Theory and Applications of Bio-inspired Algorithms

A DISSERTATION PRESENTED BY MARKUS WAGNER TO THE SCHOOL OF COMPUTER SCIENCE

IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE SUBJECT OF COMPUTER SCIENCE

The University of Adelaide Adelaide, South Australia July 2013 ©2013 – Markus Wagner All rights reserved. Thesis advisors: Associate Prof. Frank Neumann Prof. Zbigniew Michalewicz

Theory and Applications of Bio-inspired Algorithms

Abstract

Evolutionary algorithms, which form a sub-class of bio-inspired algorithms, mimic some fundamental aspects of the neo-Darwinian evolutionary process. They simultaneously search with a *population* of candidate solutions and associate an objective score as a fitness value for each one. The algorithms then select among the population to favour those solutions that are more fit. The next generation (i.e. a new population) consists of replicates of the fitter solutions that have been *genetically mutated and crossed over* in a biological metaphor: the decision variables were perturbed such that they inherit characters of their *parents*, as well as change in random ways.

For the past decades, the algorithms' success has led to strongly practical-oriented interests. Although the theory of them is far behind the knowledge gained from experiments, there are theoretical investigations about some of their properties. This thesis spans theoretical investigations, theory-motivated algorithm engineering, and also the real-world application of evolutionary algorithms.

First, we analyse different algorithms that work with solutions of variable length. We show theoretically and experimentally that certain design choices can have drastic impacts on the ability of an algorithm to find optimal solutions.

Second, motivated by recent theoretical investigations, we design a framework for solving problems with conflicting objectives. We demonstrate that it can efficiently handle problems with many such objectives, which most existing algorithms have difficulties dealing with.

Finally, we consider the problem of maximising the energy yield of wind farms. Our problem-specific algorithm achieves higher quality results than existing approaches, and it allows for an optimisation within minutes or hours instead of days or weeks.

iv

Contents

1	Int	RODUCTION	1
	1.1	Part I: Computational Complexity of Variable-Length Algorithms	2
	1.2	Part II: Design of Evolutionary Multi-Objective Algorithms	3
	1.3	Part III: Applications to Wind Farm Optimisations	5
I ri	C_{thm}	omputational Complexity of Variable-Length Algo- as	7
2	ALC	GORITHMS AND METHODS FOR THEIR ANALYSIS	9
	2.1	Motivation	9
	2.2	Problems	11
	2.3	Algorithms	15
	2.4	Methods for the Analysis	18
3	Тні	EORETICAL ANALYSIS OF SORTING	21
	3.1	Standard Approach Without Bloat-Control	21
	3.2	Local Optima and the Parsimony Approach	25
	3.3	Multi-Objective Approach	30
	3.4	Experimental Supplements	34
	3.5	Conclusions	47
4	Exf	PERIMENTAL ANALYSIS OF ORDER AND MAJORITY	51
	4.1	Introduction	51
	4.2	Preliminaries	52
	4.3	(1+1)-GP	54
	4.4	SMO-GP	55
	4.5	Conclusions	59

Π	\mathbf{D}	esign of Evolutionary Multi-Objective Algorithms	61
5	Evo	DUTIONARY MULTI-OBJECTIVE OPTIMISATION	63
	5.1	Introduction	64
	5.2	Preliminaries	67
6	App	ROXIMATION-GUIDED EVOLUTION	71
	6.1	Simple Algorithm	71
	6.2	Fast Algorithm	73
	6.3	Experimental Study	74
	6.4	Conclusions	77
7	App	roximation-Guided Evolution II	79
	7.1	The Algorithm	80
	7.2	Speed-up through approximative archives	83
	7.3	Benchmark Results	84
	7.4	Conclusions	86
II	I A	Applications to Wind Farm Optimisation	91
8	WIN	id Farm Optimisation	93
	8.1	Introduction	93
	8.2	State of the Art	94
	8.3	Wake Modelling	96
9	Орт	TIMISING THE LAYOUT OF 1000 WIND TURBINES	101
	9.1	CMA-Evolutionary Strategy	101
	9.2	Results and Discussion	104
	9.3	Conclusions	108
10	A P	ROBLEM SPECIFIC LOCAL SEARCH METHOD	111
	10.1	Turbine Distribution Algorithm	112
	10.2	Experimental Investigations	115
	10.3	A Real-World Problem: Dealing With Infeasible Areas	119
	10.4	Conclusion	121
IV	7 S	ummary and Future Work	123
Rı	EFERI	ENCES	127

Listing of Figures

2.1	WORDER and WMAJORITY: example for evaluations	12
3.1	SORTING: maximum tree sizes observed when $init_0$ is used	39
3.2	SORTING: maximum tree sizes observed when $init_n$ is used \ldots	40
3.3	SORTING: number of evaluations required when $init_0$ is used	41
3.4	SORTING: number of evaluations required when $init_n$ is used \ldots .	42
3.5	SORTING: maximum population size for INV in SMO-GP	45
3.6	SORTING: number of evaluations required until an optimum is found .	46
4.1	WORDER/WMAJORITY: number of evaluations required until an op-	
	timum is found	56
4.2	eq:WORDER/WMAJORITY: number of evaluations required until the op-	
	timum and the entire true Pareto front is found $\ldots \ldots \ldots \ldots \ldots$	58
5.1	Multi-objective optimisation: example objective space	64
6.1	Visualization of the Pareto fronts for $d = 3$	75
6.2	Performance comparison: our algorithm AGE with IBEA, NSGA-II,	
	SMS-EMOA and SPEA2	75
6.3	Performance comparison: our algorithm AGE with IBEA, NSGA-II,	
	SMS-EMOA and SPEA2	76
7.1	Visualisation of the ϵ -approximation in the objective space	82
7.2	Influence of ϵ_{grid} on the archive size, the runtime, and the final quality .	88
7.3	Performance comparison: our AGE-II with the original AGE, IBEA,	
	NSGA-II, SMS-EMOA and SPEA2	89
7.4	Performance comparison: our AGE-II with the original AGE, IBEA,	
	NSGA-II, SMS-EMOA and SPEA2	89
7.5	Performance comparison: our AGE-II with the original AGE, IBEA,	
	NSGA-II, SMS-EMOA and SPEA2	90
9.1	Comparison of Kusiak et al.'s algorithm SPEA-2 and our adjusted CMA-	
	ES	106

9.2	Performance of CMA-ES for 10 to 100 turbines under Scenario 2	106
9.3	Performance of CMA-ES for 200 to 1000 turbines under Scenario 2 $$	107
9.4	Ratio of energy loss due to wake to total capture	107
9.5	Displacement of the turbines from the initial positions	108
10.1	Illustration of vector displacement using TDA with $nn = 2$	114
10.2	Influence of the number of considered nearest neighbours	116
10.3	Performance comparison: our algorithms TDA, CMA-ES*, and OpenWind	119

List of Tables

3.1	SORTING: runtime results for $(1+1)$ -GP* variants	25
3.2	SORTING: runtime results for single-objective variants	34
3.3	SORTING: runtime results for multi-objective variants	35
3.4	SORTING: maximum tree sizes encountered until an optimum is found	37
3.5	Meaning of line styles in Figures 3.3 and 3.4	43
3.6	SORTING: maximum tree sizes and maximum population sizes encoun-	
	tered for SMO-GP \ldots	44
3.7	Meaning of line styles in Figure 3.6	45
3.8	SORTING: our average case conjectures for the single-objective problems	48
3.9	SORTING: our average case conjectures for the multi-objective problems	49
4.1	Computational complexity results from $[29, 62]$. Question marks indi-	
	cate combinations for which we do not know any bounds	53
4.2	WORDER/WMAJORITY: maximum tree sizes encountered until an	
	optimum is found	54
4.3	WORDER/WMAJORITY: maximum tree sizes and maximum popula-	
	tion sizes encountered for SMO-GP	57
4.4	WORDER/WMAJORITY: summary of our average case conjectures for	
	the single-objective problems	60
4.5	WORDER/WMAJORITY: summary of our average case conjectures for	
	the multi-objective problems	60
8.1	Wake modelling: symbol definitions	96
9.1	Wind Scenario 1 and Scenario 2	104
9.2	CMA-ES and experiment parameters	105
9.3	Metrics used to evaluate multiple layouts.	105
10.1	All results: our algorithms TDA, CMA-ES*, and OpenWind	118

х

List of Algorithms

2.1	WORDER(X)	12
2.2	WMAJORITY(X)	13
2.3	Derivation of $F(X)$ for SORTING	14
2.4	HVL-Prime mutation operator	16
2.5	(1+1)-GP*-single for maximisation	16
2.6	$(1+1)$ -GP-single for maximisation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	17
2.7	SMO-GP	18
5.1	Measure approximation quality of a population	68
6.1	Simple $(\mu + \lambda)$ -Approximation-Guided EA	72
6.2	Insert point into archive	72
6.3	Fast $(\mu + \lambda)$ -Approximation-Guided EA	73
7.1	Outline of Approximation-Guided EA II	81
7.2	Function floor	81
7.3	Function <i>increment</i>	82
8.1	Procedure for evaluation of wake effects due to the Park model $[51]$	99
9.1	Covariance Matrix Adaptation Based Evolutionary Strategy $[43]$ $\ . \ . \ .$	102
10.1	Turbine Distribution Algorithm	114

iv

Statement of Originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Date

TO MY LOVING PARENTS, AND MY BELOVED FAMILY.

Acknowledgments

It was a great honour to work in such lively, inspiring, and outstanding places such as the Algorithms and Complexity Group at the Max Planck Institute for Informatics, and the School of Computer Science at the University of Adelaide.

First of all, I would like to thank Frank Neumann. He was the one to draw my attention to the Max Planck Institute for Informatics. I am most grateful to him for supporting my research on evolutionary algorithms within his research groups, and for inviting me to join him in South Australia. I also would like to thank Benjamin Doerr and Zbyszek Michalewicz for their support of my studies and for asking many thoughtprovoking questions. Furthermore, I am in debt to the heads of both institutions Kurt Mehlhorn and David Suter for allowing me to be part of their teams.

The best experiences during my research arouse from collaborations with others. Therefore, I am grateful to my co-authors Thomas Ackling, Bernhard Beckert, Bernd Bischl, Cody Boisclair, Thorsten Bormer, Jakob Bossek, Karl Bringmann, Gerd Beuster, Jareth Day, Christopher Denison, Carola Doerr, Tobias Friedrich, Sophia Gao, Niklas Henrich, Daniel Johannsen, Diora Jordan, Timo Kötzing, Per Kristian Lehre, Trent Kroeger, Olaf Mersmann, Samadhi Nallaperuma, Anh Quang Nguyen, Una-May O'Reilly, Tomasz Oliwa, Claudia Schon, Dirk Sudholt, Raymond Tran, Heike Trautmann, Tommaso Urli, Kalyan Veeramachaneni, Katya Vladislavleva, Junhua Wu, and Joseph Yuen. There are many more who I would like to thank, and amongst them are my fellow students in the labs, the professional staff at the institutions, and many conference attendees. Many invaluable friendships were formed.

My work was supported by several scholarships and grants, which I gratefully acknowledge. The Max Planck Research School Postgraduate Scholarship and the School of Computer Science Postgraduate Scholarship allowed me to focus on my studies by covering my living expenses and the numerous conference travels. Further generous travel support includes a Google PhD Top-Up Grant, a Google PhD Travel Prize, a Bupa Postgraduate Travel Grant, and the direct support from the conference organisers of the International Joint Conference on Artificial Intelligence (IJCAI) 2011 and of the Genetic and Evolutionary Computation Conference (GECCO) 2013. I would also like to thank the University of Adelaide for selecting me as their representative at the China Nine / Group of Eight HDR Forum on "Clean Energy and Sustainable Future 2011" in Beijing, China (related to Part III). The attendance of that event has significantly broadened my personal and professional horizons.

Lastly, I would also like to express my gratitude to several anonymous reviewers and the members of my examination committee. Their comments significantly helped to improve the presentation of the results presented here.