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The human colonization of Remote Oceania remains one of the
great feats of exploration in history, proceeding east from Asia
across the vast expanse of the Pacific Ocean. Human commensal
and domesticated species were widely transported as part of this
diaspora, possibly as far as South America. We sequenced mito-
chondrial control region DNA from 122 modern and 22 ancient
chicken specimens from Polynesia and Island Southeast Asia and
used these together with Bayesian modeling methods to examine
the human dispersal of chickens across this area. We show that
specific techniques are essential to remove contaminating modern
DNA from experiments, which appear to have impacted previous
studies of Pacific chickens. In contrast to previous reports, we find
that all ancient specimens and a high proportion of the modern
chickens possess a group of unique, closely related haplotypes
found only in the Pacific. This group of haplotypes appears to
represent the authentic founding mitochondrial DNA chicken
lineages transported across the Pacific, and allows the early
dispersal of chickens across Micronesia and Polynesia to be
modeled. Importantly, chickens carrying this genetic signature
persist on several Pacific islands at high frequencies, suggesting
that the original Polynesian chicken lineages may still survive.
No early South American chicken samples have been detected
with the diagnostic Polynesian mtDNA haplotypes, arguing
against reports that chickens provide evidence of Polynesian
contact with pre-European South America. Two modern speci-
mens from the Philippines carry haplotypes similar to the ancient
Pacific samples, providing clues about a potential homeland for
the Polynesian chicken.

Lapita | Pacific colonization | phylogeography | archaeology | migration

The colonization of the remote Pacific was one of the last great
human migrations, but despite the recent nature of the events,

the timing and routes remain an area of considerable debate. The
first colonization of Western Polynesia occurred around 3,250–
3,100 calendar years before present (cal B.P.) as part of the
eastward migration of Lapita pottery-bearing peoples (1). This
migration occurred only a few hundred years after the emergence
of this distinctive pottery tradition in the Bismarck Archipelago
around 3,470–3,250 cal B.P., although its antecedents can be
traced to Island Southeast Asia (ISEA) (2–5). Following the initial
movement into Western Polynesia, a prolonged 1,800-y hiatus, or
“pause,” is apparent before further colonization (6), potentially
relating to the need to develop sailing technology essential for
crossing the vast ocean barrier to the east (between Samoa and
the Society Islands, 2,400 km; Fig. 1). The huge navigational
achievement of colonizing the remote East Polynesian triangle (an
oceanic region roughly the size of North America) then occurred
rapidly (<300 y) (6). Although the overall chronology of the
eastern Pacific island colonization has recently been further

resolved, the precise details of this intensive migratory episode
remain unclear (6).
Human commensal and early domesticated species were wide-

ly, but not ubiquitously, dispersed as people colonized the Pacific.
As a result, they provide an opportunity to study colonization
events and subsequent movements for islands and regions where
they were successfully introduced, especially through the use of
biomolecular techniques, including ancient DNA. In the Asia–
Pacific region, the complex histories of Pacific island colo-
nizations have been investigated using the biological elements
associated with these cultures, such as bottle gourds (7, 8),
sweet potatoes (9), pigs (10, 11), dogs (12), Pacific rats (13),
and chickens (14–17). However, studies of commensals and
domesticates in the Pacific to date have provided limited res-
olution of dispersal routes, due to low amounts of genetic di-
versity in many groups and overwriting of genetic signals by
subsequent introductions, especially for cotransported species
like rats (10, 13, 18).
Ancient and modern DNA from chickens provide an oppor-

tunity to study human-mediated dispersal across the Pacific due
to the extent of genetic and phenotypic diversity and the range of
archaeological material available. Although recent studies of
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domestic chicken breeds have highlighted how the domestication
process and subsequent breeding have resulted in a 70% loss
of nuclear genetic diversity (19), substantial phylogeographic
structure remains within the mitochondrial (mtDNA) sequences
of chickens worldwide (20–23). Furthermore, an extensive ref-
erence dataset of >3,000 mtDNA control region (CR) sequences
and >60 whole mtDNA genomes is available from across the
natural range of wild and semiwild birds, as well as domestic
breeds of chicken, permitting the reconstruction of phylogeo-
graphic patterns of domestic chickens and associated human
cultures. Despite these intensive surveys, a resolved worldwide
chicken mtDNA phylogeny has not been developed, and this is
an essential prerequisite to interpreting short ancient DNA
sequences. The current phylogenetic framework for chickens is
based on Liu et al. (24), who identified nine highly divergent
haplogroups (designated A–I) using mtDNA CR sequences, with
an additional four recently described on the basis of whole
mtDNA genomes (W–Z) (25). However, there is little infor-
mation about the support for these topologies, and only neigh-
bor-joining trees have been reported to date.
Phylogeographic studies have identified that one particular

mtDNA lineage (CR haplogroup D) is largely limited to the
Asia–Pacific region (24), whereas many of the other haplogroups
are ubiquitous worldwide, potentially as a result of historical dis-
persal with European colonialists (e.g., haplogroups A, B, and E),
and are therefore generally phylogeographically uninformative.
Previous studies of modern and ancient chickens have identified
both haplogroup D and E in the Pacific (14–17, 26), making
interpretation of colonization history difficult due to poten-
tially contrasting origins and dispersal histories (24). Indeed,
the presence of haplogroup E in the Pacific has been used
to infer a link between Polynesia and pre-Columbian South
America, although both the phylogenetic signal and radiocarbon
dating of the samples have been questioned (27–29). This issue
has recently taken on more significance as other studies of ancient
genetic diversity in South America emphasize the importance of
evidence for pre-European Polynesian contact (17, 30).
In this study, we first quantify the support for previously de-

fined chicken mtDNA CR haplogroups using recently published
whole mitochondrial genomes (WMGs) (25). We then use the
resulting robust evolutionary framework to analyze the spatial
and temporal patterns of mtDNA CR haplotypes in ancient and
modern Pacific chickens to examine their origins in ISEA (31),
the dispersal of chickens into Near Oceania and Western Poly-
nesia, potential connections between the New Guinea region and
Micronesia, and the claimed introduction of Polynesian chickens
to South America (14).

Results
The 61 WMG dataset (25) contained 363 single-nucleotide
polymorphisms (SNPs), of which 154 were potentially phyloge-
netically informative, with 62 (17%) located in the rapidly
evolving CR (32). Bayesian and maximum likelihood inference
analyses of the WMG dataset supported the haplogroup frame-
work defined by Liu et al. (24) and Miao et al. (25) and, im-
portantly, produced robust support for haplogroups A–G and Z
(i.e., haplogroups where multiple individuals were sequenced), as
shown in Fig. 2. Robust support values were also obtained for
phylogenetic trees based on the WMG data without the CR
sequences (SI Appendix, Fig. S1), but were less robust when based
only on the highly variable CR sequences alone, likely due to
issues with substitution rate heterogeneity (32) (SI Appendix, Fig.
S2). However, the short (201 bp), hypervariable region of the CR
used in previous studies contains >12× the average diversity per
base compared with the rest of the WMG, and has the advantage
of being available for a worldwide dataset of >1,000 chicken
sequences. The comparative phylogenetic dataset constructed
from these sequences identified 274 unique haplotypes, which we
termed H001–H274 (SI Appendix, Dataset S6).
Of the 37 Polynesian archaeological chicken bones analyzed to

study the temporal and spatial patterns within Polynesia, 22
(59%) yielded positive and repeatable PCR amplification and
DNA sequencing results for a 330 bp region (which included the
hypervariable 201 bp; Niue, n = 2/8; Hawai’i, n = 7/11; Rapa Nui,
n = 13/18; SI Appendix, Table S1). All of the 22 positive ancient
samples produced mtDNA CR sequences belonging to haplo-
group D. Two samples that could not be reliably reproduced
(from Niue and Rapa Nui) each generated a single PCR prod-
uct with different non-D haplotypes (from haplogroup A and
E, respectively; SI Appendix, Table S1 and Dataset S1). How-
ever, when DNase (double-strand–specific Shrimp DNase) pre-
treatment was used to remove potential contaminating DNA
from reagents (33), these sequences were no longer detected (SI
Appendix). Two of the 124 modern feather samples examined
could not be successfully amplified (one from the Marquesas and
another from Hawai’i). The large majority of the resulting 122
modern sequences belonged to haplogroup D (n = 90/122, 74%;
SI Appendix, Figs. S3–S7), with haplogroup E sequences present
at a lower frequency (n = 27/122, 22%). The remaining five
samples fell within haplogroups A, B, and I (n = 1, 3, and 1,
respectively, each <2.5%).
Previous studies of Pacific chickens have reported elevated

levels of haplogroup E among ancient specimens (up to 48%)
(14–16), in direct contrast to our results. However, the con-
tamination of laboratory consumables with DNA from modern
domestic species, including chickens, is a well-known problem in
ancient DNA research (34), and this would also likely generate
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haplogroup E sequences, due to the ubiquity of the latter
worldwide (SI Appendix, Dataset S2) (24). To examine this po-
tential explanation, we reexamined key samples from a previous
study that linked ancient Polynesian chickens to South American
archaeological specimens (14). Four of the six bone samples
from Rapa Nui used in the previous study were available for
reexamination, but only three gave replicable results (SI Ap-
pendix, Dataset S1). However, these included the individual bone
reported to have generated the critical single haplogroup E se-
quence (H268 of our unique haploptypes) used to link Rapa Nui
and South America (sample PAQANA011; SI Appendix, Fig. S8)
(14). In direct contrast to the previous results, our reanalysis of
an independent sample of PAQANA011 using Shrimp DNase
PCR pretreatment yielded a haplogroup D sequence (haplotype
H239; SI Appendix, Dataset S6) identical to those of the other
two Rapa Nui specimens we reexamined. This result was sub-
sequently confirmed through independent replication of a
subsample of the same specimen at Durham University (SI Ap-
pendix, Dataset S3).
Our results further revealed that the PAQANA011 specimen

contained low amounts of DNA, with elevated levels of DNA
template damage (SI Appendix, Dataset S4), and strongly sug-
gests the previously reported haplogroup E sequence was the
result of contamination with modern chicken DNA. A further 10
samples excavated from the same site on Rapa Nui (Anakena)
were also examined, and all yielded replicable haplogroup D
sequences (haplotype H239; SI Appendix, Dataset S1). Together
with the haplogroup D results of the previous study (14), this
means that all 15 different bones examined at the Anakena site
have yielded H239 sequences.
To investigate the conflict between the results obtained here

and those previously reported from ancient Pacific specimens
(14–16), we calculated the probability of detecting the reported
proportions of D and E haplogroups given the different datasets.
If haplogroup E was authentically present within ancient Pacific
chickens at the levels previously reported (48%) (14–16), then
the probability that all 22 of our ancient samples would belong to
haplogroup D is negligible (P value = 1.3 × 10−7). In contrast,

our results suggest that if haplogroup E was present at all in
ancient Pacific chickens, it must have been in less than 13% (at
the 95% probability level; SI Appendix, Fig. S9). It is possible that
if haplogroup E was present in very low frequencies among an-
cient Pacific chickens (e.g., <10%), we did not detect it within
the 22 ancient samples we examined simply due to stochastic
sampling effects (P value = 0.098). However, if E was actually
present at only 10% in the ancient Pacific chickens, then it is
also highly unlikely that haplogroup E sequences would have
been detected in 15/31 (48%) of the specimens in previous
studies (P value = 6.9 × 10−9).
A median-joining network of the haplogroup D chicken se-

quences revealed that all of the ancient Pacific sequences gen-
erated in this study (n = 22) and those from previous studies (n =
16) (14, 16) together comprise only five different haplotypes
(Fig. 3), none of which have been found outside the Pacific re-
gion. Four of these five are from Polynesia and cluster together,
possessing a diagnostic motif of four SNPs (A → G at base 281,
C → T at base 296, T → C at base 306, A → G at base 342 com-
pared with NC_007235; SI Appendix, Dataset S5). The four di-
agnostic SNPs were also detected in four additional haplotypes
within the diversity of sequences from modern chickens sam-
pled across the western Pacific and the Philippines, but only
from Vanuatu, Santa Cruz, Philippines, and Guam (Fig. 3)
(26). Indeed one of the previously published WMGs, from the
Philippines (NC_007236; 25), contains all four of these di-
agnostic SNPs (SI Appendix, Figs. S1 and S2). Fig. 3 shows that
the most common ancient haplotype, H239, forms the central
node from which the other three ancient Polynesian D hap-
lotypes radiate, consistent with a recent rapid expansion. The
central haplotype was also the most common sequence in
modern Pacific chicken populations, being present on almost all
Pacific islands sampled.

South America. Given that at least some of the previously repor-
ted ancient Pacific chicken data appear to be due to contami-
nation, and the fact that all of the authenticated or reliable
ancient Pacific chicken sequences are restricted to the unique
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Pacific group of haplogroup D sequences, we performed ap-
proximate Bayesian coalescent simulations to evaluate the evi-
dence for the pre-Columbian introduction of chickens to South
America. The coalescent simulations provided no evidence to
support prehistoric dispersal of chickens from Polynesia to South
America either when the datasets included (i) ancient sequences
only from haplogroup D or (ii) all sequences reported from
ancient specimens (Haplogroups B, E, and D) (14–16) (SI Ap-
pendix, Fig. S11 and Tables S2–S5). The analyses reveal that the
more likely route and explanation for South American chicken
diversity appears to be via Europe and early historical intro-
ductions, or as modern DNA contamination of experiments (SI
Appendix, Fig. S11). A single D haplotype sequence (H033) has
been reported from post-European contact Peru (16), but this
sequence is common within ISEA populations, and could have
been associated with early-colonial Spanish trade. Importantly, it
has not been found among the ancient Pacific chicken sequences.

Micronesia and Western Polynesia. To investigate early human-
mediated dispersal patterns within the Asia–Pacific region, we
examined modern chickens from islands across ISEA, Micro-
nesia, and Western Polynesia, because few specimens of ancient
chickens were available from this area [however, see Fais D
haplotype sample from Storey et al. (16)]. Although the ISEA
sequences are scattered across the haplogroup D network, the
majority of haplotypes from modern Pacific chickens are ge-
netically clustered together (H032–35, H085, H224–225, H260,
H262, H271–274; Fig. 3). Within Micronesia, haplogroup D has
been reported from modern chickens in Guam (n = 3/5; H032,
H224, and H225; 26), although interestingly, these particular D
haplotypes are not shared with any other Pacific island group. In
fact, two of these haplotypes have only ever been found in Guam
(H224 and H225), whereas the third Guam haplotype is shared
with the Philippines, Japan, Indonesia, and Papua New Guinea
(H032). The modern haplogroup D chickens in Guam do not
appear to be significantly genetically differentiated from those in
the Philippines, Japan, and Indonesia (SI Appendix, Table S6).
An investigation of the discordant haplogroup D lineages in

Micronesia and Polynesia using coalescent simulations identified
an early movement of chickens between New Guinea and
Micronesia as the most likely of five models tested (SI Appendix,
Fig. S12 and Tables S7 and S8). The simulations suggest that
chickens were transported between Micronesia and islands in the
Bismarck Sea off the coast of New Guinea and New Britain

around 3,850 years ago (ya), without further onward trans-
portation of chickens into Western and Eastern Polynesia (SI
Appendix, Fig. S12). In contrast, the origins of the chickens
currently found in Polynesia appear to be via the standard
southern route from New Guinea to the Solomon Islands, the
Santa Cruz Islands, Vanuatu, and further eastward (Fig. 1,
arrows 1 and 4–7, and SI Appendix, Fig. S12).

Discussion
Our results indicate that a small cluster of mtDNA haplogroup D
sequences, defined by a diagnostic combination of four CR SNPs
(which we term the “ancestral Polynesian motif”), represent the
founding lineages of chickens transported as prehistoric domes-
ticates across the Pacific and ultimately ending up in Polynesia
(i.e., “Polynesian chickens”). We suggest that the most common
haplotype in ancient samples (H239) represents the core mtDNA
lineage of Polynesian chickens, and that the one- or two-step
derivatives in ancient Pacific island specimens (Fig. 3) represent in
situ evolution following colonization. This hypothesis is supported
by the geographic distribution of the ancient daughter lineages,
which are unique to each Pacific island group, and the elevated
frequency of lineages with the four diagnostic SNPs in the eastern
Pacific (SI Appendix, Fig. S10). Although mtDNA is maternally
inherited as a single genetic locus, limiting the ability to recover
complex colonization histories, our data establish clear hypotheses
that can be tested with genomic data from both modern and an-
cient chickens, and other groups such as humans, commensals,
and other domesticates. It is important to note that in situations
like the Pacific, phylogeographic signals in domestic species are
likely to represent processes of initial human dispersal and later
trade patterns.
Our findings contrast substantially with previous studies (14–16),

which we suggest stems from our strict adherence to contamination
reduction measures—for example, the use of Shrimp DNase. By
removing a key source of potential contamination with domestic
chicken DNA (PCR reagents), the use of Shrimp DNase has
allowed us to recharacterize the crucial ancient Rapa Nui sample
from a prior study (PAQANA011) as haplogroup D and not, as
previously reported, haplogroup E. Consequently, we cast doubt on
the authenticity of other haplogroup E sequences reported from
ancient Pacific chicken specimens, where such procedures were not
used. Perhaps more importantly, we suggest it will be very difficult
to categorically rule out contamination as the source of haplogroup
E sequences in ancient samples, due to the sporadic presence of
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domesticate DNA in laboratory consumables (34) and the likeli-
hood that any such contamination would result in haplogroup E
sequences. Importantly, sequencing longer stretches of such con-
taminating templates (17) does not provide any additional support
for authenticity.
Our recharacterization of the Rapa Nui PAQANA011 speci-

men as haplogroup D has implications for the other E sequences
reported by Storey et al. (14), including the putative ancient
Chilean chicken sequence from El Arenal-1 used to propose
a prehistoric link between Polynesia and South America. Co-
alescent simulations using “all ancient haplogroups” and the
modern data found that a European–South America route was
more likely than a direct link between haplogroup E chicken
sequences in Polynesia and South America, due to the phylo-
geographic signals within the worldwide dataset showing more
similarities between chickens from Europe and South America.
Perhaps more generally, these findings highlight how haplogroup
E sequences are uninformative in nature and lack phylogeo-
graphic signal worldwide. A clear understanding of the nature
and extent of Polynesian contact with South America will require
genomic analyses of both ancient and modern populations of
humans, commensals, and domesticates.
The distribution of the nine D haplotypes currently known to

share the ancestral motif provides a unique genetic signature
that can be used to trace the human dispersal of chickens
through ISEA and the Pacific islands. Our reconstruction of the
chicken colonization history of Micronesia highlights how sim-
ulations with CR data can provide sufficient phylogeographic
signal to generate new hypotheses regarding trade and migration
scenarios. Although it has been proposed that many commensals
and domesticates are late arrivals to the Micronesian islands
compared with humans (35), we have reconstructed a link be-
tween chickens from islands in the Bismarck Sea and Micronesia
that dates to ∼3,850 B.P. Such an early date is broadly consistent
with archaeological evidence for human settlement of Saipan
at 3,300–3,500 B.P. (36) and Palau at almost 4,000 B.P. (35),
however few comparably early zoo-archaeological remains have
been found in Micronesia to date (10, 13, 37). The inferred link
between chickens from the Bismarcks and Micronesia without
subsequent eastward movement does not support a two-wave
model of Polynesian origins (14, 15, 38) where an earlier Lapita
migration wave (2,800–3,500 ya) was mixed with a second, later
wave moving through Micronesia to Western Polynesia (1,500–
2,000 ya). Our simulations suggest that there was little in-
teraction between chickens from Micronesia and the islands
further eastward. One caveat concerning the power of the sim-
ulation analysis is the small number of Micronesian samples [one
ancient Fais (16) and five modern Guam (26) specimens] and the
expected historical and recent turnover of chicken populations
in the region. Reassuringly, the ancient Fais haplotype H260 is
present in modern chickens from the Santa Cruz (n = 2) and
Solomon Islands (n = 5), apparently surviving any later in-
trogression. Our reconstruction of the colonization history of
Micronesian chickens demonstrates the potential power of co-
alescent simulations to test hypothesized migration and trade
routes in archaeology and anthropology.
The only ISEA location where the ancestral SNP motif has

been detected are Camiguin and Manila in the Philippines, and
a link with this area is consistent with other lines of evidence
about early Polynesian origins (3, 4, 31). The other Philippine
chicken haplotypes are spread throughout the haplogroup D
network (Fig. 3), reflecting relatively high genetic diversity
(haplotype diversity = 0.89; SI Appendix, Table S9).
Despite extensive European settlement in the Pacific region

over the last few centuries, many native chicken populations ap-
pear to contain relatively high frequencies of founding mitochondrial
lineages—for example, the Marquesas, Solomon Islands, Vanuatu
(26), and the Santa Cruz Islands—suggesting a high level of ge-
netic continuity on these islands since prehistoric times. In addi-
tion to the two ancient haplotypes detected in modern samples,
many other D haplotypes are also present in modern Pacific

chicken populations, from the Santa Cruz Islands, Solomon Is-
lands, and Vanuatu (26). Therefore, Polynesian chickens may be
one of the few examples where ancestral genetic patterns can still
be observed in a domesticated species. Chickens on remote Pa-
cific islands may also contain Polynesian nuclear genomic line-
ages, and if so, would represent one of the few surviving examples
of precolonial domestic chickens.

Conclusion
Although mtDNA lacks the power of genomic loci to reconstruct
complex evolutionary histories, we show that an informative re-
gion of the chicken mitochondrial genome can be used to trace
their human dispersal in the Pacific. The analysis of ancient and
modern specimens reveals a unique Polynesian genetic signature,
which can be traced back to ISEA, and promises to allow further
resolution of migration and trading routes in the area. Impor-
tantly, we reveal that a previously reported connection between
pre-European South America and Polynesian chickens most
likely resulted from contamination with modern DNA, and that
this issue is likely to confound ancient DNA studies involving
haplogroup E chicken sequences. These observations reaffirm
the potential of coalescent simulations of genetic data to eval-
uate new hypotheses regarding the dispersal of humans, com-
mensals, and domesticates derived from archaeology. These
hypotheses can be further grounded using genomic-scale studies
in combination with direct dating and genetic investigation of
new archaeological samples.

Materials and Methods
Samples. Thirty-seven ancient chicken bones were collected for analysis,
comprising eight from Niue, 11 from Hawai’i, and 18 from Rapa Nui exca-
vated from deposits at Anakena by T.L.H. [including the six samples pre-
viously analyzed by Storey et al. (14); SI Appendix, Dataset S1]. Modern
feather samples from ISEA and the Pacific (n = 124) were also examined to
investigate current phylogeographic patterns (for location details, see Fig. 1
and SI Appendix, Figs. S3–S6, Table S1, and Dataset S6). The ancient samples
were extracted, amplified (using primers in SI Appendix, Fig. S13), and se-
quenced at the Australian Centre for Ancient DNA (ACAD) in Adelaide,
South Australia, according to a range of strict protocols (39), including nu-
merous controls. Importantly, we included Shrimp DNase pretreatment in all
PCR reactions, before adding template DNA, to remove any contaminating
double-stranded DNA introduced via PCR reagents and plastic-ware (SI Ap-
pendix) (33). Independent external replication with direct sequencing of the
PAQANA011 ancient sample was performed in a dedicated ancient DNA
laboratory in the Archaeology Department at Durham University following
strict laboratory procedures (39). The initial and independently replicated
PCR fragments from bone sample PAQANA011 were also cloned and se-
quenced at the ACAD laboratories (SI Appendix, Dataset S4). Modern sam-
ples were extracted, with the highly variable 201 bp of the CR amplified and
sequenced in a physically separate pre-PCR clean laboratory at the University
of Adelaide and in the Archaeology Department at Durham University,
following standard protocols (39).

WMG Analysis. To determine the robustness of the current standard chicken
phylogenetic framework for the analysis of the short ancient sequences, all 61
WMG sequences (25) were downloaded and aligned; PartitionFinder (40)
was used to identify the number of preferred partitions and their sub-
stitution model; and phylogenetic trees were produced using both Bayesian
(MrBayes v3.2; 41) and maximum likelihood estimation (RaxML v7.0.4; 42).
See SI Appendix for more details.

CR Sequence Analysis. In addition to the 144 CR sequences generated in this
study, we downloaded 1,226 worldwide mtDNA CR chicken sequences from
GenBank to establish the geographic distribution for each chicken hap-
logroup (14, 21–24, 26, 27, 43–46). To allow direct comparisons of the CR
haplotypes, the 1,370 chicken sequences were aligned and trimmed to the
highly variable 201 bp common to all of our 144 newly generated sequences
(referred to as “201 bp CR dataset”). The 201 bp CR dataset was collapsed to
unique haplotypes using Collapse v1.2, resulting in 274 unique haplotypes
(H001–H274; SI Appendix, Dataset S6; referred to as “unique CR haplotype
dataset”). ModelGenerator (47) was used to establish the best model to
fit the unique CR haplotype dataset (GTR+I+G). The haplogroup of each of
our 144 newly generated sequences was established by comparison with
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sequences of known haplogroup designation from Liu et al. (24) (SI Ap-
pendix, Dataset S6). As the majority of the new 144 CR sequences were
identified as haplogroup D, a Median Joining Network (using Network v4.6;
48) was generated for just the D haplogroup (SI Appendix). All new sequences
were uploaded to GenBank (KJ000585–KJ000642; SI Appendix, Dataset S6).

Statistical Analysis. To examine the discrepancies between the composition and
phylogeographic distribution of haplogroups reported by Storey et al. (14, 16)
and those generated in this study, we tested the likelihood of detecting the
reported proportions under different scenarios. A linear regression plot was also
generated to visualize the correlation between occurrence of the four charac-
teristic CR SNPs of the Polynesian chicken and longitude using the standard
plotting function in R.

Bayesian Coalescent Simulations. Given the importance of pre- and post-
Columbian mtDNA sequences from Chile and Peru, respectively (14, 16), we

tested whether coalescent simulations and approximate Bayesian compu-
tation of the 201 bp CR dataset could reconstruct a prehistoric link between
the Pacific and South America (SI Appendix). To explore likely demographic
histories for chickens in Micronesia and Polynesia, we also used BayeSSC to
simulate alternate hypotheses of migration routes for comparison with the
observed phylogeographic patterns within the Pacific.
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