The University of Adelaide

Semiparametric Models with Endogeneity and their Application to an Empirical Demand Analysis

by

Nam-Hyun Kim

This thesis is presented for the degree of

Doctor of Philosophy

at the School of Economics

April 2013

For a thesis that does not contain work already in the public domain

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to a number of people and institutions, who have provided me with useful assistance and support at various stages of my PhD study.

Firstly, I thank my supervisors: Professor Jiti Gao, Dr Duygu Yengin and Dr Nicholas Sim. In specific, I offer my sincerest gratitude to Professor Jiti Gao, who has supported me throughout my thesis with his patience and knowledge. I also thank a number of faculty members at the School of Economics, The University of Adelaide, for their assistance, both while I was there and when I was a visiting PhD student at other institutions. Special thanks go to Professor Christopher Findlay, Dr Mandar Oak, Dr Ralph Bayer and Dr Jacob Wong for their assistance with administrative issues on various occasions. In addition, I am sincerely grateful to Dr Seungmoon Choi for his kind assistance and support on academic and various other issues, which helped me to overcome the difficult obstacles. I also thank Professor Fabrice Collard at the Department of Economics, The University of Bern, for his kind assistance with my presentation skills and his support.

I also thank the Department of Econometrics and Business Statistics, Monash University, especially Professor Brett Inder, for the opportunity to visit the department.

Similarly, many thanks to all the faculty members at the Department of Mathematics and Statistics, The University of Canterbury, for giving me such a warm welcome and hospitality, especially Professor Jennifer Brown, Dr Marco Reale, Dr Carl Scarrott, Dr Qui Bui and Dr Dominic Lee. Furthermore, Dr Marco Reale has broadened my research scope and perspective, and Dr Dominic Lee has provided me with such invaluable suggestions on the application of the work in this thesis. This thesis is dedicated to my partner Patrick, my parents and my brother, who have provided me with absolute and unconditional support and encouragement throughout my PhD study. Furthermore, I offer my sincerest gratitude to Professor Bonggeun Kim at the Department of Economics, Seoul National University, for his unconditional support and invaluable suggestions during the difficult times. Without these very important people in my life, this thesis would not have been completed. I am also thankful for all their valuable support and dearly appreciate the friendship I obtained from Dr Duygu Yengin, Dr Prue Kerr and Dr Erkan Yalcin. In particular, Dr Duygu Yengin has given me absolute and unconditional friendship which has helped me to get through the most difficult times at Adelaide.

Abstract

During the past few decades, nonparametric models have been extensively applied to empirical studies in various fields of economics due to its flexibility for depicting any type of relationship among key economic variables. However, one of the most well-known shortfalls of the model is the curse of dimensionality. It can be conveniently overcome with semiparametric modelling such as partially linear (PL) models and/or single-index (SI) models. Nonetheless, the practicality of these models in the empirical studies has been hampered by the lack of appropriate estimation procedures and a method to address endogeneity. Hence the ultimate goal of this thesis is to establish a novel econometric method for estimating semiparametrics, specifically a PL model and an extended generalised partially linear single-index (EGPLSI) model, with the presence of endogeneity. Furthermore, semiparametric analysis is an important tool for analysing empirical Engel curves, which often involve endogeneity in total expenditure. We show that, our newly developed estimation procedures and methods are able to address the endogeneity problem in the semiparametric analysis of empirical Engel curves. These goals can be broken down into a few research objectives.

- (1) Firstly, this thesis aims to construct a comprehensive and systematic treatment of endogeneity in semiparametrics, given the complexity of the models containing both parametric and nonparametric components.
- (2) Secondly, it aims to develop novel estimation procedures and methods to address endogeneity in a PL model and an EGPLSI model.
- (3) Lastly, it aims to analyse the empirical demand function semiparametrically by applying the estimation procedures and methods in this thesis.

Publications arising from the thesis

- Kim, N. and Saart, P. W. (2013). Estimation in Partially Linear Semiparametric Models with parametric and/or nonparametric endogeneity. Under review at the Econometrics Journal.
- (2) Kim, N., Saart, P. W. and Gao, J. (2013). Semi-parametric Analysis of Shape-Invariant Engel Curves with Control Function Approach. Under review at the Journal of Econometrics.

Contents

Ac	Acknowledgements				
Lis	st of	Figures	x		
Lis	st of	Tables	xi		
1	Bac 1.1 1.2 Ende 1.3 1.4	kground and Motivation Introduction Review of Nonparametrics and Semiparametrics in the Presence of ogeneity Review of the Empirical Engel Curves Literature Research Objectives and Thesis Structure	1 1 3 6 9		
2	End 2.1 2.2 2.3 2.4 2.5	IntroductionEndogeneity in a PL Model2.2.1The PL Model2.2.2Endogeneity in the PL Model2.2.3Parametric Endogeneity2.2.4Nonparametric EndogeneitySimulationsConclusions2.5.1Conditions for the PIV estimator2.5.2Conditions for Theorems 2.2.1 and 2.2.22.5.3Proof of Theorem 2.2.2	11 11 16 16 20 23 30 36 37 37 37 39 41 55		
3	Ext Con 3.1 3.2	ended Generalised Partially Linear Single-Index Model with trol Function Approach Introduction	59 59 61		

		3.2.1	EGPLSI Model without Endogeneity	62
		3.2.2	EGPLSI Model with Endogeneity	64
		3.2.3	Asymptotic Properties	70
	3.3	Simula	ation Studies	74
		3.3.1	Initial Investigation	74
		3.3.2	More Detailed Analysis	78
	3.4	Conclu	usions	87
	3.5	Appen	ndix	87
		3.5.1	Proofs of Theorem 3.2.1 and Corollary 3.2.2	88
		3.5.2	Proof of Theorem $3.2.2$.05
	-	-		
4	Sen	niparar	netric Analysis of Empirical Engel Curves in Australia 1	09
4	Sen 4.1	n <mark>ipara</mark> r Introd	netric Analysis of Empirical Engel Curves in Australia 10 uction	09
4	Sem 4.1 4.2	ipara r Introd The E	netric Analysis of Empirical Engel Curves in Australia 1 uction1mpirical Model1	09 .09 .11
4	Sem 4.1 4.2	ipara Introd The E 4.2.1	netric Analysis of Empirical Engel Curves in Australia 1uction1mpirical Model1A Simple Test of Endogeneity1	09 .09 .11 .13
4	Sem 4.1 4.2	iparan Introd The E 4.2.1 4.2.2	netric Analysis of Empirical Engel Curves in Australia 10 uction 1 mpirical Model 1 A Simple Test of Endogeneity 1 Shape-Invariant Engel Curves 1	09 .09 .11 .13 .19
4	Sem 4.1 4.2	iparar Introd The E 4.2.1 4.2.2 4.2.3	netric Analysis of Empirical Engel Curves in Australia 1 uction 1 mpirical Model 1 A Simple Test of Endogeneity 1 Shape-Invariant Engel Curves 1 Empirical Findings 1	09 .09 .11 .13 .19 .19
4	Sem 4.1 4.2	hiparan Introd The E 4.2.1 4.2.2 4.2.3 Conclu	netric Analysis of Empirical Engel Curves in Australia 10 uction 1 mpirical Model 1 A Simple Test of Endogeneity 1 Shape-Invariant Engel Curves 1 Empirical Findings 1 uction 1 uction 1 Impirical Model 1 Impirical Model 1 Impirical Model 1 Impirical Simple Test of Endogeneity 1 Impirical Findings 1 Impirical Findings 1 Impirical Findings 1	09 .09 .11 .13 .19 .19 .29
4	Sem 4.1 4.2 4.3	niparar Introd The E 4.2.1 4.2.2 4.2.3 Conch	netric Analysis of Empirical Engel Curves in Australia 1 uction 1 mpirical Model 1 A Simple Test of Endogeneity 1 Shape-Invariant Engel Curves 1 Empirical Findings 1 usions 1	09 .11 .13 .19 .19 .29
4 5	Sem 4.1 4.2 4.3 Con	Introd The E 4.2.1 4.2.2 4.2.3 Conclu	netric Analysis of Empirical Engel Curves in Australia 10 uction 1 mpirical Model 1 A Simple Test of Endogeneity 1 Shape-Invariant Engel Curves 1 Empirical Findings 1 usions 1 n 1	 09 .11 .13 .19 .19 .29 30
4 5	Sem 4.1 4.2 4.3 Con 5.1	niparan Introd The E 4.2.1 4.2.2 4.2.3 Conclu nclusion Summ	netric Analysis of Empirical Engel Curves in Australia 10 uction 1 mpirical Model 1 A Simple Test of Endogeneity 1 Shape-Invariant Engel Curves 1 Empirical Findings 1 usions 1 ution 1 n 1 ary 1	 09 11 13 19 29 30 30
4 5	Sem 4.1 4.2 4.3 Con 5.1 5.2	niparar Introd The E 4.2.1 4.2.2 4.2.3 Conclu Summ Future	netric Analysis of Empirical Engel Curves in Australia 1 uction 1 mpirical Model 1 A Simple Test of Endogeneity 1 Shape-Invariant Engel Curves 1 Empirical Findings 1 Isions 1 n 1 e Research 1	 09 .09 .11 .13 .19 .29 30 .30 .32

List of Figures

3.1	$g(\cdot), \iota 1(\cdot), \iota 2(\cdot) \text{ and } \iota 3(\cdot). \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	83
4.1	Kernel joint density estimates with a full bandwidth matrix	114
4.2	Kernel estimates of conditional expectation of log(expenditure)	
with	respect to $\log(\text{income})$	115
4.3	log(expenditure), m_{X1} and η	117
4.4	Engel curves for alcohol	121
4.5	Engel curves for clothing	123
4.6	Engel curves for electricity and gas	125
4.7	Engel curves for transportation	126
4.8	Engel curves for food	127
4.9	Engel curves for other goods	128

List of Tables

2.1	The effects of endogeneity on the PL model and the appropriate	
estin	nation methods	20
2.2	Exogenous model with 2SR	31
2.3	Linear Endogeneity model with 2SR	32
2.4	Nonlinear Endogeneity model with 2SR	32
2.5	Linear Endogeneity model with 2SCF	33
2.6	Nonlinear Endogeneity model with 2SCF	33
2.7	Linear parametric endogeneity model with 2SR	34
2.8	Nonlinear parametric endogeneity model with 2SR	35
2.9	Linear parametric endogeneity model with 2SR-PIV	35
2.10	Nonlinear parametric endogeneity model with 2SR-PIV	35
01		70
3.1 2.0	GPLSI-type model with nonparametric endogeneity: Procedure 3.2.1	70 70
3.2	GPLSI-type model with nonparametric endogeneity: Procedure 3.2.2	10
3.3 9.9.1	EGPLSI-type model with nonparametric endogeneity: Procedure	
3.2.1		((
3.4	EGPLSI-type model with nonparametric endogeneity: Procedure	
3.2.2		77
3.5	Nonparametric exogeneity, i.e. $\iota 1$	79
3.6	Linear endogeneity, i.e. $\iota 2$	80
3.7	Nonlinear endogeneity, i.e. $\iota 3$	81
3.8	$Corr_{X_{2i},Z_i}$	82
3.9	Linear endogeneity, i.e. $\iota 2$	85
3.10	Nonlinear endogeneity, i.e. $\iota 3. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	86
11		110
4.1	Descriptive statistics	112
4.2	Empirical results	129