Obesity Induced Dysfunction of Gastric

Vagal Afferent Signalling

Stephen James Kentish

Discipline of Medicine

School of Medicine

The University of Adelaide

July 2013

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Stephen James Kentish and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Stephen James Kentish BSc. (Biomed) (Honours, First Class) July 11th 2013

TABLE OF CONTENTS

Acknowledgements	10
Conference Proceedings	12
Abbreviations	14
Abstract	17
CHAPTER 1: GENERAL INTRODUCTION	20
1.1 OBESITY	21
1.1.1 Causes	25
1.1.1.1 Environmental	25
1.1.1.2 Genetic	29
1.2 REGULATION OF FOOD INTAKE	32
1.2.1 Central mechanisms	37
1.2.1.1 Hypothalamic control of feeding	37
1.2.1.2 Reward pathway involvement in feeding	44
1.2.2 Peripheral regulation of food intake	48
1.2.2.1 Adipose tissue	51
1.2.2.2 Proximal gastrointestinal tract	56
1.2.2.2.1 Nutrient sensing	57
1.2.2.2.1.1 Small intestine	57
1.2.2.2.1.2 Stomach	58
1.2.2.2.2 Innervation of the gastrointestinal tract	60
1.2.2.2.1 Enteric nervous system	63
1.2.2.2.2 Spinal afferents	65
1.2.2.2.3 Vagal afferents	67
1.2.2.2.3.1 Tension receptors	69

	1.2.2.2.3.2 Mucosal receptors	70
1	1.2.2.2.2.4 Vagal afferent mediators	78
	1.2.2.2.2.4.1 Gastric mediators	78
	Leptin	78
	Neuropeptide W	84
	Ghrelin	85
	1.2.2.2.2.4.2 Intestinal mediators	87
	ССК	87
	GLP-1	89
	PYY	91
1	1.2.2.2.5 The vagus in obesity	93
1.3 HYPOTHESES		95
CHAPTER 2: DIET INDUCE FUNCTION	ED ADAPTATION OF VAGAL AFFERENT	96
CHAPTER 2: DIET INDUCE FUNCTION 2.1 ABSTRACT	ED ADAPTATION OF VAGAL AFFERENT	96 101
CHAPTER 2: DIET INDUCE FUNCTION 2.1 ABSTRACT 2.2 INTRODUCTION	ED ADAPTATION OF VAGAL AFFERENT	96 101 102
CHAPTER 2: DIET INDUCE FUNCTION 2.1 ABSTRACT 2.2 INTRODUCTION 2.3 MATERIALS AND MET	ED ADAPTATION OF VAGAL AFFERENT	96 101 102 105
CHAPTER 2: DIET INDUCE FUNCTION 2.1 ABSTRACT 2.2 INTRODUCTION 2.3 MATERIALS AND MET 2.3.1 Ethical approva	ED ADAPTATION OF VAGAL AFFERENT HODS	96 101 102 105
CHAPTER 2: DIET INDUCE FUNCTION 2.1 ABSTRACT 2.2 INTRODUCTION 2.3 MATERIALS AND MET 2.3.1 Ethical approva 2.3.2 Short term restr	ED ADAPTATION OF VAGAL AFFERENT THODS	 96 101 102 105 105
CHAPTER 2: DIET INDUCE FUNCTION 2.1 ABSTRACT 2.2 INTRODUCTION 2.3 MATERIALS AND MET 2.3.1 Ethical approva 2.3.2 Short term restu 2.3.3 High fat diet mo	ED ADAPTATION OF VAGAL AFFERENT THODS Il riction of food intake	 96 101 102 105 105 105 105
CHAPTER 2: DIET INDUCE FUNCTION 2.1 ABSTRACT 2.2 INTRODUCTION 2.3 MATERIALS AND MET 2.3.1 Ethical approva 2.3.2 Short term restu 2.3.3 High fat diet mo 2.3.4 <i>In vitro</i> mouse (ED ADAPTATION OF VAGAL AFFERENT	 96 101 102 105 105 105 105 105 106
CHAPTER 2: DIET INDUCE FUNCTION 2.1 ABSTRACT 2.2 INTRODUCTION 2.3 MATERIALS AND MET 2.3.1 Ethical approva 2.3.2 Short term restu 2.3.3 High fat diet mo 2.3.4 <i>In vitro</i> mouse g 2.3.5 Characterisatio	ED ADAPTATION OF VAGAL AFFERENT	 96 101 102 105 105 105 106 106
CHAPTER 2: DIET INDUCE FUNCTION 2.1 ABSTRACT 2.2 INTRODUCTION 2.3 MATERIALS AND MET 2.3.1 Ethical approva 2.3.2 Short term restu 2.3.3 High fat diet mo 2.3.4 <i>In vitro</i> mouse of 2.3.5 Characterisatio properties	ED ADAPTATION OF VAGAL AFFERENT	 96 101 102 105 105 105 106 106

{ 4 }

	2.3.7 Drugs	109
	2.3.8 Quantitative reverse-transcription polymerase chain	109
	reaction	
	2.3.9 Tracing studies	111
2.4 RESULTS		113
	2.4.1 Short term restriction of food intake reduces	113
	mechanosensitivity of vagal afferents	
	2.4.2 Effects of long term alterations in diet	113
	2.4.3 Anatomy of vagal afferent endings and ghrelin containing	114
	cells in the gastric mucosa	
	2.4.4 Ghrelin receptor expression in vagal afferent pathways	115
	2.4.5 Vagal afferent responses to ghrelin are altered by changes	115
	in food intake	
2.5 DI	SCUSSION	118
Figure	e 2.1	123
Figure	e 2.2	125
Figure	e 2.3	127
Figur	e 2.4	129
Figure	e 2.5	131
Figure	e 2.6	133
Figure	e 2.7	135

CHAPTER 3: GASTRIC VAGAL AFFERENT MODULATION BY	137
LEPTIN IS INFLUENCED BY FOOD INTAKE STATUS	
3.1 ABSTRACT	142
3.2 INTRODUCTION	144

_____ **(** 5 **)**_____

3.3 MATERIALS AND METHODS 14		
3.3.1 Ethical approval	146	
3.3.2 Mice	146	
3.3.3 In vitro mouse gastro-oesophageal afferent preparation	147	
3.3.4 Characterization of gastric vagal afferent properties	147	
3.3.5 Single unit vagal afferent recordings	148	
3.3.6 Drugs	149	
3.3.7 Nodose ganglia quantitative RT-PCR	149	
3.3.8 Anterograde tracing	150	
3.3.9 Retrograde tracing	151	
3.3.10 Laser capture microdissection	152	
3.3.11 Immunohistochemistry	153	
3.3.12 Statistical analysis	154	
3.4 RESULTS	155	
3.4.1 Effect of leptin on gastric vagal afferent	155	
mechanosensitivity in fed and fasted mice		
3.4.2 Effect of leptin in diet-induced obese mice	156	
3.4.3 Leptin receptor expression	157	
3.4.4 Leptin localization	157	
3.4.5 The second messaging systems utilized by leptin	158	
3.5 DISCUSSION	160	
Figure 3.1	166	
Figure 3.2	168	
Figure 3.3	170	
Figure 3.4	172	

Figure 3.5	174
Figure 3.6	176
Figure 3.7	178
Supplementary Figure 3.1	180
Supplementary Figure 3.2	182
Supplementary Figure 3.3	184

CHAPTER 4: A CHRONIC HIGH FAT DIET ALTERS THE	186
HOMOLOGOUS AND HETEROLOGOUS CONTROL OF	
SATIETY PEPTIDE RECEPTOR EXPRESSION	
4.1 ABSTRACT	189
4.2 INTRODUCTION	190
4.3 MATERIALS AND METHODS	192
4.3.1 Ethical approval	192
4.3.2 High fat diet model	192
4.3.3 Cell culture	192
4.3.4 RNA isolation	194
4.3.5 Quantitative RT-PCR	194
4.3.6 Quantification of plasma concentrations of peptides	195
4.3.7 Data analysis	196
4.4 RESULTS	197
4.4.1 Effect of high fat diet on body weight and plasma	197
hormones	
4.4.2 Effect of leptin on expression of Ob-R, GHS-R, GPR7	197
and CCK1R in SLD and HFD vagal cell bodies	

4.4.3 Effect of ghrelin on expression of Ob-R, GHS-R, GPR7	198
and CCK1R in SLD and HFD vagal cell bodies	
4.4.4 Effect of NPW on expression of Ob-R, GHS-R, GPR7	199
and CCK1R in SLD and HFD vagal cell bodies	
4.5 DISCUSSION	201
Figure 4.1	206
Figure 4.2	208
Figure 4.3	210
Figure 4.4	212

CHAPTER 5: ALTERED GASTRIC VAGAL MECHANOSENSITIVITY214IN DIET INDUCED OBESITY PERSISTS ON RETURN TO NORMAL

CHOW AND IS ACCOMPANIED BY INCREASED FOOD INTAKE

5.1 ABSTRACT	217
5.2 INTRODUCTION	219
5.3 MATERIALS AND METHODS	
5.3.1 Ethical approval	222
5.3.2 Animals	222
5.3.3 In vitro mouse gastro-oesophageal afferent	222
preparation	
5.3.4 Characterization of gastric vagal afferent properties	223
5.3.5 Effect of leptin on the mechanosensitivity of vagal	224
afferents	
5.3.6 Data recording and analysis	224

8

5.3.7 Nodose ganglia quantitative RT-PCR	224
5.3.8 Retrograde tracing	225
5.3.9 Laser capture microdissection	226
5.3.10 Plasma hormone measurements	226
5.3.11 Statistical analysis	227
5.4 RESULTS	228
5.4.1 Diet induced changes to mouse weight, fat mass,	228
food consumption and plasma peptide levels	
5.4.2 High fat diet induced changes in gastric mechanosensitivity	229
are not altered by reverting to 'normal' chow feed	
5.4.3 Leptin's effects on gastric vagal afferent	229
mechanosensitivity are dependent on diet	
5.4.4 Diet induced changes in the expression of leptin	230
receptor in vagal afferents	
5.5 DISCUSSION	231
Figure 5.1	235
Figure 5.2	237
Figure 5.3	239
Figure 5.4	241
Figure 5.5	243
CHAPTER 6: CONCLUSIONS	245
REFERENCES	253

9 }

•

ACKNOWLEDGEMENTS

I would like to sincerely thank my primary supervisor Associate Professor Amanda Page for the tireless supervision she has provided me over the past three years. Without the support she provided I doubt that I would have been able to complete this thesis. I am truly thankful for her guidance and support in allowing me to develop research ideas and implement them. I am furthermore grateful for the opportunities provided to me to attend a number of local and international scientific meetings.

I am also grateful to my co-supervisor, Professor Ashley Blackshaw. Whilst for the majority of my candidature he was not in the country; the advice and guidance he provided both remotely and in person were well appreciated.

I would also like to offer my thanks to a Tracey O'Donnell for her contributions in caring for the obese mice and Gary Wittert for his excellent advice at various stages of my candidature as well as acting as a pseudo supervisor. I would also like to thank every member of the Nerve Gut Laboratory for their support. My time in this lab has made me realise just how specialised the work is and how much effort is put in. I wish every member of the lab every success imaginable. On a more personal note I wish to thank my parents for seeing me through the initial stages of my education and encourage me to take my desire to learn as far as I have (Pete I think I may have beaten your PhD completion record by just a tad).

I would also like to give very special endless heartfelt thanks to my partner of 6 years, Alice. She who has had to endure the mountains of paper, the ridiculous hours, the stress that shaves years off your life and all with a smile on her face and a kind word to be said.

"Far and away the best prize that life offers is the chance to work hard at work worth doing."- Thomas Jefferson

CONFERENCE PROCEEDINGS

<u>Kentish S.J</u>., O'Donnell T., Wittert G., Page A.J. (2012) Obesity induced suppression of gastric satiety signals are only partially reversed by dietary change. Presented at NGM 2012, Bologna, Italy.

<u>Kentish S.J</u>., O'Donnell T., Wittert G., Page A.J. (2012) Obesity induced suppression of gastric satiety signals are not reversed by dietary change. Presented at SSIB 2012, Zurich, Switzerland.

<u>Kentish S.J.</u>, Wittert G., Blackshaw L.A., Page A.J. (2012) A chronic high fat diet alters the homologous and heterologous control of satiety peptide receptor expression. Presented at DDW 2012, San Diego, United States of America.

<u>Kentish S.J</u>., O'Donnell T.A., Wittert G., Blackshaw L.A., Page A.J. (2011) High fat diet feeding switches the second messenger system activated by leptin on vagal afferents. Presented at ANZOS 2011, Adelaide, Australia.

<u>Kentish S.</u>, O'Donnell T., Wittert G., Blackshaw L.A. & Page A. (2011) The "leptin switch" mechanism in gastric vagal afferents. Presented at Digestive Disease Week 2011, Chicago, United States of America. <u>Kentish S.</u>, O'Donnell T., Li H., Wittert G., Blackshaw L.A. & Page A. (2011) Obesity switches the effect of leptin on vagal afferent mechanosensitivity. Presented at Digestive Disease Week 2011, Chicago, United States of America.

<u>Kentish S.</u>, T., Wittert G., Blackshaw L.A. & Page A. (2010) Increased Ghrelin Inhibition of Vagal Afferents in an Obese Mouse Model. Presented at Digestive Disease Week 2010, New Orleans, United States of America.

ABBREVIATIONS

ACh; Acetylcholine

- AgRP; Agouti-related peptide
- α-MSH; α-Melanocyte-stimulating hormone
- ANOVA; Analysis of variance
- AP; Area postrema
- ARC; Arcuate nucleus
- AT; Adaptive thermogenesis
- BBB; Blood brain barrier
- BKCa; Large conductance calcium activated potassium channel
- CART; Cocaine- and amphetamine-regulated transcript
- CB1; Cannabinoid receptor 1
- CCK; Cholecystokinin
- CCK1R; CCK receptor 1
- ChAT; Choline acetyltransferase
- CNS; Central nervous system
- CT; Cycle threshold
- db/db; Leptin receptor knockout mouse
- DMH; Dorsal medial hypothalamus
- DMV; Dorsal motor nucleus of the vagus
- DRG; Dorsal root ganglion
- ENS; Enteric nervous system
- GABA; y-Amino butyric acid
- GHS-R; Growth hormone secretagogue receptor

GPCRs; G-protein coupled receptors

GPR7; G-Protein coupled receptor 7 (endogenous receptor for neuropeptide

W)

- IGLE; Intraganglionic laminar endings
- IL-; Interleukin
- IMA; Intramuscular array
- IP; Intraperitoneal
- IRS; Insulin receptor substrate
- JAK; Janus kinase
- LDL; low density lipoprotein
- LepR; Leptin receptor
- LH; Lateral hypothalamus
- MCR; Melanocortin receptor
- mRNA; Messenger RNA
- NANC; Non-adrenergic non-cholinergic
- NPW; Neuropeptide W
- NPY; Neuropeptide Y
- NTS; Nucleus tractus solitarii
- Ob/Ob; Leptin knockout mouse
- PDE; Phosphodiesterase
- PI3K; Phosphatidylinositide 3-kinases
- PLC; Phospholipase C
- POMC; Pro-opiomelanocortin
- PYY; Peptide YY
- PVN; Paraventricular nucleus

QRT-PCR; Quantative reverse transcription polymerase chain reaction

- RMR; Resting metabolic rate
- RNA; Ribonucleic acid
- RT; Reverse transcription
- RYGB; Roux-en-Y gastric bypass
- 5-HT; 5-hydroxytryptamine
- SEM; Standard error of the mean
- SGLT1; Sodium-glucose transporter 1
- SOCS; Suppressor of cytokine signalling
- STAT; Signal transducer and activator of transcription
- TRPC; Transient receptor potential: Canocial subtype
- TRPV; Transient receptor potential: Vannilloid subtype
- UCP; Uncoupling protein
- VTA; Ventral tegmental area

ABSTRACT

Background: The stomach has the ability to respond to chemical and mechanical stimuli to mediate satiety through vagal pathways. Within the stomach specialised endocrine and epithelial cells synthesise and secrete leptin and ghrelin, which influence food intake through vagal afferent pathways. However, it remains to be determined if mechanosensitive gastric vagal afferent signalling is disrupted in obesity and whether this may play a role in the overconsumption of energy required for the maintenance of diet-induced obesity. Furthermore, whether leptin can modulate mechanically sensitive gastric vagal afferents and whether any ability of leptin and ghrelin to modulate mechanically sensitive endings is altered in obesity has not been conclusively determined.

Aims: To determine in lean mice and in high fat diet induced obese mice:

1) The effect of gastric peptides ghrelin and leptin on gastric vagal afferent mechanosensitivity.

2) The effect of gastric peptides on the expression of their own and other peptide receptors.

3) The reversibility of diet-induced obesity.

Methods: Lean and diet-induced obese mice were created by feeding 8 week old female C57BL/6 mice a standard chow diet (N=4-20; 7% energy from fat) or a high-fat diet (N=4-20; 60% of energy from fat) respectively. An *in vitro* gastro-oesophageal vagal flat sheet preparation was utilised to determine the

mechanosensitivity of vagal afferent endings and the effect of leptin, ghrelin and diet-induced obesity on this mechanosensitivity. Messenger RNA (mRNA) content in nodose ganglia was measured by QRT-PCR. Specific gastric vagal afferent cell bodies were identified by retrograde labelling and this technique was combined with QRT-PCR to determine mRNA content in specific gastric cell bodies. Anterograde tracing by injection of tracer into the nodose ganglia allowed visualisation of the distribution of gastric vagal afferents in relation to leptin and ghrelin positive cells. Nodose ganglia were cultured overnight in medium containing leptin, ghrelin or neuropeptide W (NPW) followed by QRT-PCR to determine any homologous or heterologous receptor expression regulation.

Results: Diet-induced obesity caused a reduction in the mechanosensitivity of gastric tension receptors. Furthermore, it increased the inhibitory effect of ghrelin on gastric vagal afferent mechanosensitivity and resulted in a switch in the effect of leptin from potentiating to inhibitory. The gut peptides leptin, ghrelin and NPW modified the mRNA content of their own and each other's receptors in a manner that was dependent on dietary group. Placing obese mice back on a chow diet resulted in an initial weight loss but subsequent increased food consumption and weight gain. The decrease in mechanosensitivity caused by the high fat diet was not reversible by placing diet-induced obese mice back on a chow diet and the effects of leptin were only partially reversed.

Conclusions: Vagal afferent function is altered in diet-induced obesity to the extent that both the baseline response and the effects of leptin and ghrelin may act to facilitate increased food intake. Given the lack of reversibility of changes observed in diet-induced obesity this suggests that gastric vagal afferents may play a role in the maintenance of obesity and may act to oppose weight loss.