna	mic Modelling Approaches	112
	3.3	Time	Domain Formulation	115
	3.4	State-	Variable Formulation	119
	3.5	Space	e Phasor Modelling	122

4.	A GI	ENERAL MODEL	133	
	4.1	Preliminaries	133	
×		4.1.1 Rationale for a General Model	133	
		4.1.2 The Discrete Circuit Model	135	
		4.1.3 Parameter Determination Aspects	139	
	4.2	Resistive Parameters	144	
	4.3	Inductive Parameters 1		
		4.3.1 Airgap Inductance of a Coil	148	
		4.3.2 Airgap Inductance of a Rotor Mesh	156	
		4.3.3 Slot Leakage Inductances	162	
		4.3.4 Coil-End Leakage Inductances	171	
		4.3.5 Mutual Inductances	174	
	4.4 Terminal Voltage Equations			
	4.5	Torque Equation	242	
	4.6	Model Utility	247	
5.	MOI	DEL VERIFICATION	248	
	5.1	Introduction	248	
	5.2	.2 Test Results		
		5.2.1 Test Results - Machine I	249	
		5.2.2 Test Results - Machine II	257	
	5.3	High Fidelity Harmonic Circuit Model	267	
		5.3.1 Performance Prediction Using	268	
		" 'Exact' Equivalent Circuit "		
		5.3.2 Performance Prediction with	274	
		Enhanced Low-Order Models		
		5.3.3 Performance Prediction with	290	
		High-Order High-Fidelity Model		
	5.4	Dynamic Modelling with Conventional	296	

Models

6.

	5.4.1 Dynamic Performance Prediction		297
		using Direct Phase Model	
	5.4.2	Dynamic Performance Prediction	303
		using d-q Model	
	5.4.3	Dynamic Performance Prediction	311
		using Space-Phasor Model	
5.5	Dyna	mic Modelling with Discrete Circuit	317
	Mode		
	5.5.1	Introduction	317
	5.5.2	Model Formation	318
	5.5.3	Simulation of Start-Up Transients	329
		(2-pole)	
	5.5.4	Effect of Parallel Connections on	352
		Start-Up Transients	
	5.5.5	Simulation of Rotor Discontinuities	360
	5.5.6	Other Uses of Discrete Circuit Models	373
5.6	Obse	rvations	390
CON	NCLUS	SION	392
BIBI	LIOGR	АРНҮ	395
APF	PENDIC	CES	414
A.1	1 Calculation of Equivalent Coil Pitch		414
A.2	Macl	nine I - Details	417
	A.2 .1	Name Plate Details	417
	A.2.2	2 Core Details	417
	A.2.3	3 Stator Winding Details	419

	A.2.4 Model Parameters	420
A.3	Machine II - Details	423
	A.3.1 Name Plate Details	423
	A.3.2 Core Details	423
	A.3.3 Stator Winding Details	425
	A.3.4 Model Parameters	427

INDEX

428

ABSTRACT

A great deal of attention has been paid to the modelling of induction machines under both steady state and dynamic operating conditions. Several different approaches adopted in formulating models include field modelling, based on the evaluation of the magnetic field within the machine space, and the circuit modelling, which uses lumped parameters. This thesis compares various different modelling approaches, and postulates that judiciously formed circuit models can be used in predicting, with acceptable accuracy, the performance of an induction machine under different operating conditions. Two approaches are developed in detail, both of which share a common starting point, namely the airgap magnetomotive force set up by a single energised coil. In the first approach, the magnetomotive force distribution is evaluated in terms of space harmonics, leading to the formation of high order harmonic circuit models. The inclusion in the models of such phenomena as saturation, current displacement and core losses dramatically improves the prediction accuracy, which justifies their being labelled as high fidelity harmonic circuit models. They are particularly suitable in evaluating any parasitic behaviour under quasi dynamic operating conditions. The effects on the machine behaviour of a non-sinusoidal supply are accounted for by means of an aggregate time-harmonic supply model.

In contrast, the second approach is based on discrete circuit modelling, treating each coil within the machine as an individual circuit. The evaluation is carried out entirely in the time-domain, making the approach well suited to transient analysis. The generality of the model allows the global effects of local phenomena to be ascertained accurately. The validity of both modelling approaches is demonstrated by means of case studies.