The isolation, structure, and membrane interactions of biologically active peptides

A thesis submitted for the degree of doctor of philosophy

By

Patrick James Sherman B. Sc. (Hons.)

from the

Department of Chemistry

The University of Adelaide

June, 2012

Contents

Acknowledgements	viii
Statement of originality	X
Abstract	xi
Abbreviations	xiii

Chapter 1

Biologically	Biologically active peptides	
1.1 Synops	sis	1
1.2 Peptide	e Biosynthesis	2
1.3 Anurai	n secretions	4
1.3.1	Collection of anuran secretion	5
1.3.2	Australian anuran peptides	7
1.4 Scorpi	on venoms	13
1.4.1	Collection of scorpion venom	14
1.4.2	Scorpion peptides	15

Methodology I	1 – Mass Spectrometry	20
2.1 Mass Spec	etrometry	20
2.2 The Q-TO	JF2 Mass Spectrometer	21
2.2.1 The	e Quadrupole analyser	22
2.2.2 The	e Hexapole Collision Cell	23
2.2.3 The	e Time of Flight Sector	24
2.3 Electrospra	ay ionisation	25
2.4 Peptide sec	quence determination	26
2.4.1 Hig	gh Performance Liquid Chromatography	27
2.4.2 Pos	sitive ion fragmentation	27
2.4.3 Neg	gative ion fragmentation	28
2.4.4 Edi	man Sequencing	31

Methodol	ogy II – Nuclear Magnetic Resonance Spectroscopy	33
3.1 Nucle	ear magnetic resonance spectroscopy of peptides in solution	33
3.1.1	Principles of nuclear magnetic resonance spectroscopy	34
3.1.2	One-dimensional NMR spectroscopy	36
3.1.3	Two-dimensional NMR spectroscopy	40
3.1.3.1	Correlation NMR spectroscopy	41
3.1.3.2	Total correlation NMR spectroscopy	44
3.1.3.3	Nuclear Overhauser effect NMR spectroscopy	45
3.1.4	Chemical shift Assignment	46
3.1.5	NOE Connectivities	48
3.1.6	Secondary shifts	50
3.1.7	Coupling constants	51
3.1.8	Peptide structure calculations	54
3.1.8.1	NOE derived structural restraints	54
3.1.8.2	Ambiguous NOEs	56
3.1.8.3	Stereo-specific assignment	58
3.1.8.4	Restrained molecular dynamics and simulated annealing	58
3.1.9	Structure quality	61
3.1.10	Solvent selection	64
3.2 Solid	-state NMR spectroscopy	66
3.2.1	Chemical shift anisotropy	66
3.2.2	Quadrupolar interactions	68
3.2.2	Dipolar interactions	72
3.2.4	Solid-state NMR of phospholipid membranes	73
3.2.4.1	³¹ P NMR of phospholipid membranes	76
3.2.4.2	² H NMR of phospholipid membranes	78

The	Peptide profiles of the Australian brown tree frog Litoria ewingii	82
4.1	Introduction	82

4.1.1	The Australian brown tree frog Litoria ewingii	82
4.1.2	Peptide profiles of Australian frogs	83
4.1.3	Populations and taxonomy of Litoria ewingii	85
4.2 Resul	Its and Discussion	87
4.2.1	Isolation of Litoria ewingii skin peptides	87
4.2.2	Sequence determination of Litoria ewingii peptides	89
4.2.3	Biological activities of Litoria ewingii skin peptides	100
4.2.4	Morphological differences in Litoria ewingii populations	100
4.3 Sumr	nary and Conclusions	101
4.4 Expe	rimental	103
4.4.1	Collection and preparation of frog skin secretions	103
4.4.2	HPLC separation of granular secretion	103
4.4.3	Sequence determination of peptides by mass spectrometry	103
4.4.4	Automated Edman sequencing	104
4.4.5	Synthesis of peptides from Litoria ewingii	104
4.4.6	Biological activity testing	104
4.4.6.1	Smooth muscle activity testing	104
4.4.6.2	Opiod activity studies	105

Solution structures of two antimicrobial peptides from the scorpion Mesobuthus		
eupeus mor	eupeus mongolicus 107	
5.1 Introdu	iction	107
5.1.1	Mesobuthus eupeus mongolicus	107
5.1.2	The venom composition of Mesobuthus eupeus	108
5.1.3	Antimicrobial meucin peptides	111
5.2 Results		114
5.2.1	Chemical shift assignment	114
5.2.2	Secondary Chemical Shifts	119
5.2.3	NOE Connectivities	122
5.2.4	Coupling constants	124

5.2.5	Structure calculations	124
5.3	Discussion	130
5.4	Experimental	133
5.4.1	Cross-peak assignment and structure calculations	133

Solid-st	ate NMR studies of the antimicrobial peptide, fallaxidin 4.1a	134
6.1 Intro	duction	134
6.1.1	Membrane active antimicrobial peptides	134
6.1.2	Bacterial and cytoplasmic membranes	136
6.1.3	Structure and biological activity of fallaxidin 4.1a	137
6.2 Res	sults	141
6.2.1	³¹ P solid-state NMR spectroscopy	141
6.2.2	² H solid-state NMR spectroscopy	143
6.2.3	Quartz Crystal Microbalance	146
6.3 Discussion		149
6.3.1	Solid-state NMR spectroscopy and QCM	150
6.3.2	Mechanism of antimicrobial activity	151
6.4 Exp	perimental	153
6.4.1	Sample preparation	153
6.4.2	³¹ P solid-state NMR	153
6.4.3	² H solid-state NMR	154
6.4.4	Quartz Crystal Microbalance	154

NMR stud	NMR studies of CCK2 agonists	
7.1 Introd	action	153
7.1.1	Biological activities of amphibian neuropeptides	153
7.1.2	Membrane mediated receptor binding of hormone peptides	155
7.1.3	Cholecystokinin receptor ligands	157
7.2 Result	s	161

7.2.1	Solution structures of rothein 1.3 and rothein 1.4	161
7.2.1.1	Chemical shift assignment	161
7.2.1.2	Secondary chemical shifts	165
7.2.1.3	NOE connectivities	167
7.2.1.4	Coupling constants	169
7.2.1.5	Structure calculations	169
7.2.2	Solid-state NMR of amphibian neuropeptides with membranes	174
7.2.2.1	³¹ P solid-state NMR	174
7.2.2.2	² H solid-state NMR	175
7.3 Disc	ussion	179
7.3.1	Structure analysis of rothein analogues	179
7.3.2	Solid-state NMR	182
7.3.3	Additional remarks	186
7.4 Expe	erimental	188
7.4.1	Preparation of synthetis rothein 1 peptides	188
7.4.2	NMR Spectroscopy	188
7.4.3	Cross-peak assignment and structure calculations	189
7.4.4	Sample Preparation of MLV suspensions	189
7.4.5	³¹ P solid-state NMR	190
7.4.6	² H solid-state NMR	190

Sun	Summary	
8.1	The peptide profiles of two Litoria ewingii populations	191
8.2	The solution structures meucin-13 and meucin-18	192
8.3	Membrane interactions of the antimicrobial peptide fallaxidin 4.1a	193
8.4	The solutions structures of two analogues of rothein 1 and the	membrane
inte	ractions of CCK2 active amphibian neuropeptides	193
8.5	Conclusion	196

References	197
Appendices	237
Publications	242

Acknowledgements

First and foremost I would like to thank my supervisor Prof. John Bowie for allowing me to undertake a variety of challenging and exiting research projects. I cherish his wisdom, encouragement, patience and guidance over the past few years.

Secondly I would like to thank previous and current members of the Bowie research group, Dr. Tara Pukala, Dr. Daniel Bilusich, Dr. Margit Sorrel, Dr. Rebecca Beumer, Dr. Tianfang Wang, Dr. Peter Eichinger for generously donating their time toward teaching me the techniques of 2D NMR, HPLC, and mass spectrometry. It has been a great experience to work with people who are so approachable, open, and happy to pass on their knowledge to guide myself, and others within the research team. I would also like to thank fellow Ph. D. students in the Bowie group Hayley Andreazza, Antonio Calabrese, and Micheal Maclean, for helping me through the challenging times, and for all of the fun we've had through the years at various events. It has been great to work with such a group of people who take pride in their work, have a great sense of humour, and know how to have a good time.

I would like to thank the technical and academic staff members from the University of Adelaide. From the Department of Chemistry, Phil Clements for his great assistance with NMR and mass spectrometry, also Gino Farese and Graham Bull for their help and advice with HPLC. From the school of Molecular Biosciences I would like to thank Chris Cursaro for operating the Edman sequencer and Cvetan Stojkoski for his assistance with molecular dynamics. I would also like to thank Associate professor Mike J. Tyler from the Department of Environmental Biology for providing the frogs for milking amphibian skin secretions. I greatly enjoyed the monthly visits and sharing in his vast knowledge of amphibians.

Another group of people I would like to thank is those I have worked with in collaborative research projects. Firstly, I want to thank Prof. Frances Separovic and Dr.

John Gheman from the University of Melbourne for assisting with solid-state NMR experiments. Also Prof. Mibel Aguilar, Dr. John Lee, Assoc. Prof. Lisa Martin, George McCubbin, Slavica Praporski and Adam Mechler from Monash University for conducting real time experiments with lipid films (QCM and DPI). Additional thanks to Professor Shunyi Zhu and Bin Gao from the Chinese academy of sciences, for providing the NMR data of the meucin peptides. I would also like to thanks Assoc. Prof. Jenny Beck and Dr. Thitima Urathamakul from the University of Wollongong for their assistance with mass spectrometry of peptide complexes.

I would like to thank all of the great friends I've made during the Ph. D. largely made up of fellow students, Scott Buckley, Alex Gentleman, Danielle Williams, Megan Garvy, Marcus Pietsche, David Thorn, Chris Brockwell, Tom Koudelka, Peter Valente, just to name a few. I cherish the friendships made, the good times, and most of all the laughter.

I would like to thank members of family for there support thoughout the Ph. D. journey. Thank you to my parents, Brian and Janemarie Sherman for encouragment, support and repeatedly asking 'when are you going to hand in that thesis'. I would also like to thank my brothers and sisters (too many to mention) for their support over the years.

Lastly I would like to thank my lovely girlfriend Jennifer Barter for putting up with me throughout this journey, and her parents Chris and Laurie Barter for keeping me well fed during the final stages of writing up the thesis.

Thanks everyone.

Statement of originality

This thesis contains no material that has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited to the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australian Digital Theses Program (ATDP) and also through the web search engines, unless permission has been granted by the University to restrict access for a period of time.

____/__/

Patrick James Sherman

Date

Abstract

The host-defence secretions of amphibians and the venoms of arachnids are an abundant source of biologically active peptides with a great potential for use in therapeutic pharmacology. Over millions of years of evolution, the chemical arsenals of a multitude of species have produced a vast collection of peptides that have potent and selective activities. The research presented in this thesis details the isolation, structure determination and mechanistic pathways of a selection of biologically active peptides.

The southern brown tree frog Litoria ewingi occupies areas of the southeastern coast of Australia and Tasmania. Over a twelve month period, the peptide skin profile of a population of L. ewingii from Penola (South Australia) was determined using a combination of chromatography, tandem mass spectrometry and Edman degradation techniques. The peptide profiles of a L. ewingi from Penola show surprising differences relative to a population previously studied from the Adelaide hills, despite appearing to be morphologically identical. A total of six skin peptides were identified, four of which were unique; showing peptide sequence homology with peptides from Adelaide hills population. The evidence showed how a species can evolve separately after long periods of geographical isolation, how peptide profiling can be used to trace the migration of a species, and how new peptides can be discovered from different populations of a species. The antimicrobial meucin peptides were first identified using cDNA cloning of DNA from the venom gland of the 'Lesser Asian scorpion' Mesobuthus eupus mongolicus. These peptides exhibit cytolytic effects against a number of eukaryotic and prokaryotic cells at micromolar concentrations, and their peptide sequences share similarities with other antimicrobial peptides from scorpions, arthropods and amphibian species. The secondary structures of the meucin peptides were determined using 2-D NMR and molecular dynamics calculations. Both meucin peptides exhibit α -helical structure, and are amphipathic in nature. The study further shows how the length of the α -helical structure can as an antibiotic affect the cytolytic activity of the peptide, since meucin-18 is more potent than meucin-13.

The C-terminal amide analogue of the peptide fallaxidin 4.1 (fallaxidin 4.1a) isolated from the dermal secretions of *Litoria fallax*, is partially α -helical in nature, and shows potent activity against a wide range of yeast and bacteria (both Gram-positive and Gramnegative). This thesis uses solid-state NMR to detail the dynamic interactions of fallaxidin 4.1a with artificial lipid bilayers, and to explore the surface interactions of the peptides with eukaryotic (neutral) and prokaryotic (anionic) membranes. The solid state NMR and analysis using a quartz crystal microbalance indicated that the peptide acts via a surface interaction with neutral membranes and forms pores within anionic membranes at micromolar concentrations, indicating the specific pore forming mechanism by which the peptide interacts with anionic (prokaryotic) membranes.

Rothein 1, an 11 residue neuropeptide from the dermal secretions of Litoria rothii, and two alanine substituted analogues, rothein 1.4 and 1.5; show differing activities via binding to CCK2 receptors. The structures of rothein 1.4 and 1.5 were determined using 2-D NMR and molecular dynamics calculations. Each peptide has a largely extended structure, with similarities to the structure of rothein 1. Two 10 residue, disulfidecontaining neuropeptides signiferin 1 and riparin 1 from dermal secretions of frogs of the Crinia genus, show potent smooth muscle and splenocyte activities. The dynamics of the interaction of signiferin 1, riparin1 and rothein 1 with artificial eukaryotic (neutral) lipid bilayer suspensions were probed using solid-state NMR, to emulate how a neuropeptide interacts with a cellular membrane surface prior to receptor binding. Solid-state NMR showed that rothein 1 had little effect on the mobility and orientation of the lipids, signiferin 1 interacted largely at the surface of the bilayers, and riparin 1 was partially inserted into the membrane. Rothein 1 is significantly less active than the disulphide peptides and more hydrophilic in nature; this is reflected in the interactions with bilayers. The disulphide peptides are more hydrophobic in character and the solid-state NMR indicated that they adhere to membranes.

Abbreviations

1D	One-dimensional
2D	Two-dimensional
3D	Three-dimensional
ARIA	Ambiguous Restraints for Iterative
CCK	Assignment
CCK1R	Type I cholecystokinin recentor
CCV2D	Type I cholegystokinin receptor
CID	Collision induced dissociation
CL	Lethal concentration
CNS	Crystallography and NMR system
COSY	Correlation spectroscopy
CSA	Chemical shift anisotropy
DC	Direct current
DMPC	Dimyristoyl phosphatidylcholine
DMPG	Dimyristoyl phosphatidylglycerole
DNA	Deoxyribonucleic acid
DPC	Dodecylphosphotydylcholine
DPI	Dual polarisation interferometry
DQF	Double quantum filtered
ESI	Electrospray ionisation
ESMS	Electrospray mass spectrometry
ETD	Electron transfer dissociation
GUV	Giant unilamellar vesicle
HPLC	High performance liquid chromatography
HSQC	Heteronuclear single quantum coherence
HV	High volume
IC ₅₀	Half maximal (50%) inhibitory concentration
IRMPD	Infrared multiphoton dissociation
L _a	Lamellar phase
L-NNA	L-N-nitroarginine
МСР	Microchannel Plate
MIC	Minimum inhibitory concentration
MLV	Multi-lamellar vesicle
MOPS	3-(N-morpholino)propanesulfonic acid
MPA	3-mercaptopropionic acid

mRNA	Mature ribonucleic acid
MS	Mass spectrometry
MS/MS	Tandem mass spectrometry
NMR	Nuclear magnetic resonance
nNOS	Neuronal nitric oxide synthase
NOE	Nuclear overhauser effect
NOESY	Nuclear overhauser effect spectroscopy
PC	Phosphatidylcholine
PG	Phosphatidylglycerole
QCM	Quartz crystal microbalance
QCM-D	Quartz crystal microbalance with dissipation monitoring
RF	Radiofrequency
RMD	Restrained molecular dynamics
RMSD	Route mean standard deviation
RNA	Ribonucleic acid
SA	Simulated annealing
S _{CD}	Carbon-deuterium order parameter
SES	Surface electrical stimulation
SLB	Supported lipid bilayer
TFE	Trifluoroethanol
TMS	tetramethylsilane
TOCSY	Total correlation spectroscopy
TOF	Time of flight
TQF	Triple quantum filtered
VMD	Visual molecular dynamics
YM022	(R)-1-[2,3-dihydro-1-(2'-methyl-phenacyl)- 2-oxo-5-phenyl-1H-1,4-benzodiazepin-3-yl]- 3-(3-methylphenyl)urea