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WATER RESOURCES RESEARCH, VOL. 36, NO. 11, PAGES 3301-3310, NOVEMBER 2000 

Modeling long-term persistence in hydroclimatic time series 
using a hidden state Markov model 

Mark Thyer and George Kuczera 
Department of Civil, Surveying and Environmental Engineering, University of Newcastle 
Callaghan, New South Wales, Australia 

Abstract. A hidden state Markov (HSM) model is developed as a new approach for 
generating hydroclimatic time series with long-term persistence. The two-state HSM 
model is motivated by the fact that the interaction of global climatic mechanisms produces 
alternating wet and dry regimes in Australian hydroclimatic time series. The HSM model 
provides an explicit mechanism to stochastically simulate these quasi-cyclic wet and dry 
periods. This is conceptually sounder than the current stochastic models used for 
hydroclimatic time series simulation. Models such as the lag-one autoregressive (AR(1)) 
model have no explicit mechanism for simulating the wet and dry regimes. In this study 
the HSM model was calibrated to four long-term Australian hydroclimatic data sets. A 
Markov Chain Monte Carlo method known as the Gibbs sampler was used for model 
calibration. The results showed that the locations significantly influenced by tropical 
weather systems supported the assumptions of the HSM modeling framework and 
indicated a strong persistence structure. In contrast, the calibration of the AR(1) model to 
these data sets produced no statistically significant evidence of persistence. 

1. Introduction 

The Australian climatic regime is influenced by numerous 
global climate circulations. These circulations produce the high 
variability and persistence that are a common feature of Aus- 
tralian hydroclimatic data. The challenge is to develop stochas- 
tic models that are able to reproduce this long-term persis- 
tence. The aim of this work is to present an alternative and 
conceptually sounder stochastic model for simulating long- 
term persistence in hydroclimatic time series. 

There are already a number of stochastic models available 
for hydroclimatic time series simulation. The autoregressive 
(AR) and autoregressive moving average (ARMA) models are 
presented by Salas [1993] as being able to accommodate most 
typical cases. The lag-one autoregressive model (AR(1)) is 
commonly used in the Australian water supply industry to 
simulate annual rainfall time series [Grayson et al., 1996]. 
These and other models such as the fractional Gaussian noise 

and broken line models were developed to reproduce certain 
statistical aspects of a time series. In contrast, this new ap- 
proach considers the influence of the global climatic circula- 
tions on hydroclimatic time series. 

Previous studies have identified several global climatic 
A•,•,aaan climatic regime at mecmml•m• that impact on thc ..... •' 

annual and decadal timescales. The most well known is the E1 

Nifio-Southern Oscillation (ENSO), which has a quasi-cyclic 
occurrence [Allan et al., 1996]. ENSO's relationship with Aus- 
tralian rainfall is significant [Allan, 1988; Lough, 1991; Nicholls 
and Kariko, 1993] but changes over time [Kane, 1997; Nicholls 
and Kariko, 1993]. The ENSO influence is also modulated by 
an interdecadal oscillation in the sea surface temperature 
(SST) in the central Pacific [Power et al., 1999], referred to as 
the IPO. In addition, Smith [1994] showed that there are strong 
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correlations between Indian Ocean SST and Australian winter 

rainfall. In the Southern Ocean there exists the Antarctic cir- 

cumpolar wave [White and Peterson, 1996] that describes the 
rotation of alternating warmer and cooler regions around the 
South Pole approximately every 10 years. 

The interaction of these circulations is complex. As their 
periodicities vary, their influence could be negated or en- 
hanced by each other at any point in time. It is believed that 
the cumulative effect of these circulations produces a quasi- 
cyclic forcing mechanism in the hydrological cycle. Rodriguez- 
Iturbe et al. [1991] modeled the land-atmosphere interaction 
with quasi-cyclic forcing and found that soil moisture persisted 
around two stable modes: wet and dry. Similarly, wet and dry 
cycles have been noted in many Australian rainfall time series 
[Srikanthan and Stewart, 1992]. An example is the Sydney met- 
ropolitan annual rainfall [Linacre and Geerts, 1997], shown in 
Figure 1. The rainfall time series shows that there are several 
periods when the annual rainfall is persistently below the long- 
term mean. In the cumulative residual time series a positive 
slope indicates an above-average (wet) rainfall period, and a 
negative slope indicates a below-average (dry) period. The 
varying occurrence and persistence of the wet and dry periods 
are clearly visible. They are considered to be a result of the 
nonlinear climate dynamics produced by the varying climatic 
mechanisms which influence Australian rainfall. 

The hidden state Markov (HSM) model is introduced as an 
alternative model for generating hydroclimatic time series with 
long-term persistence. The model framework provides an ex- 
plicit mechanism to simulate the varying wet and dry regimes. 
Thus the HSM model has the ability to emulate the influence 
that the various climatic processes have on Australian hydro- 
climatic data. 

Previously, Markov chain models have been applied to 
model daily rainfall processes (Salas [1993] has an extensive list 
of references). Zucchini and Guttorp [1991] used a hidden state 
Markov model to simulate the occurrence pattern of daily 
rainfall at multiple sites. An alternative approach is the non- 
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Figure 1. Sydney annual (January to December) rainfall and 
cumulative residual time series (1859-1996). 

homogenous hidden Markov model [Hughes and Guttorp, 
1994; Hughes et al., 1999] that relates atmospheric variables to 
local daily precipitation processes. This framework has its lim- 
itations for long-term water resources applications. Long-term 
simulations of hydroclimatic inputs are needed to evaluate 
water supply system performance. In the model of Hughes and 
Guttorp and Hughes et al. this would require long-term sim- 
ulations of the atmospheric variables used to classify the states. 
As the primary focus for the development of the HSM model 
is long-term water resources planning, a far simpler stochastic 
framework is adopted where the hidden states can be simu- 
lated without recourse to auxiliary climatic variables. 

This new modeling approach for reproducing long-term per- 
sistence in hydroclimatic time series is presented as follows: 
Section 2 describes the structure of the HSM model, followed 
by an outline of the calibration procedure in section 3. The 
Gibbs sampler, from the family of Bayesian techniques known 
as Markov Chain Monte Carlo methods, is used to infer the 
posterior distribution of the model parameters. Four different 
case studies were chosen for model calibration: long-term rain- 
fall time series from Sydney, Brisbane, and Melbourne and a 
paleoclimatic reconstruction of Burdekin river runoff. Each 
one is located in a different Australian climatic regime. Anal- 
ysis of the calibration results will determine whether the HSM 
modeling assumptions are justified and if a strong persistence 
structure has been identified. The discussion includes compar- 
ison with other stochastic models and considers other issues 

related to the application of the HSM modeling framework. 

2. Hidden State Markov Model 

The HSM model framework, illustrated in Figure 2, assumes 
that the dimate is in one of two states: wet (W) or dry (D). 
Each state has an independent rainfall distribution, assumed to 
be Gaussian in this study. The persistence in each state varies 
because it is governed by the state transition probabilities. This 
provides an explicit mechanism to replicate the variable length 
wet and dry cycles. If these cycles are viewed as a manifestation 
of nonlinear climate dynamics, then the conceptualization of 
HSM model may be viewed as an attempt to explain these 
dynamics by introducing an external variable: the climate state 
"wet" or "dry." This two-state mechanism concurs with that of 
Rodriguez-Iturbe et al. [1991], who noted that behavior of hy- 
droclimatic records exhibits persistence in several distinct 
states with the occasional transition between the states. 

The simulation of a hydroclimatic time series is a two-step 

process. In the first step the climate state at year t, st, is 
simulated by a Markovian process: 

stlst-• • MARKOV(P), (1) 

where P is the state transition probability matrix defined by 

P = [Po] = Pr(st = j st-• = i) i, j = W, D. (2) 

When the transition probabilities P wz> and P z>w are known, 
the remaining components of the matrix are easily calculated 
bypz>z> = (1 - Pz>w), Pww = (1 - Pwz>). Thus, hereafter, 
P shall refer to a row vector of the transition probabilities: 

P = (Pwo, Pvw). (3) 

Once the state for year t is known, the hydroclimatic variables 
may be simulated using 

{N(•w, o-•v) st = W Y'- N(l•v, 0-•) st = D' (4) 
where N(/•, o '2) denotes a Gaussian distribution with mean/• 
and variance 0 -2 . Therefore the vector of unknown parameters 
for the HSM model, 0, is composed of the rainfall distribution 
parameters for each state, the transition probabilities, and the 
hidden state time series, S2v - {s•, s2, ..., $n}, where 

0' = (/•w, o-w, /•v, o-v, P, SN). (5) 

Prior to model calibration the hidden state time series is un- 

known (i.e., it is "hidden"). Thus it is included as a model 
parameter to be estimated during the calibration process. 

In summary, the HSM model makes the following modeling 
assumptions to simulate hydroclimatic time series: (1) The 
distribution of hydroclimatic data is composed of two indepen- 
dent wet and dry state distributions. (2) Both the wet and dry 
state distributions are Gaussian. (3) The climate state at time 
t, st, is purely dependent on the climate state from the previ- 
ous time step, st_ •. (4) The probability of state transition is 
assumed to be stationary over time. 

3. Model Calibration: Gibbs Sampler 
For model calibration a Bayesian framework is used to infer 

the distribution of the model parameters 0 for the given time 
series data Y2v. This distribution is referred to as the posterior 
distribution of the model parameters, p(01Y.. For the HSM 
model it is not possible to derive an analytical expression for 
the posterior distribution. Thus Markov Chain Monte Carlo 
(MCMC) simulation methods are employed to draw samples 
from the posterior distribution. The basic idea of MCMC 
methods is to simulate a Markov chain iterative sequence, 
where at each iteration a sample of the model parameters 0 is 
generated. Given certain conditions, the distribution of these 

••PP(wet --> Dry)•• P(Dry --> Dry) 

P(Wet--> Wet)••• P(Dry --> Wet)•• 
Figure 2. Model framework of the hidden state Markov 
(HSM) model. 
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samples converges to a stationary distribution which is the 
posterior distribution p(0[Y2v). Tierney [1994] provides a de- 
tailed discussion of the theoretical aspects of MCMC conver- 
gence, while a more applied explanation of MCMC methods is 
given by Gelman et al. [1995] and Gilks et al. [1996]. 

To calibrate the HSM model, the MCMC method known as 
the Gibbs sampler is applied. The idea in the Gibbs sampler is 
to simulate, in turn, the distribution of each parameter condi- 
tioned on the data and the remaining parameters (referred to 
as the full conditional distribution). Thus, at each iteration, 
each component of the parameter vector is sampled from the 
following conditional distribution: 

Oj•--p(Oj[01,..., Oj-1, 0j+l,... , Od, YN), (6) 

where d is the number of conditional distributions and 0• can 
refer to either a scalar component or a subvector of the pa- 
rameter vector 0. Smith and Roberts [1993, p. 5] note that if the 
parameters are highly correlated, then the convergence of the 
Gibbs sampler could be "painfully slow." To avoid this, highly 
correlated parameters are "blocked" together as a subvector of 
0 and sampled from a multivariate conditional distribution. 
For the HSM model, Chibb [1996] developed a method that 
allows the entire hidden state time series to be blocked to- 

gether and sampled as a single parameter. The advantage of 
this is described by Chibb [1996, p. 81] as: "Instead of n addi- 
tional blocks in the Gibbs sampler (the number required if 
each state is sampled from its full conditional distribution) only 
one additional block is required. This dramatically improves 
the convergence of the Markov chain induced by the Gibbs 
sampling algorithm." Therefore each iteration i of the Gibbs 
sampler proceeds as follows (note that x i refers to the i th 
sample of parameter x): 

S•v •-p(S•v/•i-1, iTi-1, pi-1, Y•v), 

Pi <--p(VlS•v), 

ß i-1 Y•v), /x•: <--p (/xkl S•v, •rk , 
(7) 

i•--p(rr• Sk,/x•, Y•v) O' k , 

where k refers to the hidden state, wet or dry. The hidden state 
time series S•v is sampled first because once it is known, the 
sampling of the remaining parameters is a relatively simple 
procedure. Chibb's method for sampling the entire hidden 
state time series as a single parameter is summarized in Ap- 
pendix A for the two-state case of the HSM model. The con- 
ditional distribution of the transition probabilities P is purely 
dependent upon knowledge of S•v, and hence the data Y•v are 
omitted. The sampling procedure for P is a special case of the 
expressions given by Chibb [1996] for multistate hidden 
Markov models. Gelman et al. [1995] provides the conditional 
distributions for the state distribution parameters/x and or. 

3.1. Choice of Priors 

In this application we have little or no prior knowledge of 
the true parameter values. Thus diffuse or noninformative 
prior distributions are chosen, where a wide range of the pa- 
rameter values are assigned a similar probability density. The 
aim of this approach is to let the data Y•v dominate the analysis 
so that inferences are unaffected by information external to the 
data [Gelman et al., 1995]. 

Conjugate prior distributions were used for all the parame- 
ters. For the transition probabilities this is a beta distribution 

[Chibb, 1996], and for the state means this is a normal distri- 
bution [Gelman et al., 1995]. For both cases the parameter 
values chosen represented suitably diffuse proper prior distri- 
butions. For the state means the prior was bounded between 
0.0 and 3000.0 as all the hydrological data used in this study 
were within this range. For the state standard deviations a 
scaled inverse X 2 distribution [Gelman et al., 1995] was used for 
the prior. Initially, the parameter values chosen represented an 
improper prior. However, when no data are sampled in a 
particular state, this results in the posterior becoming im- 
proper. Thus, for this case, a different set of parameter values 
were chosen that resulted in a relatively diffuse proper prior. 
Bounds of 0.0001 and 2.0 were used for the coefficient of 

variation (CV) as McMahon and Mein [1986] found that hy- 
drological data from numerous sites around the world were 
within this range. 

3.2. Implementation 

To initialize the Gibbs sampler, arbitrary starting values 
must be supplied to the parameter vector. For the HSM model 
a heuristic method was used to provide these starting values. 
This method is described as follows: In the first step the hidden 
state time series is estimated by smoothing the data YN using 
a 5 year moving average filter and applying the long-term mean 
as a threshold to distinguish between the wet and dry states. If 
a smoothed value was above the threshold, it was classified as 
wet; if it was below, it was dry. Starting values for the transition 
probabilities were sampled using the method for the state 
transition probability matrix given by Chibb [1996]. The start- 
ing values for the wet and dry state mean and standard devi- 
ation were estimated from the two new data sets, Yw and 
which corresponded to the data in the wet and dry states sorted 
using the hidden state time series. Applying this method 
greatly increased the convergence rate as the Gibbs sampler 
was initialized at a good starting position close to the mode of 
the posterior distribution. 

Once initialized, the Gibbs sampler is allowed to "warm up" 
for a given number, say, b, iterates before using the simulated 
output as samples from the posterior distribution p(01Y). 
Multiple parallel paths of the Markov chain iterative sequence 
induced by the Gibbs sampler were used in this study. Com- 
pared to a single path, multiple paths are able to more widely 
explore the parameter space. For a good approximation of the 
posterior, 100 paths with 100 samples each were used, produc- 
ing a total of 10,000 samples. For each path a warm-up of b - 
3500 was found to be more than adequate to ensure conver- 
gence. 

A number of indicators were used to monitor convergence. 
Time series plots of the percenti16s of the sample distributions 
for all the parameters were inspected for signs of convergence 
failure. When using multiple paths, it is important to deter- 
mine whether the individual paths are mixing properly in the 
parameter space. The R statistic, defined by Gelman et al. 
[1995], uses the within-path and between-path variation to 
estimate the potential scale reduction. If during an iterative 
sequence the individual paths are mixing slowly, then the R 
statistic will remain high. Thus it is monitored to see if there is 
any reason to believe further iterations may enhance the in- 
ference. For a review of MCMC convergence issues, refer to 
Cowles and Carlin [1996]. 
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Figure 3. Location of hydroclimatic data sources. 

4. Hydrological Data 
Long-term continuous hydrological records were needed for 

this study. Three of the case studies were ion&term rainfall 
records from the Sydney, Brisbane, and Melbourne metropol- 
itan areas. The fourth case study was a paleoclimatic recon- 
struction of Burdekin river annual runoff. The relative location 

of each case study is shown in Figure 3. A summary of the 
details of each time series for the four case studies is given in 
Table 1. Each case study represents a cross section of the 
varying climatic regimes that exist on the eastern coast of 
Australia. In the north there exists a predominantly tropical 
climate with distinct dry and wet seasons influenced by the 
weather systems from the tropical Pacific. For example, 90% of 
the Burdekin river runoff occurs in the wet season (December 
to April). This influence is also evident in the Brisbane data as 
the majority of rainfall occurs in the summer months. Moving 
south, a transition occurs to a more temperate climate where 
the dominant weather systems originate from the Southern 
Ocean. Sydney is located in the middle of this transition region. 
This produces an even distribution of rainfall throughout the 
year, with the summer months influenced by the tropical sys- 
tems and the Southern Ocean cold fronts dominating in winter. 
For the Melbourne rainfall the Southern Ocean systems are 
the most influential as the tropical systems rarely extend that 
far south. 

The paleoclimatic reconstruction of Burdekin river runoff 
was used for the fourth case study to determine if a strong 
persistence structure could be identified over a significantly 
longer period. Isdale et al. [1998] used measurements of fluo- 
rescence bands in coral from the Great Barrier Reef to recon- 

struct the Burdekin river flow. The regression model ac- 
counted for 83% of the variability of the Burdekin river flow. 

Table 1. Summary of the Details of the Time Series for 
the Four Case Studies 

Case Start End Length, Annual 
Study Date Date years Statistics a 

Sydney Jan. 1859 April 1997 138 1221 (332) 
Brisbane Jan. 1860 June 1994 134 1146 (345) 
Melbourne Jan. 1856 May 1997 141 658 (127) 
Burdekin 1644 1980 337 100 (99) 

aFor the annual statistics the empirical mean and standard deviation 
(in parentheses) are given. 

It is important to note that the results from this reconstructed 
record are interpreted as indicative as there are some doubts 
about the regression model used to reconstruct the flow data. 

5. Analysis of Calibration Results 
The aim of this analysis is to evaluate whether the HSM 

modeling assumptions (outlined in section 2) are justified and 
to determine if a strong persistence structure is identified. To 
achieve this, the posterior distribution p (01Y:v) of the relevant 
model parameters is examined. This allows direct assessment 
of the parameter uncertainty, following the methodology of 
Stedinger and Taylor [1982b]. Hereafter, the term "posterior" 
shall refer to either the posterior distribution or the posterior 
density. 

The first assumption is that the distribution of hydroclimatic 
data is a mixture of two independent wet and dry state distri- 
butions. If the difference between these two distributions is not 

significant, there is no justification for using a two-state model. 
Rudimentary statistical methods cannot be applied to test if 
the difference is significant because the sample data in each 
state change at every iteration in the Gibbs sampler. Thus the 
posterior difference between the means, p(/•w - /•z>lY:v), the 
5th percentiles, p(5%ilew - 5%iler, lY:v), and the 95th per- 
centiles, p(95%ilew - 95%ilez>lY•v) of the wet and dry state 
distributions is examined. If there is a low probability that 
there is negative difference between these wet and dry values, 
then there is considered to be a significant difference between 
the two distributions. This provides evidence to support the 
first assumption of a two-state framework. Figure 4 shows 
distribution of the posterior difference between the means and 
the 5th percentlies. The 95th percentlies were omitted because 
the results were the same for all case studies. The percentlie 
values were calculated using the sampled mean and standard 
deviation and the assumption that the wet and dry state dis- 
tributions were Gaussian. All the difference values have been 

standardized by dividing by the average of the wet and dry state 
means to facilitate comparison of all four case studies. 

To test the second assumption that both the wet and dry 
state distributions are Gaussian, samples are drawn from the 
posterior predictive distribution and compared to the observed 
data. The posterior predictive distribution is defined by 
Gelman et al. [1995] as the distribution of replicated data yrep 
simulated using the HSM model, given that the model param- 
eters have been conditioned on the observed data. It is re- 

ferred to asp(yrePlY•v ). In this study, Monte Carlo simulation 
is used to sample from this distribution. Ten thousand samples 

..... Sydney 
/\ --Brisbane 
I• --Melbourne 
i • ---Burdekin 

I t ,,' ',, 

0/2 0:4 0.'6 0.8 

..... Sydney 

ß • --Melbourne 
• ß -- Burdekin 

• i/ .... •_._\...x..• 
0 0.2 0.4 0.6 0.8 

(a) Mean' 2 (/tw _/tD) (b) St, % ilo: 2(5%ilew-5%ileD) 

Figure 4. Posterior distribution of the standardized differ- 
ence in the wet and dry state distributions for the four case 
studies: (a) mean and (b) 5th percentlie. 
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Figure 5. Normal probability plot of the observed data com- 
pared to the posterior predictive distribution of the replicated 
data p(yreplY•v ) for the Sydney annual rainfall (June-May 
water year). CL, confidence limit. 

of the model parameters were drawn from their posteriors 
p(01Y) and used in the HSM model to simulate 10,000 time 
series of length equal to the observed time series. The distri- 
bution of this replicated data was compared to the observed 
data. If the observed data are within the 5% and 95% confi- 

dence limits of the replicated data, this is considered a good fit 
to the data and hence there would be no reason to reject the 
assumption that the wet and dry state distributions are Gauss- 
ian. Figure 5 shows this comparison for the Sydney case study. 
Inspection of the posterior predictive distribution also deter- 
mines whether a significant proportion of the distribution is 
truncated because hydrological values cannot be negative. 

To test the third assumption that the current climate state st 
is dependent on the previous climate state st_ •, the posteriors 
of the transition probabilities are examined for all four case 
studies (Figure 6). If the previous and current climate states 
are independent, there would be no persistence and the pos- 
teriors would indicate that the transition probabilities are un- 
identifiable. If the transition probabilities are identifiable, then 
this provides evidence to support the third assumption. 

The number of years the climate persists in either the wet or 
dry state (the state residence time) indicates the strength of the 
persistence structure identified by the HSM model. A long 
state residence time indicates a strong persistence structure. 
The expected state residence time can be calculated from the 
transition probabilities (hereafter known as PTm•d,•s)- As the 
occurrence of a state transition is a Bernoulli trial with prob- 

ability PTRANS, the number of years before that state transition 
occurs follows a geometric distribution. The expected state 
residence time is the mean of the geometric distribution, which 
is the inverse of PTm•',•S. The axes of the plots in Figure 6 have 
been transformed to display the expected state residence time. 
As the transition probabilities have a range of 0 to 1, the 
expected state residence time can vary from oo to 1. To remove 
sampling noise, a matrix-smoothing algorithm was applied to 
these plots. An artefact of this technique is that in some cases 
the posteriors extend beyond the limits of m to 1. This can be 
ignored; the overall trend of the posteriors is the important 
feature to note. 

For each of the rainfall case studies the monthly rainfall was 
aggregated to produce 12 annual data series, which correspond 
to the 12 "water" years (January to December, February to 
January, etc). Each of these annual data series was calibrated 
to ascertain which water year exhibits the strongest wet and dry 
state signal. A state signal index (SSI) was developed as a 
measure of how well the wet and dry state "signal" is identified. 
The SSI is calculated as follows: In each iteration of the Gibbs 

sampler every year is classified as wet or dry. The posterior 
probability that a particular year is from the wet distribution, 
p(s t -- WIYN) , can be calculated by counting the number of 
times it is classified as wet. Ifp(s t = WIYN) is close to 0.5, then 
the year is equally likely to be in either a wet or a dry state. The 
SSI aggregates the p(s t -- WIYN) values for the entire time 
series. It is defined as 

N 

Ip(s, = wl¾) - 0.sl 
t=l 

SSI = N ' (8) 

where N is the number of years in the time series. If a high 
proportion of the time series have a value of p(st = WIY•v) 
close to 0.5, then SSI --> 0 and the wet and dry states are 
considered to be poorly identified. Conversely, as the number 
of years with a value ofp($ t -- WIYN) close to 0 or 1 increases, 
then SSI --> 0.5. Therefore the water year with highest value of 
SSI is presented for further analysis in this study. Figure 7 
shows a time series of p(st = WIY•v) and the corresponding 
SSI for each of the rainfall case studies. 

For each of the rainfall case studies the autocorrelation 

function (up to lag 30) of the rainfall simulated from the 
calibrated HSM model was checked and found to be within the 

Posterior Density Regions 
99% 95% 90% 75% 50% - 

I I I I I I I I 
oo84 32 1 

Wet state residence time (years) 

(b) Brisbane Annual 
Rainfall (July-June) 

oo8432 1 

Wet state residence time (years) 

(c) Melbourne Annual 
Rainfall (June-May) 

oo 8 4 3 2 i oo 8 4 3 2 1 

Wet state residence time (years) Wet state residence time (years) 

(a) Sydney Annual (d) Burdekin River 
Rainfall (June-May) Reconstructed Runoff 

Figure 6. Posterior distributions of the transition probabilities for the (a) Sydney, (b) Brisbane, (c) Mel- 
bourne, and (d) Burdekin river case studies. The axes have been transformed to display the expected state 
residence time. 
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Figure 7. Time series plots of the posterior probability of a year being classified as wet, p(st -- W Y•v), for 
the (a) Sydney, (b) Brisbane, and (c) Melbourne rainfall case studies. 

95% confidence limits of the values estimated from the ob- 

served rainfall data. 

5.1. Sydney Metropolitan Rainfall Data 

For the Sydney rainfall case study the results support the 
HSM modeling assumptions and identify a strong persistence 
structure. Figure 7a shows that the states are well identified for 
the June to May water year which produced the highest SSI 
value of 0.374. There is a very low probability that the true 
value for the wet and dry means are equal (Figure 4a). The 
results were similar for the 95th percentiles. For the difference 
in the 5th percentiles (Figure 4b), although the posterior prob- 
ability of the difference being negative is finite, the location of 
the mode indicates a significant positive difference. These re- 
sults imply that there is a significant difference between the wet 
and dry state distributions and therefore support the first as- 
sumption. Figure 5 shows that the posterior predictive distri- 
bution is a good fit to the observed data and the proportion of 
the predictive distribution that is assigned negative values is 
negligible (<0.1%). These results support the second assump- 
tion. The posteriors of the transition probabilities, shown in 
Figure 6a, indicate that the parameters are identifiable. This 
supports the third assumption. A strong persistence structure is 
also identified as the mode of the posteriors corresponds to an 
expected dry state residence time close to 10 years. 

5.2. Brisbane Metropolitan Rainfall Data 

The results from Brisbane rainfall case study were similar to 
those from Sydney. The modeling assumptions were all justi- 
fied, although the persistence structure identified was not as 
strong. The July to June water year had the highest SSI value 
of 0.323. In Figure 4b the mode is centered at zero, indicating 
a high probability that the wet and dry 5th percentiles are 
similar. However, the results for the mean (Figure 4a) and 95th 
percentiles still indicate that there is a significant difference 
between the wet and dry states, thereby supporting the first 
assumption. Comparison of the posterior predictive distribu- 
tion to the observed data was the same as for Sydney; the 
results supported the second assumption. Figure 6b indicates 
that although the persistence is not as strong compared to 
Sydney, the transition probabilities are still clearly identifiable. 
This supports the third assumption. 

5.3. Melbourne Metropolitan Rainfall Data 

The results for this case study indicate that the HSM mod- 
eling assumptions cannot be justified for the Melbourne rain- 
fall data. The June to May water year produced the highest SSI 
value of only 0.188. Figure 7c shows that compared to Sydney 
and Brisbane, the majority of years are equally likely to be 
from the wet or dry states. Figures 4a and 4b indicate that there 
is a high probability that the means and 5th percentiles of both 

the wet and dry states are equal. This indicates that there is no 
significant wet and dry state difference, which violates the first 
assumption (hence the second assumption was not tested). 
Figure 6c indicates that the transition probabilities are poorly 
identified. This is significant evidence to reject the third as- 
sumption and indicates that the current climate state is prob- 
ably independent of the previous climate state for the Mel- 
bourne data. 

5.4. Burdekin River Reconstructed Runoff Data 

For this case study the evaluation of the water year was not 
required as the data provided were already aggregated to the 
October to September water year. A log transformation of the 
reconstructed runoff data was necessary to ensure that the wet 
and dry state distributions were Gaussian. The following re- 
sults are for this time series of log-transformed values, which 
will be referred to as the Burdekin data. Because the calibra- 

tion results are similar to those for Sydney, the modeling as- 
sumptions were justified for the Burdekin data. Figures 4a and 
4b show that there is a significant posterior difference between 
the wet and dry state distributions; thus the first assumption 
was not violated. The posterior predictive distribution was a 
good fit to the observed data, and the posteriors of the state 
transition probabilities are clearly identifiable (Figure 6d). It is 
important to note that the spread of the transition probabilities 
for the longer Burdekin record is greatly reduced when com- 
pared with the shorter Sydney and Brisbane rainfall time series 
(compare Figure 6d to Figures 6a and 6b). This indicates that 
the persistence structure is better identified when the length of 
the hydroclimatic record increases. 

5.5. Summary of HSM Model Calibration Results 

Table 2 shows the expected values of the posteriors for the 
HSM model parameters for the case studies where the assump- 
tions of the HSM model were justified. 

Table 2. Expected Values of the Posterior for the HSM 
Model Parameters for the Sydney, Brisbane, and Burdekin 
Case Studies 

Wet State Dry State 

Mean Residence Mean Residence 

Case (s.d.), Time, (s.d.), Time, 
Study mm years mm years 

Sydney 1736 (215) 1.8 1137 (238) 10.0 
Brisbane 1541 (417) 1.5 1057 (261) 5.0 
Burdekin a 161 (121) 3.4 52 (23) 4.5 

aThe Burdekin river values for the state distributions were back- 

transformed from the log-transformed parameter values. 
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6. AR(1) Model for Hydroclimatic Time Series 
For the lag-one autoregressive (AR(1)) model the rainfall- 

generating mechanism is 

Qt- pc-- c•(Qt_ 1 - pc) + at, (9) 

where Q t is the transformed annual rainfall for year t, qb is 
lag-one autoregressive coefficient, tx is mean of time series, 
and at is random shock --• N(0, rra2). The annual rainfall is 
transformed using a Box-Cox transformation to ensure that the 
distribution of at is approximately Gaussian. Equation (9) 
shows that this year's rainfall value is a function of the previous 
year's rainfall and a random shock value. In contrast to the 
HSM model, there is no explicit mechanism for simulating the 
wet and dry periods. 

To simulate the posteriors for the parameters of the AR(1) 
model, it was necessary to employ a different MCMC method 
called the Metropolis algorithm [Gelman et al., 1995]. The 
Metropolis algorithm follows the same principles as the Gibbs 
sampler. However, it represents a more general implementa- 
tion. The major difference iõ that the model parameters are not 
sampled from their full conditional distributions. Instead, pa- 
rameter samples are drawn from an arbitrary sampling distri- 
bution (usually the multivariate Gaussian), and then a poste- 
rior ratio test is used to accept or reject the samples. The 
Metropolis algorithm is required when it is not possible to 
derive the full conditional distributions required for the Gibbs 
sampler. This is the case for the AR(1) model given in (9). The 
transformation applied to the annual rainfall means that the 
full conditional distributions are not easily derived. 

For the purposes of this comparison we are primarily inter- 
ested in the posterior of the lag-one autoregressive coefficient 
qb, as it is considered a measure of the degree of the year-to- 
year persistence. If the qb value is close to zero, the simulated 
time series will have little or no persistence. The posterior of qb 
is shown in Figure 8 for the three rainfall case studies. For each 
of these time series the hypothesis that they are independent 
(qb = 0) cannot be reasonably rejected. For Sydney, Brisbane, 
and Melbourne the probability that qb < 0 is 9%, 40% and 
18%, respectively. Thus these results provide no clear indica- 
tion of a persistence structure. This contrasts with the HSM 
model results that indicated a strong persistence structure for 
the Sydney and Brisbane data. 

7. Discussion 

The methodology used to evaluate which water year was 
chosen implies that there exists a single water year which 
clearly had the strongest wet and dry state signal. However, this 
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Figure 8. Posterior distribution of the autocorrelation coef- 
ficient qb for the AR(1) model for each of the rainfall case 
studies. 
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Figure 9. Values of the state signal index SSI for the 12 time 
series corresponding to the 12 water years for the Sydney and 
Brisbane rainfall case studies. 

is not necessarily the case. Figure 9 shows the SSI value for 
each of the 12 water years. For the Sydney data there are 5 
water years with similarly high SSI values. Their start months 
are all in the period May to October (excluding July). For the 
Brisbane data there are 4 water years with similarly high SSI 
values. Their start months are in the period from July to Oc- 
tober. This trend indicates that the strongest wet and dry state 
signal exists when the water year begins in the winter period 
(approximately May to October). If the water year begins in 
the summer period, a strong wet and dry state signal is not 
evident. This implies that the wet and dry state persistence is 
primarily a summer phenomenon. As the summer rainfall is 
largely influenced by the tropical Pacific weather systems we 
could hypothesize that this is the cause of the wet and dry state 
persistence. 

Comparing the results for the four case studies reveals that 
a strong persistence was identified when the hydroclimatic data 
were greatly influenced by the tropical Pacific weather systems 
(Sydney rainfall, Brisbane rainfall, and Burdekin reconstructed 
runoff). The Melbourne rainfall data provided no such evi- 
dence of persistence. It is known that the tropical weather 
systems rarely travel as far south as Melbourne. This provides 
more evidence to support the hypothesis that the primary 
cause of the wet and dry state persistence is associated with the 
climatic phenomena from the tropical Pacific. Further analysis 
with more rainfall sites would be required to fully test this 
hypothesis. 

Of the four modeling assumptions outlined in section 2 only 
three were tested to verify that they were not violated. The 
final assumption, that the state transition probabilities are sta- 
tionary over time, was not tested because a satisfactory meth- 
odology for testing this assumption has not yet been developed. 
It is believed that violation of this assumption would have a far 
lesser impact on the simulated time series when compared to 
the impact of using a stochastic model which does not have an 
explicit mechanism for replicating wet and dry periods. 

In the future the HSM model could be modified so the 

transition probabilities or the hidden states are a function of 
some persistent climatic variable, such as SSTs (S. Franks, 
personal communication, 2000). This could potentially aid in 
our understanding of the climatological processes that produce 
the wet and dry state persistence. This modified HSM model 
would be similar to the class of models used by Hughes et al. 
[1999]. As mentioned in the introduction this type of model has 
its limitations for long-term water resources applications. 
Long-term simulations are dependent on long-term simula- 
tions of the required atmospheric variables. In contrast, the 
HSM model has the advantage that long-term simulations are 
a relatively simple procedure that do not require simulation of 
auxiliary climatic variables. 
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Figure 10. Histogram of the observed annual rainfall for 
Sydney (June-May water year) compared to the predicted 
distribution p(,V YN) for next year's rainfall given that the 
previous year's climate state was wet and dry. 

To simulate future rainfall time series, the posterior predic- 
tive distribution outlined in section 5 is used. However, there is 
a subtle notation change. Instead of producing replicates of the 
observed data the distribution of the unknown future data.• is 
predicted. Thus it is denoted as p(YlYv). This technique will 
be illustrated by simulating the predicted distribution of annual 
rainfall for Sydney 1 year into the future. Two different cases 
are used to demonstrate the influence the previous year's cli- 
mate state has on the predicted rainfall distribution. The first 
case assumes that the previous year's climate state was wet, and 
the second assumes that it was dry. The two distributions are 
compared to a histogram of the observed data in Figure 10. For 
the wet state case there is a significant difference between the 
predicted and the observed distribution. As expected, high 
values for the rainfall have an increased chance of occurring. 
However, for the dry state case the difference is not as marked. 
This is because in the model calibration, approximately 85 % of 
the Sydney observed data has a high probability of being clas- 
sified as dry (refer to Figure 7a). Hence the dry state distribu- 
tion closely follows the observed distribution. With a different 
data set the proportion of rainfall classified as dry may be less, 
and the predicted distribution for the dry state case would 
show a greater difference. 

The AR(1) model results for Sydney and Brisbane were 
inconsistent with the HSM model. No statistically significant 
persistence structure was identified. The likely reason is that 
the AR(1) model has no explicit mechanism to simulate wet 
and dry periods. The AR(1) and other stochastic models (e.g., 
ARMA, broken line, and fractional Gaussian noise models) 
were previously applied because they are able to reproduce 
certain statistical characteristics of a time series (e.g., the Hurst 
phenomenon, a statistical indicator of long-term persistence; 
refer to Salas [1993]). In contrast, the HSM model provides a 
conceptually sounder model which emulates the influence of 
the global climatic mechanisms. 

Apart from the AR(1) model, other alternatives such as a 
three-state HSM model or a threshold autoregressive model 
[Tong, 1990] could be applied. In Tong's model the hidden 
states could define the threshold, which is used to distinguish 
between two autoregressive processes. Compared to the HSM 
model this represents a different modeling approach for the 
state distributions. Both these models could potentially be vi- 
able alternatives. However, the important issue is the ability to 
reproduce the varying wet and dry spells, which the two-state 
HSM model is able to do. 

In a rigorous statistical sense only part of the data set should 

be used for the model calibration with the remaining portion 
reserved for model validation [Stedinger and Taylor, 1982a]. 
However, to identify and characterize long-term persistence, a 
long-term time series is required. Thus for the HSM model this 
provides a physical limitation as to how much of the data can 
be reserved for model validation. This is illustrated using syn- 
thetically generated data. 

The aim of this analysis is to determine the approximate 
length of the time series required to identify a strong persis- 
tence structure. The expected values from the Sydney posteri- 
ors (refer to Table 2) were used to generate a synthetic time 
series because they represented a strong dry state persistence. 
This parameter set is denoted as set S1. Three synthetic time 
series of length 45, 90, and 140 years were generated (140 years 
is the approximate length of the original Sydney data). Figure 
11 shows the posteriors of the transition probabilities when 
each of these synthetic series was calibrated to the HSM 
model. Both posteriors are close to uniform for the 45 year 
series. For the 90 year series the P(Wet to Dry) posterior is 
tighter, but the P(Dry to Wet) posterior still assigns a signifi- 
cant density to a wide range of values. It is only for the 140 year 
series that the posteriors indicate that the persistence structure 
is identifiable. The posterior difference between the wet and 
dry state distributions shows a similar trend. Only the 140 year 
series shows that the difference is clearly significant. These 
results indicate that long-term time series are required to iden- 
tify a strong persistence structure. 

The difference between the wet and dry state distributions is 
another factor that influences whether the persistence struc- 
ture can be identified. If these two distributions become closer, 
it is harder to identify the persistence structure than if they are 
further apart. To illustrate this, two more parameter sets were 
used to generate synthetic time series. Both sets were based on 
set S1, except that for set S2 the wet state was increased to 
double the wet and dry mean difference and for set S3 the wet 
state mean was decreased to halve the difference. Table 3 

shows the expected values and standard deviations of the pos- 
teriors for the transition probabilities for all three parameter 
sets. The results for the S2 set show that the persistence struc- 
ture was identifiable even for a 45 year time series, while for 
the S3 set the synthetic parameter values were not recovered 
for the 140 year series. The posteriors for the remaining pa- 
rameters showed that their synthetic values were recovered 
when the persistence structure was identified. This exercise 
illustrates that the difference between the wet and dry distri- 
butions influences whether the persistence structure can be 
identified. 

To verify that the persistence identified by the HSM model 
could not be recovered from independent data, a synthetic 
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Figure 11. Posterior distributions of the transition probabil- 
ities calibrated to a synthetic time series of varying length: (a) 
P(Wet to Dry) and (b) P(Dry to Wet). 
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Table 3. Expected Values and Standard Deviations of the 
Posterior for the Transition Probabilities Calibrated to 

Synthetic Time Series of Varying Lengths 

Length of Synthetic Series 
HSM Model 

Parameter Set a 45 Years 90 Years 140 Years 

P (Wet to Dry), Synthetic Parameter Value = 0.55 
S1 0.55 (0.29) 0.71 (0.15) 0.52 (0.11) 
S2 0.44 (0.16) 0.52 (0.12) 0.49 (0.09) 
S3 ... 0.24 (0.23) 0.18 (0.16) 

P (Dry to Wet), Synthetic Parameter Value = 0.10 
S1 0.40 (0.30) 0.36 (0.23) 0.15 (0.04) 
S2 0.11 (0.06) 0.14 (0.04) 0.1S (0.04) 
S3 ... 0.41 (0.30) 0.27 (0.21) 

aSl, Expected values of the Sydney posteriors; S2, same as S1, except 
wet state mean increased; S3, same as S1, except wet state mean 
decreased. 

rectly identify the persistence structure in the data, this could 
lead to suboptimal water resource planning decisions. 

Appendix A: Sampling From Conditional 
Distribution of Hidden State Time Series 

The general method for sampling the hidden state time 
series for multistate Markov mixture models developed by 
Chibb [1996] is terse. This appendix presents a fuller treatment 
for the two-state case of the HSM model. The entire state time 

series is simulated using the distributionp (SN[YN, 0 ), which is 
the joint posterior mass function of all the states given YN and 
0. The derivation aims to develop a simple expression for this 
joint distribution. This will lead to a recursive simulation pro- 
cedure where at each step, starting with the terminal state Sn, 
only a single state has to be drawn. For the following derivation 
it is convenient to adopt the notation used by Chibb [1996], 
where 

series was generated from a Gaussian distribution with param- 
eters estimated from the Sydney data. When these indepen- 
dent data were calibrated to the HSM model, no persistence 
structure was identified. 

In the introduction it was stated that the primary focus for 
the development of the HSM model is for long-term water 
resources planning. One specific application is for the drought 
risk assessment of water supply systems. Simulation of future 
water supply system performance requires the long-term sim- 
ulation of future hydrological inputs, which the HSM model 
can provide. However, at this stage only single-site simulations 
are possible. For larger water supply systems a multisite sim- 
ulation framework would be required. The development of a 
multisite HSM model will form part of the next stage of re- 
search. A multisite HSM model would also be able to identify 
regions with a common wet and dry persistence structure. The 
time series plots of the wetter and drier periods for Sydney and 
Brisbane in Figure 7 illustrate that some of the periods are 
common for both sets of data. Identification of these climatic 

regions will be a part of future research. 

8. Conclusions 

This paper introduces the HSM model as an alternative for 
modeling long-term persistence in hydroclimatic time series. 
Unlike the statistical models currently used (e.g., AR(1)), the 
conceptual basis of the HSM two-state model framework more 
closely simulates the influence of the global climatic mecha- 
nisms. The cumulative effect of several quasi-periodic global 
climate circulations (e.g., ENSO, IPO, and circumpolar vortex) 
produces the varying wet and dry. regimes evident in Australian 
hydroclimatic data. The HSM model has an explicit mecha- 
nism to simulate this wet and dry persistence structure. 

The Gibbs sampler, a Markov Chain Monte Carlo method, 
was used to calibrate the HSM model for four different case 

studies. For the case studies with strong influence from the 
tropical Pacific weather systems the results supported the as- 
sumptions of the HSM model framework and indicated the 
existence of a strong persistence structure. In direct contrast, 
for the same case studies the AR(1) calibration results indi- 
cated no dear persistence structure. 

These results could potentially have significant ramifications 
for drought risk assessment and water resource management 
techniques. If the current statistical models used do not cor- 

S N = {Sl,... , Sn}, St = {Sl,... , St}, 

S t+I= {St+i,..., Sn}, 

with a similar convention adopted for YN, Yt, and yt + •. 

A1. Step 1 

By initially rewriting the joint distribution of the states 
P(SN YN, 0) and applying the conditional probability theorem 
repeatedly to the right-hand term a recursive expression re- 
sults' 

p(SN YN, O) = p(sx, {S2 .... , Sn}IYN, 0) 

--p(s•l{s=,..., Sn, YN, 0)p({s2,..., Sn YN, O) 

--p(s•l{s•,..., Sn, YN, O)p(s2I{S3, ''' , Sn, YN, O) 

'p({s3, ..., Sn} YN, 0). 

The summary of this recursion is 

0) 

= p(s s o) ..... p(stls YN, 0) ..... p(snYN, 0). 

The typical term, excluding the terminal point, is therefore 
p(s,Is '+', YN, 0). 

A2. Step 2 

Expand and split the YN term from the typical term in (A1) 
and apply Bayes theorem to the result. Further expand and 
split the S t+• in the left-hand term and apply the conditional 
probability theorem: 

p(st[YN, St+i, O)= p(stlYt, yt+l, St+i, O) 

: p(yt+l, St+list, Yt, O)p(st[Yt, O)/P( Yt+I, St+l, Yt, O) 

oc p(st+l ' S/+2, yt+l[st, Yt, O)p(st[Yt, O) 

oc p(S t+2, yt+Xlst+x, St ' Yt, O)p(st+•lst, Yt, O)p(st Yt, 0). 

The terms p(yt+•, St+•, Yt, 0) and p(S t+2, Yt+•[st+•, st, Yt, O) 
are independent of st and hence become part of the normal- 
izing constant. The Markovian property of the states means 
that s t+• is purely dependent on knowledge of st; thus 
p(st+ • st, Yt, O) becomesp(st+ •lst, 0). Therefore a simplified 
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expression for the typical term of the joint posterior density is 
the product of two terms: 

p(s,lY, s 0) • p(st+•lst, 0)p(s,lY,, 0). (A2) 

The first term is the transition probability of going from st to 
st+ •, and the other term is the mass function of st given Yt. 
The normalizing constant of this mass function is the sum of 
the numbers obtained using (A2) as st • {WET, DRY}. 

The final stage of the calculation is to determine the mass 
function p(st[Yt, 0) given in (A2). The method developed is 
applied recursively for all st from t = 1 to n. Assume that the 
function p(s t_ •lYt_ •, 0) is available. Then repeat the follow- 
ing steps: 

1. The prediction step involves determination ofp(s,lY,_ •, 
0) using the total probability theorem: 

p(stlYt-•,O) - E p(st[st_ 1 = k, O)p(st-• = k[Yt_•, 0), 
k•{WET, DRY} 

(A3) 

where the Markovian property of the states means that 

o)- p(stlst-•, 0). 

2. The update step involves determination ofp(stlYt, 0) by 
first splitting the Yt term so that it becomes p(s,ly,, Y,_•, o) 
and applying Bayes theorem: 

p(s,lY,, 0)o p(y,ls,, Yt-1, O)p(st[Yt-1, 0). (A4) 

Now, the left-hand term of this result is the probability 
density of the rainfall at time t, yt, given the climate state st. As 
the rainfall distribution is assumed Gaussian this is easily eval- 
uated. The right-hand term is calculated in the prediction step. 
The normalizing constant for mass function given in (A4) is the 
sum of all the terms for st • {WET, DRY}. At t = 1 these 
steps can be initialized by ignoring the prediction step and 
using the stationary Markovian state probabilities derived from 
the state transition probability matrix P for P(s•lYo, 0). 

Using the expressions derived previously, the simulation of 
the state time series is a relatively simple procedure. First the 
prediction and update steps are run recursively to compute the 
mass functions p(s,lY,, 0), for all t = 1 to n. Sampling of the 
state time series starts by initially simulating Sn using p(SnlYN, 
0). The remaining states can be simulated using the mass 
function p(stlY,, s 0) calculated using the expression 
given in (A2). 
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