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Theory and Applications of Bio-inspired Algorithms

Abstract

Evolutionary algorithms, which form a sub-class of bio-inspired algorithms, mimic
some fundamental aspects of the neo-Darwinian evolutionary process. They simultane-
ously search with a population of candidate solutions and associate an objective score as
a fitness value for each one. The algorithms then select among the population to favour
those solutions that are more fit. The next generation (i.e. a new population) consists
of replicates of the fitter solutions that have been genetically mutated and crossed over
in a biological metaphor: the decision variables were perturbed such that they inherit
characters of their parents, as well as change in random ways.

For the past decades, the algorithms’ success has led to strongly practical-oriented
interests. Although the theory of them is far behind the knowledge gained from exper-
iments, there are theoretical investigations about some of their properties. This thesis
spans theoretical investigations, theory-motivated algorithm engineering, and also the
real-world application of evolutionary algorithms.

First, we analyse different algorithms that work with solutions of variable length.
We show theoretically and experimentally that certain design choices can have drastic
impacts on the ability of an algorithm to find optimal solutions.

Second, motivated by recent theoretical investigations, we design a framework for
solving problems with conflicting objectives. We demonstrate that it can efficiently
handle problems with many such objectives, which most existing algorithms have dif-
ficulties dealing with.

Finally, we consider the problem of maximising the energy yield of wind farms. Our
problem-specific algorithm achieves higher quality results than existing approaches,
and it allows for an optimisation within minutes or hours instead of days or weeks.
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