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ABSTRACT 

 

e-Science is a terminology denoting modern scientific experiments and studies 

being carried out with the support of large-scale Grid infrastructures. The essence of a 

Grid is to enable resource sharing, including compute resources and storage resources, to 

as many authorised people as possible. This thesis has made several contributions 

towards building a national grid infrastructure, by designing and implementing new 

approaches to simplify the use of the Grid so as to enlarge the user base of grid 

infrastructure and e-Science. These new systems have been deployed as part of the 

Australian national grid infrastructure, however the approaches used aim to provide a 

generic solution so that other grid operators and users can also benefit from it. 

Our exploration of existing data grid systems has shown that these are not easy for 

researchers to use, since they require users to have certain IT knowledge, and rarely have 

a user-friendly interface. My approach is to develop a web portal based upon a widely-

used data grid system, iRODS, that is able to make use of geographically distributed 

storage resources. This new interface not only supports the WebDAV standard, enabling 

easy drag-and-drop file access, but also provides a web interface, allowing users to share 

and manage data with a web browser. 

Data transfer is a challenge when dealing with large volumes of data and long 

distances, which leads to problems with stability, reliability and performance. Existing 

data repositories and data transfer services deliver necessary functionality, but only 

support a limited number of protocols, which can cause problems with interoperability. 



 

 ix 

Rather than developing a new data transfer service or modifying current services to 

support new protocols, my approach focuses on equipping an arbitrary data source with a 

standard GridFTP interface, so that it can interact with most of the existing data transfer 

services and grid services. This thesis gave a detailed description of my architecture and 

evaluation, and demonstrated that this approach adds virtually no overhead to the data 

source but gives it more flexibility in data transfer. 

Compute job submission usually requires users to have a significant level of 

understanding of the Grid, such as its structure and the usage of its client tools, especially 

when users are exposed to a complex grid infrastructure with multiple resources. The 

client tools and interfaces are not easy to use or to develop custom applications. My 

approach addresses this problem by providing a web portal with a RESTful interface to 

simplify job submission to multiple grid resources. The RESTful interface also makes it 

possible for users and application developers to submit massive jobs in a simple way. The 

portal has a template system to enable quick and easy development of customiszd 

interfaces to applications running on grid compute resources. The portal therefore 

provides a generic solution to users across various research domains. 

 



 

 x 

DECLARATION 

 

I, Shunde Zhang certify that this work contains no material which has been accepted for 

the award of any other degree or diploma in any university or other tertiary institution 

and, to the best of my knowledge and belief, contains no material previously published or 

written by another person, except where due reference has been made in the text.  

 

I give consent to this copy of my thesis when deposited in the University Library, being 

made available for loan and photocopying, subject to the provisions of the Copyright Act 

1968.  

 

The author acknowledges that copyright of published works contained within this thesis 

(as listed below*) resides with the copyright holder(s) of those works. I also give 

permission for the digital version of my thesis to be made available on the web, via the 

University’s digital research repository, the Library catalogue and also through web 

search engines, unless permission has been granted by the University to restrict access for 

a period of time. 

 

 

 

 

      ____________________________________ 

 

Shunde Zhang 



 

 xi 

PhD Candidate,  

School of Computer Science 

University of Adelaide 

10 July 2012 

 



 

 xii 

LIST OF PUBLICATIONS 

 
The following papers were written based on the work presented in this thesis. 

 

Towards an interoperable International Lattice Datagrid. P. Coddington and et al., in 

Proceedings of XXV International Symposium on Lattice Field Theory, Regensburg, 

2007, Proceedings of Science (LATTICE 2007) 

 

Experiences in Developing a Node of an International Computational Physics Data Grid. 

P. Coddington and et al., in Proceedings of the Sixth Australasian Workshop on Grid 

Computing and e-research, Wollongong, 2008 

 

Davis: A Generic Interface for iRODS and SRB. Shunde Zhang, Paul Coddington, 

Andrew Wendelborn. In proceedings of Grid Computing 2009, Banff, Alberta, Canada. 

October 2009. 

 

Connecting arbitrary data resources to the grid. Shunde Zhang, Paul Coddington and 

Andrew Wendelborn. In proceedings of Grid Computing 2010, Brussels, Belgium. Oct 

2010. 

 

A national grid submission gateway for eScience. Shunde Zhang, Paul Coddington, 

Andrew Wendelborn, in proceedings of the 7th IEEE International Conference on e-

Science (e-Science 2011), Stockholm, Sweden, December 2011. 

 



 

 xiii 

ACKNOWLEDGEMENT 

 

First and foremost, I am deeply indebted to my supervisors, Dr. Paul Coddington 

and Dr. Andrew Wendelborn, for their advice, guidance and supervision throughout my 

candidature. Their insight and breadth of knowledge is of great help in every stage of my 

research from problem identification to paper publications. Their enthusiasm in research 

encouraged me to keep my mind open and pushed me to the next level of achievement. I 

would like to express my sincere gratitude to both of them. My work would not be 

completed without their tremendous effort. 

I would also like to thank my colleagues and ex-colleagues in eResearch SA and 

the Australian Research Collaboration Service, such as Daniel Cox, Florian Goessmann, 

Pauline Mak, Graham Jenkins, Rowan McKenzie, Sam Morrison, Vladimir Mencl, 

Simon Yin, Markus Binsteiner, Darran Carey and Jim McGovern, who have given me 

invaluable feedback and advice to my work, and great help in the development and 

evaluation of my systems. Especially I would like to thank some international peers, such 

as Reagan Moore, Mike Conway, Wayne Schroeder and Guy Kloss, for exchanging 

ideas, thoughts and experiences. 

Last but never the least, I would like to thank my family for their love, 

encouragement and continual support at all times. They gave me optimism and happiness 

so I can finish this long journey. 

 



 

 1 

Chapter One:  Introduction 

 

A national grid infrastructure plays an important role in modern research. It 

facilities various IT services to aid researchers in data process, sharing and storage. The 

construction of a national grid infrastructure is not trivial; it involves lots of money and 

resources. Although there are many successful stories around the world, the situation is 

always different when building your own. This thesis focuses on my contributions to 

building a national grid infrastructure. It describes in detail the architecture of a national 

grid infrastructure, as well as the components I developed to make it easier to use, and 

hence available to a wider range of researchers, with more or less IT expertise, so they 

can all benefit from it. 

This chapter firstly introduces eScience, the Grid and their relationship, then the 

challenges in building a national grid. It follows by a summary of my work in this 

project, and ends with an overview of this thesis. 

 

1.1 eScience and the Grid 

 

Modern science heavily relies on data. As technologies evolve, especially 

electronic sensors and measurers, data collected and generated is getting more accurate 

and fine grained, hence larger and larger. One example is the Large Hadron Collider 

(LHC) [1], which generates 1TB of data every day. The analysis of massive amounts of 

data is not possible using traditional methods, such as spreadsheets or pen and paper. 

Like other domains, science needs the help of modern Information Technology (IT). 
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Therefore, the term e-Science was first introduced by Dr. John Taylor to mark the 

combination of IT and the study of science. It brings scientists a new revolutionary means 

of doing their daily research with heavy use of IT resources. As addressed by Hey et al. 

[2], e-Science is backed by a certain large-scale and distributed IT infrastructure, which is 

generally referred to as the Grid [3].  

Since the late 1990s, a lot of effort has been spent on developing and improving 

various grid infrastructures. The grid arose to solve big problems in research disciplines 

as diverse as high energy physics, bioinformatics, oceanography and earth science. When 

there is less data to process, store or share with other researchers, a single desktop 

computer or a portable hard drive is enough. But if the volume of data is massive or data 

processing is time-consuming, it is essential to run the processing program in parallel, 

using several computers to reduce overall processing time. High Performance Computer 

(HPC) systems, or supercomputers, are commonly used as a shared resource for a group 

of researchers, in a research institute, or a university. Authorized users, such as 

employees of the organization that owns the supercomputer, have access to the 

supercomputer, and share it by using a local resource management system (LRMS), 

which allocates compute resources to users based on pre-defined rules and user 

requirements, to ensure that the HPC resources are shared fairly among the users.  

Resource sharing is also important for data storage. Normally, a hierarchical 

storage system exists alongside an HPC system. This storage system, generally set up 

with a fast disk array and a robotic tertiary storage device, has a massive amount of space 

and has been configured with a proper backup strategy. Users can use the storage up to a 

limit that is specified by a quota mechanism. A common use case is that a user places 
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input data in the storage system and then submits a job to a supercomputer; then the 

supercomputer reads the input data, processes it, and writes output data to the same place, 

from where the user can retrieve result data. This solution is the standard form of 

supercomputing, which is suitable for a single organization, and is still the main usage 

scenario for small groups today. 

However, it brings up issues when a user wants to use resources from different 

organizations, or users from different organizations want to share resources among them. 

Foster and Kesselman were among the first to look at these issues [4, 5, 6] and developed 

the concept and architecture of Grid, aiming to create a federation for several trusted 

parties so that every organization is able to contribute their resources to the federation 

and make use of remote resources if they are allowed to. Around the concept, software 

stacks and standard specifications were developed. The famous grid middleware, Globus 

Toolkit [7], developed by Foster and Kesselman in late 1990s, provides a standard 

interface to heterogeneous resources consisting of different operating systems, LRMS 

and storage systems. Designed as a service-oriented software system [8], it acts as the 

foundation of a number of grid service providers in the US and Europe, with users from 

many countries. On the other hand, some grid providers use a modified version of the 

Globus Middleware, such as gLite [9], or completely different middleware, such as 

Unicore [10] and Condor [11]. To standardize the interface and behaviour of each grid 

system, so that they can communicate with each other, the Open Grid Forum (OGF) [12], 

formerly the Global Grid Forum (GGF), was formed, with the intention to define 

standards, and with inputs from international user communities. To date, over 150 

specification documents have been generated, ranging from storage systems to 
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computation systems, including ones as low level as network topology, and as high level 

as programming interfaces. Wide adoption ensures interoperability. For instance, 

GridFTP protocol [13] is a de facto standard for data transfer in the grid community. A 

large number of GridFTP-compatible data servers have been deployed across many 

countries. This makes it easy to transfer data among them, with the use of a compatible 

GridFTP client, or a data transfer service, such as Globus Online [14]. 

 

1.2 The Challenges of using the Grid 

 

Over the past few years, much effort has been put into building grid systems and 

making the grid simpler and easier to use, for both data grid [15] (focusing on data 

storage, access and sharing in a distributed environment) and computational grid [5] 

(focusing on providing uniform interfaces to supercomputers). Early developments were 

focused on middleware, such as Globus Toolkit, gLite [16], UNICORE [10] being 

computational grid middleware, and SRB [17]/iRODS [18], dCache [19] being data grid 

systems. Discipline-specific and regional grid infrastructures have been implemented, 

such as the LCG project [20] for LHC experiments, and the TeraGrid project [21] for US 

universities. These systems are very successful in their own areas, and intend to make 

their system generic for other people to use. However, it is still difficult to copy the entire 

system to another environment and it does not always give the best outcomes, because 

their design is more or less aligned with their local requirements. In addition, it is easy to 

make a middleware generic but not so easy to make a user interface generic. What can be 

extracted from the existing systems are mostly service components. Their user interfaces 
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are mostly specific to their users and hard to migrate. Nevertheless, the experience gained 

from building these grid systems is very important for people who want to set up a new 

grid infrastructure. 

Although a number of grid systems are running around the world, we see several 

issues when using the grid. From a user’s point of view, the grid is somewhat complex. 

Before a user can use it, there are a number of technical hurdles to overcome, such as the 

knowledge of basic Linux commands, being able to write scripts, the understanding of 

the setup of the grid, the use of X.509 certificates, and so on. Ideally, users usually want 

to be presented a simple and easy-to-use web-based system, where they can do a variety 

of things, without worrying about the installation of different client applications. From 

the grid service provider’s point of view, they always want to increase the usage of their 

system, by sharing the resources to more users, and making it easier to more users to get 

access. They also want their users to be able to use remote resources if no local resource 

is available. From the application developer’s point of view, a simple API to access all 

resources is what they need. The APIs provided by current grid middleware are far more 

complicated and needs a fair bit more time to learn and understand, compared to the APIs 

offered by commercial systems, such as Yahoo and Google. This stops third-party 

developers from building user-customized grid application on top of the basic 

infrastructure. All in all, it is not easy to build an easy-to-use grid system, due to the lack 

of a user-friendly web-based interface and the inflexibility of adopting applications 

developed by other groups, thus hard to share resources to a broader group of users.  

 



 

 6 

 

Figure 1-1 Regional Grid Operators in Australia 

 

Australia has several regional HPC centres in major cities, as shown in Figure 1-

1. In the early 21st century a federal government project, known as APAC, started to build 

a basic national grid infrastructure, including system-level grid middleware on top of the 

existing HPC systems, and central storage systems based on tape devices or disk arrays, 

with a collection of software that is installed in these HPC systems and used by multiple 

research disciplines. Existing hardware and software are the essential foundation of a 

working grid system [2], and indeed, the APAC project has built a working grid system 

that a number of Australian researchers have taken advantage of in their research. On the 



 

 7 

other hand, it is not very user-friendly and thus, users need to have certain IT knowledge 

and get over a number of technical hurdles before they can benefit from it. After APAC 

finished, a subsequent project, known as ARCS, was funded by the government, as 

described in this thesis. ARCS aims to provide further user support on existing services, 

and to establish a more advanced nation-wide service federation, to aggregate distributed 

grid resources to be a uniform platform so as to lower the barriers to using the grid, make 

it simpler and more user-friendly for more researchers to use, and make good use of 

resources across the country. To achieve this, there are a few challenges to tackle. 

Firstly, as users are from different organizations, they normally hold a credential 

from their home organization. To give them access to a grid service, the Globus toolkit 

implements the Grid Security Infrastructure (GSI) specification [22], which is based on 

X.509 certificate technology. Any individual user will be given a certificate to identify 

them to the grid systems. However, this usually requires quite a lot of effort from the user 

and the issuer of the certificate, and has a long learning curve because it requires users to 

remember a different set of username and password, and to learn how to use certificates. 

Secondly, although each regional grid operator has installed Globus Toolkit as the grid 

submission gateway for HPC systems, it only offers a web service interface, and requires 

users to install client software, write a Globus-defined job description file, and use 

command-line interface tools in order to successfully send a job to the backend HPC 

systems. It is common for a modern system to provide a web portal to remove the above 

hassles, and give access to all backend resources. Lastly, storage facilities are available at 

each grid site, but different sites may provide different interfaces in various protocols. In 

addition, it is not easy to share data with someone from another organization, since 
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normally only local users with a local account can access the storage area, and external 

users can hardly get into the storage system, let alone retrieve the files. This thesis, 

therefore, talks about how I designed and developed additional components on a national 

grid infrastructure to tackle these challenges, and provide an easy-to-use one-stop shop 

for researchers in Australia to take advantages of the existing IT facilities. 

 

1.3 A summary of my work 

 

My research interests lie in the study of different grid technologies, applications 

and systems. I am also interested in the combination of grid systems and web-based 

systems. In this project, my main goal is to make the Grid easier to use by users who 

don’t have a lot of IT expertise, and easier for developers to create grid applications. In 

summary, my contributions are three components in the grid infrastructure. Firstly, I 

investigated several data grid systems and clustered file systems, and made a significant 

contribution in the selection of data grid middleware that is used as the foundation of the 

data grid system in this project; I also evaluated all existing user interfaces of such 

middleware and identified the missing interface, a web-based interface, which was then 

developed to benefit both end-users and developers. Secondly, I studied different data 

transfer solutions and services, to understand their pros and cons. The outcome of this 

study showed that implementing a data transfer service with multi-protocol support 

would be complex and messy, and it may reduce the transfer performance too if all data 

goes through the central data transfer service. To simplify the system structure, I 

developed a standard GridFTP interface in order to connect arbitrary data sources into the 
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grid world; therefore users can make use of existing high-performance grid data transfer 

services to move data. Lastly, in order to make it easier for users to use existing grid 

computing resources, I developed a web-based grid job submission gateway, with 

integration of cutting-edge technologies, such as Shibboleth [23], to enable submission of 

various types of jobs and a huge amount of jobs. After submission, the gateway can re-

distribute these jobs to various grid resources to process, based on pre-defined rules. 

These components can work independently or together. For users who want to store and 

share data, they only need to use the data portal of the data grid middleware. The standard 

GridFTP interface is the bridge between the data grid middleware and the computational 

grid. Input data and result data of grid jobs are stored in the data grid middleware so this 

data can be kept safely, shared to other researchers and backed up properly. Thus, for 

users who want to run jobs in the backend HPC systems and share the result, they can 

upload input data to the data grid via the data portal, and submit the job using the grid job 

submission gateway, and then examine and share the result data with the data portal 

again. 

 

1.4 Thesis Organization 

 

The rest of the thesis is organized as follows: Chapter 2 presents the concept of 

the Grid in detail and gives background information, such as the major grid projects and 

production grid systems in the world. Then, Chapter 3 describes the architecture of a 

national grid infrastructure using the example of the Australian grid, and explains the 

motivations for this project. Chapter 4 focuses on my development of a data grid, which 
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aims to be a national file system that aggregates storage resources across the country and 

allows researchers to use it as a seamless national data fabric. It starts with the 

investigation of a data grid middleware system and identification of missing capability, 

then leads to the architecture of Davis, a data portal to the backend storage. Chapter 5 

describes Griffin, a GridFTP interface for data transfer. It can interface with any arbitrary 

data source and connect this data source to the grid, so a grid data transfer service can be 

used to move data among users, grid compute resources and data storage systems. It is 

then followed by Chapter 6, which talks about a different topic, a grid job submission 

portal and how it interacts with the existing grid middleware in each regional grid service 

provider. Finally, the thesis concludes and gives ideas for future work in Chapter 7. 
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Chapter Two: Background and Literature Review 

 

This chapter presents an introduction to eScience, and an in-depth view of the 

Grid, the technology that has been supporting eScience since 1990s. Definition and 

characteristics of eScience will be discussed next, with detailed descriptions of its two 

major forms, data grid and computational grid. Data transfer services and authentication 

mechanisms in the Grid are also depicted. Then, a few examples of eScience projects are 

presented, and followed by a brief outline of a cutting-edge technology, the Cloud. 

 

2.1 eScience 

 

The way of doing science has been incredibly changed from a few decades ago. 

Along with the evolvement of IT technology, scientists more and more rely on 

computers, in every aspect of their work. Nowadays, each individual scientist has a 

desktop computer, which is used everyday to write papers, send emails and search other 

research works. More importantly, a large number of researchers use computers to run 

simulations, store research data and process instrument-generated data. One example is 

the Large Hadron Collider (LHC) [1], a high-energy particle accelerator constructed by 

CERN, lying in a tunnel beneath the border of France and Switzerland. It produces about 

15 Petabytes of data annually, with thousands of scientists from hundreds of research 

institutions around the world involved in the study of experimental results. The analysis 

and processing of data cannot be completed without the help of supercomputers, while 
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the storage and movement of this data cannot be done without the help of massive storage 

facilities and fast network links.  

The term eScience was first introduced by John Taylor, Director General of the 

Research Councils of UK [24]: 

“e-Science is about global collaboration in key areas of science, and the next 

generation of infrastructure that will enable it.” 

This definition is intended to summarize a new era of scientific activities, far 

beyond the change that Internet has brought to the general public. Its main focus is global 

collaboration of researchers worldwide, who share not only resources but also data and 

ideas. Figure 2-1 [25] illustrates the scientific lifecycle supported by eScience: the inner 

grey circle shows the stages of a typical scientific research progress, while the outer 

circle surrounding it shows the IT facilities that get involved in scientific activities. The 

technology enabling eScience consists of compute power, storage, networking, video 

processing and transmission, and so on. For instance, researchers in different countries 

have videoconferences regularly to exchange ideas, share research outcomes or do remote 

presentations. This is one of the basic and simplest forms of collaboration in eScience. 

This thesis concentrates on a more complex type of collaboration, namely resource 

sharing, including CPU power sharing and data sharing. This is backed by an advanced 

technology, the Grid technology, which appeared from the late 1990s. The next section 

will look at the history and features of the Grid. 
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Figure 2-1 eScience supports the complete scientific lifecycle 

 

2.2 The Grid 

 

The concept of Grid appeared in late 1980s and early 1990s. Ian Foster and Carl 

Kesselman were among the first to propose the concept of the Grid [3], which has led to 

the standardized Grid systems that are widely used nowadays, and thus Ian Foster is 

known as the father of the Grid. The purpose of having a Grid is sharing resources, just 
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like anyone can use electricity from the power grid if needed. Before getting into any 

details of the Grid, it is necessary to describe why the Grid is needed, from a technical 

perspective. 

The design of modern computers restricts hardware parts that can be placed into 

one single physical machine. Typically, one machine can only have limited number of 

central processing units (CPUs), from several up to tens of Gigabytes of Random-access 

memory (RAM), some hard disks and several network interfaces, etc. This configuration 

is sufficient for personal use, or shared by a limited number of users to run simple tasks. 

When it comes to complex tasks or multi-tasking, such as CPU-intensive tasks and 

memory-intensive tasks, one physical machine is not enough. At this time, a cluster is 

used.  

A computer cluster is a group of computers, usually connected with each other 

through fast local area networks, working together and closely as one single computer. A 

cluster is often deployed to achieve load balance, high performance and high availability. 

In academic research, clusters are primarily used for high performance computing, such 

as computational simulation of climate change and analysis of experimental results. They 

are normally called supercomputers, and provide compute resources in a Grid 

environment. A supercomputer normally has homogeneous machines as its nodes, and a 

central control computer, known as the head node. A popular programming model for 

supercomputers is Message Passing Interface (MPI), which enables programs to be run in 

parallel across multiple nodes of a supercomputer. There are a number of resource 

management systems for users and system administrators to interact with 

supercomputers, such as Sun Grid Engine [26], the Portable Batch System (PBS) [27] 
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and Platform’s Load Sharing Facility (LSF) [28]. These systems are usually local, 

available to users with a local account, so they are normally called LRMSs (Local 

Resource Management Systems), or batch systems. 

To remove the hurdles of using multiple remote and heterogeneous 

supercomputers, the concept of Grid has been developed to share heterogeneous 

resources across different administrative domains. Figure 2-2 shows the evolution from a 

single computer to the Grid. 

 

Figure 2-2 From a single computer to the Grid 
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2.2.1 The Definition 

 

There has been a lot of debate about what is a grid. To briefly outline the features 

of a grid, Ian Foster presents a checklist with three points [29]. Firstly, a Grid aggregates 

and coordinates resources from different administrative domains, such as clusters from 

several organizations and computers in different universities, which raises authentication, 

authorization and other policy issues when dealing with these distributed systems. This is 

in contrast to the local management systems. Secondly, resources in distributed systems 

like the Grid are usually heterogeneous, and since there are lots of them, we need open 

standards in order for them to be interoperable, and for the development of grid 

applications that work across them, otherwise it is hard for remote users to utilize the grid 

resources. Grid services, such as authentication, authorization, resource discovery and 

resource access, should be standardized to provide a uniform interface to underlying 

resources. Thirdly, users should be able to specify and achieve nontrivial qualities of 

services from a Grid, addressing performance, availability, security, etc. A grid consisting 

of a number of hardware components should offer better utility than the sum of each 

single one. 

On the other hand, Buyya and Venugopal defined grid as "a type of parallel and 

distributed system that enables the sharing, selection, and aggregation of geographically 

distributed autonomous resources dynamically at runtime depending on their availability, 

capability, performance, cost, and users' quality-of-service requirements" [30]. They tried 

to address the following issues: enable access to distributed resources while preserving 

complete control over local resources; improve availability of data and provide solutions 
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to data access; provide a uniform and user-friendly interface to users so they can make 

use of physically distributed resources. 

These definitions provide a high-level abstraction of a Grid. From the usage, grid 

systems can be categorized into two groups, data grid and computational grid. In essence, 

all grid systems share some basic, standard services and some common features. The next 

section will depict these features in detail. 

 

2.2.2 Features 

 

Every grid system, either data-centric, or compute-centric, has some features in 

common. In all definitions, a grid is all about resource sharing, which could happen 

between organizations in one country, or between countries. The resources that can be 

shared include data, software, or compute power. On the other hand, it is necessary to 

ensure that the resources are shared to the person that is trusted. The concept of Virtual 

Organization (VO) [4] is created to solve this problem. A VO consists of a group of users 

that have the same goal, or work on the same project, so that they share their resources 

with each other, and have access to resources that are necessary to finish their work. In a 

real grid system, users are grouped into different VOs, so that the sharing can be 

managed and controlled at a fine-grain level. 

Secure access to a grid system is vital and challenging. As grid resources are 

usually expensive facilities, it should be assured that users are valid and allowed by the 

policy when they request to access a resource. This raises several issues including the 

identification of a user, the permissions that a user can have, and the arrangement of 
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resources to different users. For instance, users that are considered as VIP users should be 

able to use more compute power than normal users. 

Resource sharing is the key concept of a grid, which enables users to spread their 

work across multiple resources, so that their work can finish quicker and faster, and also 

they can access and process remote or distributed datasets. On the other hand, when a 

number of people want to use a particular resource, it is necessary to have a mechanism 

to allocate resources efficiently, and to avoid race conditions, e.g. a user cannot use a 

resource that is being used by another user. Normally, resources that can be shared 

include low-level, hardware-level resource sharing, such as storage resources and 

compute resources, and high-level, application-level resource sharing, such as sharing a 

document, or data collected by scientists or generated from instruments. A grid 

middleware system usually focuses on low-level resource sharing, and aims to 

standardize the application interfaces so that a third-party application can easily get 

access to the shared resources and usually expose them via a high-level user interface. 

The next section will describe grid middleware in detail. 

Modern computer systems are usually connected to a fast network. This makes it 

possible to form an international grid. One good example is the LHC, where data is 

collected from the instrument, and then transferred via fast networks to collaborator sites 

in many other countries. Scientists in these countries can use either their local compute 

systems or computer centres where data is local to process the data, and share the result 

to more people. 

To ensure systems across countries can communicate with each other, standards 

and open protocols are in place and adopted when building a grid. The Open Grid Forum 
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[12] is an international organization that consists of members around the world; it 

organizes workshops and conferences regularly to set standards and specifications. 

Development of current and new grid systems that follows these standards gives them the 

capability of future interoperation. 

 

2.3 Grid Architecture and Middleware 

 

According to its required characteristics, a grid can be designed and developed 

differently, and categorized in different groups. 

Differentiated by the usage, a grid can be designed for a particular application, or to 

be general-purposed. For example, the SETI@Home [31] grid is only used for one 

purpose, which is to analyse data collected from telescopes to find intelligent life on other 

planets. General-purpose grids are generally built upon grid middleware, such as Globus 

Toolkit, to provide generic interfaces that can support various grid applications. This 

project aims to support users from different research disciplines, hence focuses on grid 

middleware in order to build a general-purpose grid infrastructure. 

With respect to problem solving, grids can be categorized for solving high-

throughput problems, or high-performance problems. High-throughput applications are 

normally designed to analyze massive data that is collected from instruments or 

experiments, and they usually divide big data analyzing jobs into many independent tasks 

in order to run these tasks concurrently on different computers. Examples of this kind 

include the analysis of thousands of particle collisions in LHC project, and the analysis of 

molecules or protein folding configurations in bioinformatics projects. SETI@Home is 
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another example that processes the massive data collected from huge telescopes. Condor 

[11] is a middleware system that enables users to run high-throughput jobs on desktop 

computers and clusters. On the other hand, high-performance applications are usually 

simulations and modeling where a large amount of compute resource is needed for a 

single job. For example, astrophysicists may run simulations of a supernova explosion or 

black hole collision, car designers may run simulation of car crashes when designing a 

new car, and meteorologists may run climate model simulations to predict climate 

change. 

General-purpose grids, based on grid middleware, have attracted much funding and 

resources all over the world, due to its flexibility and utility for many problems, and 

ability to be shared by many users, for not only high-throughput applications, but also 

high-performance applications. A few widely-used grid middleware implementations will 

be examined next. 

 

2.3.1 Globus Toolkit 

 

The Globus Toolkit [8] has been developed since the late 1990s to support the 

development of service-oriented grid applications and infrastructure. The software is a 

common framework, or middleware that provides a number of essential components and 

capabilities as the foundation of a grid infrastructure. Along with the software itself, a 

broader ecosystem has formed to include users, developers, administrators and 

researchers who have utilized, contributed to, and standardized the middleware. The 

Globus Toolkit not only has become a de facto standard grid middleware implementation 
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that most grid systems around the world are built upon, but has also become the direction 

of many grid technology studies. 

The sophisticated architecture of Globus Toolkit consists of a number of key 

components, as illustrated in Figure 2-3. It has service containers to host native and user-

developed services written in Java, Python or C, and correspondingly, exposes a set of 

client libraries in Java, Python and C. The key components fall into 4 aspects, namely job 

execution, data management, information service and security. All of these components 

are backed by common runtime libraries in Globus Toolkit. In a real deployment, not all 

of them need to be installed; a site can only install common runtime environment and 

required components. The latest version of Globus is version 5. However, version 2 and 

version 4 are the major versions being used widely. There are major differences between 

versions, especially the interface. As technologies advance, some components are re-

implemented with newer technologies and newer architecture. For example, Globus 

Toolkit version 4 (GT4) provides a web service based user interface while Globus 

Toolkit version 2 (GT2) and 5 (GT5) offer a simple HTTP-based user interface. More 

details about differences between versions will be given later. 
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Figure 2-3 Primary components in Globus Toolkit version 4 [8] 

 

Following sections will give some details into the major Globus components. 

 

GRAM 

The Grid Resource Allocation and Management (GRAM) service [32] is the most 

important service in the execution management category. It is used to query, submit, 

monitor and cancel jobs in various local or remote compute resources by providing a 

single protocol and interface to users to simplify the use of compute resources. The 

GRAM protocol is HTTP-based; in version 4, or GRAM4, a web service interface was 

A 
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introduced into GRAM; but in GT 5, the web service interface was abandoned and 

GRAM2 was enhanced to be GRAM5, which is a RESTful-like interface. 

Technically, GRAM is not a scheduler but an interface to a native scheduler. 

GRAM accepts jobs in a specific format, RSL (Resource Specification Language) [33] in 

GRAM2 and GRAM5, while JDL (Job Description Language) [34] is used in GRAM4. 

JSDL (Job Submission Description Language) [35] is also supported in GRAM5. Note 

that JSDL is an OGF standard while RSL and JDL are proprietary formats and only used 

by Globus. Once a job is submitted to GRAM, GRAM converts it into a native format 

that the target scheduler uses, and submits the job to the target scheduler. GRAM keeps 

information of jobs, such as the native job ID in the target scheduler so it can query or 

cancel the job in the future. To date, GRAM supports a number of job schedulers, 

including PBS (Portable Batch System), Condor, Platform LSF and SGE (Sun Grid 

Engine).  

 

MDS 

MDS, or the Monitoring and Discovery Service [36], is a framework that collects 

and stores information about resources for monitoring and discovering purpose. MDS has 

two components, a registry and a data filter. The registry is an index of resource 

information and the data filter sends data about local resources to the registry, which can 

be hierarchical: there can be one central registry that aggregates data from all local 

registries and therefore shows the whole picture of all resources in a grid centre. Globus 

has provided a number of clients for users to take advantage of the data in registry. For 
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example, the WebMDS [37] service provides a web-based view of the registry via XSLT 

[38] transformations. 

 

GridFTP 

The GridFTP protocol [13] is an extension to the standard FTP (File Transfer 

Protocol) for transferring massive data in a grid environment. It is a major part of the data 

movement service in Globus Toolkit and in fact, it is the de facto standard data service in 

the grid world. It is based on FTP because the well-defined architecture of FTP is specific 

to data movement and allows extensions. The features added into GridFTP are mostly for 

fast data movement, and security in a grid environment. For example, the third party 

transfer feature allows data to flow between two data endpoints even when the transfer is 

initiated by a client residing at a third location; the parallel and striped transfer feature 

allows multiple simultaneous data streams to maximize the use of available bandwidth; 

partial file transfer allows the transfer of a portion of a huge file so as to save network 

bandwidth and time; GridFTP also supports fault tolerance by monitoring the transfer and 

can restart failed transfer from the failure point; users can also optimize the transfer by 

setting a proper TCP buffer size according to the current network situation. GridFTP is 

used in this project and will be discussed in more detail in Chapter 5. 

Another service provided by Globus under the data movement service category is 

RFT (Reliable File Transfer) but it has been replaced by Globus Online in GT5. Globus 

Online will be described later in this chapter. 
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GSI 

GSI [39], or the Grid Security Infrastructure, is a specification for secure 

communication between elements, such as applications and users, in a grid environment. 

GSI is based on the X.509 certificate technology and thus, every user and every service 

of the grid has a private key and a valid public key signed by a trusted CA (certificate 

authority). Before any real communication, GSI defines a way for both parties to 

exchange public keys and verify if the remote party is trusted. If trusts are created, 

communication can start within encrypted or non-encrypted channels. 

Delegation is an extension to the standard SSL protocol defined by GSI in order to 

set up a mechanism for services to act on behalf of the user. This is useful in many cases 

where users cannot enter passwords all the time. For example, in a workflow, a user can 

create a delegated certificate, called a proxy, at the beginning and pass it to the workflow 

service, and the service can then use this certificate to access other services, such as 

execution managers, and GridFTP servers, as if the user does that himself/herself. This 

mechanism can be used for single sign on with using a single proxy to access various 

services. To make it easy for web portals to benefit from the delegation capability of GSI, 

MyProxy [40] was developed to act as an online credentials repository system. There are 

applications, such as web portals, that do not support GSI but need to interact with grid 

resources, and other users may want to access the grid from where the certificate is not in 

place. MyProxy can be used in these cases so that users can upload a proxy into MyProxy 

with password protection, and then retrieve the proxy in a web portal, or a computer 

without the user’s certificate. With a valid proxy, the web portal or the user can access 

any grid resource the user is entitled to. 
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2.3.2 gLite 

 

gLite [16, 41] is an effort by the EGEE (Enabling Grids for E-Science in Europe) 

project [42] to create a reliable and dependable grid infrastructure for the European e-

Science community. gLite provides a set of services for building a production-level grid 

infrastructure encompassing computing and storage resource across the Internet and 

among a number of countries in Europe, as well as a middleware stack for developers to 

write grid applications hooking into the fundamental grid resources. 

Similar to the Globus Toolkit, gLite follows a Service Oriented Architecture and 

offers five service groups, namely security services, information and monitoring services, 

data services, job management services and access services. Virtual Organizations (VOs) 

are the essential elements in security services. Any user must join a VO to gain access to 

grid resources. VOMS (Virtual Organization Membership Service) [43] is the service 

maintaining the relationship between users and VOs, as well as a user’s roles and 

capabilities in a VO. VOMS keeps records of information of user certificates, but does 

not know what permission a VO has on a local system. GUMS [44], the Grid User 

Management System, is a site tool for resource authorization and provides mappings 

from VOs to credentials on local resources. When a request or a job is sent to a grid 

resource with the user’s grid certificate, the resource asks GUMS which local identity is 

used to execute the given task by presenting the certificate. GUMS then returns a 

preconfigured local identify name to the resource if the user is in a privileged VO, or an 

error code if the user is not in any VO that can access this resource. 
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The information service is essential to coordinate resource discovering, monitoring 

and accounting over a grid as a whole. The current information service in gLite is BDII 

[45], the Berkerley Database Information Index, which stores information about the 

whole grid in an LDAP server and updates this information with an external process 

sitting beside a grid resource. The query of information can be done via standard LDAP 

query syntax, or via any commodity LDAP tools. This design simplifies the whole 

structure and makes it easy to integrate with other applications. 

Data services in gLite consist of a number of storage elements (SEs), catalogue 

services and a data movement service. Currently, gLite is packaged with DPM (Disk Pool 

Manager), targeting disk-based storage, and dCache, targeting large-scale disk array and 

hierarchical storage systems. FTS (the File Transfer Service) is the major component in 

data movement service. dCache will be described in detail in section 2.4.2 and FTS in 

2.5.1. The primary services in the job management services group include computing 

elements (CEs) and the workload management service (WMS) [46]. CEs are a set of 

resources localized at a site that act as bridges between higher-level applications and a 

cluster of computing machines usually managed by a LRMS (Local Resource 

Management System), while WMS is responsible for distributing and managing jobs 

across CEs and SEs. WMS accepts jobs described in a flexible and high-level Job 

Definition Language (JDL), and forwards jobs to a suitable CE based on the workload 

and other settings. To date, WMS supports LCG CE (based on GRAM2), gLite CE and 

CREAM [47]. WMS provides a complete set of tools to create, monitor, and cancel jobs. 

CREAM, the Computing Resource Execution and Management system, is a 

lightweight and robust service that manages CEs efficiently on a Grid. The creation of 
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CREAM addresses several issues in the legacy LCG-CE, which does not support user 

proxy delegation properly, performs poorly on modern hardware, is not reliable in some 

situations where jobs are lost and lacks support. CREAM also comes with several 

improvements, for example, it has a web service interface, in contrast to the pre-WS 

interface in LCG-CE; its authentication is based on VMOS proxies; it supports multiple 

batch systems; it also has an asynchronous notification service to send out updates when 

job status changes. CREAM is part of the gLite software stack but it can also operate as a 

standalone service. 

 

2.3.3 VDT 

 

The Virtual Data Toolkit (VDT) [48] is a software stack built by the Open Science 

Grid (OSG) [49] to provide a production quality software distribution to its member sites 

and users. It has two goals. Firstly, it aims to create a generic grid middleware that is not 

dependent on any specific grid operator and can be used completely or partially by any 

grid service provider. Secondly, it aims to provide a working system on several 

platforms, a.k.a. operating system and CPU combinations. On the other hand, VDT is a 

package of existing software; the author does not write any new software but put mature 

and robust applications together with extensive testing to ensure they can work 

seamlessly and properly. 

Currently VDT includes grid software, such as components from Globus Toolkit, 

gLite, Condor and other applications developed by grid application developers, as well as 

non-grid software, such as Apache and MySQL that are used by particular grid 
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applications. One typical example is the VOMS component, which manages lists of VOs 

and their members by mapping X.509 certificates. Other grid components can liaise with 

VOMS to find out if a user is in a specific VO thus can decide whether the user has 

permission for a specific operation. VOMS relies on Tomcat and a specific version of 

MySQL, which are both included in VDT. VDT also has a plugin for Globus GRAM 

service so that GRAM can take advantage of VOMS for job submission. VDT provides 

an easy and fast way to install all these bits and pieces; without it, system administrators 

may need to install many of them from source code and do testing themselves. 

 

2.3.4 Other Grid Middleware 

 

Some other grid middleware stacks are notable, as they are popular and being used 

by a number of groups. I’ll touch on several typical examples in this section, to give a 

brief introduction to them. 

Condor [11, 50] aims to address High Throughput Computing (HTC) by 

developing, deploying and evaluating a software stack and policies. A comparison of 

HTC and HPC application was given in the beginning of section 2.3. Condor offers tools 

to increase computing throughput and maximize the utilization of idle workstations or 

cluster nodes depending on the configuration. From a user’s perspective, Condor 

provides functionalities similar to a traditional queuing system: users submit jobs to a 

queue in Condor and then Condor distributes jobs to worker nodes based on policies and 

the requested resource requirements of the job. On the backend, Condor can be 

configured to use a cluster of compute nodes, or make use of wasted CPU power from 
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idle desktop workstations. When working with desktop workstations, a monitoring 

program is installed on all desktop computers, and used to detect if the computer is idle, 

such as whether its keyboard and mouse are idle. If a desktop computer is idle, Condor 

migrates jobs and data (if needed) to this machine to execute the job. If someone comes 

to use this computer when a job is still running, Condor produces a checkpoint signal and 

moves the job to another idle machine. Condor can also incorporate with Globus Toolkit 

in two ways: Condor-G [51] redistributes Condor jobs to a local or remote Globus 

instance so users can use Condor interface to submit jobs to Globus Toolkit; Globus 

Toolkit has a built-in mechanism to send jobs to Condor like other LRMSs, which means 

users use Globus interface to send jobs to Condor. 

UNICORE [10] (UNiform Interface to COmputing REsources) is a grid 

middleware enabling a seamless, secure and intuitive access to distributed grid resources 

and information stored in databases. It was started in 1997 in Germany to provide users 

access to computing resources by German supercomputer centres. Today, UNICORE is a 

robust production system being used by a number of supercomputer centres worldwide. 

The architecture of UNICORE consists of three tiers. The first tier, user tier, includes a 

graphical user interface, a command-line user interface and an API for integration with 

other grid applications. The server tier consists of the Gateway and the Network Job 

Supervisor (NJS). The Gateway is a secure entry point with controlled access to any 

UNICORE site. If access is given, incoming jobs are forwarded to NJS, which is 

responsible for virtualization of the underlying computing resources by mapping 

UNICORE jobs to the target system using system-specific configurations. The third tier, 

target system tier, is the interface to the underlying supercomputer, or other grid resource 
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manager like Globus GRAM. Lastly, UNICORE employs X.509 technology in its 

security model and provides single-sign-on based on certificates. 

A meta-scheduler is another form of grid middleware. It gives a single and 

aggregated view of multiple distributed resource managers so as to enable batch jobs and 

computational workflows to be executed at the best location. One typical example of a 

meta-scheduler is GridWay [52], which is a workload management system that performs 

job execution management and resource brokering on various computing resources that 

are managed by different local or distributed resource management systems in a single 

organization or scattered across multiple administration domains. It provides a scheduling 

framework similar to other batch systems, including a command line interface and an 

OGF standard API, for job submission, monitoring, and control. GridWay can handle 

single jobs, array jobs (a job to be run multiple times with different inputs) and 

workflows, in an unattended and reliable manner. All steps including data staging and 

scheduling are performed transparently to end-users. The main feature of GridWay is 

adaptive scheduling and execution. Each job is defined with a requirement expression of 

expected resources, including basic job definitions (such as the executable, input files, 

output files) and resource requirements (such as CPU number, memory size, queue 

number). These requirements are then processed by an internal ranking system in 

GridWay to work out a suitable resource to submit this job to. GridWay also monitors the 

performance of each resource and keeps statistics, which will then be used in the ranking 

system. A running job can be restarted on a different host if conditions are met, for 

example, another resource with more compute power is available. GridWay is based on 
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Globus and becomes part of the Globus Toolkit from GT4, which makes it easy to install 

and work with Globus. 

Nimrod/G [53], as shown in Figure 2-4, is a Grid middleware derived from the 

Nimrod project, which developed a parametric modelling system for users to easily run 

parameter sweep jobs. Nimrod defines a simple declarative parametric language to 

describe a parameter sweep job and provides mechanisms that run these jobs 

automatically and collects results from each individual task. Nimrod/G is built on this 

principle idea with a scheduler that can distribute jobs across heterogeneous compute 

resources. Technically, Nimrod/G integrates Nimrod toolkit and Globus toolkit to provide 

parametric functionality to the Grid. It uses Globus GRAM to submit jobs to the compute 

resources and Globus MDS to find out the structure of the whole Grid. Nimrod/G 

provides a client for users to submit and control jobs and then distributes jobs to the 

Nimrod Resource Broker (NRB) on a remote site. The NRB further forwards the job to 

its paired Globus GRAM, which sends the job to the queuing system. Nimrod was one of 

the first tools to enable the use of heterogeneous computing resources in a single 

computation job. For those who have access to multiple compute resources, the use of 

Nimrod can shorten the execution time by taking advantage of all available resources, 

and removing the constraint of having to run a job in only one resource. 
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Figure 2-4 Nimrod/G Architecture [53] 

 

2.4 Data Storage in a Grid Environment 

 

The above grid middleware systems are all designed to interface with HPC 

systems. When it comes to data storage, different technologies are used to build massive 

data/file systems with tertiary storage backend. Traditionally, compute clusters are 

equipped with clustered file systems, in order to enable fine-grained control on files and 

sharing by each node of the compute cluster. To enable collaboration and data sharing by 

researchers from different places, it is required to access files that are geographically 

distributed. Thus data grid appears as a new concept to solve that problem. In a data grid, 

distribution is the key feature, which connects all these geographically distributed, and 

maybe heterogeneous systems that manage local storage resources. Generally speaking, 

clustered file systems provide low-level and usually POSIX-compliant file access 

interfaces, and data grid middleware offers application-level access interfaces.  

A 
NOTE:   
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In this section, I examine Lustre, GPFS, Ceph and XtreemFS as examples of 

clustered file systems, as well as dCache and iRODS/SRB as examples of data grid 

middleware. 

 

2.4.1 Clustered File System 

 

In distributed systems, a clustered file system is shared by and mounted on multiple 

hosts. There are two forms of clustered file systems, either shared-disk or distributed. A 

shared-disk file system uses a storage area network (SAN) or RAID to provide direct disk 

access from multiple computers at the block level. A distributed file system is any file 

system that allows access to files from multiple hosts scattered in a computer network. 

Instead of providing block level access, access to file storage in distributed file system is 

conducted by using a network protocol. In this sense, a data grid is also a distributed file 

system. Another important feature of the examples here is that they are parallel and fault-

tolerant. They store data in multiple data storage devices for striping and replication in 

order to provide high performance data access and maintain data integrity. If one server is 

down, data can still be retrieved from another storage device. Following sections will 

look into several examples of clustered file systems. 

 

Lustre 

Lustre [54] is a massively parallel distributed file system running on Linux, and can 

be used along with small workgroup clusters to large-scale HPC systems. The name 

Lustre is a portmanteau word derived from Linux and Cluster. It was originally 
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developed at CMU and is now owned by Oracle. The motivation of Lustre is to provide a 

storage area network (SAN) file system that allows fine-grained sharing of data in a 

cluster environment. A Lustre file system has three major components, where metadata 

and real file data are stored separately. The first component is a metadata server (MDS) 

that maintains a single metadata target (MDT) that keeps namespace metadata, including 

filename, directories, access permissions, etc. MDT is stored in a local disk file system. 

The second component consists of one or more object storage servers (OSSs), where real 

file data is stored. Clients are another component of Lustre that makes use of data with 

standard POSIX-compliant commands in a single and unified namespace composed of all 

files and objects in the whole Lustre system.  

A typical Lustre system contains tens of thousands of clients, thousands of object 

storage servers and a failover pair of metadata servers. Object storage servers can be 

added dynamically to provide flexibility. If more than one object storage server is 

associated with a file, data of this file is striped across them like RAID 0, which provides 

significant performance benefits than transferring from a single node. Lock management 

is another useful feature of Lustre to allow many clients to access one single file 

concurrently for both read and write without risking into bottlenecks. Also, Lustre 

implements Lustre Networking (LNET) to provide network connection between disk 

storage and Lustre system components using SAN technologies. LNET supports many 

network protocols, such as fast InfiniBand and common IP networks. The main 

advantage of Lustre is high parallel performance, and it has been deployed on several of 

the top 30 supercomputers in the world. In addition, TeraGrid has installed Lustre as a 
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production service and is going to offer Lustre WAN service that consists of nodes across 

the states [55, 56]. 

 

GPFS 

GPFS [57, 58], or the General Parallel File System, is a high-performance shared-

disk clustered file system developed by IBM for cluster computers. The architecture of 

GPFS consists of a number of cluster nodes, on which the GPFS file system and 

applications are running, connected to the shared disks via a switching fabric, which is 

normally a SAN. The GPFS system works in a similar manner to a general-purpose 

POSIX file system running on a single machine. Users use a conventional block I/O 

interface to access the underlying data, which they have no knowledge of. Internally, 

GPFS stores data in blocks rather than as objects, and each file is broken up into many 

blocks, which are distributed in one or more physical disks. The size of each block is 

configurable, and normally less than one Megabyte. When accessing such a file, GPFS 

can achieve a high input/output performance by striping blocks of data from each of these 

nodes over multiple disks in parallel, as the combined bandwidth of many physical 

machines is always higher than only one. GPFS also supports fully parallel access to 

metadata, such as directory structure and file information, which is stored across multiple 

nodes like the real data. So when a file is accessed on a particular node, that node is also 

responsible for metadata management of the requested file. Consequently, it removes the 

limitation that a directory can only contain a certain number of files. Under such a 

structure, it is feasible to add or remove disks without stopping the whole system.  
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One notable feature of GPFS is the distributed locking mechanism, which is used to 

synchronize parallel read/write disk accesses from multiple nodes, to avoid file content or 

file metadata corruption. It ensures fast throughput while maintaining file system 

consistency, regardless of the number of nodes being accessed at the same time. 

GPFS has been built on several of the most powerful supercomputers, and is a 

production service of TeraGrid and DEISA in a WAN environment [59]. 

 

Ceph 

Ceph [60] is an open source distributed file system originally developed by a PhD 

student at the University of California, Santa Cruz. Its goal is to be a POSIX-compatible 

and fully distributed file system without a single point of failure. Since May 2010, its 

client has been merged into the Linux kernel. The servers run as regular Linux daemons. 

Ceph has three major components: Object storage devices (OSDs) which store the 

content of files, Metadata servers (MDS) which store the metadata of inodes and 

directories, as well as cluster monitors that keep track of active and failed cluster nodes. 

Ceph claims to have several outstanding features that make it distinct from other 

file systems. Firstly, storage nodes (OSDs) can be simply added to the system to expand 

it seamlessly. Afterwards, data will be migrated into the new devices proactively to 

maintain the balance of data distribution; so new devices can share the same load as old 

devices. Secondly, all data in Ceph is replicated across multiple OSDs. If any of them 

fails, Ceph can replicate data in that failed device to other active devices, to maintain the 

balance. Once the device is recovered, data can be replicated back to it in parallel from 

multiple OSDs, to achieve a fast performance in the whole recovery process. Distributing 
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data across all OSDs avoids the waste of having spare disks like RAID 5. Lastly, the 

design of MDS makes it possible to adapt its behaviour to the current workload. As the 

number of files and directories changes over time, the metadata is redistributed 

dynamically among available metadata servers in order to share the load to them evenly. 

Moreover, if MDS suddenly receives thousands of requests on a single file, the metadata 

of this file is replicated across to more servers to distribute the workload. 

At the moment, Ceph is under heavy development and is not suitable for 

production use, according to the developer. Also, it is designed mainly for LAN use and 

the performance in a WAN environment is not clear. 

 

XtreemFS 

XtreemFS [61] is a globally distributed and object-based file system, with metadata 

and regular data stored on different types of nodes. It is designed to work for wide area 

networks, with replicated objects for fault tolerance and cached metadata and data to 

improve performance over high-latency networks, as well as supporting SSL and X.509 

certificates to ensure data security over public networks. XtreemFS is open source and 

POSIX-compatible. Its server can run on Linux, Windows and Mac OS, and it has clients 

for Linux and Windows. XtreemFS has several features that are beneficial to Grid 

applications. For example, consider the situation where some large files are regularly read 

by scientific applications from many locations for analysis, instead of copying the file to 

these locations, XtreemFS is able to make several replications, and when the file is 

requested, the nearest copy will be used. As XtreemFS is POSIX-compatible, the 

application can read transparently from XtreemFS just as reading from a local disk, 
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without needing to copy the file to its local disk. XtreemFS can also make partial replicas 

of a big file, if a portion of the file is used more frequently than other parts. This can 

reduce the time and resource to create and hold the replica. In addition, XtreemFS 

supports striping, which divides the content of a file into several object stores. When this 

file is opened by a user, it will be transferred from all these stores to the user in parallel, 

to take advantage of the available network resources. 

One big disadvantage of XtreemFS is that it is based on the assumption that storage 

resources are all hard disks and it cannot interface with heterogeneous storage systems, 

such as hierarchical storage systems. 

 

2.4.2 dCache 

 

dCache [19, 62] is a distributed file system developed by Fermilab, DESY and 

NDGF. It makes use of storage across computers and provides a unified and single view 

to users so they only see one file system without being aware of the actual location of 

their files. The architecture of dCache consists of nodes and cells. A node is a physical 

computer that runs all or some modules of dCache. A cell is a fundamental executable 

module that has a specific task to perform. Cells may or may not interact with other cells 

during the execution. Thus, a single node can have one or more cells running on it, and 

many cells in dCache can have multiple instances running across several nodes so as to 

achieve load-balance. To categorize by type, cells can be grouped into different types, 

such as pools and doors. Cells of the same type behave in a similar way. Between nodes 

and cells, dCache defines another term, domains, referring to the container of running 
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cells. Technically, a domain is a Java Virtual Machine (JVM) instance, which is an 

independent process running on the hardware. It is possible to run multiple domains on 

one node, which means all these domains share hardware resources of the physical 

machine, such as memory, CPU and network bandwidth. dCache comes with several 

predefined domains, with each composed of a list of different cells to achieve a certain 

goal, such as data storage backend, user interface front-end and data movers. dCache is 

scalable, so if the performance is slowed down by a large number of requests, new 

hardware can be introduced to run additional instances of the same type of the overloaded 

node, to allow load-balancing. 

dCache offers a few features to make storing data easier, and is able to make 

replicas of files from one node to another. For example, nodes can be added to and 

removed from dCache cluster anytime without stopping the whole system. One 

exceptional feature of dCache is the support of requesting data from a tertiary storage 

system, such as a tape robot. Because magnetic tapes are usually cheaper than disks, it is 

often an economical way to store massive data on inexpensive hardware. However, tapes 

have to be loaded and unloaded by the robot, therefore the access latency is significantly 

high to access data in the tape. dCache acts as a cache for tertiary storage systems so that 

frequently-used data is cached in dCache, to decrease the waiting time when accessing a 

file. If a file in dCache is used less often than other files, is will be removed from the 

cache to make room for other files. dCache also supports many transfer protocols, as 

modules, allowing different front-end machines and user interfaces to be plugged in. 

Another performance feature is hot-spot data migration. dCache is able to monitor and 

detect if a file is accessed very often, and then several replicas of such file will be created 
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on multiple servers, to allow load balancing across these servers and thus increase 

throughput. In addition, dCache has a mechanism to direct data to designated data 

resources. This is useful for large sites to make good use of their resources in an efficient 

way. 

dCache offers a few user interfaces, such as dCap [63] (dCache Access Protocol), 

GSIdCap, GridFTP, and recently WebDAV. dCap is dCache’s native protocol, which 

supports password authentication and GSI. In addition, dCache comes with an 

implementation of the SRM [64] protocol to allow negotiating the actual data transfer 

protocol and reserving required space beforehand. SRM protocol is an OGF standard and 

has been adopted by several widely-used storage systems, which means dCache can 

interactive with them seamlessly. In terms of user authentication, dCache does support 

X.509 certificate technology and traditional username/password authentication. However, 

certificates are preferred and supported by the commonly used user interfaces, such as 

GSIdCap, GridFTP and SRM. dCache also provides a console-based and web-based 

administration interface for administrators to easily configure the system, and do trouble-

shooting if any errors happen. 

 

2.4.3 iRODS/SRB 

 

The Storage Resource Broker (SRB) [17, 65] and the Integrated Rule-Oriented 

Data System (iRODS) [18, 66] are both developed by the Data Intensive Cyber 

Environment resource group (DICE) to help with data storage and sharing for grid 

operators, digital libraries and data archivists. SRB was developed from the late 1990s 
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and was superseded by its successor, iRODS in 2008. They are two independent products 

but they derive from the same concept, apart from iRODS having extra modules to make 

it more adaptive and flexible. Before getting into the details of iRODS, it is necessary to 

briefly touch on SRB. 

SRB is a data grid middleware system for sharing data and metadata distributed 

across heterogeneous resources using uniform APIs and GUIs. SRB provides an 

abstraction layer of data object names, sets of data objects, resources, users and groups so 

that functionalities can be built on it to offer uniform methods. With this layer, 

complexities of underlying physical infrastructure are hidden from users; instead, users 

only need to deal with global and logical mappings of actual digital entities registered in 

SRB. Therefore, a user can access files in any data source, such as an online file system, 

near-line tapes, relational databases or sensor data streams without needing to know the 

real location of that file, how that file is stored, or in what data system that file is stored. 

The virtualization view of underlying data sources provided by SRB is maintained in a 

metadata catalogue called MCAT, which utilizes a relational database system to store 

mappings of virtual files and directories and their real locations. 

SRB is a successful implementation of a virtual distributed file system to store and 

share data. It has been deployed on more than 100 research institutions around the world 

and is used to manage data repositories of Petabytes size [67]. Although SRB has 

mechanisms to ensure data integrity and authenticity of shared collections, other 

management tasks are frequently tedious. In fact, most of the business logic in SRB is 

hardcoded, which makes it hard to customize the behaviour of SRB. Even a small 

function change requires changes in source code, which may result in unforeseen errors. 
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To solve this problem and make the system flexible and adaptive, the SRB developers 

implemented the next-generation system, iRODS, as the successor of SRB. 

iRODS has a different architecture, which is classified as adaptive middleware. The 

adaptive middleware architecture (AMA) [68] provides a way for users to customize and 

configure the software to meet requirements without making any changes to the source 

code. To achieve this, a particular methodology, namely Rule Oriented Programming 

(ROP), is adopted, and this is also why the software is called iRODS. ROP paradigm is 

used in iRODS to declare user-defined workflows with two important elements, rules and 

micro services. A rule is a series of management operations, or a workflow, invoked by 

iRODS processes to complete a particular task in the system, such as creating a new user, 

creating a new collection, and so on. Each operation in the rule is called a micro service, 

which is generally a C-function and executable by the system. During customization, a 

user can change the flow of a rule, or even introduce more micro-services to change the 

behaviour of iRODS. For example, the default rule of creating a new user consists of two 

steps, creating a new account and creating a home collection for the user. This can be 

changed in a configuration file to add more steps, such as sending an email to notify the 

user that the account has been created. Rules in iRODS support conditions, that is, 

several rules can be set to one task, but with different conditions. In the previous 

example, several create-new-user rules can be put in place, e.g. one for creating normal 

users, and one for creating data curators. iRODS comes with more than 100 micro-

services and more will be created by both the developers and the user community. In 

addition, one can add new micro-services, or recompile current micro-services into 

iRODS, and this will not affect the running iRODS, as iRODS checks the rule 
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configuration file periodically to pick up any changes without needing to restart the 

whole system. 

The detailed architecture of iRODS is illustrated in Figure 2-5. It is based on a 

client-server model with distributed storage and compute resources, and uses a relational 

database system to maintain metadata of files, including attributes and the states. This is 

similar to SRB. What is extra to SRB is that iRODS has a rule system which enforces and 

executes adaptive rules. The rule system is the core of iRODS, where predefined micro-

services are invoked on the interpretation of the rule being executed. There are two types 

of rules, system-level rules and external rules. System-level rules are invoked internally 

by the server to enforce management policies or start system-level services. External 

rules are invoked externally by users using a command-line interface to perform a 

sequence of operations for the user. As to execution time, some rules are executed 

immediately while others are queued and executed at a later time in the background. 

Overall, iRODS provides an abstraction layer for data management processes and 

policies, which is much broader than the abstraction offered by SRB for data objects, 

collections, resources users and metadata. These management processes and policies are 

required to enforce authenticity, data integrity, access controls, data placement and 

presentation, throughout the whole life cycle of data in iRODS. They are therefore 

mapped to rules that control the execution of data management operations.  
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Figure 2-5 iRODS Architecture [18] 

 

Access to iRODS service is only achievable via the iRODS proprietary protocol. 

However, iRODS comes with several native interfaces and APIs, such as Java library, C 

library and Python library, to allow connecting from other applications. User 

communities are also proactively involved in the development and have developed more 

interfaces for iRODS. I, in this project, have contributed to this development to make it 

easier for users to use iRODS. Details will be given in chapters 3,4 and 5. 
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2.4.4 Summary and comparison 

 

The features of the above file systems are listed in the following table for 

comparison. The table has each column showing all features of each file system, while 

each row compares a particular feature of all file systems. The first column of each row 

(except the first row) shows what feature will be compared among these file systems. For 

example, in the row of ‘Data Replication’, as all file systems have a built-in mechanism 

to replicate data among its nodes, it is interesting to figure out whether they use the 

replication for failover (if one node fails, files can still be read from other nodes with 

replicas) and/or striping transfer (one requested file will be served from multiple nodes); 

in the row of ‘Node types’, it briefly gives the different components (nodes) that the file 

system is comprised of and the roles that these nodes play.  

In summary, I have examined six file systems, most of which are open-source or 

free to use, except for GPFS which is under a commercial license. Most of them store 

data in files except for GPFS which stores data in blocks. All of them employ metadata 

and have replication. I also examined the possibility of deploying each in a WAN 

environment, as this is a requirement in this project, and most of them have been 

deployed and tested in WAN except for Ceph. All of them offer multiple client interfaces, 

which are important to users. In terms of architecture, all of them are designed to use a 

client-server architecture with multiple components (nodes). It is noted that all server-

side components can be set up to have fail-over nodes so as to achieve high availability.  
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 Lustre GPFS Ceph XtreemFS dCache iRODS 

License GPL Commer-

cial 

GPL GPL DESY BSD 

Data 

Primi-

tive 

Object 

(file) 

Block Object 

(file) 

Object 

(file) 

Object (file) Object 

(file) 

Meta-

data 

Max 2 

metadata 

servers 

Distributed 

across 

storage 

servers 

Multiple 

metadata 

servers 

BabuDB 

(key-value 

store) 

Relational 

database 

Relational 

database 

Data 

Replica-

tion 

Failover 

and 

striping 

Failover 

and 

striping 

Failover  Failover 

and 

striping 

Failover Failover 

WAN 

deploy-

ment 

TeraGrid TeraGrid, 

DEISA 

unknown Experi-

menting 

Fermilab, 

Swegrid, 

NDGF 

ARCS, 

TeraGrid, 

KEK, 

NGS 

Client 

interface 

Native 

client, 

FUSE, 

CIFS, 

NFS 

Native 

client, 

CIFS, 

WebDAV 

Native 

client, 

FUSE 

Native 

client, 

FUSE 

NFS, 

HTTP, 

WebDAV, 

GridFTP, 

SRM, dCap 

Native 

client, 

FUSE 



 

 48 

Node 

types 

Clients, 

metadata, 

objects 

Client, data Clients, 

metadata, 

objects 

Directory 

service, 

metadata 

server, 

storage 

server, 

client 

Clients, 

metadata, 

objects 

Clients, 

metadata, 

objects 

Table 2-1 Comparison of file systems 

 

2.5 Data Transfer Service 

 

When using any file system, it is easy to copy one file, or a few files, from one 

location to another. However, when it comes to transferring massive volumes of data, it is 

essential to use a proper tool to automate the whole process rather than doing this 

manually. This tool is normally called a Data Transfer Service, which offers several basic 

functions: a scheduler to start and monitor transfer jobs, a mechanism to ensure data 

integrity, and a mechanism to recover from failure and restart failed transfer jobs. There 

are differences between different products; for example, some may allow transfer 

between data sources using different protocols, and others may require transfer between 

two homogeneous data sources. In this section, we mainly study three data transfer 

services, as they are the most popular ones and being used by many users. 
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2.5.1 gLite FTS 

 

The gLite File Transfer Service (FTS) [69] is a data movement service developed 

as a component of the gLite grid software stack. It is responsible for moving data sets 

from one site to another with using a specific network bandwidth that can be controlled 

by the user. The control ensures the network is shared fairly by most users and also 

allows users to choose a fast network link when there are several possible routes. The 

design of FTS is mainly for point-to-point transfers, with a mechanism to monitor 

network resources and display statistics data of transfers. As part of gLite, FTS is 

integrated with other gLite components, such as File Catalogue. However, it is also 

possible to use FTS standalone. 

FTS consists of several service components. Firstly, FTS performs data transfers on 

channels, which are usually tied to network links. Each channel is unidirectional, which 

means there can be multiple channels between two points. This is to allow the use of 

different network links if possible. As a consequence, two channels have to be created for 

a bidirectional transfer link between two points. A number of parameters can be set to a 

channel, such as the reserved bandwidth. This allows fine-grained control of performance 

and behaviour of a channel. FTS stores transfer information and states in a relational 

database, including the source and the destination. When submitting a transfer job, the 

user needs to give the source and destination, and maybe a dedicated channel. Then, the 

state of a transfer job can be queried against the database. FTS uses VMOS to assist in 

user authorization. For example, only administrations of a VO can create or modify 

channels, and users can only see their own transfer jobs. 
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The Architecture of FTS is comprised of four components. The web service 

interface includes user interfaces to submit transfer jobs, get status of current jobs, cancel 

jobs, create/list/remove channels, add/remove/list VO managers, and retrieve statistics 

data of a channel or a VO. The FTS channel agents are background services and each 

agent controls a specific channel in FTS. The agent is responsible for starting and 

controlling transfers as well as tuning transfers according to the channel parameters. FTS 

VO agents are another set of background services that are responsible for communicating 

with VOMS to deal with user authentication and authorization matters. A FTS monitor is 

another independent component that mainly generates statistics by querying the relational 

database. It can create a summary of FTS work at hourly, daily or weekly intervals. It can 

also create summary files of recent transfers from the database, and publish them to the 

central reporting component of gLite. 

gLite supports GridFTP and SRM protocol. Users can use command-line tools or 

write their own application to interact with FTS via its web service interface. Being part 

of gLite, FTS is currently being used by the European research community and to transfer 

CMS data [70]. 

 

2.5.2 Stork 

 

The Stork [71] data scheduler is claimed to be the first batch job scheduler 

specializing in data movement. It aims to mitigate the data movement bottleneck in 

eScience and data-intensive scientific discovery by offering a solution for planning, 

scheduling, monitoring and managing data placement tasks and application-level end-to-
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end optimization of network I/O for large-scale distributed applications. According to the 

developers, data-related resources and tasks in Stork are treated as first class entities and 

not simply the side effect of a computation job. Stork allows users to transfer data 

between heterogeneous or homogeneous data sources by providing an abstraction layer to 

various protocols. This abstraction layer also hides the complexity of different network 

links. Therefore, users only need to tell Stork the source and destination, and Stork takes 

the responsibilities of managing data jobs, using an appropriate client library and protocol 

to access the desired data source, selecting appropriate network link and tune network 

parameters to achieve better performance. Stork can also avoid storage system or network 

bandwidth overloading by implementing a framework to receive status data from data 

resources, including their attributes, available free space, and maximum concurrent 

connection number. Stork will not connect to a data source if there is not enough space to 

hold more data or no free connections. On the other hand, Stork can make reservation for 

space before transfer to ensure space will not be taken by other applications in the middle 

of transferring a big file. 

From version 2.0, Stork comes with a “Throughput Estimation and Optimization 

Service”, which is used to predict the optimal number of parallel streams to achieve best 

transfer throughput. It can estimate the transfer time when using one stream, by collecting 

and analyzing history data, so that it can suggest a optimal number of parallel streams and 

how long it would take to transfer using this number. Thus, this optimal number will be 

used automatically to perform future transfers. 

Stork is normally paired with Condor and DAGMan in a workflow, as illustrated in 

Figure 2-6. DAGMan (Directed Acyclic Graph Manager) is a meta-scheduler for Condor, 
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and manages dependencies between jobs at a higher level. Normally, a job includes sub-

tasks including stage-in, stage-out and the actual compute task. When it is submitted to 

DAGMan, staging tasks will be executed by Stork while the actual compute task will be 

executed by Condor. DAGMan, at the higher level, manages the dependencies between 

tasks and ensures later tasks will not start if prior tasks are not finished. Stork itself has 

built-in fault tolerance mechanism to retry failed jobs. To date, Stork is being used by 

several research disciplines and integrated with several research applications in the US. 

On the other hand, the installation and administration of Stork is not straightforward due 

to the lack of documentations, and the software itself is not production-ready. 
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Figure 2-6 Stork and Condor [71] 

 

2.5.3 Globus Online 

 

Globus Online [72, 73] (GO) is a software-as-a-service (SaaS) system intending to 

provide an easy-to-use data transfer service to researchers. In contrast to traditional grid 

services that require huge effort to deploy, configure and maintain, GO is a cloud-based 

service that resides on the Amazon cloud. Research groups, big and small, have 

requirements to move data regularly or irregularly. However, it would be difficult for a 

small research group to maintain a complex grid system, given that they do not have 
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enough IT resource. Outsourcing is a common approach for small businesses to set up 

email, website and other fundamental IT services for their daily business, so do research 

groups. GO is designed, developed, maintained and supported by Globus developers. It 

provides a modern web 2.0 interface with a fire-and-forget capability, requiring no client 

software installation. With little or no configuration, users can start using GO from any 

computer anywhere, and don’t need to keep an eye on the transfer but will get a 

notification once the transfer is done. 

The architecture of GO, as illustrated in Figure 2-7, consists of a number of user 

gateways, a number of workers and a profiles and state database. User gateways provide 

several interfaces to users with different levels of IT knowledge. Ad hoc users may find it 

easy and sufficient to use a web interface, which is based on the web 2.0 technology. A 

command-line interface accessed via SSH and a RESTful interface are provided for 

advanced users to write scripts. The RESTful interface can also be used to integrate with 

other applications. Once transfer tasks are committed to GO, workers, the entities where 

these tasks are executed, perform all work related to the task, including connecting to the 

data sources, and sending notifications to users if task state is changed. GO maintains 

these tasks and their states in a database. As GO is run in Amazon’s Elastic Compute 

Cloud (EC2), it benefits from all features provided by EC2, notably scalability for 

workers and fault-tolerance for the database. For now, GO supports GridFTP and FTP 

protocol and requires a GridFTP/FTP server installed on each data source, or endpoint. 

With supporting GridFTP, GO conducts third-party transfers between endpoints so user 

data does not flow through GO, and thus GO does not redirect or store any user data at 

all. For those who do not have such a server, GO offers a client application, Globus 
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Connect, to be run on one’s desktop or laptop. Globus Connect has a built-in GridFTP 

server and acts as an agent to receive requests from GO and initiates transfers from the 

user end. This is also a solution to those with a firewall blocking incoming traffic and 

requiring transfers to be started from inside the firewall.  

 

Figure 2-7 Globus Online Architecture [73] 

 

GO is currently in beta status, which means more new features will be added 

frequently. However, it is being used in real scenarios and has been proved to be 

successful in transferring huge data sets [74].  
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2.6 Authentication 

 

Authentication in a Grid environment is largely based on X.509 certificate 

technology, such as the Globus GSI, as described in section 2.3.2. However, certificates 

are not easy to use in a modern web-based environment, in particular, to achieve single-

sign-on across different systems. This section will look into technologies that narrow the 

gap between traditional grid services and modern web applications. 

 

2.6.1 Shibboleth 

 

Firstly, we examine the cutting-edge architecture and implementation produced by 

the Shibboleth project [75] for advanced cross-institutional authentication and 

authorization and single-sign-on in web-based systems. The middleware is called the 

Shibboleth System, often just called Shibboleth, which is an open-source solution for 

federated identify-based authentication and authorization based on the standard Security 

Assertion Markup Language (SAML) [76]. It enables secure access to web-based 

resource, and allows independent organizations to federate and trust each other in such 

federation. Attribute-based authorization is employed to protect privacy of user 

information, and provide controls of resources in the federation. In such environment, 

users only need to use the credential from their home organization to gain access to any 

remote resource in the federation, which alleviates the pain of having to register in 

different systems and remember different passwords. 
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To build the federation, the Shibboleth System offers two major software 

components: the Shibboleth Identity Provider (IdP) and the Shibboleth Service Provider 

(SP). IdPs are deployed next to each organization’s user system, acting as an entry point 

for user login, and supplying user information to SPs if authentication is successful. SPs 

are sitting alongside each web application; they receive and verify user attributes from 

IdPs and make decision on whether access should be given based upon this user 

information. The steps of this process are described as follows:  

1. A user first navigates to a Shibboleth-protected web resource using a web browser;  

2. The SP redirects the browser to a WAYF (where are you from) page, which presents 

a list of trusted organizations in the federation;  

3. The user selects his/her home organization; 

4. The browser is sent to this organization’s IdP, which is basically a login page where 

the user can enter his/her own identity;  

5. If username and password are correct, IdP sends the browser back to the original SP, 

with some security information called an assertion that proves the user has signed on 

successfully, and then the SP can verify the assertion and request additional 

information of the IdP and the user; If both the IdP and the user are legitimate, the 

SP requests user attributes from the IdP and then passes them to the protected web 

application, which can use this information against its own user policy to make 

further decision on access. 

6. The user is verified to be a valid user, so he can continue to browse the protected 

area of the web resource. 
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Figure 2-8 Shibboleth Authentication Flow Diagram 

 

A number of Shibboleth federations have now been set up for the academic sector 

around the world, such as the Australian Access Federation (AAF) [77] in Australia and 

InCommon [78] in the US. However, being a technology for web-based systems, 

Shibboleth can only work with an HTTPS-capable web browser [79]. Thus, it is not 

straightforward to use Shibboleth in a grid environment. The next section will study 

several technologies created to combine Shibboleth and the grid. 
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2.6.2 SLCS and GridShib 

 

Several mechanisms have been developed to make Shibboleth work in a grid 

environment. For example, a few projects [80] in the UK have explored ways to reconcile 

Shibboleth and the Grid, with using MyProxy as the core, such as ShibGrid [81]. 

However, these projects use some components that are designed to work in particular 

within the specific project, so they are not easy to migrate to work in other systems. This 

section will look into a few generic solutions in detail. 

SLCS (Short Lived Credential Service) [82] is a service that issues short-lived 

X.509 certificates based on a successful authentication. Traditionally, a grid CA issues 

long-lived certificates, normally with a lifetime of one year. Once issued, a user must 

keep track of the private key and store it safely. Moreover, the private key is often 

protected by a user-nominated pass phrase, and re-issuing a long-lived certificate is 

somewhat time-consuming, usually requiring approvals from several system 

administrators at different levels. While using a SLCS certificate, a user only needs to 

request it when it is needed, using the user’s own identity. A SLCS certificate can be 

discarded after use, and easily requested again the second time. Consequently, SLCS is a 

perfect match to Shibboleth. The integration of SLCS and Shibboleth is accomplished by 

installing a SP to protect a SLCS service. Thus, when a user requests a new SLCS 

certificate, he/she needs to authenticate via Shibboleth, and then IdP sends user 

information to the SP on a successful login. The SP passes user details to SLCS so a 

certificate request is generated for the user, who can use this request to retrieve a SLCS 

certificate, including a private key and a public key, which normally expires in eleven 
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days. The SLCS certificate, conforming to the X.509 specification, can be used to access 

any grid services. 

GridShib [83] is another attempt to integrate SAML-based Shibboleth and PKI-

based GSI authentication of the Globus Toolkit. It provides two components, one being a 

plugin for the Globus Toolkit to obtain attributes about the user from a Shibboleth 

attribute authority, and the other for a Shibboleth IdP to serve user attributes based on the 

user’s X.509 subject distinguished name (DN). The second plugin maintains a mapping 

between a user’s DN and a local user account name (in the local Linux system). When a 

valid request comes in, the local principle name will be returned according to the 

requesting user’s DN, and Globus Toolkit gives user permissions based on this local 

principle name. This is similar to using Globus Toolkit’s gridmap file, which maps grid 

certificates to local user accounts. However, the development of GridShib has ceased 

[84], and one of its components, the GridShib CA, is continuing in the CILogin project 

[85]. CILogin issues short-lived certificates to users on a successful authentication with 

their home organization identities. It supports Shibboleth and OAuth [86], thus any 

OpenID-compatible credentials, such as Google and Paypal accounts, can be used. Apart 

from issuing certificates to users, it features a portal delegation service, which issues 

certificates to a web portal on behalf of a user, and the web portal can use the user’s 

certificate to access grid resources. 
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2.7 Case Studies 

 

After exploring fundamental technologies and systems in the Grid world, it is 

interesting to see how the technologies and systems are being employed in a production 

environment. This section inspects several large distributed computing and storage 

infrastructures around the world, to get some ideas on what technologies are used and 

how they are used, and thus use their experiences as a guide in our implementation. 

 

2.7.1 TeraGrid 

 

TeraGrid [21] is an open scientific computational grid infrastructure funded by the 

US National Science Foundation (NSF). It is a collaboration of twelve partners, 

integrating high-performance computers, data resources, scientific tools and gateways 

across the US [87]. The operation of TeraGrid was started from 2004, and now includes 

more than one petaflop of computing capability and more than 30 petabytes of data 

storage, with high-speed network connections. In additional, researchers have access to 

more than 100 discipline-specific databases. It has about 4,000 users from over 200 

universities; in this sense, it is a large distributed cyber-infrastructure for open scientific 

research in the world. 

TeraGrid primarily focuses on three objectives. The Deep initiative aims to provide 

assistance to scientists in using a combination of resources, including computing, storage, 

instruments and visualization. The Wide goal enables user access to all TeraGrid 

resources by developing and tailoring gateways and tools, to allow seamless connections 
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from desktops, third-party applications, and other grid projects. TeraGrid Open involves 

interoperability with other Grid projects and campus resources in the US and other 

countries. 

The architecture of TeraGrid is a service-oriented architecture where each resource 

exposes itself as a service with well-defined interface and operation. Overall, there are 

four key sets of components. Firstly, shared policies aggregate distributed resources and 

provide a uniform interface to all users, such as one single identify to access all 

resources, a unified support team and documentations to get help. Secondly, TeraGrid 

provides a coordinated set of Grid middleware, based on familiar systems, such as 

Globus Toolkit, Condor and SRB, for users to easily port application from one system to 

another, and for achieving higher-level functionalities, such as single-sign-on, workflow 

support and data movement. TeraGrid also has a sophisticated monitoring and testing 

environment to ensure stability of its resources. Lastly, TeraGrid has a geographically 

distributed user support team that can help users in a fast fashion. 

Over the past several years of operation, TeraGrid has supported a number of 

disciplines, and outstanding projects including the Computational Chemistry Grid 

(GridChem), Linked Environments for Atmospheric Discovery (LEAD), nanoHUG.org 

and the Cancer Biomedical Informatics Grid (caBIG). 

 

2.7.2 Open Science Grid 

 

The Open Science Grid (OSG) [88] is a collaboration of large distributed 

computational resources that supports high-throughput scientific applications. It also 
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partners with other grid infrastructures, such as TeraGrid and EGEE to form a multi-

domain and integrated system for scientists and researchers. OSG does not own any 

resources. Instead, resource are owned and contributed by its members. OSG provides a 

standard middleware, VDT (as described in 2.3.3), to member sites with defining a list of 

essential software and interfaces so that these systems can work together and 

communicate with each other. For instance, job execution in OSG is done via Condor-G 

clients and Globus GRAM gateway; data access is via GridFTP or SRM. 

OSG is being used by several research communities, and the particle physics 

community is the large user group, who uses OSG to process and analyze data collected 

from the Large Hadron Collider (LHC). 

 

2.7.3 LCG 

 

The LHC Computing Grid (LCG) [20] is a computing infrastructure to deliver data 

analysis solution for all four LHC experiments, namely, ALICE, ATLAS, CMS and 

LHCb. It works in very close collaboration with EGEE (details will be given in section 

2.7.4) and shares responsibility and objectives. Technically, it consists of four tiers 

connected by high-speed fibre optic cables and the Internet. Tier0 is considered as the 

CERN centre, responsible for storing all raw data, and it is the only place where all raw 

data can be found. Tier1 comprises of large computer centres, acting as repositories of the 

reconstructed data. Tier1 centres are responsible for successive reprocessing of data and 

distribution of data to lower levels. Tier2 data centres are expected to hold a large subset 

of the whole data, and provide CPU power for analysis. The LHC experiment generates 
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15PB of data every year, thus requires a large number of CPU cycles to process. Tier3 is 

normally a local cluster or even a scientist’s desktop that has access to Tier2 facilities. 

LCG now is also known as WLCG, Worldwide LCG [89], because it consists of 

several existing large-scale grid infrastructures around the world, such as OSG in the US 

and EGEE in Europe. Facilities and resources in these existing grids are contributed to 

the WLCG project, as either tier1 or tier2, for data storage, analysis and distribution. In 

this sense, WLCG is like a big Grid. Each LCG experiment has a central job queue and 

application repository. A member of the experiment can send batch jobs to this central 

queue, then these jobs will be distributed to an available resource in a tier1 or tier2 that 

may be anywhere in the world for execution.  

 

2.7.4 Enabling Grids for E-sciencE 

 

The Enabling Grids for E-SciencE (EGEE) project [90] consists of a series of 

projects funded by the European Commission to build a secure and reliable Grid 

infrastructure to share computing resources. It does not develop new software; rather, it 

re-engineers a middleware system based on existing solutions and systems. The produced 

middleware is call gLite (as described in 2.3.2). EGEE supports users in a wide range of 

research domains. 

EGEE originated from Europe and work generated by the LCG project, and later 

incorporated members from not only Europe, but also the US and Asia. From a user’s 

perspective, they benefit from EGEE in terms of simplified and secure access to on-

demand and large-scale computing resources, as well as the ability to easily share data 
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and software to other researchers. For grid operators, EGEE means a unified and easy-to-

maintain system within a collaboration of regional counterparts. In longer term, EGEE 

will continue to seamlessly integrate evolving IT technologies and make it available to 

researchers. 

 

2.7.5 UK National Grid Service 

 

The National Grid Service (NGS) project [91] in UK was initiated with the goal to 

enable access to geographically distributed IT resources by all UK researchers. NGS aims 

to provide a common infrastructure to computational and data based facilities across the 

nation. Basic services offered by NGS include data storage, data transfer, data 

management, data integration, computational resources, virtual organization management 

and information registries. These services are tested thoroughly to ensure the stability, 

and 24-hour user support is provided to solve emergent problems. 

The core software stack of NGS is based on VDT. To aid the use of resources and 

offer a uniform interface to users, the web-based National Grid Service Portal [92] has 

been developed with single-sign-on through MyProxy. The portal is built upon the 

JSR168 portlet technology, with functions including MyProxy management, GRAM job 

submission, file transfer via GridFTP and MDS resource discovery. The recent ShibGrid 

project [81] integrated Shibboleth into the portal and simplified the login process for 

users. However, as developed in 2005, the portlet technology is somewhat out-dated, and 

the project has finished thus no support can be obtained, so it is not straightforward to 

adopt it into another environment. 
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2.8 The Cloud 

 

The concept of Cloud [93] has become a hot topic in recent years. Although 

definitions from different people vary, they share some basic attributes. Firstly, resources 

are available on an on-demand basis, which is, users can request new resources if needed, 

and give back if they are no longer required. The appearance of a cloud is of having 

essentially infinite computing resources, and users pay for what they are using for any 

length of time. When compared to the Grid, the cloud has a similar vision, which is to 

manage large-scale resources for users to discover and use, but the cloud solves problems 

by adopting the virtualization technology, to enable much easier access from users than 

the Grid and to open opportunities to solve old problems in a new way. For example, as 

traditional grid systems are hard to scale up without huge effort and resources, some 

research has been conducted to execute grid jobs on the cloud [94]. Cycle Computing has 

also built a Condor-managed 30,000-core cluster on the Amazon EC2 cloud [95], which 

can be used by Grid users in the traditional way but can easily scale up or down 

according to user requests. 

Broadly speaking, Cloud services are provided on an on-demand basis, in an 

“anything-as-a-service” (XaaS) model [96]. The “anything” in XaaS can be 

communication, infrastructure, software or platform, etc., and some of them are not new 

to us. CaaS (Communication as a service) is a generic term for the telephony services and 

VOIP (voice-over-IP) services that enable long-distance voice and video communication. 

SaaS (software as a service) appeared a decade ago, and refers to Application Service 

Providers (ASP) that host software for customers to access from anywhere. One typical 
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example of SaaS is salesforce.com, which offers a world-class CRM (custom relationship 

management) package. CaaS and SaaS are mostly user-level and user-oriented services 

that do not provide any mechanism for users to manage low-level resources. On the other 

hand, IaaS and PaaS evolved in recent years to offer a way for users, especially 

developers who know how and want to set up large-scale applications from system level, 

and this ability is essential to high performance computing or high throughput computing 

on the Cloud. According to a survey done by Choi et al. [97], IaaS and Paas services are 

the most common forms of Cloud computing nowadays. 

Infrastructure-as-a-Service (IaaS) provides computer infrastructure as a service, 

with high flexibility, and availability. The payment scheme is also flexible for 

commercial cloud providers, which allow customers to pay for the amount of resources 

on an hourly usage basis, and can provide more resources to users in minutes. Amazon 

EC2 [98] was the first commercial public cloud system, whilst Nimbus [99] and 

Eucalyptus [100] are two famous open-source cloud systems. They all provide a web-

service interface for users to dynamically create and remove virtual machines based on 

virtualization technology.  

Platform-as-a-Service (PaaS) provides software platforms to developers to write 

their systems and deploy on such platforms. Google App Engine (GAE) [101] is a PaaS 

service for Java and Python web applications. Developers use GAE APIs to write their 

code, and deploy on GAE, while GAE handles load-balancing, when the number of users 

goes up, and fault-tolerance, to ensure stability. GAE also has a proprietary database, 

BigTable, to store user data, with proper backup. 
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In the future of my research, it is an interesting topic to expand the current grid-

based architecture into the public cloud or cloud-based resources. For example, it would 

be interesting to find out if batch jobs can be sent to cloud resources to execute. 
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Chapter Three: Motivation and system architecture 

 

3.1 Motivation 

 

Over the past few years, researchers have been struggling with how to store their 

data easily, safely and permanently. A massive amount of data is collected everyday from 

instruments or experiments, and generated by running simulation programs. This data is 

essential to researchers’ study and publication. They may use this data in several ways. 

For instance, some may want to further process raw data collected from instruments, with 

desktop PCs or supercomputers. Some may want to store data somewhere for years as 

archives, current practice is to use a DVD or just keep data in a desktop PC, which is 

vulnerable to physical damage or disk failure. In additional, it is hard to share data with 

other people, such as their local colleagues, let alone collaborators at other institutions. 

As some data is too big to send as email attachments, often they burn a DVD and send it 

by post. 

On the other hand, to support research activities, governments and universities 

have invested a significant amount of money on storage facilities, located in regional 

centres. These facilities have terabytes or even petabytes of storage, which is provided to 

local researchers free of charge or at a very low cost. They often have a tertiary storage 

device, with proper backup. This is the ideal place to keep valuable data in research. 

However, there are several obstacles for a researcher to make use of these facilities. 

Firstly, these systems are typically not easy to use, and often provide only a command-

line user interface. This requires users to have some degree of IT knowledge. In some 
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cases, system administrators need to assist users with data upload or management. 

Secondly, user accounts are normally created for local users, which makes it hard to give 

data access to external users. Thirdly, data transfer often goes via ports that are normally 

opened to the internal network only and blocked by university firewalls for access from 

outside (some universities do offer VPN software for their users to access from outside, 

but it is much too slow for data transfer). This makes it hard for users to access data from 

home, overseas when they are attending conferences, or anywhere outside their office. It 

is not convenient in many cases when users need to work remotely and want to access 

their data, e.g. in a coffee shop. Lastly, as storage facilities are distributed in many cities, 

some national research groups want to take advantage of several of them because they 

have offices and staff in several locations and want to share data among them. It would 

be very troublesome for them to remember which storage facility has what data, and the 

credential to access each storage facility. 

Therefore, it is necessary to build a middleware system between the end-users and 

the existing storage facilities. This middleware should provide a modern and easy-to-use 

user interface to users. Given that storage facilities are distributed, it is essential to have 

the middleware interface with these resources, such that users are provided only one 

single system and can do a variety of operations from anywhere, without needing to 

know the details or the location of each individual resource. I have studied different 

distributed file systems as described in chapter 2, and have extensive experience with 

SRB/iRODS for several years. After considering the available features and the 

requirements, iRODS has been chosen as the base of the middleware, because iRODS is a 

mature system derived from SRB with advanced features, and it can take advantage of 
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distributed storage resources and provide a single view to users. At the time this project 

was started, iRODS provided the backend functionality that was required by the 

middleware, but it did not provide a good selection of easy-to-use interfaces for users. 

Thus, to assist users with using the system, I have developed Davis [102], a WebDAV 

and web interface for easy connection from users’ desktops, as well as Griffin [103], a 

GridFTP interface for integrating with other grid systems. A brief introduction to these 

systems will be given later in this chapter, and details will be given in chapters 4 and 5. 

The story is similar when considering compute resources. Investments have been 

made to set up regional supercomputer centres, for local researchers to run data analysis 

programs and simulation programs. These regional centres often provide an interface to 

the local batch systems or a grid middleware with web service interface, such as Globus 

Toolkit. The intention in offering these interfaces is to help users take advantage of the 

compute resources as much as possible, enable use by national collaborators, and share 

these resources to remote users when the resources are free, but there are still several 

obstacles stopping users from using them. Firstly, the existing interfaces are too low-

level, either web service interfaces, or console-based command-line interfaces, which 

require users to have some knowledge of IT and scripting, or even programming. 

Secondly, the existing resources are distributed, but user authentication is managed by 

local system administrators, so different user policies are enforced. If a user wants to use 

multiple distributed resources, he or she may need to apply for memberships in different 

authoritative domains to get access. Thirdly, network configuration is different for these 

regional centres, some may have strict control and others may have loose control. 

Fourthly, it is very hard to find out what resources are available at each regional centre, in 
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particular, the available space for storage, the installed applications, and the usable 

compute resources. Lastly, storage and compute facilities work separately, and 

development is required to get them to work together. 

Much work has been done to deal with these issues, as described in section 2.3 

and 2.7, but they are either limited in functions, or not easily adapted to a different 

environment. The traditional grid infrastructure, such as Globus-based grid systems, 

relies on X.509 certificate technology for authentication, and offers a web service 

interface to users. It has been designed to be an entry point to local supercomputers, and 

aims to provide a uniform, high-level programmatic interface, while user interface is not 

the focus of such grid middleware. This results in different groups developing customized 

user interfaces, such as the systems we discussed in section 2.7. Consequently, when a 

new group wants to build its own grid infrastructure, some development has to be carried 

out to meet its own requirements. 

As none of the existing applications can provide all the required features, and it is 

not easy to adapt existing applications into a different grid environment, in this project, I 

have implemented a job submission gateway, which provides a uniform interface to all 

underlying compute resources. The gateway still depends on an existing grid middleware, 

via which it communicates with local batch systems. From a user’s perspective, they only 

need to interact with this gateway, and do not need to know any details of what is behind 

it. The system accepts job parameters as input, and distributes the job to an appropriate 

resource for execution. Based on the existing grid middleware, I developed a few 

components to facilitate job submission. Firstly, I developed web 2.0 interfaces as the 

main entrance for easy use of distributed storage and compute resources. Secondly, I 
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employed Shibboleth as the user authentication method to avoid unnecessary user 

credentials. Thirdly, I built a resource broker, which is an abstraction layer between the 

user and the real resources, so that users don’t need to know where the resource is. 

Lastly, I enabled integration of compute resources and storage resources so that users can 

make use of them from a single interface.  

Such a solution to these issues is generic but is deployed and tested in the context 

of the Australian Grid, which is built and managed by the Australian Research 

Collaboration Service (ARCS). Over the past few years, ARCS has been looking for a 

way to improve their services. They have a good amount of compute and storage 

facilities distributed in several regional data centres. There is a member facility of ARCS 

in each state of Australia. Each member hosts a few supercomputers, and hundreds of 

Terabytes of storage. However, not many people know about the details of all the 

compute facilities or how to use them. This is indeed a challenge to many grid service 

providers in the world [104, 105, 106], who want to attract more users but fail to do so 

due to a variety of reasons, such as the absence of user-friendly interfaces to these 

services, the lack of robustness and stability, inability of handling multiple resources, and 

failing to provide a modern user experience to most users including those without IT 

background. 

This chapter provides an introduction to the complete grid infrastructure in layers. 

Then, the details of architecture are given to present the overall picture of how these 

components are developed to fit into the infrastructure and interact with each other. 

Finally, I will outline the contributions I have made to this project.  
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3.2 System Architecture 

 

A general grid infrastructure includes network facilities, hardware, operating 

systems, middleware and user interfaces. According to the services provided, a different 

grid operator may use a different set of middleware, or system software. This thesis 

mainly focuses on three aspects: data storage with an easy-to-use user interface, a fast 

and reliable data transfer mechanism, as well as a modern and web-based job submission 

gateway. I focus on not only how each component works individually, but also how they 

can fit into the infrastructure and work with other components. The components I have 

built are based on existing software that is chosen as the foundation of this solution, so 

that there is no need to develop from scratch, and therefore the useful features of this 

software are retained. The goals of this project are to provide an aggregation of 

distributed resources, and a uniform and easy-to-use user interface to these grid 

resources. This section first outlines each layer and component in the complete system 

structure, and then gives a high-level overview of the two main services of this system. 

Each component in this system is meant to be generic and conforms to open standards; in 

principle, any of them can be employed in another grid environment. For example, Davis 

has been deployed and is running in several organizations interstate and overseas. 
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3.2.1 The complete system structure 

 

 

Figure 3-1 Grid Infrastructure Architecture 

 

Figure 3-1 shows an overview of the whole infrastructure, in layers. The bottom 

layer, or network layer, consists of network facilities, including fibre, switches, routers, 

and some HPC systems may be equipped with high-speed local network systems, such as 

Myrinet [107] and InfiniBand [108]. Above the network facilities is the hardware layer: 

for storage, there are tape devices (tape silo, tape robot) or disk arrays; for HPC, there are 

different kinds of compute clusters, manufactured by SGI, IBM, etc., or desktop 
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computers with a special application installed, and used when their resources are free. On 

top of the hardware layer is the operating system layer, including all system level 

applications and security means. This layer is the bridge between applications and the 

hardware. To-date, most of the grid systems are based on various Linux operating 

systems, such as CentOS, Debian and Scientific Linux. There is no fundamental 

difference between them, as they are derived from the same core. As such, it is common 

to find a particular application packaged for several widely-used Linux systems. At this 

level, security rules are applied by the operating system on the hardware device, and this 

forms the base of the application-level security method, which is, any application security 

management task is mapped to a relevant system-level security process. System-level 

security policies can be applied on different aspects. For instance, user management 

system deals with local Linux user accounts and groups, which is normally stored in a 

user database. The user database can reside in the file system, or externally in a LDAP 

server, or a Kerberos server. The user management system decides who can log in to the 

system and what credentials they can use. Aligned with the user management system are 

file system permissions. Comprehensive permissions are set on each unit, a file or a 

directory, in the file system, to specify whether a particular user can read, write or 

execute (if executable) a particular file. The permissions ensure a user can only do what 

the user is allowed to, and will not interfere with other users. In addition, network 

management systems have firewall policies to block or allow certain IP ranges so that 

only trusted users can have access.  

To provide a universal view to local resources, on top of the operating system level, 

several resource management systems are deployed to provide basic functions. At this 
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level, a relational database system provides a storage for tabular data and structured data; 

a hierarchical storage manager, such as SGI’s Data Migration Facility (DMF) [109], 

provides management and administration of backend tape devices and disk arrays, such 

that various storage spaces can be accessed via a uniform interface, such as NFS; a Local 

Resource Management System (LRMS), usually known as a local scheduler, is deployed 

as the front-end of HPC systems, which normally consists of a head node, used to accept 

jobs and allocate resources via the LRMS, and worker nodes, where jobs are actually run. 

Nowadays, there are different kinds of LRMSs, as mentioned in chapter 2, some of them 

run on commodity servers, while some can make use of normal desktops (e.g. in student 

labs) when these computers are not being used. 

The basic infrastructure, including the layers discussed above, is the foundation of 

this project. It exists and provides services in each regional grid operator. Our focus in 

this project is to create a federation of these regional grid operators and provide a single 

interface to users so that these resources from each individual operator are shared by 

users from a wider area. To set up a federation, it is usual to implement a grid 

middleware, on top of the local resource management systems, as illustrated in Figure 3-

1. Chapter 2 has investigated several such middleware systems, and some of them are 

used in this project to provide the base of our federation. In particular, for storage 

solution, iRODS is chosen as the data grid middleware, because of its ability to interface 

with difference storage backend, and the flexibility of being able to define customized 

rules to manipulate data. iRODS is a virtual file system that stores metadata in a 

relational database and physical files in a remote file system, such as a NFS mount point 

of a hierarchical file system. For computation, the Globus Toolkit, the de facto standard 
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in the grid community, is adopted. As a comprehensive grid middleware, Globus 

provides components ranging from job submission and allocation, to the management of 

data replication. However, only a subset of all the functions are used in this project, 

which are the components that accept jobs and redirect jobs to a proper backend local 

scheduler, and relevant security components as well as information publishing 

components. Globus Toolkit also interfaces with local shared file systems, which are also 

accessible by local schedulers. Input files will be placed into these file systems so that 

local schedulers can read and process them. Also the output files will be written to the 

same place too, for Globus to retrieve after jobs are processed. These grid middleware 

systems, iRODS and Globus, both support the GSI security mechanism for 

authentication. As mentioned in Chapter 2, GSI utilizes the standard X.509 certificate 

specification and public/private key technology to identify users and maps users to 

system-level identities. It alleviates the pain of remembering passwords of different 

systems, instead, one can present a single certificate to the system and the system can 

map this user to a proper system account, based on the configuration. GSI also makes it 

possible for a user to delegate privileges to a service so that the service can act on behalf 

of the user, talk to another system, and so on. 

The grid middleware provides a basic platform for higher-level user interfaces; 

however, these interfaces are too low-level and suitable only for administrators or 

advanced users. They cannot fulfill the requirements of having a modern web interface 

with Shibboleth support. In Figure 3-1, on top of iRODS and Globus Toolkit are the 

components I have implemented in this project. These components include a web 

interface for iRODS, called Davis [102], a GridFTP interface for arbitrary data sources, 
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called Griffin [103], and a job submission gateway with a modern web portal and a 

resource broker, called Grisu2. Davis and Grisu2’s web portal are protected by 

Shibboleth, a web-based single-sign-on technology for users from one organization to 

access resources in other trusted organizations. Likewise, Shibboleth identifiers will be 

mapped to the underlying GSI identifiers or the system-level user accounts. The top layer 

of the figure includes data, workflows and user credentials. They are the real users who 

make use of the entire grid infrastructure to do simulation, data analysis, and data 

transfer, etc. in their daily work. 

Next, I will focus on the two main services, namely the national file system and the 

national grid submission gateway. I will also specify my work in particular.  

 

3.2.2 The National File System 

 

Data storage is crucial to many users during their research work, especially those 

who collect massive data from instruments, experiments, or generated by simulations. 

Normally, this data is stored in someone’s desktop, or in a USB drive, or burnt into a 

CD/DVD. This may be enough if the user only wants to use the data just by 

himself/herself. However, when it comes to sharing, such as sharing the data to other 

researchers in the same research group, or to researcher in another university, or even on 

the other side of the globe, it would be handy to use a system that can do this easily for 

them, rather than having users do this manually. Moreover, keeping files in hard disks 

does not guarantee the data can last for the required length of time. Often data is lost due 

to hardware failure, or not being taken care of properly. 
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In order to help researchers to retain their data safely, access their data easily, and 

share their data conveniently, the National File System (or the Data Fabric) is built in this 

project to address these issues. It is based on iRODS [18], a virtual file system, and 

makes use of storage resources in each regional centre to store real data. With this setup, 

data can have several replicas in different geographical distributed locations, hence 

invulnerable to severe disasters. Even if one resource is offline for some reason, 

researchers can still put data in other storage resources, which provides a certain degree 

of redundancy and reliability. Once in the National File System, researchers can share 

data easily to users from another state, given that users from the whole country are 

managed by a central user system. The benefit of this architecture is that it can bring all 

resources from each regional centre into one big virtual and centrally managed system, so 

that these resources can be shared among all the operators. For example, some smaller 

operators may be able to contribute less space, but others may provide more; if the 

storage in an operator is nearly full, data will be automatically stored in another resource 

with more free space.  

In the beginning of this project, iRODS only offered a basic command-line tool 

and a very basic web interface, which did not meet the requirements. As the iRODS 

protocol is a proprietary protocol, there is no commodity client that can be used. This is 

not like other standard protocols, such as FTP, which has plenty of commercial and open-

source clients for download and use. Hence, to use iRODS as the base of this project, I 

need to develop a few interfaces to bridge the gap between iRODS and users or other 

systems. I developed two interfaces for iRODS in this project. In particular, to make it 

easy for users to access the storage resources available in iRODS, I developed a 
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WebDAV and web interface, called Davis [102]. I also developed a GridFTP interface, 

called Griffin [103], to facilitate the integration of iRODS with other systems, 

particularly grid systems. 

The architecture of the National File System is shown in Figure 3-2, where 

distributed storage resources are shown at the bottom, each connected to an iRODS 

instance. All of these iRODS instances are configured as one iRODS zone, among which 

one is the master instance, responsible for managing settings, executing rules, and 

interfacing with users and other systems. My development, Davis and Griffin, are 

deployed as interfaces to connect to this iRODS zone. In particular, Davis features a web 

interface for users to access the National File System with a web browser, and a 

WebDAV interface so users can mount the remote file system as a local drive. Griffin, on 

the other hand, intends to provide an efficient and reliable way to transfer data from and 

to the National File System, by providing a GridFTP interface that supports parallel 

transfer and other features, and makes it easy to use these storage resources for grid 

compute jobs. 
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Figure 3-2 Architecture of the national file system 

 

The GridFTP interface is the major component that bridges the National File 

System and the other main ARCS service (described in the next section), the National 

Grid Submission Gateway. The Gateway is mainly used for job submission and 

management, but it also relies on the National File System in terms of data staging and 

result data storage. 
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3.2.3 The National Grid Submission Gateway 

 

Much contemporary research requires production and analysis of a large quantity 

of data. One example is the Large Hadron Collider (LHC), which generates multi 

terabytes of data every day. In the past several years, a large number of Grid systems 

have been set up around the world. Among them, some famous Grid systems are 

designed primarily for a specific discipline, such as the LCG [110], and Earth Science 

Grid [111], while some others are meant for general purpose, such as TeraGrid [112]. 

These Grid systems are mostly based on a Grid middleware, which is able to interface 

with different local resource management systems (LRMS) (sometimes are called batch 

systems). Several of them are being used widely and should be noted. For example, 

Portable Batch System (PBS) [113] is a batch system often used in conjunction with 

Unix/Linux cluster for batch job scheduling. It receives compute jobs from users and 

allocates resources in the cluster to process these jobs. The Globus Toolkit [114] is a grid 

middleware system with several key components, such as a grid gatekeeper to receive 

jobs and re-submit to LRMS, a grid information system, a data access server, and a 

standard security infrastructure, etc. It provides a standard platform for applications to 

build upon, with remote APIs for users and developers, but these APIs are mostly low-

level, for communication between machines. To make it easy for users to use, grid portals 

have been developed. Many of them are organization specific or discipline specific 

systems intending to fulfill certain requirements, such as the CMS (an LHC experiment) 

grid submission portal [115] that is built to process CMS data with existing CMS specific 

tools, and the LEAD portal [116] for atmospheric science research. These customized 
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solutions are useful for their purpose, but often they are hard to adopt and adapt by other 

organizations and for different applications. The UK’s NGS portal [92] and GridSphere 

[117] aim to be generic grid portals that support job submission of a wide range of 

applications, file access via GridFTP and grid credential management. However, they are 

based on the JSR-168 portlet technology, which is mainly designed for implementing 

web portals by dividing a web page into smaller areas, but it is difficult to implement and 

not flexible to extend. 

In Australia, one regional supercomputer centre has been set up in every state 

with each managing several supercomputers. In principle, each operator is funded to 

serve local users, who have the highest priority to use these resources. However, there are 

a number of research projects jointly funded by several organizations involving 

researchers in multiple locations. Consequently, any participant of such project should be 

able to use the resources of the supercomputer centres in these locations. In addition, it is 

usual that some operators have one or more resources that are often not fully utilized, but 

for other operators, all resources are almost fully utilized most of the time and there are 

still jobs being queued for some time. To enable easy collaboration and make the most 

out of the current investments, this project is set up in order to facilitate sharing of 

supercomputers amongst all legitimate users in the country.  

The sharing of compute resources in different administrative organizations 

consists of two levels. Firstly, any user with a valid credential, if it is from one of the 

trusted organizations, should have single-sign-on access to all these resources. Secondly, 

once a user has access, they should have access to any of the available resources that they 

are authorized to use, regardless of the resource’s actual location. Moreover, the current 
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interface of the grid middleware is somewhat complex to use, even for developers who 

have a good understanding of these systems. Therefore, it is required to have a single and 

simple interface to all these resources, with a meta-scheduler that can take advantage of 

available resources. 

In response to the above requirements, and based on the experiences gained 

during the development of Grisu [118] (details will be given in chapter 6), a Grid-client 

framework for developing grid client applications, I developed a sophisticated grid 

submission gateway, Grisu2, which is a generic grid portal that allows submission of any 

kind of jobs and does data staging automatically. It was designed to be an Application-as-

a-Service system, where applications are pre-installed and provided in such a way that 

users do not need to know the exact location where their jobs are executed. The National 

Grid Submission Gateway, a production service based on Grisu2, intended to be the one-

stop-shop for researchers across the country to submit jobs, interacts with almost all 

components in the grid architecture, because a researcher needs to use HPC resources to 

run jobs, as well as storage resources to keep result files. It consists of a web front end 

and a grid resource broker backend, which uses Globus Toolkit for remote job execution 

and monitoring. All components are on the server, so users do not need to download 

anything before they can start using it. The web front end provides a web portal, a BES 

web service interface, and a RESTful interface. The web portal is a modern and easy-to-

use web interface designed for users who want to submit and manage jobs with minimal 

effort. The BES web service interface [119] can be used to integrate with third-party 

applications. The RESTful interface can also be used for integration, and advanced users 

who know how to write scripts can send jobs from command line or other tools, without a 
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need to use any client libraries and without the firewall problems that often occur with 

desktop client applications directly interfacing to Globus. These interfaces read in and 

write jobs to the grid resource broker, which manages the whole life cycle of a job and 

keeps other related information. The resource broker, acting as a delegate of the user, 

communicates with a grid information system, from where it determines which compute 

resource is suitable to execute a given job, and then interacts with that resource to launch 

the job and get back results. This architecture also makes it easy to extend and expand; if 

the number of jobs grows, more nodes can be added to the system to accommodate more 

jobs; more applications can also be added to the system by configuring new templates 

and without any development work. The architecture of Grisu2 is shown in Figure 3-3. 

Grisu2 is integrated with the Data Fabric, the national file system, via Shibboleth 

and GridFTP. It also relies on a few components from Globus Toolkit, which is the 

interface for Grisu2 to access resources in each regional supercomputer centre. In 

particular, the Monitoring and Discovery System (MDS) is an information system that 

receives system status from each regional Globus gatekeeper and supplies this 

information to Grisu2’s resource broker, so that Grisu2 can determine which resource is 

the most suitable location to run a specific job. The Virtual Organization Management 

System (VOMS) [43] is used to keep mapping information that a user belongs to which 

Virtual Organization (VO), and this information will be used in the process of 

authorization. Access to applications or compute resources are given based on the VO. 

The Globus Gatekeeper in each regional centre uses the Grid User Management System 

(GUMS) [44] to map grid identities, such as X.509 certificates, to local UNIX accounts 
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and groups, which are configured with different levels of access in the local scheduler 

(LRMS). 

 

 

Figure 3-3 the architecture of Grisu2 

 

3.3 My contributions 

 

This thesis makes several contributions towards building a user-friendly grid 

system for a wide range of user groups: normal users with limited IT expertise, through to 

advanced users who can write scripts and application developers. I have designed and 
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developed several interfaces, and deployed them in the Australia Grid for testing, 

evaluation and production use. Details are listed as follows: 

1. I have done a survey on the Grid, including computational grid and data grid, that 

compares major grid projects in the world in terms of their characteristics and 

features. This study builds a good foundation of the project so I have a good 

understanding of what is available, what can be reused, and what is missing. 

2. I have done research on protocols and clients for data access, and presented the 

design and implementation of a data portal for accessing data in distributed and 

heterogeneous storage systems. The portal is built upon the iRODS data grid, 

and has a web/WebDAV interface that facilitates data access in iRODS. Being 

a complement to the fundamental data grid middleware, the portal provides 

various interfaces that are compatible with widely used software, so that users 

can choose one that they are familiar with to take advantage of the distributed 

data storage. Details of the portal will be given in chapter 4. 

3. I have investigated different ways for efficient and large-scale data transfer, and 

presented a design of a GridFTP interface to the above data grid system. 

Traditional data transfer services are normally an external component to data 

sources, so if data sources on both ends of the transfer do not support the same 

protocol, data flows via the data transfer service host, which is inefficient and 

puts considerable loads on the service host. My approach tries to solve this in a 

different way, by turning any arbitrary data source into a standard and 

GridFTP-compatible data source, such that the features of GridFTP, such as 

third-party transfer and parallel transfer, are enabled and used for data transfer. 
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With the third-party transfer feature, data can travel directly from one end to 

the other, without going through the data transfer service host. One use case to 

substantiate this idea is to apply the GridFTP interface to the data grid 

middleware, iRODS, and this enables the possibility and operability of moving 

massive data in and out of the data grid, and across to other data systems 

efficiently and reliably. Details of the GridFTP interface will be given in 

chapter 5. 

4. I have explored mechanisms that help users run massive concurrent jobs when 

they are exposed to a number of HPC systems with various pre-installed 

applications, and web portals that allow easy access to HPC systems without 

needing to know the details of how to run jobs on each system. Then I 

presented the design and implementation of a national grid submission 

gateway. It provides several different web interfaces for users with different 

levels of IT skills, to enlarge the grid user base. These interfaces include a 

Shibboleth-protected web portal that supports different applications by 

adopting a template system for users with basic IT skills to easily send jobs to 

HPCs, a RESTful interface and a web service interface for advanced users to 

write scripts to run massive jobs or write third-party applications to submit jobs 

to HPCs. On the backend, the gateway has a grid resource broker that can 

redistribute jobs to multiple grid resources with automatic data staging. A few 

case studies are also conducted to prove the usability of this submission 

gateway and show its importance in users’ daily work. Details of the gateway 

will be given in chapter 6. 
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Chapter Four: Davis, a web/WebDAV interface for iRODS 

 

4.1 Introduction 

 

Data storage in a Grid environment often comprises of geographically distributed 

storage resources. Making use of these resources easily and efficiently is a challenge. As 

described in chapter 2, various cluster file systems and data grid middleware systems 

have been developed in order to provide a uniform interface to heterogeneous resources. 

However, these middleware systems often provide low-level interfaces, which are not 

easy for normal users to use. My goal in this project is to find a simple, standard and 

easy-to-use interface for the data grid middleware that is chosen as the backend. Section 

3.2.2 outlined the infrastructure of the National File System, which has a distributed file 

system backend with a user-friendly interface, called Davis. This chapter now explains 

the details of Davis, an important component and the main user interface of the National 

File System. In the context of this chapter, iRODS is used as the middleware of the 

National File System, because of the advanced features of iRODS and the expertise 

gained from several years experience of using SRB, iRODS’s ancestor. The native 

interface of iRODS is not very user-friendly, and more for administrators and developers. 

I also did a survey on all available SRB/iRODS interfaces, and some popular data access 

protocols. The conclusion I drew was that existing iRODS interfaces are not sufficient or 

suitable in this project, thus a new user interface should be developed to fill in this gap. 

Davis is the new user interface I developed, which is a web-based interface for 
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iRODS/SRB, in order to provide a simple and easy-to-use interface to users with different 

levels of IT skills.  

Chapter 2 gives a comprehensive introduction to SRB and iRODS. Here I give a 

brief overview of them as a reminder to the reader, as they are crucial to this work. The 

SRB project, developed by San Diego Supercomputer Center (SDSC), started in 1996 

with a goal of reading from different data sources via a single data access interface [120]. 

Two years later, the first version was finished and released with a revolutionary new 

software architecture, which has not been changed since then. It has two major parts: a 

uniform data access API and a metadata catalogue [17]. The uniform data access API is 

used to read data from heterogeneous distributed storage resources, such as file systems, 

database systems, and archival storage systems. On the other hand, the metadata 

catalogue uses a relational database to store metadata of remote data items and user 

information. It also provides a virtual view of these items with user-defined collections 

(like directories of a file system). From a user’s point of view, SRB is a virtual file 

system, transparent to physical data locations, and acts as a single access interface to 

mass data repositories. 

In 2006, iRODS [18] was developed as a successor of SRB. iRODS  inherits 

SRB’s architecture, but with an enhanced design and additional functions, the most 

important of which are a rule engine and micro-services. With the rule engine, 

customized strategies and user-defined workflows are possible [121]. Note that iRODS is 

open source under a BSD license, while SRB is not. 

Over the past few years, SRB has been used extensively to provide an interface to 

massive data for many research communities around the world and has become an 
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essential component of many data grids. For example, a few UK projects use SRB [122]: 

the Atlas Data Store keeps petabytes of data in tape and provides a SRB front-end with 

disk caches for fast data access; the Diamond Light Source project registers data on the 

beamlines into SRB so that this data can be synchronized to a central storage periodically 

and stored properly; Daresbury SRS project uses SRB for users to query metadata; the 

Arts and Humanities Data Service stores and manages large distributed data sets in SRB 

[121]. In the US, SDSC manages a number of shared collections of up to 126 million files 

and 830 TB for several projects, including data grids, digital libraries and persistent 

archives [67]. Recently, iRODS has gained more interests as a replacement of SRB, and 

many of these projects have migrated from SRB to iRODS. 

iRODS/SRB developers provide a few basic client tools, such as 

Scommands/iCommands, InQ/iRODS Explorer and MySRB. Moreover, many big SRB 

user groups developed their own portals for SRB. However, the iRODS/SRB protocol is 

a proprietary protocol, which makes it hard to develop a customized client tool or use 

general tools to access iRODS/SRB. Therefore, it is not easy for general users to use or 

for developers to integrate with other software. Furthermore, these tools either have 

limited functionality, or are developed for a particular group.  

In order to enable more people to use iRODS/SRB, it is necessary to explore other 

solutions, including other popular data transfer protocols and best practice for user 

interfaces. Among the available open standards, WebDAV is an open standard based on 

HTTP protocol, and extensively supported by many operating systems and applications. 

The use of WebDAV is as simple as using a file system, even to a user with very basic 

knowledge of computer systems. Additionally, with a broad range of software support 
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[123] and the standard HTTP protocol, the integration with other software is simple. 

Thus, the combination of WebDAV and iRODS/SRB would benefit not only the end 

users but also the developers. 

Next, I will briefly introduce the system structure of iRODS/SRB (more details 

can be found in chapter 2), with emphasis on authentication methods, as they are one of 

the major requirements in this project. The following section investigates their client 

tools and portals. Section 4.4 gives details of a few popular file transfer protocols for 

comparison. After a description of the state of the art, reasons are given for the choice of 

WebDAV in this project. The detail of my implementation, a WebDAV gateway to 

iRODS/SRB called Davis, is illustrated in Section 4.5 and some use cases are described 

in Section 4.6. Lastly, this chapter ends with a conclusion of the current work. 

 

4.2 An overview of SRB and iRODS 

 

In principle, SRB and iRODS are designed as a Virtual File System, with a 

similar structure: a metadata catalogue and a file access API [124]. The metadata 

catalogue (MCAT of SRB or ICAT of iRODS) stores name-value pairs (for SRB) or 

name-value-unit triples (for iRODS) in a relational database as metadata associated with 

an object in iRODS/SRB, and presents mechanisms to save, delete or query metadata. 

The file access API offers a virtual file system for users to access remote data in a similar 

way to using local file systems, and it is configurable to get access to data in various 

storage media, such as a remote NFS-mounted file system, a tape device, a disk array or 

even a zip file. On top of that, iRODS provides a rule engine, which accepts pre-defined 
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sequences of actions to be executed in particular events like a workflow system [125]. 

Note that, iRODS/SRB uses a proprietary protocol requiring a specific port, which needs 

a dedicated iRODS/SRB client for communicating with it. 

By default, iRODS/SRB only supports username/password and GSI 

authentication. Recently, Shibboleth [75] has evolved to become a major authentication 

method in education and research sector, with support from many open source software 

tools, such as Sakai [126, 127]. The benefit of using Shibboleth is that users can use only 

one set of username and password to access different systems. However, iRODS/SRB 

itself does not support Shibboleth directly. One possible solution is to use a Short Lived 

Credential Service (SLCS) server [82], which is also used to provide Shibboleth 

authentication to Globus services [128]. The SLCS server generates a complete certificate 

(with private key and public key) for valid Shibboleth Identity Provider (IdP) users. This 

certificate lasts only eleven days by default. After that, a new certificate has to be 

requested again. In the login process, the user requests a SLCS certificate with an IdP 

credential, and the SLCS server issues a certificate to the user. Then the SLCS certificate 

is submitted to iRODS/SRB for GSI authentication, as shown in the following diagram. 
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Figure 4-1 GSI login with SLCS certificate 

 

4.3 A survey of existing client tools 

 

There are a number of existing iRODS/SRB tools. Some of them are developed 

by the iRODS/SRB developers, and others are developed by the user community. This 

survey1 looks at the major functions of each tool. In particular, the authentication 

methods, supported operating systems, user interface and the underlying technology are 

emphasized. At the end of the survey, a summary will be given to justify my choice of 

WebDAV over other options. Generally, these tools can be categorized into the following 

types. 

                                                

1 This survey was done in 2009 as a precursor to the work on Davis, and since then some of the client tools 
have been improved 
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4.3.1 Command-Line Interface 

 

iCommands [129] are a group of command-line utilities written in C and 

developed by the iRODS/SRB developers. They provide client tools to normal users, 

including functions of data transfer and metadata management, with versions for 

Windows, Mac and Linux. iCommands are Unix-like commands with names starting 

with ‘i’ to access iRODS objects and metadata. For example, icd acts like cd of a Unix 

system to change current directory. It accepts password or GSI authentication. 

iCommands are also handy to system administrators, providing system level functions for 

management of accounts, zones, and resources, as well as backups and synchronization 

for objects. Similarly, Scommands [130] are a set of command-line utilities for SRB 

with the same purpose as iCommands, providing similar functions.  

Java CoG Kit [131] is a set of command line tools written in Java for Globus. 

Particularly, its globus-url-copy command supports SRB protocol, which means a user 

can use srb://server.name/path/to/file as the source or destination of the command to copy 

files from or to SRB. This command allows password and GSI authentication, but it can 

only transfer files and has no metadata functions. 

 

4.3.2 Graphical User Interface 

 

InQ [130] is a native Windows GUI written in C++ offering a browser tool for 

data transfer (drag and drop) and metadata query on SRB, while iRODS Explorer [129] 

is the counterpart for iRODS. Both of them only support password login and can only run 
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on Windows. Moreover, iRODS Explorer does not allow drag-and-drop from/to desktop 

at the first version when we started this project. 

Hermes [132] is a Java GUI jointly developed by the ARCHER project [133] and 

ARCS (the Australian Research Collaboration Service). It provides a rich client for data 

transfer and metadata management, with versions for Windows, Mac and Linux. It also 

supports different authentication methods, such as SRB account, GSI, MyProxy and 

Shibboleth. Hermes is based on Apache’s Common-VFS [134], which provides a 

common API for accessing various file systems. The support for iRODS is under 

development. 

JUX [135] is a Java GUI developed by CCIN2P3. It is based on JSAGA [136] 

and provides a browser view to SRB. It also supports preview of images and audio files. 

As a Java program, it can run on Windows, Linux and Mac. JUX doesn’t provide 

functions for metadata manipulation. iRODS will be supported in a future version. 

vbrowser [137] is another Java GUI client for SRB 3.0, developed by VL-e 

(Virtual Laboratory for e-Science) mainly for the research of functional Magnetic 

Resonance Imaging (fMRI). It is intended to be a single access point to the grid, and 

provides mechanisms to access SRB and GridFTP servers. It is based on VLET, which is 

an abstraction layer to various middleware components, including data resources [138]. It 

is also extensible, so that users can develop plugins to view and process files. For 

example, a workflow plugin was implemented to allow users to invoke workflows in 

vbrowser interface [138]. However, vbrowser doesn’t have any features for metadata 

management, and it does not support SRB 3.5 or iRODS. 
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YourSRB [139] is another Java GUI aiming to offer SRB data access as well as 

fine-grained metadata control to users who require advanced functions, such as 

modifying metadata of multiple files in a batch. Users can create a metadata schema and 

apply that to all SRB objects. It also has a function for users to create a SRB federation. It 

does not support iRODS. The development of YourSRB is guided by the use cases of 

materials science and maritime archaeology research groups in James Cook University. 

 

4.3.3 Web Interface/Portal 

 

MySRB [130] is a web interface to SRB developed by the SRB developers. It 

also gives users a tool for data transfer and metadata management from a web browser, 

but it does not support drag-and-drop files from/to desktop. iRODS web browser gives 

similar functionalities to iRODS users. Note that it only supports iRODS 

username/password authentication without GSI or shibboleth. 

SRB Plugin for Plone [140] was developed by the ARCHER project [133] and 

enables a SRB view in the Plone web content management system for file 

browsing/downloading and metadata management. This integration makes it easier to use 

SRB for other Plone components. 

 

4.3.4 Other Interfaces 

 

SRB-DSI [141] provides a GridFTP interface for SRB. It only allows file transfer 

without the ability of metadata management. The GridFTP interface makes it possible to 
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integrate SRB with Globus components. There is no equivalent GridFTP DSI for iRODS 

yet. 

Jargon [129] is a Java API for developers and is capable of doing a variety of file 

operations and metadata manipulation. It does not have any user interface. Jargon is the 

base of all Java GUIs described above and of Davis. Jargon supports SRB and iRODS. 

Prods [129] provides a similar PHP API to iRODS. 

 

4.3.5 Limitations of existing interfaces 

 

To summarize, the above iRODS/SRB tools and other popular tools have 

limitations. Firstly, they are mostly custom clients specific to iRODS/SRB, and this 

requires users to learn their usage. Secondly, some iRODS/SRB client tools, especially 

web portals, are designed for a particular user group’s needs, which makes them difficult 

to be adopted in a different environment; also some of them only support SRB but not 

iRODS. Thirdly, some only work for a particular operating system, and those 

implemented in Java can work across multiple operating systems but do not provide a 

native look-and-feel on the OS. Furthermore, they don’t follow open standards, because 

the iRODS/SRB protocol is not an open standard. Additionally, iRODS and SRB use 

special ports, 1247 and 5544 respectively, which are not commonly opened on firewalls, 

so that these ports need to be opened for iRODS/SRB tools to get access. Lastly, it is not 

easy to integrate iRODS/SRB with other software, thus development is needed in many 

cases. 
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Therefore, it is necessary to look for another open-source-based and easy-to-use 

solution to overcome these disadvantages. According to the functionality presented by the 

current iRODS/SRB tools, as a guideline, the new tool must provide the following 

functions: essential file operations, such as creating, moving, renaming deleting files and 

directories; file permissions, such as granting/revoking a permission to/from an 

iRODS/SRB user on a file; metadata management, such as adding, deleting, modifying 

iRODS/SRB metadata; authentication, at least password authentication. 

In order that iRODS/SRB can be used without modification, it is appropriate to 

implement a gateway that accepts an open standard protocol and sits in front of 

iRODS/SRB. The next section explores a few popular file transfer protocols and justifies 

my choice of WebDAV as a standard interface to iRODS/SRB. 

 

4.4 Standard protocols and the choice of WebDAV 

 

This section investigates a few popular and widely used file transfer protocols and 

tools, in the commercial sector or open source community. After comparing their features 

and network properties, WebDAV is chosen and shown to meet the above guidelines. 

 

4.4.1 Popular file transfer protocols 

 

File Transfer Protocol (FTP) is a basic and popular protocol for data transfer and 

distribution but does not support metadata. Common Internet File System (CIFS) [142] 

is an extension of the Server Message Block (SMB) protocol, and designed to request 
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files and print services over a local network for all systems, while Samba 

(http://www.samba.org) is a typical SMB server. Most desktop operating systems, such 

as Linux, Mac and Windows, have built-in SMB/CIFS client. However, SMB/CIFS 

doesn’t have metadata features and the port it uses (445) is typically blocked by firewalls. 

Amazon Simple Storage Service (Amazon S3) (http://aws.amazon.com/s3) is a 

service that offers storage to the Internet users. It exposes proprietary REST and SOAP 

interfaces so users normally need to use a client application to access, but it is easy for 

developers to integrate with their own clients. Objects in Amazon S3 are identified with a 

unique key, and can be shared to any user. HTTP and BitTorrent 

(http://www.bittorrent.org) are the two protocols for data download. 

WebDAV [123] stands for "Web-based Distributed Authoring and Versioning". It 

adds a set of extensions to the HTTP protocol so that users can edit and manage files on 

remote web servers collaboratively. WebDAV is defined in an IETF standard, RFC 2518 

[143]. It uses the term resource for a Uniform Resource Identifier (URI), and the term 

collection for a set of URIs. WebDAV employs the following basic HTTP methods: 

• GET – get contents and details, e.g. modification time, of a resource (file) 

• PUT – upload a resource (file) 

• DELETE – delete a resource (file) or collection (directory) 

• HEAD – retrieve details of a resource, e.g. modification time 

It also extends HTTP by adding the following methods: 

• PROPFIND — retrieve properties, stored as XML, from a resource. It is also 

overloaded to retrieve the collection structure (directory hierarchy) of a remote 

system. 



 

 103 

• PROPPATCH — change and delete multiple properties on a resource. 

• MKCOL — create a collection (directory). 

• COPY — copy a resource (file) or collection (directory) from one URI to another. 

• MOVE — move a resource (file) or collection (directory) from one URI to 

another. 

• LOCK — put a lock on a resource. Locks can be shared or exclusive. 

The locking mechanism of WebDAV provides a way of serializing accesses to a 

resource, and prevents another user from writing to a file while it is being edited. The use 

of locking is decided by the WebDAV client. Moreover, there is a number of software 

products with built-in WebDAV client [123], such as Microsoft Office and PhotoShop. 

 

4.4.2 The reasons for choosing WebDAV 

 

Among existing open standards, WebDAV is the best option to meet our 

requirements. Firstly, WebDAV is an open standard, and most operating systems, such as 

Windows, Linux and MacOS have built-in WebDAV clients, which provide a generic 

interface that has the same look-and-feel as the OS itself, thus no extra software needs to 

be installed. Secondly, WebDAV uses HTTP(S) for any connection, which is commonly 

opened in most firewalls (if not, a HTTP proxy can be used). Moreover, it is easy and 

straightforward to maintain only one service for providing access to files via the web or 

desktop folders in a standard way. Furthermore, HTTP(S) interface is extendable, which 

makes it possible to implement functions not supported by standard WebDAV protocol, 

such as permission setting and metadata management. Lastly, it is easy to integrate 
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HTTP/WebDAV with other software, as many of them support HTTP natively. Also 

WebDAV resources can be mounted to any OS and appear as a normal file system. 

Software can read and write data in it without modification. 

 

4.5 The implementation – Davis 

 

Davis is a WebDAV gateway to any iRODS/SRB server regardless of its location. 

It has two major functions: the WebDAV service, and browser mode. WebDAV service 

provides basic WebDAV functions to WebDAV clients that support WebDAV version 1 

and 2, such as the built-in clients of Windows, Linux and MacOS, as well as other third-

party software. Browser mode enables users to use a web browser, such as Internet 

Explorer or Firefox, for using extra functions that are not provided by WebDAV clients. 

Basically, browser mode shows on a browser the details of an iRODS/SRB collection, 

such as creation time of files and file size. On that page, users can download a file, 

change file permissions and modify metadata. A screenshot of browser mode is shown in 

Figure 4-2, which shows a list of files in the user’s home directory on the background and 

a popup dialog for managing metadata. The metadata dialog lists all metadata of the 

current object and allows users to add/change/remove metadata. Browser mode also has a 

permission dialog that shows a list of permissions of a file and provides a form on the 

right where the user can change the permissions of this file. 
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Figure 4-2 A screenshot of browser mode 

 

The architecture of Davis can be described as three modules, as shown in Figure 

4-3, and Jargon API as the bridge for these modules to communicate with iRODS/SRB. 

The first module, WebDAV handler handles all file operation requests from WebDAV 

clients that talk WebDAV protocol. Table 4-1 lists the implemented methods in Davis, as 

well as the corresponding iCommands, and iRODS/SRB operations. 
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 Figure 4-3 System structure of Davis  

 

Browser mode handler provides web pages for metadata management and 

permissions setting. To simplify the structure, the asynchronous JavaScript and XML 

(AJAX) technology is exploited to convey requests from the web pages to Servlets. In 

addition, dojo toolkit (http://dojotoolkit.org), an open source modular JavaScript library, 

is chosen to implement the front-end web page as it provides extensible JavaScript 

widgets, including AJAX widgets, for web development. POST method is used by the 

AJAX widget to submit data from the web page to the handler, while GET method with a 

collection’s URL returns a web page with the details of this collection. 
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WebDAV 

method 

Equivalent 

iCommand 

Davis operation 

COPY icp Copy a file or directory; if directory, it recursively copies all 

child directories 

DELETE irm Delete a file or directory; if directory, it recursively deletes all 

child directories 

GET iget Download a file. If the target is a directory, it is assumed to be 

accessed by a browser so that a HTML page is returned 

MKCOL imkdir Create a new directory 

MOVE imv Move a file or directory to another place 

PRODFIND ils Get details of a directory, such as sub directories and files 

PUT iput Upload a file 

HEAD  Return basic information about the specified resource, e.g. last 

modified time 

OPTIONS  Get a list of supported methods for the target resource 

LOCK  Lock a resource before editing 

UNLOCK  Unlock a locked resource 

POST  Not used by WebDAV; used by browser mode to communicate 

via AJAX. 

Table 4-1 Davis operations 
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Authentication Processor is an extensible component where different login 

methods can be implemented and plugged into. In order to support different client types 

and different authentications, it does several checks in the login process, to identify an 

appropriate one for users. Note that not all authentication types are compulsory, and any 

of them can be switched off according to needs. The whole diagram is shown in Figure 4-

4. Currently, Shibboleth is employed to protect HTTP requests. However, 

communications between IdPs and the SP are still using HTTPS; just the user data is 

transferred between the users and Davis via HTTP. If a user logs in successfully via 

Shibboleth, the user will be mapped to an iRODS user by the shared token attribute 

(which can be configured to use another attribute that is unique to all users) from the 

Shibboleth session. 

 



 

 109 

 

Figure 4-4 Login process 

 

If users use HTTPS to access Davis, Davis checks the HTTP header to find out 

the client type: a web browser or a WebDAV client application. If the client is a web 

browser, a web-based login form will be displayed for users to enter username and 

password. If the client is a WebDAV client application, only basic authentication can be 

used, and HTTPS connection is highly recommended so passwords will be sent as plain 

text for basic authentication. When Davis receives the username and password from the 

client, either from the login form or basic authentication, the processor will examine the 

username string. To support different methods, the username is checked against the form 
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of ‘method\account’, where the prefix method is a key to locate and apply an appropriate 

method. Firstly, the processor checks if the methods is in the list of known and static 

values, for example, ‘irods’ means iRODS user system, and ‘myproxy’ means using a 

user proxy from a preconfigured MyProxy server. If none of these is matched, the method 

name will be used as an IdP name to fetch a SLCS certificate, then the certificate is used 

for GSI authentication on iRODS/SRB. If neither method nor backslash is presented, the 

authentication method that has been set as the default will be used. If no credential is 

found, an HTTP status code 401 is returned for users to enter username/password. As 

iRODS/SRB only supports username/password or GSI, all different authentication 

methods need to be translated into these two methods. For example, Shibboleth 

authentication mentioned above is actually GSI authentication to iRODS with the help of 

SLCS. After the authentication is successful, requests are directed to the appropriate 

handler according to the request’s HTTP method. 

Data transfer using Davis benefits from the HTTP protocol. For instance, as an 

HTTP session is connection-less, there is no live connection between the client and the 

server, which saves server resources. In addition, the HTTP header Ranges allows the 

client to specify the starting point (offset of a file) of a file download, which enables 

resumable download and segmented download. Resumable file downloads make use of 

server resources more efficient by allowing a user to temporarily suspend the download 

of a large file and then resume the download later. If the network access is temporarily 

interrupted or if the computer is put to sleep, the user doesn't have to resume the 

download from the beginning when access is restored. Segmented downloads divide a big 

file into segments and start off multiple threads to download each segment. When one 
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segment ends, the client starts a new segment automatically. Downloading multiple 

segments concurrently can significantly improve data download speed. 

 

4.6 Performance Evaluation 

 

This experiment compares the data transfer performance of Davis with 

iCommands in terms of transfer rate in a local network. The aim of this experiment is to 

demonstrate that adding Davis to iRODS/SRB doesn’t add too much overhead in the 

transfer, rather, it is an acceptable trade-off in order to benefit from the features users get 

from Davis. 

The test environment was set up on a server with two quad-core Intel Xeon 

3.16GHz CPUs and 16GB memory, running CentOS 5. iRODS 2.0.1 was used in the test 

with Davis on the same machine, and Davis runs on Jetty 6.1.12 with 1.5GB heap size 

JVM and accepts HTTP and HTTPS requests for this test. Using HTTPS is recommended 

in a production service, as it is the only practical mechanism for protecting user 

credentials. As a consequence, it also protects the data. The client is a VM with 512MB 

memory and two Intel Xeon 3.20GHz CPUs. Both the server and the client are in the 

same local network (1Gbps Ethernet). Six tests have been performed to transfer files of 

4MB, 8MB, 16MB, 32MB, 64MB, 128MB, 256MB, 512MB, 1024MB, and 2048MB. 

The six tests are, file upload with iput, file download with iget, file upload via Davis 

(HTTP and HTTPS) with cURL, file download via Davis (HTTP and HTTPS) with 

cURL. iRODS is configured to use 4MB window size and maximum 16 threads as these 

values are recommended by Yoshimi Iida  (https://www.irods.org/index.php/Lyon-KEK). 
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The real number of threads is chosen by iget and iput according to the actual file size. If 

the file size is less than 32MB, one thread will be used. Other than that, 16 threads will be 

used. Each test is done 20 times and the average is shown on Figure 4-5.  

The results show that Davis (HTTP) performs similarly to iCommands. Transfer 

via HTTPS is about 2-3 times slower because the overhead of SSL encryption and 

decryption. However, the transfer rate of HTTPS transfers is steady, mostly between 10 

to 20 MBs. Similar HTTPS transfer tests have been done on a 100Mbps Ethernet 

network, which is a common network connection to a user’s desktop, and the transfer rate 

I got from those tests ranges from 9MB/s to 11MB/s, which is the maximum transfer rate 

one can achieve from a 100Mbps Ethernet network. Thus, if a user is connected at 

100Mbps they will see no difference in performance in using Davis compared to 

iCommands. 
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Figure 4-5 Test Results of iCommands and cURL 

 

4.7 Use cases 

 

The integration of WebDAV and iRODS/SRB opens a window to use 

iRODS/SRB by more and more researchers. The following are a few examples. 

 

4.7.1 Easy access 

 

 The biggest benefit of using WebDAV as the gateway is that iRODS/SRB 

collections can be mounted to the client system as a local folder; thus, various WebDAV 

clients, such as Windows Explorer, Mac Finder, and Gnome Nautilus, can be used to 

access data in iRODS/SRB, without requiring iRODS/SRB clients to be installed on the 
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file system. Accessing iRODS/SRB is as easy as accessing a local hard disk, and the use 

of iRODS/SRB is the same as using a native program, with features like drag-and-drop. 

The user group will be expanded to more people, especially Windows or Mac users or 

those without much IT expertise. 

There are WebDAV clients for hand-held devices, such as smartphones (e.g. 

iPhone) and tablets (e.g. iPad). A test has demonstrated that browsing and getting files 

from SRB is achievable on iPhone. A demo is available on YouTube: 

http://www.youtube.com/watch?v=o2yu8ZJBOck.  

Accessing from a PDA-like handheld device is very useful, especially for 

monitoring experiments remotely. For example, if an experiment generates data 

continuously and saves it into iRODS/SRB, the researcher can monitor the process at 

home, or while travelling, by checking the data or metadata generated in iRODS/SRB via 

Davis, without staying in the laboratory, and this does not require any development or 

help from a system administrator. 

 

4.7.2 Integration with other applications 

 

It is easy to integrate iRODS with other applications via Davis. The following are 

some examples where this has been demonstrated. 

Some software, such as Microsoft Office and PhotoShop, allows users to open a 

file directly from WebDAV, without getting it to the local drive. After editing, the file 

can be directly saved to iRODS/SRB via WebDAV immediately. Furthermore, as a 

WebDAV resource can be mounted to the system as a normal file system, legacy 
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software can be used to read and write files on WebDAV without the need to implement 

support for iRODS, which requires development with iRODS APIs. This is very helpful 

for users who want to run a compute job but with data stored in iRODS. They can easily 

mount the iRODS collection via Davis and keep using the existing application software. 

Another example is, via the HTTP interface, a resource URL of Davis can be set 

in a Handle.NET system [144] to be mapped to a unique HDL Identifier, which is a 

HTTP URL. If a user puts it into a web browser, Handle.NET system resolves the unique 

HDL Id and redirects the user to Davis, and the requested file will be downloaded 

automatically. 

THREDDS (Thematic Realtime Environmental Distributed Data Services) Data 

Server [145], a popular system for sharing environmental science and remote sensing 

data, supports reading data via WebDAV. A test has been done to supply data stored in 

SRB to THREDDS Data Server via Davis. As a result, this data is available to users via 

the OPeNDAP protocol [146], which is supported by THREDDS. Moreover, as 

THREDDS Data Server can be configured to work with Web Mapping Service (WMS), it 

can generate a WMS overlay with its data; Google Earth can then display this overlay 

[147]. 

 

4.8 Conclusion 

 

This chapter has evaluated a number of existing iRODS/SRB client tools, which 

shows that the current tools are either of limited functionality, having potential firewall 

restrictions to the user’s desktop, compatible with SRB but not iRODS, or customized for 



 

 116 

special needs. Normally, a new user has to spend much effort to use iRODS/SRB. Thus, 

investigating a new client tool has been conducted with references to standard protocols 

and existing tools. Based on the investigation, a WebDAV gateway for iRODS/SRB has 

been implemented, for the purpose of being a generic and one-stop solution for users, 

developers and systems. Software described in this chapter (Davis) is available at 

http://projects.arcs.org.au/trac/davis. Davis is deployed as a production service by ARCS, 

as part of the ARCS Data Fabric.  

The next chapter will talk about another important component in the National File 

System, namely Griffin, a GridFTP interface for arbitrary data sources (here I use it for 

iRODS). Because Davis transfers data using the HTTP protocol, it inherits the limitations 

of HTTP, and therefore is not efficient to transfer a huge amount of data. That’s when 

Griffin is useful, because it is designed especially for data transfer and has the ability to 

interact with data transfer services. 
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Chapter Five: Generic GridFTP Interface for Data transfer 

 

5.1 Introduction 

 

This chapter describes another important component in the National File System, 

the GridFTP interface. As discussed in chapter 3, the National File System stores multi-

Terabytes of data and requires frequent data transfers. Also, the National File System 

needs to be integrated with other Grid components to facilitate data staging. Hence, it is 

necessary to have a component especially for efficient data transfer and easy integration 

with the Grid. This chapter describes why this becomes an issue and how I address it. 

Scientific grid systems are important tools for modern researchers to analyze, 

store and share data. Most of them provide not only computational services but also data 

services. Among the existing scientific grid systems, many of the computational services 

are built on a OGF-compliant grid middleware system, such as Globus Toolkit [8] and 

gLite [9]. Some other groups adopt Condor [148], a different scheduling system, which 

can integrate with Globus via Condor-G [51]. However, the mechanism used to store and 

access data is not unique. As illustrated in Chapter 2, various clustered file systems offer 

low-level and posix-like interfaces to users, whilst data grid systems are designed to be a 

virtual file system, offering application-level interfaces to storage space without the users 

knowing the physical location of data, such as SRB [17] and its successor, iRODS [18], 

as well as dCache [19]. The way of accessing these data grid systems varies. For 

example, dCache provides GridFTP interface and HTTP interface, so that grid 

submission systems can easily access data from it. Some others, such as iRODS, 
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implement their own proprietary protocols so grid job submission systems have no way 

of directly getting data out of it. Chapter 4 describes my work on implementing a 

WebDAV interface for iRODS, which is suitable for transferring small amounts of data, 

such as file size less than 4GB. When it comes to a larger amount of data, a HTTP-based 

WebDAV interface is inefficient, so a faster interface such as GridFTP should be used. 

It becomes a common requirement to transfer data between heterogeneous data 

sources as the amount of data increases and the data is placed in different data storage 

systems. When a new protocol is developed, considerable work has to be done to 

integrate it into the existing system. Typically, users have to use one client to copy data 

from the source to an intermediate space, such as a local storage space, and then use 

another client to move data from the intermediate space to the destination. This is error-

prone and inefficient. Because of having an extra step, the user has to sit in front of a 

terminal or write a script to automate the whole process. If anything goes wrong, the user 

has to do a lot of debugging work to find out the error. 

This chapter describes a different approach, which presents to users a standard 

GridFTP interface, through which the user can transfer data from and to an underlying 

arbitrary data source, thus it is compatible with most grid systems, and can leverage the 

advantages of GridFTP protocol in data transfer. It solves two problems in a single 

solution. Firstly, it enables grid systems to access data from any arbitrary data source. 

Secondly, transferring data between two data sources with different protocols becomes 

possible without the use of an intermediate point, and is more reliable, and manageable 

by using a data transfer service. The structure of such system is not complicated: it has a 

GridFTP interface front-end that receives and interprets GridFTP commands, and a 
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generic file system framework that translates the commands to a backend data source via 

a plugin. The generic file system framework abstracts required file operations for each 

data source to implement a specific plugin, so that the system can be used with any 

arbitrary data source by configuring a corresponding plugin. 

The next section gives an overview of related work. Then, section 5.3 describes 

the features of the GridFTP protocol and the reasons why it has been chosen. Section 5.4 

gives some details of the generic file system framework. Section 5.5 explains the 

implementation and Section 5.6 analyzes its performance through some experiments. 

Lastly, a summary is given in Section 5.7.  

 

5.2 Related work 

 

Currently, the Globus toolkit only supports GridFTP, HTTP and SSH protocol 

[149]. If users want to stage data from/to a data source that Globus doesn’t support, they 

have to do that outside of Globus. For example, a client of that data source can be 

installed on each worker node, then in the beginning of a PBS script, a command is 

issued to retrieve data using the client. Another solution is to use a copy queue [150], 

which is a special queue only for copying files, so that the data source client is only 

needed on the Globus gatekeeper, and there is no need to install it on all worker nodes. 

For each compute job, a copy job will first be submitted to the copy queue to transfer 

files, and then a compute job will be submitted to the normal queue to process the data. 

These approaches require additional software to be installed into the grid system. In 

addition, the status of data staging is not monitored or managed, so if the copy is 
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incomplete, the grid system cannot be notified of it, which may result in a waste of 

resources to process incomplete data. 

Some work has been done to help users with transferring data between 

heterogeneous data sources, and some desktop applications have been developed. It is 

noted that these solutions cannot be used by Globus to stage data. Instead, they mainly 

focus on data transfer from a user’s desktop. Firstly, in order to access different file 

systems from a single application, a few libraries have been designed, such as JSAGA 

[151] and commons-vfs [152]. They both provide a pluggable framework for building 

applications that allow users to access different data sources in a uniform way with the 

use of conversions and plugins. The difference is, commons-vfs only has APIs for data 

access while SAGA/JSAGA offers a comprehensive API including not only data access 

functions but also functions to submit jobs to various grid systems. Correspondingly, 

JUX [153] is a Java GUI implemented based on JSAGA, and Hermes [132] is another 

Java GUI implemented based on commons-vfs. However, these frameworks aim to 

provide a generic file access interface, and are hard to extend for extra functions. For 

example, GSI (the Grid Security Infrastructure, details in section 2.3.1) authentication is 

the main authentication mechanism for GridFTP, so the underlying data source must 

support GSI authentication natively, or our implementation needs to provide a mapping 

from GSI to the data source’s native authentication method. Based on the experience of 

using the aforementioned frameworks, implementing GSI in an arbitrary data source is 

not trivial, and may require some low-level coding or complex configuration. What’s 

more, I not only want to develop an interface for data transfer, but also want to offer 

advanced functions, such as the conductor plugin described in section 5.7.2, and it is hard 
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to extend these frameworks for that function. Therefore, I designed a simple framework, 

influenced by these frameworks and the java IO interface, aiming to offer the required 

and essential functions for data access, and the ability to be extended to support any 

future requirements. 

Similar functions have been added to data transfer services, such as stork [71], 

which supports a new data system by adding a new script to the scheduler, where the 

transfer is done by invoking a corresponding client of that particular data system. PAFTP 

[154] is a WSRF-based data transfer system that supports multiple protocols. It employs 

an application interface that wraps file access and operations over different protocols. 

These solutions need to copy data from the source to the destination via an intermediate 

place if both ends do not support the same protocol, which is not efficient and may use 

unnecessary network bandwidth. 

Globus Toolkit offers two solutions for users to integrate a third-party data source 

with Globus. The implementation [155] of the GridFTP server provides a modular 

pluggable interface to a storage system, which is called Data Storage Interface (DSI) 

[156]. The DSI presents a modular abstraction layer to a storage system, and hides the 

details and complexities of GridFTP protocol. Adding a new DSI requires implementing 

a few interfaces, and some interactions at the GSI-level for authentication and 

authorization. The other way is to use the Globus XIO system [157], which is an 

abstraction framework aiming to provide a simple Open/Close/Read/Write (OCRW) I/O 

API to Globus Toolkit so that developers of Globus can access data with a single API 

regardless of the actual location of the data. Being part of the Globus Toolkit, it can work 

with Globus GridFTP server seamlessly. Globus GridFTP server can use XIO to read 
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data from one data source, and write this data to another data source, or vice versa. 

However, these two solutions rely on the common runtime libraries of Globus software 

stack (as mentioned in section 2.3.1), such as GSI libraries, which makes them hard to 

develop, deploy and use, because Globus is developed in C and not cross-platform. A 

UNIX emulator is needed for Globus to run on Windows, adding extra complexity to 

installation and maintenance. Globus XIO system only provides common APIs for 

OCRW functions, and lacks common APIs to deal with other aspects, such as 

permissions, of the underlying file system. Although this can be overcome with the use of 

plug-ins or external callouts, it requires additional components from inside or outside 

Globus, hence results in a more complicated system to set up and maintain. 

The observations above show it hard to transfer data with a proprietary data 

source using existing tools. The Globus Toolkit does offer a way to interface its GridFTP 

server with a data source. However, it is not easy to implement, as developers need to 

have a deep understanding of the Globus middleware framework. Next I will introduce 

GridFTP protocol and its advantages, then describe my idea of using a generic file system 

framework to bridge between a GridFTP interface and an existing data source. 

 

5.3 GridFTP protocol 

 

This section gives an overview of the GridFTP protocol, and outlines the benefits 

of adopting it. 
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5.3.1 An overview of GridFTP protocol 

 

GridFTP protocol version 1 was released in 1999 [13]. The second document, 

GFD-21 [158], addresses some issues in the first version and gives some improvements 

to the GridFTP protocol. In 2005, GridFTP protocol version 2 [159] was released, with 

more advanced features. In essence, GridFTP is based on the File Transfer Protocol 

(FTP) [160] with some extensions for secure, reliable and high-performance data 

movement. Important features of GridFTP protocol include: 

• Third party transfer: To transfer large datasets between two data sources, it is 

more efficient to transfer them directly, rather than going through the client. 

GridFTP protocol offers a way for the client to create control channels to two 

data sources, and initiate direct data channel between the two sources. During 

the transfer, the client can monitor and further control the data flow via the 

established control channels. By this means, data goes from the source to the 

destination fast and efficiently without going through an intermediate point. 

• Security: GridFTP protocol employs RFC 2228 (FTP Security Extensions) [161] 

to allow Grid Security Infrastructure (GSI) [162] authentication and other 

security options. After authentication, the control channel between the client 

and the server is encrypted. The data channel can also be encrypted if 

necessary. For instance, when creating data channel during a third-party 

transfer, it is essential to verify both parties by data channel authentication.   

• Extended block mode: Extended block mode extends the FTP’s block mode in the 

header to support parallel transfer, striped transfer and partial transfer. Data 
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being transferred is split into blocks with each block consisting of offset and 

length of the data in its header, and real data in its body. Therefore, the client 

can transfer portions of a file from a particular point, or use multiple streams to 

transfer a big file in parts. The order of different parts arriving at the server 

does not matter, as the server can work out the position by the offset and length 

in header. In most situations, parallel transfer has proved to be faster than 

single stream transfer [163]. 

• Reliable and restartable transfer: Fault recovery can be achieved by a mechanism 

defined in the data channel protocol to restart a failed transfer. This is useful 

when suffering a network outage or server outage during the transfer of a huge 

file. Restarting a failed transfer can save resources required to start from the 

beginning. To verify a transfer, a mechanism has been added to GridFTP 

protocol to compare the checksums of the source file and the new copy after the 

transfer is finished. 

• Alternative transfer protocol: Apart from TCP, UDP protocol can also be utilized 

to transfer data, which has been shown to outperform TCP on high-bandwidth 

and high-delay networks [164]. 

 

5.3.2 The benefits of adopting GridFTP protocol 

 

GridFTP protocol is the de facto standard for data transfer in the grid world. 

Supporting GridFTP in a data source means that the source can be accessed by existing 

grid applications, including job submission systems, grid clients, workflow systems and 
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data transfer services. Also, the advantages of GridFTP features for enhancing transfer 

performance, such as parallel transfer and data channel reuse, enable the implementation 

of a fast data transfer interface [155]. Applying a GridFTP interface on top of a slow or 

legacy data server interface can potentially improve data transfer performance. 

Monitoring and automating data transfer is also feasible by using data transfer services, 

many of which support GridFTP. Not all protocols are suitable to transfer large datasets, 

due to the limitations in the protocol itself, or the implantation of its clients. For example, 

HTTP protocol has a time out problem, which makes the client disconnect from the 

server if transferring a large file for too long; also, from my experience, most HTTP 

clients can only transfer a single file whose size is up to 4 GB in a 32 bit system. If the 

file is larger than that, the client may get an error before it can reach the end of the file. 

GridFTP protocol does not suffer from this limitation. Instead, it has a mechanism to send 

data in small blocks and keep the control channel alive if the transfer takes a long time. 

 

5.4 Generic file system framework for GridFTP 

 

In order to access arbitrary file systems in a uniform way, I have designed a 

generic file system access framework as a backend to the GridFTP interface. By means of 

this framework, any request coming from the GridFTP interface will be translated to a 

standard file system operation. To make it generic, the framework is lightweight and 

simple, supporting only the basic and commonly implemented file operations required by 

GridFTP. Other file system features are not useful to GridFTP so there is no need to 

implement them. The design of this framework is specific to the requirements of the 
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GridFTP protocol, especially advanced features for data transfer, in order to minimize 

overhead between the front-end GridFTP interface and the backend data system. As the 

GridFTP protocol is mainly used for data transfer, this framework does not require other 

functions, such as metadata manipulation (and GridFTP protocol doesn’t support that 

anyway).  

The simple top-down structure is illustrated in Figure 5-1, with four major 

objects. The top one is the only instance in the system corresponding to the data source, 

with all configurations and controls at the data source level. Each user, once 

authenticated, will be associated with a connection object, which is the second one from 

the top. The connection object keeps all user-relevant information (one connection object 

will be created for each user login), because different users will have a different view of 

the data source, with different permissions. Thus, the connection object can determine 

whether a file object, the third one from the top, can be created for a particular path, and 

what functions can be called, based on the user’s permissions. Once a file object is 

created, it is used to retrieve information of the target file, or do some operations on it. 

The bottom one is mainly used to access the content of a file object, as long as the file 

object is initiated with proper permissions. An adaptor for a data grid system must 

implement all four interfaces.  
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Figure 5-1 The structure of the generic file system framework 

 

The FileSystem object is the root of the hierarchy. It has the methods as shown in 

Figure 5-2. This object presents the underlying data system in the GridFTP interface and 

is called on startup and shutdown. In particular, method init() is called to examine the 

configurations and check the connectivity to the data source during the startup phase. If 

there is an error, for instance, the configuration is not correct or the underlying data 

system is not accessible, an exception will be thrown so that the GridFTP server can 

decide whether it can continue to run. Likewise, method exit() is invoked during 

shutdown to release resources and close connections to the data system if there are any. 
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Method getSeparator() returns the separator used in paths, given that it may be different 

in some systems, such as back slash in Windows and forward slash in Linux. Method 

createFileSystemConnection() will be executed when a user connects to the GridFTP 

interface and a GridFTP session is created for that user. Correspondingly, a connection to 

the underlying data system will be created, according to the GSI credential. This method 

returns a FileSystemConnection object, which represents a session to the data system. If 

the underlying data system supports GSI authentication, the same GSI credential used to 

authenticate to GridFTP interface will be used to authenticate to the underlying data 

system. However, if the underlying data system does not support GSI authentication, 

some kind of mapping mechanism will be employed. 

 

 

Figure 5-2 FileSystem interface 

 

FileSystemConnection holds a connection to the underlying data system for the 

user. It consists of a few system-wide and user-related methods. getHomeDir() and 

getFreeSpace() are self-descriptive. getUser() returns the user name of the underlying 

public String getSeparator(); 

public void init() throws IOException; 

public FileSystemConnection 

createFileSystemConnection(GSSCredential credential) throws 

FtpConfigException, IOException; 

public void exit(); 
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system associated to this session. isConnected() indicates whether the connection is 

opened, while close() will terminate the current connection. Method getFileObject() 

generates a FileObject for a particular path in the GridFTP system context.  

 

 

Figure 5-3 FileSystemConnection interface 

 

FileObject, illustrated in Figure 5-4, represents a data object in the data source. It 

is designed to reflect the java.io.File class, providing methods to get the file name, path, 

canonical path, length, last modified time, its parent and its children. In addition, it allows 

users to check whether this file exists, or whether this object is a file or a directory. Users 

can also use this object to make a new directory, delete or rename the file or directory, or 

set the last modified time. Method getPermission() returns an abstracted permission 

number, which can only be no access (0), read privilege (1), write privilege (2) or 

read/write (3). GridFTP protocol does not require complex permission management 

functions, such as user/group permissions in UNIX; all that it cares about is the 

permission of the current user, so the generic framework only needs to find out the 

public FileObject getFileObject(String path); 

public String getHomeDir(); 

public String getUser(); 

public void close() throws IOException; 

public boolean isConnected(); 

public long getFreeSpace(String path); 
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permissions for the user associated to the current connection. Returning a simple 

numbered permission is the easiest and most generic way to address this issue, and hide 

the complexities in different data sources. Method getRandomAccessFileObject() returns 

a RandomAccessFileObject, as shown in Figure 5-5, for accessing the contents of this file 

object. 
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Figure 5-4 FileObject interface 

 

RandomAccessFileObject provides methods to read and write contents of the 

corresponding FileObject. The design is similar to java.io.RandomAccessFile, for 

developers’ convenience. Several read() methods and write() methods are the major part 

public String getName(); 

public String getPath(); 

public boolean exists(); 

public boolean isFile(); 

public boolean isDirectory(); 

public int getPermission(); 

public String getCanonicalPath() throws IOException; 

public FileObject[] listFiles(); 

public long length(); 

public long lastModified(); 

public RandomAccessFileObject  

getRandomAccessFileObjec(String type) throws IOException; 

public boolean delete(); 

public FileObject getParent(); 

public boolean mkdir(); 

public boolean renameTo(FileObject file); 

public boolean setLastModified(long t); 
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of this object to read file content to a byte array or write content of a byte array to the file. 

Other methods include seek() to jump to a certain point in the data object and length() to 

return the length of the data object. Unlike the streaming objects, which can only read or 

write in sequence, the RandomAccessFileObject offers a way for the front-end GridFTP 

interface to easily read or write data from any position in the file, which is used in the 

extended block mode to enable parallel transfer and restarting after a connection problem 

in the middle of a transfer. Consequently, the underlying data source must support 

random access so that it can be plugged into this framework. 

 

Figure 5-5 RandomAccessFileObject interface 

 

 

public void seek(long offset) throws IOException; 

public int read() throws IOException; 

public int read(byte[] b) throws IOException; 

public int read(byte[] b, int off, int len) throws IOException; 

public void close() throws IOException; 

public String readLine() throws IOException; 

public void write(int b) throws IOException; 

public void write(byte[] b) throws IOException; 

public void write(byte[] b, int off, int len) throws IOException; 

public long length() throws IOException; 
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5.5 The implementation 

 

To demonstrate this concept, a production system, called Griffin, has been 

developed. The implementation includes a basic GridFTP interface, the generic file 

system framework, and two adaptors: one for the iRODS data grid system, and one for 

the local file system. The purpose of the implementation is to demonstrate that any client 

compatible with GridFTP can access the underlying data source via the GridFTP front-

end and the generic file system framework, where iRODS is used as an example of an 

arbitrary data source. The implementation generated in this work will also be used as the 

interface to a production iRODS system. To access other data sources, a relevant adaptor 

can be developed, and configured in Griffin. In addition, the implementation is to 

substantiate that with this structure, data transfer performance will not be affected. 

Instead, the transfer rate may be better than the native protocol as it benefits from the 

advantages of the GridFTP protocol.  
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Figure 5-6 The architecture of Griffin 

 

The implementation, illustrated in Figure 5-6, is written in Java and based on the 

Spring framework [165], which offers an architecture for developers to easily develop a 

modular and pluggable application. GridFTP interface is the base of the application. It 

manages all client connections with a parser to parse GridFTP commands and invoke 

them with relevant command classes. The implementation of GSI authentication is based 

on jGlobus [166]. The generic file system framework is implemented as stated in section 

5.4. Adaptors for data sources rely on the relevant client libraries. For example, the 

GridFTP interface 
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adaptor for iRODS relies on iRODS’s Java library, Jargon [167]. Having the generic 

framework makes it possible to implement adaptors for other file system libraries, such as 

commons-vfs and JSAGA, so that Griffin can be used to access all data sources that are 

supported by these libraries. The binary of Griffin is lightweight, stand-alone and self-

contained, with all dependent Java libraries. Therefore, it does not rely on any Globus 

components, which makes it easy to install and maintain. In addition, being a Java 

application, it is possible to be run on most operating systems without recompiling. For 

instance, if a user wants to submit a grid job to analyze data that is located on a desktop 

computer, an instance of Griffin could be run on this desktop machine, no matter if it is 

Windows or Linux (this is contrast to the Globus GridFTP server, which requires a UNIX 

emulator to run on Windows). Globus job submission can then stage in data from the 

desktop and stage out data to the desktop, without the need to copy data to and from 

somewhere that is accessible by the Globus job submission node, such as a dedicated 

GridFTP server, or a file system that is mounted to the worker nodes. 

With the modular design and the help of Spring dependency injection framework 

[168], changing the underlying data system only requires a change in an XML 

configuration file, without a need to recompile the whole system. Figure 5-7 is a sample 

of a portion of the Griffin configuration file, with the iRODS adaptor. As seen, the 

configuration is simple, and only needs the iRODS server’s hostname and port number. 
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Figure 5-7 A configuration with iRODS adaptor 

 

To run Griffin with a local file system, we only need to replace the <bean 

id=”fileSystem”> portion with Figure 5-8, and restart Griffin. 

 

<bean id="server" class="au.org.arcs.griffin.server.impl.GsiFtpServer" 

singleton="true"> 

    <property name="name" value="GSI FTP Server" /> 

    <property name="options" ref="options" /> 

    <property name="resources" value="griffin-resources"/> 

    <property name="fileSystem" ref="fileSystem" /> 

</bean> 

<bean id="fileSystem" 

class="au.org.arcs.griffin.filesystem.impl.jargon.JargonFileSystemImpl" 

singleton="true"> 

    <property name="serverName" value="localhost" /> 

    <property name="serverPort" value="1247" /> 

    <property name="serverType" value="irods" /> 

</bean> 
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Figure 5-8 A configuration with local file system adaptor 

 

5.5.1 Parallel transfer 

 

The implementation of parallel transfer is a notable challenge. Without knowing 

the features of an arbitrary data source in advance, the current implementation is based on 

the assumption that single connection and random access are always supported; otherwise 

the data source cannot be plugged into Griffin. If the data source only supports streaming, 

it is not straightforward to plug it into Griffin. Suppose a user starts a transfer in extended 

block mode with parallel streams, data blocks arrive in no particular order, however, 

writing to the data source should be in order as it only supports streaming. Thus, if a 

block of a latter position comes in first, it has to be cached by Griffin before writing it to 

the data source. If the file being transferred is a big file, it may end up running out of 

local space. Thus, the current implementation opted not to support data sources that only 

support streaming. In addition, for the best performance of Griffin, and further to the first 

<bean id="fileSystem" 

class="au.org.arcs.griffin.filesystem.impl.localfs.LocalFileSystemImpl" 

singleton="true"> 

    <property name="rootPath" value="/data/data-fabric" /> 

    <property name="userManager" ref="userManager" /> 

</bean> 
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assumption, I also made the second assumption that the network from the client to Griffin 

is always slower than the network from Griffin to the data source, otherwise the transfer 

would not benefit from the advanced features of GridFTP. Hence, it is recommended to 

place Griffin as close to the data source as possible, e.g. on the same host as the data 

source or in the same LAN. Thus, the bottleneck becomes the network from the client to 

Griffin, which can take advantage of parallel transfer between the client and Griffin to 

enhance the transfer rate, as shown in Figure 5-9. If the network between the client and 

Griffin is faster than the network between Griffin and the data source, data transfer will 

be delayed by Griffin as Griffin only opens one stream to the data source. 

 

Figure 5-9 Parallel transfer between Griffin server and the client 
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5.5.2 Authentication and authorization 

 

Authentication and authorization are the most significant issues when doing 

multiple-protocol mappings. During GridFTP authentication, a GSI credential will 

always be passed through from the front-end GridFTP interface to the generic file system 

framework, to verify whether this user is authenticated to access the underlying data 

source. The decision is made by the file system object of the adaptor based on the 

presented GSI credential. If the user is not valid, an exception will be thrown to the 

GridFTP layer and an error code will be returned to the GridFTP client. If the 

authentication is successful, a connection to the data source will be created with the user 

information. Authorization is done according to the user information attached to the 

connection. How the authentication and authorization are processed in the underlying 

data system differs depending on whether the data system supports GSI authentication. 

For those data systems that support GSI authentication, such as iRODS, the given GSI 

credential will be passed to the data system for validation. If the GSI credential belongs 

to a valid user in the data system, this user will be used in the current connection for all 

subsequent operations, with the permissions this user has. For those data systems that do 

not support GSI authentication, some kind of mapping mechanism should be in place to 

map between GSI credentials and the underlying data system’s local credentials.  

One typical example of the mapping mechanism is the local file system. The 

Globus implementation of GridFTP maps GSI credentials to local system users, thus file 

permissions in GridFTP context are aligned with the native file system permissions, and 

files are owned by real operating system users. From the GridFTP interface, any user can 
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access any file in the operating system if the user has access to it. File permission settings 

in Griffin for local file system are different from the Globus GridFTP implementation. In 

essence, Griffin acts as a virtual file system, with file contents in local file system and 

user/permission information in its XML configuration file. The configuration specifies a 

directory in the file system as the root of the file system in Griffin. Users in Griffin are 

not mapped to operating system users. Instead, all files are owned by the single operating 

system user who runs Griffin, whose permission are managed at the application level, by 

maintaining a user and permission configuration file in XML format, which defines 

groups, users, and mappings as the basic elements. An example is displayed in Figure 5-

10. In this example, a group is an element that holds the real permission, which can be 

read only or read-write. Permissions can be assigned to a single path, or a list of paths 

that conform to a pattern. For example, /${user}/** means all files under current user’s 

home directory. A user is an entity in a group, with a default directory, usually its home 

directory. A mapping maps a DN to a user in the system. Thus, when a user logs in with 

GSI authentication, Griffin works out its home directory by getting the user element from 

the mapping, and the permissions by the relevant group. The benefit of the Griffin 

permission system is that users can only see what they are allowed to, without exposing 

the whole file system to users. In addition, this would work with any operating system, 

including Windows, because at the file system level, all files are owned by a single user, 

without the need of switching to other system users, which is not possible for Windows. 

The disadvantage is that all files have to be under a single directory, unless some soft 

links are created to aggregate directories to one place.  
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Figure 5-10 An example of permissions for local file system 

 

 

<groups> 

    <group name="users" > 

        <permissions> 

            <permission flag="rw" path="/${user}/**"/> 

            <permission flag="r" path="/"/> 

        </permissions> 

    </group> 

</groups> 

<users default-dir="/${user}"> 

    <user uid="user" fullname="Test User"> 

        <group-ref name="users"/> 

    </user> 

</users> 

<mappings> 

    <mapping dn="/C=AU/O=APACGrid/OU=SAPAC/CN=Shunde Zhang" 

uid="user"/> 

</mappings> 
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5.6 Performance Measurements 

 

Three tests were conducted to show the usability and efficiency of Griffin. The 

first two tests compare the data source’s proprietary protocol and GridFTP protocol: the 

first test transfers files of different sizes; the second test transfers a large amount of small 

files. These two tests show that data transfer rate of Griffin is similar or better than the 

data source’s own protocol. The third test compares Griffin and Globus GridFTP server: 

both will be used to transfer the same files. This test shows that Griffin performs similar 

to Globus GridFTP server. 

The first test transfers files in different sizes to compare the transfer rate of the 

data source’s own interface and Griffin. In this test, iRODS is used as the underlying data 

source, so iCommands is used to transfer data to compare with Griffin. The test 

environment, illustrated in Figure 5-11, includes a server and a client. The server has two 

quad-core Intel Xeon X5460 3.16MHz CPUs and 16GB memory, running 32bit CentOS 

5.2, and iRODS 2.1. Griffin was set up on the server as the GridFTP interface for this 

iRODS and allocated 786MB heap size in the JVM. This server is in Adelaide with a 

1Gbps Ethernet network interface. With this setup, data in iRODS can be accessed via 

native iRODS interface or GridFTP interface. The client, on the other hand, is an IBM 

xSeries 346 with two hyper-threaded Intel Xeon 3.20GHz CPUs, 4GB memory and a 

1Gbps Ethernet interface, running 64bit CentOS 5.4, in Melbourne. The WAN 

connection between Adelaide and Melbourne includes two 10Gbps links. iCommands 

and GridFTP client (globus-url-copy) are installed on the client machine. We compare 

the upload rate and download rate between them, with file sizes of 256MB, 512MB, 
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1GB, 2GB, 4GB, 8GB to 16GB, and eight threads are used for both iCommands and 

Griffin transfers. For small files, fewer threads may have less overhead while for larger 

files, more threads may give better performance. This test is to compare the performance 

between two clients in the same situation but not to look for the best parameters for a 

particular client; therefore, using a static thread number is acceptable and makes the test 

easy to run. I keep the number of threads fixed, as my objective is to compare the 

performance between two clients in the same situation; optimizing the number of threads 

does not materially affect this comparison. 

 

 

Figure 5-11 The setup of test env. for comparing iCommands and Griffin 
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iRODS 

Local File System 

Griffin 

Jargon Adaptor 

globus-url-copy iCommands 
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Having each test run 10 times, the result in Figure 5-12 shows the average transfer 

rate in Mbytes per second. The results show that when uploading a file, iCommands and 

Griffin perform at a similar rate if the file is less than 8GB, however, if the file is 8GB or 

over, Griffin is faster than iCommands. When downloading, the performance of Griffin is 

almost constant across the size range in the test, while iCommands performs faster for 

small files but gets slower as the file size gets bigger. 

 

 

Figure 5-12 A comparison between iCommands and Griffin 

 

Another test was conducted to compare the rate of transferring many small files. 

The same test environment was used for this test, to copy one thousand 1MB files, i.e. a 
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total of 1GB, in both directions. At the time of this test, iCommands only supported 

transferring one file at a time and multiple threads for one file are not useful due to the 

small file size. Thus, for iCommands, default parameters were used, which is one 

connection between the client and the server for commands and data. However, the latest 

version of the GridFTP client supports multiple control channels to allow upload and 

download of multiple files concurrently. Furthermore, the feature of data channel reuse 

only needs to establish the data channel once when transferring multiple files, thus saving 

a significant amount of time in channel creation if it is to transfer many small files. For 

Griffin, the parameters for GridFTP client were “–cc 20 –p 1”, which creates 20 control 

channels between the client and the server, and for each control channel, one data channel 

is used to transfer the file content. Thus, there would be a total of 20 control channels 

plus 20 data channels to transfer the data. Likewise, download and upload were executed 

for both clients. Each test was done 10 times and the average elapsed time is shown in 

Table 5-1. The result indicates that Griffin works faster than iCommands, because the 

GridFTP client has the ability to initiate multiple control channels and data channels, as 

well as reusing an existing data channel to transfer multiple files. 

 

Test Time Elapsed Transfer Rate 

iput 177 seconds 5.65 Mbytes/s 

Upload via Griffin 142 seconds 7.04 Mbytes/s 

iget 237 seconds 4.22 Mbytes/s 

Download via Griffin 180 seconds 5.56 Mbytes/s 

Table 5-1 Elapsed time of transferring 1000 files 
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The third test, as shown in Figure 5-13, is to compare Griffin with the Globus 

GridFTP server, on the same test environment as the above tests. This test shows that the 

performance of Griffin is as good as that of Globus GridFTP server; on the other hand, it 

also shows that the same transfer rate can be achieved by using GridFTP protocol, no 

matter in what language the system is implemented. In this test, Globus GridFTP server 

has been installed on the server from VDT 1.10.1. Griffin has been re-configured with a 

local file system adaptor, so that it reads and writes data in the local file system. Test data 

is stored in the same partition as the iRODS resource. Similar to the first test, I 

transferred files with sizes of 256M, 512M, 1G, 2G, 4G, 8G and 16G, via Griffin and 

Globus GridFTP, with 16 threads. I chose 16 because it is the number that can maximize 

the use of network bandwidth. 

 

Figure 5-13 The setup of test environment for comparing Globus GridFTP server 

and Griffin  
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Each transfer test was done 10 times and the average values are presented in 

Figure 5-14 with error bars showing the error in the mean for these 10 measurements. 

The result demonstrates that Griffin performs very closely to Globus GridFTP server in 

data upload and data download. 

 

          Figure 5-14 A comparison between Globus GridFTP server and Griffin 

 

5.7 Extensions 

 

I have discussed the basic Griffin architecture and performance evaluation in the 

above sections; on the other hand, the design of Griffin makes it easy to be extended to 

fulfill other functions, while preserving the basic GridFTP structure. For example, the 
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generic file system framework allows plugins to be written for other file systems, apart 

from iRODS. Alternative GridFTP command implementations can be developed to 

replace default implementations, to provide a special function. This section describes two 

examples of Griffin extensions. 

 

5.7.1 MongoDB adaptor 

 

The MongoDB adaptor [169] has been developed by an external developer to 

provide a GridFTP interface to GridFS [170], the file storage to store large objects in 

MongoDB. With this adaptor, grid users and grid services are able to access files that are 

stored in MongoDB, through the use of grid certificates and the commonly supported 

GridFTP protocol. This is a good example to connect another data source into the grid.  

 

5.7.2 Griffin Conductor 

 

The goal of using Griffin Conductor is to provide striping transfer feature to those 

data sources that are in form of a distributed file system, such as iRODS and dCache that 

are virtual file systems with the ability to replicate data into multiple distributed data 

resources. Consider the situation where Griffin or a GridFTP interface is deployed on top 

of each resource of a geographically distributed file system, as shown in Figure 5-15, 

which ensures that each Griffin/GridFTP server can serve data from a local data source, 

hence avoiding network latency between Griffin/GridFTP server and the data source. 

However, a user who is given several available Griffin/GridFTP endpoints may not know 
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which one is the most suitable, and system administrators may also want a particular user 

to store files in a specific data source. Therefore, on top of existing Griffin/GridFTP 

servers, I designed and deployed Griffin Conductor, which is configurable to orchestrate 

data transfer for each user to the best-matched (according to pre-defined rules) 

Griffin/GridFTP server. The essential idea of this mechanism is third-party transfer: the 

client connects to one GridFTP server but receives data from another (this is not the same 

as the normal third-party transfer users usually do, because the transfer target is decided 

by Griffin Conductor but not the user). 

 

 

Figure 5-15 Deployment of Griffin on top of distributed file system 
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Data Upload 

Griffin Conductor directs files to specific resources according to pre-defined rule 

implementations (a sample of the rules will be shown later in this section). Various rules 

may include: geographical location, a user always uploads files to the nearest resource, 

which can be determined by the user’s IP address; identity of the user, users from a 

particular group all store files in one specific resource. Because every file system is 

different, the current implementation simplifies the use case and assumes that the upload 

of a single file can only go to one resource. Uploading portions of a single file to multiple 

resources needs the underlying file system to combine these portions into a complete file 

in the background, which places another requirement to the data source. Thus, to make it 

more generic, I implement Griffin Conductor to direct upload data stream to one resource 

only. The whole progress is shown in Figure 5-16, in 6 steps: 

1. A user sends an upload request 

2. Griffin Conductor checks against the distributed file system to see if the 

file already exists or the user has permission to upload files to the given 

location 

3. Griffin Conductor uses pre-defined rules to locate a destination 

Griffin/GridFTP server, which connects to the targeted resource, and 

requests connection information, such IP and port 

4. The destination Griffin/GridFTP server returns connection information to 

Griffin Conductor 

5. Griffin conductor sends the connection information back to the client 
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6. The client makes connection to the destination Griffin/GridFTP server 

directly to send data 

 

 

Figure 5-16 Data upload via Griffin Conductor 

 

Data Download 

Downloading via Griffin Conductor works similarly to uploading. The difference 

is, when deciding the resource where the client downloads from, Griffin Conductor needs 

to query the distributed file system to check which resources have a replica of the 

requested file, and the connection information sent to the client will be one of these 
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resources. As the query is specific to the distributed file system, a plugin structure is 

employed to provide a common interface to the different query mechanisms. In this 

implementation, I developed a plugin for iRODS system. In addition, if there is more 

than one replica, the client can request striping transfer, which is to download 

concurrently from all of these resources, as illustrated in Figure 5-17, to improve 

download performance. 

 

 

Figure 5-17 Data Download via Griffin Conductor 
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Implementation 

Currently, Griffin Conductor is implemented to work with iRODS, which in our 

case has geographically distributed resources. The conductor redirects clients to the 

nearest Griffin server for upload and download, based on the client’s geographical 

location, which can be worked out with the client’s IP address and a Geo-IP database 

(http://www.maxmind.com/app/ip-location). The Geo-IP database keeps records of IP 

ranges in each city or area of every country, from which the Conductor knows the 

location of the client. The Conductor also has a configuration file, to keep a list of 

existing Griffin servers, and a priority list that users from each state should access in 

order. Figure 5-18 shows a sample configure file. By combining the configuration file 

and Geo-IP database, Griffin Conductor can then work out where to direct the client. 

 

<?xml version="1.0" encoding="UTF-8"?> 
<location-selector> 
 <locations> 
  <location id="vpac" hostname="arcs-df.vpac.org" port="2810"> 
   <resource name="arcs-df.vpac.org"/> 
  </location> 
  <location id="ivec" hostname="arcs-df.ivec.org" port="2810"> 
   <resource name="arcs-df.ivec.org"/> 
  </location> 
  <location id="ersa" hostname="arcs-df.eresearchsa.edu.au" port="2810"> 
   <resource name="arcs-df.eresearchsa.edu.au"/> 
  </location> 
  <location id="tpac" hostname="arcs-df.sf.utas.edu.au" port="2810"> 
   <resource name="arcs-df.tpac.org.au"/> 
  </location> 
  <location id="uq" hostname="arcs-df.hpcu.uq.edu.au" port="2810"> 
   <resource name="arcs-df.qcif.org"/> 
  </location> 
  <location id="intersec" hostname="arcs-df.ac3.edu.au" port="2810"> 
   <resource name="arcs-df.ac3.edu.au"/> 
  </location> 
 </locations> 
 <selector> 
  <!-- ACT --> 
  <if country="AU" region="01"> 
   <select priority="1">intersec</select> 
   <select priority="2">vpac</select> 
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  </if> 
  <!-- NSW --> 
  <if country="AU" region="02"> 
   <select priority="1">intersec</select> 
   <select priority="2">vpac</select> 
  </if> 
  <!-- NT --> 
  <if country="AU" region="03"> 
   <select priority="1">ersa</select> 
   <select priority="2">vpac</select> 
  </if> 
  <!-- QLD --> 
  <if country="AU" region="04"> 
   <select priority="1">uq</select> 
   <select priority="2">intersec</select> 
   <select priority="3">vpac</select> 
  </if> 
  <!-- SA --> 
  <if country="AU" region="05"> 
   <select priority="1">ersa</select> 
   <select priority="2">vpac</select> 
  </if> 
  <!-- TAS --> 
  <if country="AU" region="06"> 
   <select priority="1">tpac</select> 
   <select priority="2">vpac</select> 
   <select priority="3">intersec</select> 
  </if> 
  <!-- VIC --> 
  <if country="AU" region="07"> 
   <select priority="1">vpac</select> 
   <select priority="2">intersec</select> 
  </if> 
  <!-- WA --> 
  <if country="AU" region="08"> 
   <select priority="1">ivec</select> 
   <select priority="2">ersa</select> 
   <select priority="3">vpac</select> 
  </if> 
  <!-- other areas, e.g. other countries --> 
  <else>vpac</else> 
 </selector> 
</location-selector> 

Figure 5-18 An example configuration of Griffin Conductor 

 

Related Work 

The Globus GridFTP does support striping [155]. Its system architecture consists of 

PI (Protocol Interpreter) and DTP (Data Transfer Process) modules, where PI is the front-
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end that receives requests and DTP handles actual data movements. The communication 

between PI and DTP is not specific in the official GridFTP protocol, so in the Globus 

GridFTP, it is implemented to use some proprietary protocol. Furthermore, although each 

DTP is deployed on each data source, it cannot be accessed directed by the GridFTP 

client without PI. Griffin Conductor has an more advanced architecture: it uses the 

standard GridFTP protocol to communicate with other GridFTP servers on each data 

source; and the service on each data source is a real GridFTP server, which can be 

accessed directly by any GridFTP client. 

 

5.8 Conclusion 

 

This chapter describes a generic, lightweight and easy-to-use approach to connect 

an arbitrary data source to the grid, by using a generic file system framework with a 

GridFTP interface. It allows any data source to be accessed by the grid, enables 

transferring large datasets, has very little impact on performance for shipping data, and 

makes it possible to move data between data sources with different protocols easily, 

efficiently and reliably. The implementation is a standalone GridFTP service based on 

Java, and does not rely on Globus software stack, so it can run on most operating 

systems. It is suitable for data sources that offer a Java API. The implementation of 

Griffin can be obtained from http://projects.arcs.org.au/trac/griffin. 

In the next chapter, I will discuss a different topic, which is the National Grid 

Submission Gateway mentioned in section 3.2.3. It is an important module in the grid 

infrastructure but it is not part of the National File System. However, it interacts with the 
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National File System via Griffin. The next chapter illustrates the Gateway in detail and 

how it is integrated with the work I have done here. 
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Chapter Six: Grid Submission Gateway 

 

6.1 Introduction 

 

This chapter explores the details of the National Grid Submission Gateway, as 

briefly outlined in section 3.2.3. It is not a part of the National File System, like the 

components discussed in Chapter 4 and 5. However, it is closely integrated with the 

National File System and relies on the National File System in several aspects including 

data storage and staging. They both play an important role in the national grid 

infrastructure and form a major user interface frontend for users to take advantages of the 

resources in the infrastructure.  

Modern research requires production and analysis of a large quantity of data. One 

example is the Large Hadron Collider (LHC), which generates multi terabytes of data 

every day. Scientists need to use massive storage devices and high 

performance/throughput computing (HPC/HTC) systems nowadays in their research to 

store, process and manage the collected data. Over the past several years, a lot of effort 

has been spent on helping researchers with limited IT expertise to use these complex 

computing facilities easily. A number of middleware, frameworks and systems have been 

implemented and deployed. Chapter 2 described a variety of these frameworks and 

systems that are being used currently. 

Over the past few years, the Australian Research Collaboration Service (ARCS, 

http://www.arcs.org.au) has been investigating a way to help users to more easily use 

distributed heterogeneous grid resources, which are set up based upon existing 
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middleware, such as Globus Toolkit, but in different network environments, with 

different user policies and administrative domains. Grisu is an end-user’s tool developed 

a few years ago, offering a simple web service interface to the multiple Globus Toolkit 

instances, and allowing easy customization using templates. It is being used by a number 

of users, and helps users in many ways, but it also has drawbacks. For example, its client 

is a Java GUI, which needs to be installed on a user’s desktop. It doesn’t hide all the 

details of the grid and requires users to have some knowledge of the grid resource; it uses 

certificates in authentication, and doesn’t support Shibboleth; users need to know where 

the job is executed, so that they can retrieve the output from there; it requires to use a 

couple of ports other than HTTP ports, which restricts users who are behind a firewall 

that only allows HTTP traffic. Furthermore, the administrators encountered several 

problems in scalability and reliability when it was put in production use. Therefore, in 

this project, I aim for a new approach that can improve Grisu and dramatically change the 

way that researchers use the Grid. To this end, Chapter 3 outlined the motivation for a 

national grid submission gateway, which is to simplify compute resource sharing for 

users from other authoritative domains, and enable interaction with other national 

services, such as the data storage middleware and the Shibboleth federation. 

This chapter goes on to give an overview of the compute job submission gateway, 

called Grisu2, with details of the architecture specified in section 6.2. Section 6.3 

illustrates how Grisu2 is deployed in a real environment for ARCS and how it is 

integrated with other services in the grid infrastructure in a generic way. Case studies and 

evaluation will be described in section 6.4. Section 6.5 compares our solution with other 

related work. Lastly, conclusion will be given in section 6.6. 
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6.2 The Architecture 

 

The concept of grid has existed for many years and a number of grid middleware 

systems have been designed to provide a uniform interface to various local resources, 

which may have different hardware, operating systems, authentication systems, user 

accounts, file systems and so on. However, existing grid middleware systems are not 

developed in the same architecture, nor do they expose the same interfaces, so there is the 

problem of interoperability between different grid middleware systems. Even adopting 

the same grid middleware, different grid operators may have different configurations or 

different policies. Current grid middleware doesn’t solve the interoperability problem 

effectively; it is too difficult for developers and users to use, as stated below:  

1) Different user systems and user policies are adopted by different organizations. 

The use of a certificate partly solves the user authentication issue, although the certificate 

itself is not very user-friendly. Various user policies may hinder the user’s ability to use 

the grid; for example, even if a user has access to the grid, he or she may not have the 

permission to use a specific application.  

2) Different firewall policies are implemented. Although the same service has been 

installed in multiple grid resources, a user may not have access to all of them because 

ports are blocked.  

3) Existing grid middleware, such as Globus Toolkit, is designed to provide a 

single interface to different local schedulers, such as PBS and SGE. But this only partly 

solves the issue with regard to interoperability, because the interface of Globus Toolkit is 

a web service interface but not a web portal, and it is not easy to use even by developers.  
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4) If users run jobs in various grid resources, the output will be kept in the local file 

system of different clusters, which is hard to manage. 

The architecture of Grisu2 addresses the above problems by adopting several new 

technologies. Firstly, to allow users access to resources in a remote organization, I 

adopted the Shibboleth [23] technology. Shibboleth is emerging as the Single-Sign-On 

solution for users to easily access trusted systems out of their home organization. A user 

only needs to use a single credential from their home organization to log in to systems in 

a remote organization, if they are in the same federation and trust each other. The cross-

organization authentication takes place behind the scenes by various Shibboleth 

components. By using Shibboleth, users are not required to apply for, obtain, use and 

renew grid certificates. From a user’s point of view, this approach avoids the use of 

certificates, and eliminates the pain of having to remember different credentials and 

passwords, and they can just use the username and password of their organization.  

Secondly, to enable users to more easily use different resources, I extended the idea 

of the Grisu framework [118] and built a service layer above the Globus middleware, 

using several Globus components, including the Globus Gatekeeper, Globus GridFTP 

and MDS [171]. The new service layer features several easy-to-use and standard 

interfaces, and a Grid Resource Broker that is designed to distribute jobs to a suitable 

compute resource. Technically, the Grid Resource Broker can submit all jobs to another 

meta-scheduler, such as Gridway [52]. However, connecting to Globus Gatekeeper 

directly from the Grid Resource Broker means the broker can make sure of some Globus-

specific features, such as the notification mechanism, that is, rather than polling Globus 
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periodically to find out the job status, it can register a listener on Globus notification 

service so that Globus will notify the listener of any changes on job status.  

Thirdly, to alleviate the tedious process of looking for files from different storage 

systems, the system automates job processing including data staging and job submission, 

and uses a central storage for job outputs. Normally, job output is placed in the local 

storage attached to the supercomputer where the job runs. If a user runs jobs in several 

supercomputers, the output will scatter among several sites. Hence, it is useful to move 

all outputs from each individual supercomputer’s local file system to a central storage 

space, and it is easier to make sure a firewall is opened between the central storage and 

each supercomputer than opening firewalls between any two GridFTP servers. Grisu2 can 

be configured with the location of the central storage, and to stage out data automatically 

once a job is done. Users can also specify a different location, such as a local GridFTP 

server, to stage out results. 

In addition, Grisu2 adopts various open standards so it can be easily integrated with 

other applications. For this, I considered various client APIs and remote APIs. SAGA 

[172, 173, 174] is one of the most popular client APIs that can connect to different grid 

systems and data systems. DRMAA [175] is another client API that provides a simple, 

unique API for accessing heterogeneous grid systems. The difference is that DRMAA 

only provides APIs for job submission, while SAGA also defines APIs for data access. 

On the other hand, OGSA BES [119] is a remote API, which offers a web service 

interface, abstracting basic functions that an execution service should have, and ignoring 

the differences, which makes it easier to develop and use. Table 6-1 shows an example of 

the operations related to job control in BES (a job is called an activity in BES). The 
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advantage is that a BES client can be written in any programming language, as long as it 

supports web service, and the BES service provider does not need to worry about how the 

client works. If adopting a client API, I may need to provide a library for any language 

that users may want to use, and this increases the work and requires developers to know 

several programming languages in order to write and maintain such an API library. 

Therefore, the BES specification has been chosen for simplicity and because it is 

maintenance-free on client side. As an OGF specification, BES is supported by a number 

of major grid service providers, such as CREAM [176]. To standardize the way of 

describing a job, I adopted JSDL [35] because it is an OGF standard and supported by a 

number of grid gateways and meta-schedulers and users don’t need to learn a new 

language before they can submit a job to Grisu2. 

 

BES-Factory Port-type  

CreateActivity  Request the creation of a new activity  

GetActivityStatuses  Request the status of a set of activities  

TerminateActivities  Request that a set of activities be terminated  

GetActivityDocuments  Request the JSDL documents for a set of activities  

GetFactoryAttributesDocument  Request XML document containing BES properties  
Table 6-1 A summary of operations of BES-Factory Port-type 

 

The architecture of Grisu2 includes three front-end interfaces and a grid resource 

broker, as shown in Figure 6-1. 
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Figure 6-1 Grisu2 Architecture 

 

6.2.1 Front-end interfaces 

 

Grisu2 can be used to access a number of existing regional compute 

infrastructures that are accessible via the Globus Toolkit. However, the interface of 

Globus Toolkit is complicated and hard to use. In addition, each different organization 

has its own user policy, and firewall configuration. Although having many options, the 

end user may not know how the grid system is set up or where the best location is to run 

their job. Even knowing about that, the user may be blocked by the firewall. To solve this 
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problem, Grisu2 acts as an intermediate point by providing several web-based interfaces, 

for users with different levels of IT skills and different requirements. Users can access to 

these interfaces with a web browser or other tools that support HTTP access, given that 

web access is normally allowed in universities. Therefore, users don’t need to worry 

about accessibility to all the grid resources; instead, only Grisu2 server needs to have 

direct access to all these resources. 

 

6.2.1.1 Web portal 

 

The web portal is a web interface based on AJAX, jQuery (a JavaScript 

framework) and other web 2.0 technologies. Its main usage is for users to submit and 

query jobs with a web browser, without needing to install additional software. The portal 

has a built-in user management system, which keeps a record of users who have ever 

used this portal, and their basic information that is retrieved from Shibboleth, such as 

common name and email address so an email can be sent to the users when jobs are 

finished.  

An important feature of the portal is its job template system, which can be used by 

administrators to define in minutes customized web forms with widgets such that users 

can take advantage of these forms to enter job parameters and specify input files specific 

to a particular application. With this feature, the portal is able to support a number of 

applications, without requiring any development to customize the portal to each 

application. An example will be given in section 6.4. 
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6.2.1.2 BES web service interface 

 

The OGSA Basic Execution Service (BES) specification [119] is an open 

standard defined by OGF. BES gives a standard WSDL for third-party applications to 

communicate with the BES service. The WSDL includes functions to create a new job, 

query job status, and terminate an existing job. In fact, Grisu2 conforms completely to the 

OGF HPC Basic Profile specification [177], which consists of not only the BES interface 

as the main interface to interact with a job submission gateway, but also WS-Basic 

Security Profile [178] as the authentication method, and JSDL [35] as the job description 

language. The reason for choosing BES is because it is a standard web service interface, 

which can be used by different programming languages, without needing a client library, 

and also it is widely adopted by various organizations [179, 180] and efficient [181]. 

 

6.2.1.3 RESTful interface 

 

RESTful interfaces [182] are in wide use, due to their ease of development and 

use. Many websites, such as Yahoo and Flickr, have developed their RESTful interfaces 

for developers to hook in third-party applications. In Grisu2, the RESTful interface 

provides an easy additional way for users to submit jobs and query jobs. Users can write 

some simple scripts to invoke the functions Grisu2 offers, which required a fair bit of 

work by an experienced developer in the past. Job submission via the RESTful interface 

is as simple as posting a JSDL file to the portal, while the JSDL file complies with the 
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same specifications as what are used in BES interface. Section 6.4 will give examples of 

how this is used in a variety of use cases. 

 

6.2.2 Grid Resource Broker 

 

Grid Resource Broker is the core of Grisu2. It receives job requests from users 

and interacts with other grid services to coordinate the execution of jobs on resources in 

the grid. It has two key components, a Job Store and a Meta-scheduler. 

 

6.2.2.1 Job Store 

 

Job Store keeps job details in a relational database, which is managed by 

Hibernate [183], a database access framework to map database schema into Java objects. 

This means Grisu2 can use any Hibernate supported relational database, such as MySQL 

or Oracle, without changing one single line of code. Job Store saves all information about 

a job, such as its name, parameters, status, and the queue where the job is run, such that 

every query of job details may be run against the Job Store, rather than sending the 

request to the remote compute resource. This makes the system faster and more loosely 

coupled from these compute resources. Furthermore, after the job is done, it will be 

removed from the compute resource; however, information about the jobs will still be 

kept in Job Store and job files are kept in the central storage, until the user deletes it 

explicitly. In this sense, Job Store is a job archive to users, which enables users to look at 

details of all previous jobs, including links to input data and output files. 
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6.2.2.2 Meta-scheduler 

 

The design of this meta-scheduler follows the principle presented by Schopf 

[184]. In this principle, a meta-scheduler has three phases, resource discovery, system 

selection and job execution. In the resource discovery phase, the meta-scheduler collects 

real-time information from a Grid Index Information Service, such as MDS or BDII [45]. 

In the system selection phase, it compares the user’s hard requirements, such as the 

required application and its version, the number of required CPUs, and the required CPU 

time, with the information collected before, and generates a list of candidate LRMS job 

queues that are suitable to run the job. Then, a ranking algorithm is applied on this list to 

work out the best resource for the job.  

The ranking algorithm lies in a component that can be easily changed anytime. At 

the moment, the purpose of the algorithm is to spread the workload to all available 

resources evenly. It keeps an array of all resources with the free job slots number as the 

initial value. Jobs will always be sent to the resource with the highest ranking; if they 

have the same ranking, resources will be used one by one in alphabetical order. If a job is 

executed, the ranking value of that resource is decreased by one. Once the value becomes 

zero, no job will be sent to this resource. When the values of all resources become zero, 

the ranking values in the array will be reset to their initial values and all this will start 

again. The meta-scheduler distributes jobs to the selected compute resource via Globus 

middleware. If anything goes wrong during staging-in or execution, the second best 

option in the list will be tried, and so on.  
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The meta-scheduler controls every job with a finite state machine. Figure 6-2 

shows the state-transition diagram of Grisu2. The states are utilized by Grisu2 for 

workflow control, and also shown to users so that users know what is going on. The 

design of this state machine is mostly influenced by the BES specification. It is a 

specialization of the state model in the BES specification, and expands one of the BES 

simple states into several complex states, so clients that understand basic BES states can 

interact with it. Applying a standard also means the BES interface can make use of it 

seamlessly, without needing to do a mapping. All states starting with Running are sub-

states of Running in the simple BES state machine. Other states exist in the BES state 

machine except New. 
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Figure 6-2 Grisu2 state machine diagram 

 

The first state, New, is the default state when a job object is initiated. When the job 

is submitted to Grisu2, its state is changed to Pending, meaning that the job is waiting for 

Grisu2 to process. It remains Pending in a situation where Grisu2 server does not have 

enough resource to process a new job. Once the job is started, the state is changed to 

Running: Resource Discovery, which refers to the phases of resource discovery and 

system selection. By the end of this state, the meta-scheduler should have a list of 

candidate queues with ranking values; otherwise the whole job execution process will 

stop. The following state is Running: Stage in, which means the meta-scheduler sends 

input data to the target queue; if it fails, the second queue in the list will be tried, until all 

queues are tried; if none of them works, the whole process will stop and the job will be 
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tagged as Failed. If input files are staged in successfully, Running: Executing is the next 

state, when jobs are sent to the remote Globus gatekeeper for execution. If the destination 

Globus gatekeeper can send back notifications, the state may change accordingly to 

Running: Executing Pending, meaning pending in Globus, and Running: Executing 

Active, meaning active in Globus. If no notification is received from the Globus 

gatekeeper, the job’s status will still be Running: Executing. In this case, a background 

thread will check its status in Globus periodically until the job is done or failed. Then 

Grisu2 will move the job to the next state: Running: Stage out, which transfers output 

data back to the central storage, and then the whole process will finish. In the state 

machine there are two Running: Suspended states, which indicate the job is suspended 

due to some reason but is able to continue if the situation changes. For instance, Running: 

Suspended Proxy Expired happens when the cached proxy is expired, and the user hasn’t 

logged in to Grisu2 for a long time. To fix that, the user just needs to log in to Grisu2, 

and a proxy will be automatically cached, then the user can resume these suspended jobs. 

Running: Suspended Stage-out failed happens when Grisu2 cannot stage out results from 

the compute element to the destination due to problems at either end, or the network 

connecting them. Grisu2 will try a pre-configured number of times should this happen, 

and suspend the job if no success. In this case, the user has to wait until the problem is 

fixed, then resume the job so that Grisu2 can continue to stage out data and do the rest of 

work. 
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6.3 System Integration and Deployment 

 

The system is dependent on a number of other grid services. This section outlines 

the integration, and gives an example of how it has been deployed on the ARCS Grid, a 

national grid service in Australia. To keep the system generic, all customization during 

deployment has been done as system configurations, while the integration has been 

achieved with the use of other standard/generic components. Figure 6-3 shows the 

interactions between Grisu2 and other standard grid services that are used by the ARCS 

Grid. 

 

 

Figure 6-3 Grisu2 and other ARCS services 

 

6.3.1 Authentication and authorization 

 

Globus accepts grid certificates as the only way of authentication but they are not 

easy to obtain and use. To lower the barrier to user registration and hide the complexity 
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for users to use the grid, Shibboleth has been chosen as the main authentication method 

by the portal. The Grisu2 portal is configured as a Shibboleth service provider. Users can 

then use their credentials for their own organization, without the need to remember a 

different set of usernames and passwords or manage a grid certificate. As the grid 

systems require GSI authentication and Shibboleth does not involve any certificates but 

only username and password pairs, Short Live Certificate Service [82] (SLCS) is 

employed to issue short-lived X.509 certificates to users for accessing Globus services 

based on successful Shibboleth authentication. To issue SLCS certificates to other 

Shibbolized services on behalf of the requesting user, the SLCS delegation service, an 

add-on to SLCS service, is exploited for Grisu2 to receive certificates so that Grisu2 can 

use the users’ certificates to access grid services. Authorization is achieved by the use of 

Virtual Organization Membership Service (VOMS) [43], a generic service that manages 

Virtual Organizations (VO) and VO groups. ARCS requires users to register before using 

its service, where users have to sign a user agreement. Once registered, users will be 

placed into a VO. With the given SLCS certificate, Grisu2 queries against VOMS to 

check whether the user has registered. If yes, the user is then allowed to use the portal. 
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Figure 6-4 Authentication with Shibboleth and SLCS delegation service 

 

Figure 6-4 shows the login procedure in detail. In fact, not all of the steps are 

required. For instance, if the user has already logged in with Shibboleth and the 

Shibboleth session remains valid, step 2, 3 and 4 will be skipped; if the user already has a 

proxy cached in Grisu2, step 5 and 6 will be skipped. The cached SLCS certificate will be 

valid for 10 days, so the user does not need to get a new certificate from SLCS delegation 

service every time. 
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6.3.2 Integration with Data Fabric 

 

The integration of the Data Fabric makes it possible for Grisu2 to make use of the 

storage provided by the Data Fabric, which is based on a virtual file system, iRODS [18], 

with Davis [102], discussed in Chapter 4, and Griffin [103], discussed in Chapter 5. A 

higher-level description of how the Gateway fits into the whole infrastructure can be 

found in Chapter 3. The Grisu2 web portal has embedded the ARCS Data Fabric’s web 

interface. Because both the Grisu2 portal and Davis are Shibboleth-protected, users do 

not have to log in twice when using the embedded Davis interface, e.g. to share their job 

output to other researchers. The GridFTP interface of the Data Fabric is heavily used by 

Grisu2 in data staging. To some extent, if you consider Grisu2 as the gatekeeper of all 

compute elements in the grid, the Data Fabric is its default storage resource. Input data 

from the user’s desktop will be placed in the Data Fabric when submitting a job from the 

web portal. After the job is done, output data will be kept in the Data Fabric. Grisu2 uses 

the GridFTP protocol to interact with the Data Fabric, which means users can also 

specify other GridFTP resources, such as a local GridFTP server, to store data. 

Figure 6-5 shows the relationship among Grisu2, the HPC cluster and the Data 

Fabric. Normally, each HPC cluster (with a Globus interface) is associated with a 

GridFTP server. Both the HPC cluster and its associated GridFTP server can access a 

shared area of the file system. Input data will be transferred into the shared storage space 

via GridFTP, then the HPC cluster can process this data. Thanks to GridFTP’s third-party 

transfer feature, when transmitting data between an HPC cluster’s GridFTP server and 
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the Data Fabric, data flows directly without going through Grisu2, which only needs to 

establish a control channel to each of them to control and monitor the transfer. 

 

 

Figure 6-5 Integrating Grisu2 with Data Fabric 

 

6.3.3 Job execution in a national grid environment 

 

Grisu2 views a typical job execution as involving a number of steps, and several 

components, as shown in Figure 6-6. This is implemented with the use of an open-source 

framework, Spring Batch [185], which is a batch framework aiming to provide reusable 

functions and automate job processing. It suits this situation very well, because it is 

designed to handle a job in simple steps with an XML configuration file, for the case 

where a workflow system is too heavy to use. The whole job submission process is 

divided into steps, while each step represents one action in the process, with pre-defined 
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exit statuses. Spring Batch will decide what the next step will be based on the exit status, 

or may just terminate the job. Since each action is wrapped in a step, it is easy to change 

the workflow, or replace one action with a different action in the future. In addition, 

Spring Batch provides a mechanism to re-do a step if it fails until it gets to a state that 

satisfies the job submitter. Spring Batch maintains a pool of running jobs, whose number 

can be configured according to the hardware specification of the server, so as to ensure 

the stability of Spring Batch and Grisu2, and prevent it from running out of resources. 

When the number of running jobs reaches the limit, Spring Batch will put new jobs on 

hold until any existing job in the pool is finished. Scalability can easily be achieved by 

Spring Batch. If there are more jobs than one instance can handle, more Spring Batch 

instances, which are Grisu2 instances in our case, can be set up to share the load, as 

described in the next section. 
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Figure 6-6 Steps of job processing in Grisu2 

 

Figure 6-6 shows all of the steps in job processing. Jobs can be submitted via any 

of the three interfaces, and monitored via any of them. When submitting jobs from the 

web interface, users can upload input files from their desktop to the Data Fabric, so when 

the job is processed, input data can be staged in from the Data Fabric, rather than the 

users’ desktop. This makes it possible for users to create a large number of jobs in a short 

time, without having to wait for input data to upload. After a job is submitted, it is 

pending in Grisu2. If the Spring Batch job pool is not full, Spring Batch will start the job, 

which proceeds thus: 

1. Grisu2 queries MDS or BDII, based on job parameters, such as application name, 

application version, number of CPUs and CPU time, to find out a list of available 

queues that have the required application installed and available job submission 
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resource. A ranking value will be attached to each queue, and used as the priority 

in step 2. The calculation of each ranking, discussed earlier in section 6.2.2.2, is 

currently based on several factors, such as the number of jobs the queue has run, 

and the number of its free job slots published in MDS. The queue with a larger 

ranking value will be given a higher priority. The list is then saved into Grisu2’s 

Job Store for later use. 

2. Grisu2 tries the items from the candidate queue list in the order from the highest 

ranking to the lowest ranking, unless the user specifies a desired one. In this step, 

Grisu2 tests each queue in the list to see whether its associated GridFTP is 

accessible, readable and writable. If yes, a working directory will be created and 

input data will be staged in. If not, try next queue according to the priority. 

3. Submit this job to the selected queue through Globus gatekeeper. If the job 

submission fails, it will go back to step 2 to try the next queue in the list, and do 

stage-in again. 

4. Globus sends back notification if status is changed. Grisu2 will also query Globus 

every 5 minutes if no notification has come back. This makes sure Grisu2 is 

aware of any events. Once Grisu2 receives a notification of job finish or failure, 

step 5 will be triggered. 

5. Grisu2 copies all files from the working directory in the compute resource to the 

Data Fabric, and removes them after this. Because the cluster can only use limited 

storage space, this makes sure space will be freed up after each job process and 

makes room for the next job process. 
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6. This step sets all necessary flags and statuses in Grisu2 to mark the job to finished, 

or failed. Grisu2 also notifies the user by sending an email. The email notification 

is useful because the user does not need to keep an eye on the job but will get a 

message when it is done, so he/she can focus on other research work during this 

time. 

 

6.3.4 Scalable deployment 

 

The component design of Grisu2 enables the separation of the portal and 

submission component in production system deployment. The production system 

structure is shown in Figure 6-7. 

In this deployment, web interfaces and submission nodes are in different hosts, and 

the communication between them is via the Job store, which is a standalone database 

instance. Users take advantage of the web interfaces to create jobs, query jobs and delete 

jobs. Once new jobs are created, they will be stored in the Job Store, while each 

submission node monitors any changes in the Job Store. If a new job is found, a 

Submission Node will claim ownership, thus other submission nodes will not process the 

same job again. Each Submission Node is configured with a limit of concurrent jobs. If 

the limit is reached, it cannot retrieve more jobs and has to wait until its own jobs to 

finish. If there are more jobs to run, it is feasible to run more submission nodes. If there 

are fewer jobs, likewise, redundant submission nodes can be shutdown to free up 

resources. This structure is very suitable for the infrastructure with Virtual Machine 

provisioning to run submission nodes according to the demand. 
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Figure 6-7 Grisu2 production system deployment 

 

6.4 Use cases 

 

Users would not be interested in Grisu2 if it did not support specific applications 

they want to use. This section briefly outlines how Grisu2 fits into users’ everyday work 

and some examples of how users have taken advantage of the capabilities of Grisu2 in 

their research. 
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6.4.1 Support of various applications 

 

One key feature of the system is its support of different applications, rather than 

being a portal for a particular application. This feature comes from several design 

decisions. Firstly, the system allows users to specify the application name and application 

version when they submit a new job, and this information will be stored in Job Store. 

Secondly, the adoption of the JSDL specification enables users to specify the application 

name and application version if they use the RESTful or BES interface. Thirdly, the web 

interface is equipped with a template system, which can be used to customize the web 

form for each application, given that each of them may have a different set of job 

parameters or input files. Lastly, Grisu2 retrieves information from MDS, to where all 

regional grid operators publish information about what applications have been installed 

and what versions are available. To submit a job, the user only needs to select an 

application and they will get a web form, customized for that application, to fill in. After 

a job is submitted to Grisu2, the Grid Resource Broker will first query MDS to get a list 

of queues that have the required application installed, and then one of them will be 

chosen based on ranking values, as described in section 6.2.2.2. 

A template is a property file defining a job submission form with widgets. The job 

submission form may contain widgets such as wall time input, CPU number input, input 

file upload, etc. This makes it easy for system administrators to create a form for a new 

application without knowing how to program. In the first version, Grisu rendered the 

template with Java Swing components. In Grisu2, templates are shown in HTML format 

as it is a web-based system. Figure 6-8 is the web form for the LAMMPS [186] 
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application, which has widgets to upload input files and enter parameters. Figure 6-9 is 

the web form for the Underworld [187] application. As can be seen, different widgets are 

displayed for different applications. Figure 6-9 also has the advanced option panel 

expanded, where users can choose a specific VO, a specific version and/or a specific 

queue to run the job, rather than letting Grisu2 to make the decision. This feature is useful 

to advanced users who have more understanding of the Grid. 

 

 

Figure 6-8 A UI template for LAMMPS 
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Figure 6-9 Job template for Underworld in Grisu2 

  

Figure 6-10 is the template file of Underworld. In the beginning of the template, a 

user can designate the application name, the application version and the command line to 

run this job. Followed are five widgets, which are a text box widget to enter job name, a 

combo box widget to select or enter CPU number, a combo box widget to select or enter 

wall time, a single file widget for the main input file and a multi file widget for additional 

input files. Users can select a file from local file system or from the remote central 

storage, Data Fabric. There are some common parameters for the widgets, such as its 

size, its title, which are useful when displaying the widget.  
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Figure 6-10 Underworld template configuration in Grisu2 

 

To date, about 20 applications are supported for various disciplines, such as 

BEAST, BLAST and MrBayes for Bioinformatics, LAMMPS for Computational 

Chemistry, Underworld for Earth science, CalculiX and Meep for Engineering, Octave 

and R for Mathematics and statistics, as well as ESyS-Particle, POV-Ray, GrADS, and 

user-developed applications, such as Java and Python. Apart from these, Grisu2 also 

provides a generic template so that users can enter an arbitrary executable and arguments 

commandline = Underworld ${file} 
application = Underworld 
applicationVersion = 1.4.1 
= Generic =  
[jobname] 
type = Jobname 
defaultValue = underworld 
title = Jobname 
size = 2000x70 
[cpus] 
type = Cpus 
title = CPUs 
size = 100x100 
defaultValue = 4 
[walltime] 
type = Walltime 
title = Walltime 
defaultAmount = 10 
defaultUnit = hours 
size = 200x100 
[file] 
type = SingleInputFile 
title = Primary XML Input File 
size = 2000x70 
[file2] 
type = MultipleInputFiles 
title = Additional Files 
size = 2000x210 
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just in case the application they want to use is not in the template list, or they want to do 

something special. 

Figure 6-11 shows the main page, which displays a full job list of all applications 

in the upper half of the screen. Users can also filter a particular application using the 

advanced search option. If the user clicks a job, details of this job will be displayed in the 

lower half of the screen. In job details section, there are five tabs. Job properties will be 

shown as the first tab by default. Other tabs include logs, a list of input files, candidate 

queues and files that are associated with this job. For instance, if Candidate Queues is 

clicked, it will show a list of queue information gathered from MDS/BDII. It only has 

what is interesting to Grisu2, such as the queue name, gatekeeper contact string, default 

GridFTP URL, module name of the application. It also shows which queue has been 

chosen to run the job. In the Files tab, users can preview a file, before downloading it. In 

the current version, users can preview images, text files and video files. When a job is 

running, the Files tab shows files in the cluster’s local file system, so users can have an 

idea of what outcome has been produced so far from the execution. After the job finishes, 

the Files tab shows the files in Data Fabric, where the output has been moved to, and will 

be kept as an archive. 
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Figure 6-11 Grisu2 front page - Job list and job details 

 

Apart from general features, special features are also supported. Figure 6-12 

shows a special tool for the application Underworld. The output of Underworld job 

includes a table of numbers. With using a JavaScript plotting widget, the web interface 

can visually display the table of numbers as a line chart.  
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Figure 6-12 Underworld data analysis chart in Grisu2’s web interface 

 

6.4.2 Support for a large number of concurrent jobs 

 

Support for a large amount of jobs is achieved by three main features. Firstly, 

Grisu2 is running in an asynchronous manner, that is, jobs that are submitted via the web 

frontend will be saved into Job Store, which only requires to do some database insertions, 

while another service running in the background processes these jobs in a different host, 

which may include doing some time-consuming tasks such as communicating with 

Globus Gatekeepers and GridFTP servers. Because local database operations are much 

faster than submitting jobs to Globus or querying an external service, creating thousands 

of jobs can be accomplished in a short period of time. Once all jobs are created in Job 

Store, the Grisu2 Grid Resource Broker will process them in steps that are described in 
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Section 6.3.3. Moreover, Grisu2 implements JSDL Parameter Sweep Specification [188], 

which allows users to create multiple jobs in one submission, and decreases the number 

of requests sent from a client, hence shortens the time used in job creation. Lastly, the 

RESTful interface and BES interface are the best and only way to send a large number of 

jobs as it is not realistic to create thousands of jobs by manually filling in web forms. In 

the current version, the RESTful interface provides a few simple but essential functions, 

including submitting, querying, and deleting a job, as in Figure 6-13.  

 

 

Figure 6-13 RESTful API of Grisu2 

 

API Method: submit a new job 
Request: /grisu/jobs?type=jsdl 
HTTP method: POST 
Request body: JSDL content 
Response: <id>id</id> 
 
API Method: get job details 
Request: /grisu/jobs/id.format 
HTTP method: GET 
Format: xml, json 
Response: Job details in JSON or XML format 
 
API Method: delete a job 
Request: /grisu/jobs/id 
HTTP method: DELETE 
Response: {“message”:”success/failed”} 
 
API Method: resume or kill a job 
Request: /grisu/jobs/id?action=action_name 
HTTP method: POST 
Parameters: action_name: resume, kill 
Response: {“message”:”success/failed”} 
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With the RESTful interface, users can write a simple script to submit a job to 

Grisu2, without needing to install a client application. Figure 6-14 is an example of a 

Python script, and Figure 6-15 is a version written in shell script. They both submit a job 

in JSDL format via the RESTful interface. This is a useful feature to integrate Grisu2 

with other applications. For example, Open Office supports macros that can be written in 

Python. It is easy to write a macro so people can submit a large amount of jobs from 

Open Office’s spreadsheet. 

 

 

Figure 6-14 Script snippet in Python 

 

f = open(jsdlfile, 'r') 
data = f.read() 
f.close() 
 
auth = 'Basic ' + string.strip(base64.encodestring(username + ':' 
+ password)) 
conn = httplib.HTTPS("grisu-dev.arcs.org.au") 
base64string = base64.encodestring('%s:%s' % (username, 
password))[:-1] 
conn.putrequest("POST", "/grisu/jobs?type=jsdl") 
conn.putheader("Authorization", auth) 
conn.putheader("Content-type", "text/xml") 
conn.putheader('Content-length', str(len(data))) 
conn.endheaders() 
conn.send(data) 
 
# get the response 
statuscode, statusmessage, header = conn.getreply() 
print "Response: ", statuscode, statusmessage 
print "headers: ", header 
res = conn.getfile().read() 
print res 
 
conn.close() 
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Figure 6-15 Job submission with curl to Grisu2 

 

According to our experience, it takes 2-3 seconds to submit a single job using 

JSDL via RESTful interface. This is acceptable if the user only submits a couple of jobs, 

however, when it comes to hundreds or thousands of jobs, this is too slow. If these jobs 

have some degree of similarity, such as using the same executable, or processing the 

same input file, Parameter Sweep job [189] scheduling may be suitable as a means of 

facilitating more rapid completion of the suite of concurrent jobs. A Parameter Sweep is a 

job that internally defines a collection of jobs running multiple iterations of the same 

command but with different input values and generating different outputs. It is widely 

used by Grid systems such as Nimrod [190]. Part of the definition of a Parameter Sweep 

is a range of values delineating the possibly multi-dimensional space to be explored – one 

job is generated for each point of the defined range. Often, the range is expressed as an 

array of values, or the combination of a start value, an increment value and an end value 

constituting an iterative definition of the space explored (nested iterations define a multi-

dimensional space). The JSDL Parameter Sweep Extension defines a schema to append 

Parameter Sweep definitions to a normal JSDL document, such that when the JSDL 

document is processed, a collection of jobs are generated and one or more parameters in 

the JSDL can change between each successive job. Figure 6-16 shows an example, which 

curl -H "content-type:text/xml" -XPOST -k -u username:password -d "`cat myjob.jsdl`" 
https://grisu-dev.arcs.org.au/grisu/jobs?type=jsdl 
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is a portion taken from a Parameter Sweep job written in JSDL, and the complete version 

can be found in Appendix A. 

 

…… 
<jsdl:Application> 
         <jsdl:ApplicationName>Mira</jsdl:ApplicationName> 
            <jsdl-hpcpa:HPCProfileApplication >  
                <jsdl-hpcpa:Executable>mira</jsdl-hpcpa:Executable>  
                <jsdl-hpcpa:Argument>--project=</jsdl-hpcpa:Argument>  
                <jsdl-hpcpa:Argument>--parameterfile=miraIntersect.txt</jsdl-
hpcpa:Argument>  
                <jsdl-hpcpa:Argument>-MI:sonfs=no</jsdl-hpcpa:Argument>  
            </jsdl-hpcpa:HPCProfileApplication>  
        </jsdl:Application>  
…… 
     <jsdl:DataStaging> 
      <jsdl:FileName>any</jsdl:FileName> 
      <jsdl:CreationFlag>override</jsdl:CreationFlag> 
      <jsdl:Source> 
       <jsdl:URI>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/public/AATest/MiraAutoSelect-46-66/miraIntersect.txt</jsdl:URI> 
      </jsdl:Source> 
     </jsdl:DataStaging> 
…… 
<sweep:Sweep> 
  <sweep:Assignment>  
         <sweep:DocumentNode>  
             <sweep:NamespaceBinding ns="http://schemas.ggf.org/jsdl/2006/07/jsdl-hpcpa" 
prefix="jsdl-hpcpa" />  
             <sweep:Match>  
                /*//jsdl-hpcpa:Argument[1] 
             </sweep:Match>  
          </sweep:DocumentNode>  
          <sweepfunc:Values>  
             <sweepfunc:Value>--project=Kukri19</sweepfunc:Value>  
             <sweepfunc:Value>--project=Kukri20</sweepfunc:Value>  
             <sweepfunc:Value>--project=Kukri21</sweepfunc:Value>  
          </sweepfunc:Values>  
       </sweep:Assignment>  
  <sweep:Assignment>  
          <sweep:DocumentNode>  
             <sweep:NamespaceBinding ns="http://schemas.ggf.org/jsdl/2005/11/jsdl" 
prefix="jsdl" />  
             <sweep:Match>  
                /*//jsdl:DataStaging[2]/jsdl:Source/jsdl:URI 
             </sweep:Match>  
          </sweep:DocumentNode>  
          <sweepfunc:Values>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri19_in.454.fasta</sweepfunc:Value>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri20_in.454.fasta</sweepfunc:Value>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri21_in.454.fasta</sweepfunc:Value>  
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          </sweepfunc:Values>  
       </sweep:Assignment>  
…… 

Figure 6-16 A portion of a sample parameter sweep job in JSDL 

 

This JSDL file will actually generate three jobs. Each is a Mira job with three 

input files. The first section is a normal JSDL file, used as a template. The second section 

is swept parameters. In this case, it replaces the first argument and three input files; each 

of them will be replaced by three different values, hence results in three final JSDL files, 

therefore three jobs. Using Parameter Sweep is an easy way to submit multiple jobs. 

In a real user scenario, the gateway was used to submit thousands of jobs running 

Mira [191] for a bioinformatics project. The goal of the project is to build a Wheat 

transcriptome, which is the sequence data of an organism’s mRNA population. mRNA is 

transcribed from the gene sequence on the chromosome and is later translated into the 

amino acid sequence that forms the protein product. The individual reads from the 

sequencers in this instance, called Expressed Sequence Tags (ESTs), are short, and 

multiple ESTs are assembled to produce the final mRNA transcript sequence. 

Consequently, MIRA takes short DNA sequencing reads and assembles them into longer 

sequences that represent the actual transcripts. 

The Wheat genome is a hexaploid - there are six copies of each chromosome - so 

there is a huge pool of EST sequences produced. MIRA could technically take all the 

EST reads into one job and spit out all the individual transcripts, the problem is that it is 

memory intensive, in the order of around 1TB would be required in this case. 
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So the users needed to use other programs to cluster the ESTs into separate MIRA 

jobs. These programs, such as Velvet [192], are also assemblers but are built for speed 

and are not as accurate as MIRA. So each MIRA job is a subset of ESTs that are broadly 

similar in sequence, MIRA then goes to work and produce an accurate transcript. In total, 

they have about 30 thousand DNA clusters for MIRA to work on. Therefore, a total of 30 

thousand jobs are submitted to the Grisu2 portal and then the portal distributes them to 

several underlying Globus gatekeepers that have the Mira application installed on the 

associated HPC resources. 

The final transcriptome, the results of these 30 thousand jobs, can be used to build 

an EST library that is a platform for an enormous range of wet and bioinformatic 

experiments. One possible form is to build a BLAST database so it can be used by other 

BLAST jobs. 

The user uses OpenOffice Calc (SpreadSheet) for job submission. As OpenOffice 

Calc supports Python extensions, the user has written a python script and attached them 

to Calc’s spreadsheet as a function. The spreadsheet keeps track of all jobs with one cell 

storing the parameter of one job, and places a flag on those that have been submitted, 

such that it knows which ones have been submitted and which ones are not. The python 

script assembles jobs into JSDL format and sends them to Grisu2’s RESTful interface. To 

submit a new job, the user only needs to call the associated function on the related cells. 

The MIRA application has been installed on five regional compute resources, so Grisu2 

can distribute all jobs to all five compute resources to share the load, and that takes much 

less time than executing all jobs in one supercomputer. Moreover, the local compute 
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resource where the user has access to is usually busy; if submitting to the local resource, 

jobs will often wait in the queue for some time before being processed. 

 
6.5 Related work 

 

There are a number of grid portals developed over the past few years, such as the 

CMS web portal intending to be a gateway to CMS job submission and management 

[115], a computational portal for processing astrophysical and high energy physics data 

based on GridSphere and Gridbus broker [193], the VIVE portal for 3D medical image 

processing and visualization [194], the CSEO portal for multi-scale modeling of complex 

reacting systems in science and engineering [195]. There are other generic grid portals. 

The Pegasus portal is a tool to generate abstract workflows based on some metadata 

description, and submit these workflows to the Grid using Pegasus [196]. The GENIUS 

portal, with job submission and data management functions, allows easy access to grid 

resources provided by INFN [197]. There are other user community portals aiming to 

support a particular discipline. For example, the Earth System Grid [111] is designed to 

enable community access to climate simulation results in DOE and NSF supercomputers, 

with rich features including data query, data analysis, data transfer. The Southern 

California Earthquake Center (SCEC) portal is an entrance to its digital library that 

contains results of large-scale earthquake simulations executed in TeraGrid and provides 

tools for querying and visualization [198].  

These portals, however, mostly rely on a specific environment, and are developed 

to meet the requirements of a particular research group or discipline area. GridSphere 
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[199], based on the Portlet technology, aims to be a generic framework to build grid 

portals, but it doesn’t provide a mechanism to build other interfaces, such as web service 

interface and RESTful interface that are needed in this project. Moreover, Portlets are not 

easy to develop compared to web 2.0 technologies based on AJAX and JavaScript or 

simple templates as provided by Grisu2. The Open Grid Computing Environment 

(OGCE) project [200] has developed a REST interface for job submission, a number of 

reusable Portlet-based components and Java programming abstractions for the grid. It 

includes a portal, a number of web services and client libraries, to enable access to all 

sorts of grid services, such as information, data and execution services. However, the 

RESTful interface provided by OGCE doesn’t support JSDL, and OGCE doesn’t support 

BES either. Andreozzi and Marzolla have proposed a REST mapping of the BES 

interface [201]; however, their work is still at the conceptual stage, and they have not 

developed any prototype system for that. 

A lot of effort has been put into the research and design of grid gateways, grid 

resource brokers and meta-schedulers. They normally provide API-level interfaces, such 

as a web service interface or remote APIs, but only some of them provide a BES 

interface. They don’t provide a simple RESTful interface, or a GUI for end-users, such as 

a comprehensive web interface like Grisu2 has, let alone the ability of customization for 

different application and the support of Shibboleth. On the other hand, it is easy to add a 

component to Grisu2 so that Grisu2 can distribute jobs to these systems; Grisu2 can 

already distribute jobs to Globus, and one of our future works may be to support other 

middleware like GridWay. Globus is a grid gateway with WSRF-based web service 

interface for local schedulers. It provides uniform authentication mechanism and enables 
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remote access to local schedulers. GridWay [52] is a popular framework based on Globus 

and allows easy and efficient execution of jobs on dynamic grid environment. It aims to 

provide a grid resource broker, which Globus lacks, and offers its own API and a 

standard DRMAA API. CREAM [176, 180] is another job execution and management 

system that distributes jobs to remote and heterogeneous HPC systems, with a proprietary 

interface and a BES interface. Gridbus [202] has a grid resource broker that aims to 

provide access to the most efficient and economical grid resources. Nimrod/G [190] 

aggregates various grid resources on the backend and presents a single entry to these 

resources to users, with focus on resource management and scheduling for parameter 

sweep applications. 

 

6.6 Conclusion 

 

In summary, I have evaluated existing solutions for bringing to users an easy-to-use 

and customized interface to access a grid of distributed HPC resources. Since existing 

solutions are neither providing all required features, nor easy to customize, I developed 

Grisu2, which adopts open standards and is very easy to use and builds on existing 

systems. It provides a grid resource broker with a built-in meta-scheduler and various 

interfaces. The web portal attracts users for its simplicity and efficiency in job 

submission, so they can spend more time on their research work. It has been Shibbolized, 

giving users a simple way to authenticate in order to access the system. The portal also 

features a template system that is being used by administrators to define templates for 

various applications. The BES web service interface and the RESTful interface are good 
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resources for developers and advanced users who want to hook a third-party application 

into the grid. These different interfaces improve interaction and usability. Additionally, 

the system has been integrated with our national file system via GridFTP, so that data 

produced during job execution can be well managed. The system is now being used by 

many users in a variety of disciplines and with various use cases from single job 

submission via web interface to parameter sweep jobs via scripts. 
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Chapter Seven: Conclusion and Future Work 

 

7.1 Conclusion 

 

This thesis began with an introduction to e-Science and the grid. Grid technology 

is the backbone of e-Science, providing fundamental infrastructure that supports research 

activities via grid services. Generally speaking, there are both data grids and 

computational grids, focusing on sharing storage resources and compute resources 

respectively. Many grid middleware systems have been developed over the past several 

years. This thesis mainly focuses on data grid middleware, computational grid 

middleware and data transfer services. Authentication mechanisms, especially web-based 

authentication methods, have also been studied. The literature review gave a 

comprehensive description of the above, with many existing systems as examples. A few 

major grid projects in the world were examined, from their goals to their 

implementations. 

Although these existing grid projects are successful in development and operating 

in production, it is not always easy to migrate a system to a different environment; if a 

use case or user model is even slightly changed, migration can become quite difficult. 

Other generic middleware systems, such as Globus Toolkit, aim at middleware level and 

lack a user-friendly interface, thus they are not easy for end-users to use. A new grid 

infrastructure differentiates from existing systems in many ways, such as how data is 

processed and manipulated according to their use cases. If the whole infrastructure is 

divided into layers as in Figure 3-1, customization can happen in two levels: at the 
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middleware level, the system should be easily tailored, e.g. using some configuration to 

change its behaviour, without needing to modify the source code; at the user interface 

level, users should be offered a standard and easy-to-use interface that they can easily get 

familiar with, without a long learning curve. These are the main motivations of my work 

in this thesis, and the strategy in accomplishing these goals is to take an adaptive 

middleware, and build a standard and user-friendly interface on top of that. 

My contributions in this project include the research and evaluation of existing 

data grid middleware and compute grid middleware, which led to the development of 

three new independent components:  

• Davis, the WebDAV and web interface for iRODS;  

• Griffin, a generic GridFTP interface; and 

• Grisu2, a universal grid job submission gateway.  

Each of them can work as a standalone system; but they can also work together in 

a grid environment, especially a national grid infrastructure like the Australian National 

Grid, which has all three components deployed and running in production.  

Davis offers a WebDAV-compliant interface so that users can use any standard 

WebDAV clients to connect to a data grid that is built on the iRODS middleware. iRODS 

is a data grid system that provides a virtual view of geographically distributed storage 

resources, with several interfaces provided by default. I surveyed almost all available 

clients of iRODS and its ancestor, SRB, as in section 4.3, which compares the 

authentication methods, supported operating systems, user interfaces and the 

development language. This survey shows that none of these clients is generic or easy to 

use. This observation revealed a gap between a well-designed middleware system and 
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users being able to use it easily, and that was the motivation to implement a user-friendly 

and easy-to-use interface for end-users. For example, Mac Finder and Windows Explorer 

allow users to mount a WebDAV resource as a local drive, which integrates the data grid 

with users’ desktop seamlessly so users can easily drag-and-drop files between their 

desktop and the data grid. As WebDAV is an extension of the HTTP protocol, Davis is 

able to run on most commodity HTTP servers, such as Apache. Users can benefit from 

the features they provide with no development cost. For example, Apache can be 

configured to use SSL to protect data transfer if data security is essential in the user 

environment. Davis also features a comprehensive web interface that enables permission 

and metadata management as well as sharing from a web browser, and eliminates the 

need to set up a client application. A RESTful interface is also provided to programmers 

to write simple scripts to interact with iRODS via Davis, which hides the complexity of 

setting up iRODS clients. 

The development of Griffin, a generic GridFTP interface, is in fact a by-product 

of a study on data transfer services, for which the motivation was to enable data transfer 

in an iRODS-based data grid, as iRODS does not have a standard interface that can 

interact with other data services. After studying several data transfer services, my idea 

was to turn an existing data source that exposes a proprietary interface into a standard 

GridFTP-compliant data service, but not to duplicate current work and develop another 

data transfer service, in order to obtain a simple and clean system architecture and benefit 

from existing data transfer services. This is achieved by deploying Griffin as the entry 

point, which translates GridFTP protocol to any protocol used by the underlying data 

source. My evaluation shows that the overhead generated by Griffin is acceptably low, 
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and in many cases is close to zero. Being compliant with the GridFTP protocol, Griffin 

inherits useful features of GridFTP, such as the ability to transfer data in parallel streams, 

transfer partial data, and transfer data with or without encryption. With an extensible 

structure, new plugins can be developed to support more data sources; as a specific 

example, a developer from another research group has developed a plugin for MongoDB. 

Further on, a special plugin is being developed to support striping transfer, as in the 

ongoing work of Griffin Conductor. 

Grisu2 is a job submission gateway aiming to simplify compute job submission 

and offer an easy-to-use job submission platform to users. Most traditional job 

submission clients require installation of client applications, and understanding of various 

IT technologies, such as how to use a X.509 certificate, which is far too complex for 

users with minimal IT knowledge. Therefore, the gateway I developed offers a web-based 

interface so users can use a web browser to submit compute jobs, without knowing any 

details of how the grid is set up, and how many compute resources they can use. This 

automation is achieved via a built-in resource broker that is able to work out the best 

compute resource to execute the job and the ability to distribute jobs to a remote grid 

resource gatekeeper, such as Globus GRAM. Moreover, the web interface is protected by 

Shibboleth, so users can use their home organization’s accounts to log in and use the 

gateway, without the need to use a grid certificate or register extra accounts. It also 

features a RESTful interface and a web-service interface for advanced users to write 

scripts and applications to submit massive jobs. 

In a typical setup such as the Australian National Grid, these components are all 

used to deliver a good user experience. At the middleware layer, iRODS is chosen as the 
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data grid middleware due to its flexibility in customization; at the user interface layer are 

Davis, offering a quick and easy way for users to access data from anywhere, and Griffin, 

targeting large volume data movements and data exchange with grid systems. On the 

computational grid side, Globus Toolkit is used as the gatekeeper of HPC clusters, while 

Grisu2 is the job submission gateway for users to easily get access to all available HPC 

clusters via Globus Toolkit. The interaction between the computational grid part and the 

data grid part is via Griffin, through which data travels seamlessly. Job results, on the 

other hand, can be viewed and shared via the web interface, Davis. My work on all these 

components makes it easier for users to use both data grid and compute grid. To date, the 

Australia National Grid has attracted more than 2000 users. What’s more, Davis and 

Griffin are also being used in production in a number of projects in the US, Europe, New 

Zealand and Japan. Having a generic design, they are installed and deployed in a different 

environment only with some configuration work. Programmatically, these systems use 

standard APIs for iRODS and Globus GridFTP, so they will work with future versions of 

those as long as they are backward compatible, which they usually are. Moreover, all 

these systems are open source projects hosted in Google Code. They are well designed 

and comments are inserted in source code for other people to easily understand. In fact, 

developers from some user groups have already contributed valuable additions to the 

original software I developed. These developers are the good candidates to take over the 

projects if I no longer work on them. 

 

7.2 Future work 
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Having delivered generic components to the community, I learnt from this project 

that simplicity is in great demand in modern computer systems. Being exposed to a great 

number of resources, users expect a unified and easy-to-use interface rather than having 

to deal with each resource separately. This means users should see the same data no 

matter what system they are accessing, or what device they are accessing from. The 

future of my research is driven by the lesson learnt in this project, and there are several 

things that can be done to further improve user experiences.  

For Davis, more functions can be added to the web interface. When sharing data, 

users may want to share with other Davis users, or just a random person. Sharing with 

other Davis users is easy because that can be handled by the data grid middleware, 

iRODS; but sharing with a random person, such as a colleague from overseas who does 

not hold a credential from a local authority, needs a way to allow temporary access to the 

user’s data with some kind of access token. Managing replicas is required when there are 

multiple storage resources, as users may want to keep backups of their data in a dedicated 

or arbitrary location. Integration with other web portals will be useful to some third-party 

developers who want to store their system’s data in Davis. Currently, a RESTful API is 

available but more functions can be added if required. Web page level integration may 

also be interesting. Web widgets written in JavaScript can be provided so other web 

systems can easily embed Davis in their web pages. 

For Griffin, UDT [33] support will be investigated, as it is supported by GridFTP 

server and client in Globus Toolkit 5. Several checksum mechanisms will be 

implemented to verify copied files. In addition, multiple streams from Griffin to the data 

source will be investigated in the case where the data source supports multiple streams. 
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This will definitely add complexity to the whole system, and will possibly not lead to 

significant performance improvement. The current implementation of Griffin Conductor 

is half finished, and only the upload function is working now. More work needs to be put 

in to finish the download function. When the Griffin Conductor is completed, it will 

provide striping download to users. 

The job submission gateway requires enhancement on data staging, especially 

when staging in or out large datasets, because the current implementation cannot restart a 

failed transfer from where it fails; when failed, the gateway can only restart the whole 

transfer from the beginning, which may waste bandwidth if it fails right before the end of 

transferring a huge file. In this case, it may need to make use of a data transfer service to 

manage the transfer so as to make data transfer more efficient and controllable. More 

work will be done on the meta-scheduler, so that more sophisticated scheduling policies 

can be defined based upon user requirements. Job submission will be extended to support 

other grid middleware, such as gLite and GridWay, or even the cloud, by implementing a 

mechanism to dynamically start or shut down VMs in the cloud. As a further research 

topic, it would be interesting to find out an easy way to start and stop a whole cluster in 

the cloud, as well as dynamically add or remove nodes from this cluster. There will be 

definitely a mixture of grid and cloud in my future research, and that might be the future 

of e-Science too. 
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APPENDIX A: A SAMPLE PARAMETER SWEEP JOB 

This is the complete version of the sample parameter sweep job I gave in Figure 6-

16. 

<?xml version="1.0" encoding="UTF-8"?> 
<jsdl:JobDefinition xmlns:sweepfunc="http://schemas.ogf.org/jsdl/2009/03/sweep/functions"  
         xmlns:sweep="http://schemas.ogf.org/jsdl/2009/03/sweep"  
         xmlns:file-sweep="http://schemas.ogf.org/jsdl/2009/03/file-sweep"  
         xmlns:jsdl-hpcpa="http://schemas.ggf.org/jsdl/2006/07/jsdl-hpcpa" 
         xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">  
    <jsdl:JobDescription>  
        <jsdl:JobIdentification>  
            <jsdl:JobName>mira_param_sweep_job</jsdl:JobName>  
        </jsdl:JobIdentification>  
        <jsdl:Application> 
         <jsdl:ApplicationName>Mira</jsdl:ApplicationName> 
            <jsdl-hpcpa:HPCProfileApplication >  
                <jsdl-hpcpa:Executable>mira</jsdl-hpcpa:Executable>  
                <jsdl-hpcpa:Argument>--project=</jsdl-hpcpa:Argument>  
                <jsdl-hpcpa:Argument>--parameterfile=miraIntersect.txt</jsdl-
hpcpa:Argument>  
                <jsdl-hpcpa:Argument>-MI:sonfs=no</jsdl-hpcpa:Argument>  
            </jsdl-hpcpa:HPCProfileApplication>  
        </jsdl:Application>  
        <jsdl:Resources> 
         <!-- 
         <jsdl:CandidateHosts> 
          <jsdl:HostName></jsdl:HostName> 
         </jsdl:CandidateHosts> 
         --> 
            <jsdl:TotalCPUCount>  
                <jsdl:Exact>1</jsdl:Exact>  
            </jsdl:TotalCPUCount>  
            <jsdl:TotalCPUTime>  
                <jsdl:Exact>60</jsdl:Exact>  
            </jsdl:TotalCPUTime> 
            <jsdl:TotalPhysicalMemory> 
             <jsdl:Exact>5000</jsdl:Exact> 
            </jsdl:TotalPhysicalMemory> 
        </jsdl:Resources>  
     <jsdl:DataStaging> 
      <jsdl:FileName>any</jsdl:FileName> 
      <jsdl:CreationFlag>override</jsdl:CreationFlag> 
      <jsdl:Source> 
       <jsdl:URI>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/miraIntersect.txt</jsdl:URI> 
      </jsdl:Source> 
     </jsdl:DataStaging> 
     <jsdl:DataStaging> 
      <jsdl:FileName>any</jsdl:FileName> 
      <jsdl:CreationFlag>override</jsdl:CreationFlag> 
      <jsdl:Source> 
       <jsdl:URI>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/public/AATest/MiraAutoSelect-46-66/miraIntersect.txt</jsdl:URI> 
      </jsdl:Source> 
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     </jsdl:DataStaging> 
     <jsdl:DataStaging> 
      <jsdl:FileName>any</jsdl:FileName> 
      <jsdl:CreationFlag>override</jsdl:CreationFlag> 
      <jsdl:Source> 
       <jsdl:URI>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/public/AATest/MiraAutoSelect-46-66/miraIntersect.txt</jsdl:URI> 
      </jsdl:Source> 
     </jsdl:DataStaging> 
     <jsdl:DataStaging> 
      <jsdl:FileName>any</jsdl:FileName> 
      <jsdl:CreationFlag>override</jsdl:CreationFlag> 
      <jsdl:Source> 
       <jsdl:URI>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/public/AATest/MiraAutoSelect-46-66/miraIntersect.txt</jsdl:URI> 
      </jsdl:Source> 
     </jsdl:DataStaging> 
     <jsdl:DataStaging> 
      <jsdl:FileName>any</jsdl:FileName> 
      <jsdl:CreationFlag>override</jsdl:CreationFlag> 
      <jsdl:Target> 
      </jsdl:Target> 
     </jsdl:DataStaging> 
    </jsdl:JobDescription> 
    <sweep:Sweep> 
  <sweep:Assignment>  
         <sweep:DocumentNode>  
             <sweep:NamespaceBinding ns="http://schemas.ggf.org/jsdl/2006/07/jsdl-hpcpa" 
prefix="jsdl-hpcpa" />  
             <sweep:Match>  
                /*//jsdl-hpcpa:Argument[1] 
             </sweep:Match>  
          </sweep:DocumentNode>  
          <sweepfunc:Values>  
             <sweepfunc:Value>--project=Kukri19</sweepfunc:Value>  
             <sweepfunc:Value>--project=Kukri20</sweepfunc:Value>  
             <sweepfunc:Value>--project=Kukri21</sweepfunc:Value>  
          </sweepfunc:Values>  
       </sweep:Assignment>  
  <sweep:Assignment>  
          <sweep:DocumentNode>  
             <sweep:NamespaceBinding ns="http://schemas.ggf.org/jsdl/2005/11/jsdl" 
prefix="jsdl" />  
             <sweep:Match>  
                /*//jsdl:DataStaging[2]/jsdl:Source/jsdl:URI 
             </sweep:Match>  
          </sweep:DocumentNode>  
          <sweepfunc:Values>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri19_in.454.fasta</sweepfunc:Value>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri20_in.454.fasta</sweepfunc:Value>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri21_in.454.fasta</sweepfunc:Value>  
          </sweepfunc:Values>  
       </sweep:Assignment>  
  <sweep:Assignment>  
          <sweep:DocumentNode>  
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             <sweep:NamespaceBinding ns="http://schemas.ggf.org/jsdl/2005/11/jsdl" 
prefix="jsdl" />  
             <sweep:Match>  
                /*//jsdl:DataStaging[3]/jsdl:Source/jsdl:URI 
             </sweep:Match>  
          </sweep:DocumentNode>  
          <sweepfunc:Values>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri19_in.454.fasta.qual</sweepfunc:Value
>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri20_in.454.fasta.qual</sweepfunc:Value
>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri21_in.454.fasta.qual</sweepfunc:Value
>  
          </sweepfunc:Values>  
       </sweep:Assignment>  
  <sweep:Assignment>  
          <sweep:DocumentNode>  
             <sweep:NamespaceBinding ns="http://schemas.ggf.org/jsdl/2005/11/jsdl" 
prefix="jsdl" />  
             <sweep:Match>  
                /*//jsdl:DataStaging[4]/jsdl:Source/jsdl:URI 
             </sweep:Match>  
          </sweep:DocumentNode>  
          <sweepfunc:Values>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri19_in.solexa.fastq</sweepfunc:Value>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri20_in.solexa.fastq</sweepfunc:Value>  
             <sweepfunc:Value>gsiftp://arcs-
df.vpac.org:2810/ARCS/home/Cloud_Input_Examples/Kukri21_in.solexa.fastq</sweepfunc:Value>  
          </sweepfunc:Values>  
       </sweep:Assignment>  
    </sweep:Sweep> 

</jsdl:JobDefinition> 
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