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An overview of liquid crystal technology for microwave and millimeter-wave frequencies is presented. The potential of liquid
crystals as reconfigurable materials arises from their ability for continuous tuning with low power consumption, transparency,
and possible integration with printed and flexible circuit technologies. This paper describes physical theory and fundamental
electrical properties arising from the anisotropy of liquid crystals and overviews selected realized liquid crystal devices, throughout
four main categories: resonators and filters, phase shifters and delay lines, antennas, and, finally, frequency-selective surfaces and
metamaterials.

1. Introduction

As a result of rapid growth in wireless communications
systems, much attention has been devoted to designing and
manufacturing frequency tunable devices, for example, res-
onators, filters, antennas, and frequency-selective surfaces [1].
The increased demand on the functionality and performance
of portable wireless devices and the scarcity of frequency
spectrum stimulate the need for designing frequency tunable
and flexible microwave and millimeter-wave devices. In the
past, various different tuning methods have been discussed
for wireless radio frequency (RF) and microwave devices.
These frequency tuning methods can be classified into two
main types, either discrete or continuous. In the discrete case,
frequency tuning is a switching mechanism for operation
at distinct fixed frequencies, thus resulting in incomplete
frequency coverage.

In contrast, continuous frequency tuning allows for
smooth transition between operating bands without skipping
over frequencies.

The actual physical processes that can cause frequency
tuning can be grouped into three main categories: (a)

mechanical actuation, (b) integrated electronic devices, and
(c) tunable materials [1–3]. The most common and practical
techniques used for achieving mechanical actuations are
electromechanical, piezoelectric, hydraulic/pneumatic and
microactuations such as microelectromechanical systems
(MEMS) [4–8]. Integrated electronic tunable devices on the
other hand can be achieved through using PIN diodes,
MEMS switches, field-effect transistors (FETs) switches,
optoelectronic switches, and varactor diodes [9–13]. The
main drawbacks of these switches at microwave and
millimeter-wave frequencies are their discrete tuning and/or
their low quality factor, especially at higher frequencies and
high fabrication effort with low yield.

The third method for attaining tuning is using tunable
materials. In this case, the permittivity and permeability of
a particular material can be tuned through an external field,
either electric or magnetic, typically enabling continuous
frequency tuning.Themost frequently used tunablematerials
are ferrites, ferroelectrics, and semiconductors.

A further specific kind of tunable materials, namely, liq-
uid crystals, has been recently presented in the literature for
microwave and millimeter-wave applications. Liquid crystals
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are promising tunable microwave materials especially at
frequencies above 10GHz (due to lower losses at higher
microwave frequencies), as they are flexible and continuously
tunable. Additionally, they require a low bias voltage and
satisfy low dielectric constant requirements [14–16]. In the
following, the properties and characteristics of liquid crystal
technology for use in the microwave range are explained and
discussed, followed by an overview of the various practical
realizations of microwave and millimeter-wave devices pro-
posed in the literature.

2. Liquid Crystals

Liquid crystals are dielectric materials with anisotropic
characteristics, which can be grouped into three different
mesophases between solid/crystalline and liquid/isotropic
states.These mesophases can be separated by orientation and
positional order into nematic, smetic, and cholesteric [17].
Thenematic phase is themost commonly used phase of liquid
crystals at microwave and millimeter-wave frequencies and
is characterized by an orientation of rod-shaped molecules
resulting in a highly anisotropic permittivity tensor. In this
phase, the preferential, that is, the average direction of the
molecular axes, is described by the director, denoted here as
⃗𝑛, which is aligned with the long axis of the rod-shaped liquid

crystal molecules.

2.1. Anisotropy States. The anisotropy tensor exhibits a rel-
ative permittivity 𝜀‖ in the director direction ⃗𝑛 and 𝜀⊥ in
orthogonal directions [18–20]. In a typical capacitive arrange-
ment, where a liquid crystal cell is sandwiched between
two metal electrodes and no bias voltage is applied (𝑉𝑏 =

0V), the initial alignment of the liquid crystal molecules is
achieved through coating the boundary surfaces (preferably
the top and bottom layer of the cell) with a thin layer of
polyimide film and then mechanically rubbing them using
a velvet cloth. The rubbing creates microscopic grooves
in the polyimide surfaces (Figure 1) and enables preferred
alignment for the liquid crystal molecules in the unbiased
state [21, 22] (Figures 2(a) and 2(b)). In electromagnetic
simulations, these extremely thin polyimide layers can be
neglected to a good approximation.

In this initial case (𝑉𝑏 = 0V), the director ⃗𝑛 will be
parallel to the metallic layers and the relative permittivity
tensor relevant for the interlayer material is defined as

←→

𝜀⊥ = (

𝜀‖ 0 0

0 𝜀⊥ 0

0 0 𝜀⊥

) . (1)

For this case, the scalar effective relative permittivity deter-
mining the capacitance can be approximated as 𝜀eff =

←→

𝜀⊥(𝑧,𝑧) = 𝜀⊥, since the molecules orient along the 𝑧-axis and
provide electric field in the 𝑧-direction. This is commonly
known as the perpendicular state (Figure 2(b)).

As bias voltage 𝑉𝑏 starts to increase (𝑉th < 𝑉𝑏 < 𝑉max),
the orientation of the director ⃗𝑛 continuously changes from
the perpendicular to the parallel state [23]. The random
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y

Figure 1: Scanning electron microscope image of a copper patch,
coated with a 0.3-0.4𝜇m thick of polyimide film and mechanically
rubbed, along the 𝑥-axis layer.

distribution of the liquid crystal molecules in this case can
be described by the order parameter 𝑆, expressed by

𝑆 = ⟨

3

2

cos2𝜃 −

1

2

⟩ , (2)

where in this equation 𝜃 is the average angle between the
molecular axis and the director ⃗𝑛 (average direction in a
volume element of a liquid crystal sample) and <> corre-
sponds to the mathematical expectation operator, averaging
the orientation of all molecules [24, 25].

The difference between the perpendicular and parallel
state is identified as the dielectric anisotropy Δ𝜀 of the liquid
crystal molecules and can be expressed as

Δ𝜀 = 𝜀‖ − 𝜀⊥. (3)

By taking into account Δ𝜀 and defining ⊗ as the tensor prod-
uct of two vectors, the permittivity tensor for the intermediate
state can be described as [23, 26]

←→

𝜀 = 𝜀⊥ ⋅

←→

1 + Δ𝜀 ⋅ ( ⃗𝑛 ⊗ ⃗𝑛)

= 𝜀⊥ ⋅ (

1 0 0

0 1 0

0 0 1

) + Δ𝜀 ⋅ (

𝑛

2
𝑥 𝑛𝑥𝑛𝑦 𝑛𝑥𝑛𝑧

𝑛𝑥𝑛𝑦 𝑛

2
𝑦 𝑛𝑦𝑛𝑧

𝑛𝑥𝑛𝑧 𝑛𝑦𝑛𝑧 𝑛

2
𝑧

)

(4)

which can be expressed as

←→

𝜀 𝑖 = (

𝜀⊥ + Δ𝜀 sin2𝜃 0 Δ𝜀 sin 𝜃 cos 𝜃
0 𝜀⊥ 0

Δ𝜀 sin 𝜃 cos 𝜃 0 𝜀⊥ + Δ𝜀 cos2𝜃
) , (5)

for the case when the rubbing direction of the polyimide is
along the 𝑥-axis (see Figures 1 and 2(c)).The effective relative
permittivity in this case becomes 𝜀eff =

←→

𝜀 𝑖(𝑧,𝑧)= 𝜀𝑖, due to the
E-field along the 𝑧-axis.

As the bias voltage increases to a certain voltage threshold
(𝑉𝑏 ≥ 𝑉max), the liquid crystal molecules become stable. In
this state, the relevant effective permittivity (𝜀eff) gradually
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Figure 2: Liquid crystal molecule orientation in different states
(a) no-polyimide films, random orientation, (b) polyimide films,
perpendicular state (𝜀eff = 𝜀⊥), (c) intermediate state (𝜀eff = 𝜀𝑖), and
(d) parallel state (𝜀eff = 𝜀‖).

aligns along the director ⃗𝑛, which results in the permittivity
tensor becoming

←→

𝜀‖ = (

𝜀⊥ 0 0

0 𝜀⊥ 0

0 0 𝜀‖

) . (6)

This tensor describes a full alignment of the liquid crystal
directors along the static electric field lines associated with
the applied voltage. The effective relative permittivity in
this case becomes 𝜀eff =

←→

𝜀 ‖(𝑧,𝑧)= 𝜀‖, given that the liquid
crystal molecules orient along the 𝑧-axis and provide electric
field along the 𝑧-direction. This is generally referred to as

𝜀⊥

Vth V
max

tan𝛿⊥

tan𝛿‖
Vb

tan𝛿eff𝜀eff

𝜀‖

Figure 3: Effective relative permittivity of perpendicular (𝜀⊥) and
parallel (𝜀‖) states and loss tangent (tan 𝛿⊥ and tan 𝛿‖) as function of
the applied bias voltage (𝑉𝑏).

the parallel state, that is, the bias electric field point parallel
to ⃗𝑛, Figure 2(d).

From the description above, it becomes clear that the bias-
dependent transition from perpendicular to parallel state
provides a continuous variation of the effective permittivity
between perpendicular to parallel states.

The material tuning commonly referred to as frequency
tuning/frequency variation/tunability (𝜏) can be expressed as
a function of the highest and lowest resonant frequencies 𝑓ℎ

and 𝑓𝑙 as

𝜏 = (

𝑓ℎ − 𝑓𝑙

𝑓ℎ

) 100% (7)

or

𝜏 = (

𝑓ℎ − 𝑓𝑙

𝑓𝑙

) 100% (8)

depending on which frequency is chosen as a reference.
Alternatively, the tunable range/tuning range (𝜏𝑅) caused by
this variation can also be expressed as [1, 19]

𝜏𝑅 =

2 (𝑓ℎ − 𝑓𝑙)

(𝑓ℎ + 𝑓𝑙)
100%. (9)

Figure 3 illustrates the evolution of the relative permittiv-
ity and the equivalent loss tangent between the two extreme
states (perpendicular and parallel) when the bias voltage 𝑉𝑏

is increased from the threshold voltage 𝑉th to the saturation
voltage 𝑉max.

For available liquid crystal mixtures, the typical relative
permittivity value for the perpendicular (𝜀⊥) state is around
2.2 to 2.8, while for the parallel (𝜀‖) state is between 2.6
and 3.5. The loss tangents have typical values of tan 𝛿 ≤

0.02 for both states. These insertion losses depend on the
topology,material, and operational frequency [18, 27]. Table 1
lists the properties of some of themost common liquid crystal
(nematic) samples used at microwave and millimeter-wave
frequencies. The listed values might slightly vary, depending
on the working frequency and room temperature.

2.2. Electromagnetic Simulation Modelling. Liquid crystals
are generally modelled in electromagnetic simulation
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Table 1: Properties of liquid crystals at 20∘C temperature, as specified at the given operating frequency.

Samples Permittivity Dielectric anisotropy Loss tangent Operating frequency Reference
𝜀⊥ 𝜀‖ Δ𝜀 tan 𝛿⊥ tan 𝛿‖ 𝐹 (GHz)

K15 (5CB) 2.72 2.90 0.18 0.03 0.03 1–10 [28–31]
BL037 2.35 2.61 0.26 0.06 0.06 1–10 [28, 41]
BL006 2.62–2.69 3.11–3.12 0.49–0.43 0.015–0.007 0.035-0.036 4.8–8.7 [16]
E7 2.72 3.17 0.45 0.12 0.02 5-6 [43]
GT3-23001 2.46–2.50 3.28–3.30 0.82–0.80 0.0143 0.0038–0.004 13.5–19 [14, 54, 60]
GT3-24002 2.50 3.30 0.80 0.0123 0.0032 6–10 [62]

R3 R3R2 R2R1

Vb
𝜀⊥ 𝜀‖ 𝜀i𝜀i

Figure 4: Liquid crystal cell regions for 𝑉𝑏 = 𝑉max, with region
𝑅1 in the center, simulated as the parallel state, region 𝑅2 as the
intermediate state, and region 𝑅3 on both sides simulated as the
perpendicular state.

software tools as a material with defined permittivity and
loss tangent, which can vary depending on the biasing
state of the liquid crystal molecules. With few exceptions,
electromagnetic full-wave simulation tools only allow
simulation of anisotropic materials with the director ⃗𝑛 along
the principal directions (perpendicular and parallel), as
formulated in (1) and (6). These simple anisotropy matrices
allow the approximate simulation of the unbiased and
saturated bias cases, where all the molecules are aligned
along one of the principal directions. However, the static
biasing fields will, in most cases, exhibit fringing fields with
components not aligned to one of the principal axis. To
reduce the error associated with the assumption that all fields
are aligned along principal axes, the liquid crystal cell can be
divided into three main regions (𝑅1, 𝑅2, and 𝑅3), as proposed
in [26] and shown in Figure 4.

Through this simulation method, the initial region (𝑅1)
is calculated using (6), given that the biasing electric field
⃗

𝐸 in this region is mainly parallel to the director ⃗𝑛, (𝜀eff =

𝜀‖). However, in the second region (𝑅2), due to the fact
that the liquid crystal molecules in this region are neither
perpendicular nor parallel, the effective permittivity 𝜀eff in
this case is calculated from (5), with effective permittivity
approximated as 𝜀𝑖 for an angle 𝜃 = 45 degrees.

Finally, the side regions (𝑅3) can also be simulated by
(1), given that the bias voltage does not affect this region
significantly, and thus the director ⃗𝑛 of the molecules is
pointed in the perpendicular state (𝜀eff = 𝜀⊥).

3. Applications

Owing to the anisotropic properties of liquid crystal com-
pounds andmixtures, there are a number of reported devices

Figure 5: Photograph of the realized tunable filter containing liquid
crystal mixture [32].

which use liquid crystal properties to achieve electrical
tuning. The description of these devices is divided into four
main categories: (1) resonators and filters, (2) phase shifters
and delay lines, (3) antennas, and (4) frequency-selective
surfaces andmetamaterials. In the next section, liquid crystal
tunable devices designed for operation at microwave and
millimeter-wave frequencies are discussed.

3.1. Resonators and Filters. Tunable resonators and filters
that exploit the dielectric anisotropy of liquid crystal have
been discussed in the literature. One of the earliest examples
of liquid crystal resonators is reported in [28]. The study
illustrated a half-wavelength open-circuited stub resonator
and a second-order dual behaviour resonator filter. Using
two standard liquid crystal samples (K15 and BL037 [28–
31]), frequency shifts of a few percent for lower microwave
frequencies (below X-band) have been achieved.

In a different example, a liquid crystal tunable band-pass
filter was presented [32] (Figure 5). The proposed three-pole
filter operates at a center frequency of around 20GHz and
demonstrates approximately 2GHz of frequency shifting. A
comparable tunable coupled microstrip line filter has been
developed with an operational frequency of 33GHz [33].
The E7 liquid crystal sample employed in this structure
demonstrates tunability of up to 2GHz.

Even though liquid crystals have primarily been dis-
cussed for high microwave and millimeter-wave electromag-
netic structures, a recent study has investigated the potential
of these materials for even lower microwave frequency
ranges even down to S-band. A tunable S-band resonator
with an operational frequency of 3.5 GHz was presented in
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Figure 6: Fabricated S-band resonator, during liquid crystal (GT3-
23001) filling process [14].

[14, 34] (Figure 6).The two sandwiched liquid crystal samples
(K15 and GT3-23001) in this resonator allowed for 4% and
8% tuning range, respectively. The work suggests possible
application of liquid crystal technology in future designs,
for manufacturing microwave lower frequency devices for
specific applications, for example, in conjunctionwith flexible
electronics.

3.2. Phase Shifters andDelay Lines. Apart from the resonators
and filters, liquid crystals have been demonstrated in the
design of phase shifters and delay lines. An early example of
phase shifters is reported in [35], where a voltage-controlled
20∘ phase shift was achieved with a K15 sample at a center
frequency of 10.5 GHz. Furthermore, in [36], a planar inte-
grated tunable phase shifter has been presented. By filling
the channels with liquid crystal and applying a bias voltage,
a differential phase shift of 53∘ was achieved at a center
frequency at about 18GHz.

In a different example, reducing the liquid crystal cell
thickness was discussed as a technique for improving tun-
ing/switching speed [37]. In this work, using only 5 𝜇m
thickness of liquid crystals instead of the more common
500𝜇m resulted in 60∘ of phase shift with a tuning speed
of 340ms. Dual-frequency switching mode was proposed
for active alignment of the liquid crystal molecules in two
principal directions [38]. By controlling the LC molecule
orientation, lower insertion loss and faster response times
were observed in the phase shift of a microwave variable
delay line. Amicrowave variable delay line using amembrane
impregnated with liquid crystal has also been fabricated [39].
Experimental results indicated a 270∘ phase shift for the
variable delay lines with a tuning response time of around
33ms.

In a more recent case, a 2D electronically-steered phased
array with a variable delay line was presented [40]. The
17.5 GHz phased array demonstrated a maximum differential
phase shift of 300∘ (Figure 7).

3.3. Antennas. Electrically tuned liquid crystal antennas have
been widely discussed in recent years. The key in these
designs is to form a sandwich-shaped structure, with a metal
patch on top, a ground plane at the bottom of the structure,

Figure 7: Prototype of the electronic beam steering liquid crystal
phased array [40].

and liquid crystal in between in a central cell. The patterned
patch and ground planes are used both for radiation and as
electrodes in the biasing circuit. Liquid crystal antennas can
be divided into three main categories: (1) frequency tunable
antennas, (2) beam steering antennas and reflectarrays, and
(3) polarization agile antennas. In the following, each of these
categories are discussed separately.

3.3.1. Frequency Tunable Antennas. One of the initially re-
ported tunable antennas had liquid crystal placed inside
its intermediate foam substrate, underneath the patch [41].
Upon application of a varying external bias voltage to this
structure, a frequency shift of 140MHz was obtained around
the frequency of 4.74 and 4.6GHz, which corresponds to
2.95% frequency variation.

A comparable rectangular patch demonstrated a 5.5%
tunability with respect to lower frequency [42], in a similar
frequency range (∼4.5GHz). For these two antennas, stan-
dard commercial K15 and BL037 liquid crystal samples were
used. Similarly, a sandwich structure antenna operating at a
frequency of 5GHz was presented in [43]. This antenna was
designed using three layers of Taconic glass-reinforced PTFE
substrate placed on top of each other, with E7 liquid crystal in
its central layer.The simulation of this arrangement predicted
a tuning range of 8%, whereas measurement demonstrated a
tuning range of 4%.

Liquid crystal has in addition been demonstrated in
combination with newly developed flexible materials. An
example of a tunable multilayer patch antenna on flexible
liquid crystal polymer (LCP) substrates is reported in [44].
This work shows that by using novel high-performance liquid
crystal mixtures, a continuous frequency tuning range of 10%
at Ka band (∼35GHz) was achieved through application of an
external bias voltage.

3.3.2. Beam Steering Antennas and Reflectarrays. The use
of liquid crystal has been reported for the development of
leaky-wave antennas able to steer their main beam direction
at a fixed frequency. In [45], a leaky-wave antenna based
on composite right/left-handed waveguide was described,
with beam steering at 7.6GHz. Through application of either
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a static electric or magnetic field to the liquid crystal
molecules, a beam tilt of around ±10∘ was achieved.

Apart from phased arrays, reconfigurable reflectarrays
could benefit greatly from the application of liquid crystals
in their tuning mechanism. One of the first reflectarrays
with liquid crystal tuning is reported in [46, 47]. In this
design, a liquid crystal tunable reflectarray was presented
and verified. Measurements demonstrated 300∘ of phase
tunability of a unit cell, through applying bias voltages up
to 40V. A comparable example was reported in [29]. In this
work, numerical and measured results demonstrated 180∘ of
tunable phase shift at X-band using K15 liquid crystal. In a
similar frequency range, a reflectarray antenna was presented
using a BL006 sample [16, 48]. The electronic tuning of
the effective permittivity of the liquid crystal in this study
[16] demonstrated reconfiguration of monopulse sum and
difference patterns.

Liquid crystals have also been demonstrated for reflec-
tarrays at higher microwave frequencies, even above X-band.
Due to the decreasing liquid crystal loss tangent 𝛿 with
increasing frequency more attention has been directed in
recent years towards designing millimeter-wave reflectarray
cells. A recent reflectarray designed for operational frequen-
cies of 77GHz suggests the possibility of 280∘ element phase
tunability through application of an external bias voltage
[49]. Moreover in [50], a tuning phase range of 360∘ was
achieved for a reflectarray operating in a frequency range
from 30 to 40GHz. In a recent study a millimeter-wave
reflectarray (F-band), which consists of 52× 54 identical cells,
has been designed to operate in the frequency range from 96
to 104GHz [51]. AGT3-23001 liquid crystal mixture was used
to demonstrate the potential of the proposed reflectarray for
beam scanning in F-band.This suggests that future wideband
tunable antennas in the frequency range above 60GHz and
even in the terahertz range up to 500GHz are possible. In
similar concepts proposed in [52], phase changes of 165∘ and
130∘ were achieved for reflectarrays operating at a center
frequency of 102 and 130GHz, respectively.

3.3.3. Polarization Agile Antennas. In a recent work, polar-
ization agile antennas using liquid crystal mixtures (GT3-
23001) were reported in [53, 54] (Figure 8). This 2D beam
steering phased array antenna consisted of a 2 by 2 dual-fed
microstrip patch array and two separate feeding networks.
Through reconfiguration of the feeding networks, dual linear
and dual circular polarizations were achieved. Continuous
tuning of the antenna polarization at a frequency of 13.75GHz
was illustrated in this work for both simulation and prototype
measurements.

3.4. Frequency-Selective Surfaces and Metamaterials. Other
areas which have recently demonstrated high potential for
tuning with liquid crystal materials are frequency-selective
surface (FSS) and planar metamaterials. In these structures,
the liquid crystal is generally sandwiched between two iden-
tical parallel substrates, consisting of printed patch patterns.
Through application of an external bias voltage, a shift in
the resonant frequency can be achieved. A concept of liquid

Figure 8: Prototype of a polarization agile antenna filled with liquid
crystal mixture [54].

crystal tunable electric-LC (ELC) resonators is presented in
[55], where tunability is achieved via using a microfluidic
channel in the central capacitive gaps. The results achieved
by simulation predicts 6% of continuous frequency tuning
at around 4.5GHz. The achieved results demonstrate the
possibility of using these ELC resonators in an array to form
a tunable FSS. An FSS with higher microwave frequency of
110–170GHz (D-band) has been presented in [56].The BL037
liquid crystal mixture in this device was sandwiched between
two arrays of slot elements, illustrating a 3% tunability. In
another experimentally validated example, a magnetically
tunable negative permeability metamaterial consisting of an
array of broadside coupled split ring resonators (SRR) filled
with liquid crystals has been proposed. Here a resonant
frequency shift of 0.3 GHz was obtained at X-band [57].

In other reported examples, perpendicular and parallel
alignment of nematic liquid crystal cells have been demon-
strated for developing metamaterial structures with index of
refraction tunable from negative, through zero, to positive
values [58–60]. Although some of the reported FSSs and
metamaterial structures operate at higher frequencies (e.g.,
terahertz), the development of new liquid crystal mixtures
suggests future potential applications at microwave and
millimeter-wave frequencies.

4. Summary

Tunable devices operating at microwave and millimeter-
wave frequencies have been developed for many years. As
part of these efforts, materials research has introduced a
new reconfiguration approach through tunable liquid crystal
mixtures. The need for flexibility and continuous tuning
has opened a potential opportunity for the development of
liquid crystal microwave technology. This has been recently
exemplified with the emergence of newly developed liquid
crystals mixtures specifically targeting this frequency range,
such as GT3-23001 [14, 54, 61] and GT3-24002 [62]. Given
that the effective permittivity of these anisotropic materials
are voltage-dependent, liquid crystal could be ideal for
various specific applications, for example, at millimeter-
wave frequencies where efficient tuning modalities are scarce
or at microwave frequencies in conjunction with flexible
electronics.
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