Eye-safe Er:YAG Lasers for Coherent

Remote Sensing

by

Nick W. Chang

Thesis submitted for the degree of Doctor of Philosophy

in

The University of Adelaide School of Chemistry and Physics August, 2012

1	Intr	oduction 1		
	1.1	Atmos	spheric sensing using lidar	1
	1.2	Coher	ent lidar	3
	1.3	Summ	nary of published CLR systems	5
	1.4	Eye-sa	afe CLR systems	6
	1.5	Er:YA	G lasers for CLR	9
		1.5.1	Fiber-laser-pumped Er:YAG lasers	11
		1.5.2	Diode-pumped Er:YAG lasers	12
	1.6	Thesis	s overview	14
า	E		any theory	17
2	Er: T	AG las	ser theory	17
	2.1	Introd	luction	17
	2.2	Er:YA	G gain medium	17
		2.2.1	Physical properties	17
		2.2.2	Electronic energy structure	18
		2.2.3	Er:YAG spectroscopy	19
		2.2.4	Doping optimization	20
	2.3	Quasi	-three-level nature of Er:YAG lasers	22
		2.3.1	Re-absorption loss of Er:YAG lasers	23

	2.4	Simpli	fied model of an end-pumped CW Er:YAG laser 25	
		2.4.1	Description of model	
		2.4.2	Numerical prediction	
	2.5	Nume	rical model by F. Auge	
		2.5.1	Description of model	
		2.5.2	Numerical prediction	
		2.5.3	Discussion	
	2.6	Conclu	$1sion \dots \dots$	
3	Sing	le frea	uency Er:YAG master laser development 47	
	3.1	Introd	uction	
	3.2	Slab a	nd slab holder	
		3.2.1	End-pumped slab geometry	
		3.2.2	Design of the slab holder	
	3.3	Pump	configuration	
		3.3.1	Pump collimation	
		3.3.2	Optimization of the pump wavelength	
		3.3.3	Pump combining	
		3.3.4	Pump focusing	
		3.3.5	Fluorescence of pumped gain medium	
	3.4	Resona	ator design	
		3.4.1	TEM_{00} mode selection	
		3.4.2	Thermal lensing estimate	
		3.4.3	ABCD matrices and resonator stability 61	
		3.4.4	Resonator model	
	3.5	Maste	r laser performance	
		3.5.1	Multi-mode operation	
		3.5.2	Single frequency operation	

	3.6	Self heterodyne linewidth measurement $\ldots \ldots \ldots \ldots \ldots \ldots$	72
	3.7	Beam quality measurement	73
	3.8	Conclusion	75
4	Des	ign and construction of the Er:YAG slave laser head	77
	4.1	Introduction	77
	4.2	Slave laser gain medium design	78
	4.3	Numerical simulation of the CW laser	79
	4.4	Slab holder	81
	4.5	Pump diode	83
		4.5.1 Pump diode specifications	84
		4.5.2 Laser diode cooling	85
		4.5.3 Laser diode operation and characterization	86
		4.5.4 Pump focussing	88
		4.5.5 Thermal lensing due to pump	89
	4.6	Laser head characterization	91
		4.6.1 Pump absorption	92
		4.6.2 Short-resonator in CW operation	93
	4.7	Conclusion	95
5	0-5	witched resonantly numbed Fr:YAG laser	97
J	Q -30	Introduction	07
	5.0	Initial O gwitched lager	91
	0.2	1 Q-switched laser	91
		5.2.1 Q-switching	98
	F 0	5.2.2 Results for the initial Q-switched laser	101
	5.3	Final Q-switched laser	103
	5.4	Q-switching using $R = 95\%$ output coupler	104
		5.4.1 Q-switched laser performance	106
		5.4.2 Summary \ldots 1	112

	5.5	Impro	ved Q-switched pulse energy using R=85% output coupler 11	13
		5.5.1	Q-switched laser performance	13
		5.5.2	Summary	16
	5.6	Conclu	usion	17
6	Inve	stigatio	on of losses in Er:YAG lasers 11	9
	6.1	Introd	uction	19
	6.2	Pump	absorption efficiency	21
		6.2.1	CW pumping	21
		6.2.2	Absorption for pulsed pumping	23
	6.3	Measu	rements of upconversion and excited-state-absorption $\ldots \ldots 12$	24
		6.3.1	Upconversion fluorescence versus pump power	25
		6.3.2	Excited-state-absorption	27
	6.4	Nume	rical simulation of pumping in presence of GSD and ETU \ldots 13	30
		6.4.1	Rate equation model	30
		6.4.2	Effect of GSD on pump absorption	32
	6.5	Techn	iques for improving pump absorption	35
		6.5.1	Increasing absorption length for $Er(0.5\%)$:YAG	36
		6.5.2	Improving absorption using more heavily doped Er:YAG $\ . \ . \ .$	37
	6.6	Conclu	usion	38
7	Con	clusion	14	1
	7.1	Future	e directions $\ldots \ldots 14$	42
Α	Pub	licatior	ıs 14	15
	A.1	Public	eations associated with this work	45
		A.1.1	Stable, single frequency Er:YAG lasers at 1.6 µm 14	15
		A.1.2	Resonantly diode-pumped continuous-wave and Q-switched	
			Er:YAG laser at 1645 nm. \ldots \ldots \ldots \ldots \ldots \ldots 14	49

В	Upconversion investigation		
	B.1	Introduction	. 155
	B.2	Numerical prediction	. 157
	B.3	Summary	. 159
С	Sing	le-mode laser diode characteristics	161
D	Bea	m quality analysis in Matlab	167
E	Higł	n power laser head schematics	171
F	Broa	adband pump diode specifications	173
G	CPF	S Er:YAG slab design	175

Abstract

Multi-watt lasers with an output wavelength in the eye-safe band are required for many remote sensing applications, including Doppler or coherent laser radars (CLR's). Er:YAG lasers at 1617 nm or 1645 nm operating on the ${}^{4}I_{13/2}$ to ${}^{4}I_{15/2}$ transition can potentially satisfy this need. Although this transition has been known for many years, the development of diode pumping makes these lasers practical.

Doppler wind-field mapping requires single frequency, diffraction limited pulses at a high pulse repetition frequency (PRF) to provide a spatially dense array of samples, allow signal averaging with minimal loss of temporal resolution and to minimize the time required to scan an extended volume. Pulses with energies >few mJ and pulse durations of >100 ns are essential for these measurements. Such requirements can be satisfied by continuous-wave (CW) pumping of a Q-switched free-space laser.

In this thesis I describe the design and development of a single frequency, continuous wave, Er:YAG laser at 1645 nm that uses resonant pumping at 1470 nm. With an intra-cavity polarizer and uncoated etalon, it produces up to 30 mW in a narrow line-width, single frequency, plane polarized, diffraction limited, TEM_{00} output. The laser is suitable as a master oscillator of a CLR.

I also describe the development and characterization of an efficient high power Er:YAG laser that is resonantly pumped using CW laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 40%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Qswitched operation, the laser produces diffraction-limited pulses with an average

power of 2.5 W at 2 kHz PRF, and thus is suitable as the slave oscillator of a CLR. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

This thesis also presents an experimental investigation of the observed reduction in the average output power of Q-switched Er:YAG lasers at low PRF. The experimental results are compared with the predictions of a theoretical model developed using rate equations so the primary causes can be determined, and thus could be minimized in a future design.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

SIGNED:

DATE:

Supervisors: A/Prof. Peter J. Veitch and Prof. Jesper Munch.

Acknowledgments

First and foremost, I would like to extend my utmost gratitude to my supervisors, Peter Veitch and Jesper Munch. You provided me with an opportunity to work on this project and, moreover, you equipped me both academically and personally, while helping me discover the greatness of science. Your support ultimately motivated me to undertake research in Antarctica as a Lidar scientist - something I would have never dreamt of doing. I would especially like to convey my appreciation for proofreading this thesis while I have been located at this remote site down South.

I would also like to express thanks to David Ottaway whom helped supervise and guide me during the latter stages of this project, and to Murray Hamilton for his help and advice.

To David Hosken and to Won Kim, words cannot express my gratitude for your friendship and encouragement and for your offers of advice and direction during my PhD journey. I am grateful and thankful for having had seniors like you looking after me.

To Blair Middlemiss, Neville Wild and Trevor Waterhouse, thank you for providing excellent technical assistance and support when developing the hardware for the project. To the staff in the school: Carol, Jeanette, Mary, Ramona, Wayne and the rest of the front office staff - thank you for your administrative support and for caring for me during my studies.

To my colleagues in the optics group: Alex, Ka, Keiron, Lachlan, Matthew, Miftar, Muddassar, Nikita, Ori, Sean, Tom and the rest of the group. Thank you for

the great times and memories from my time in Adelaide - I especially appreciate the coffees with many of you, as without them I couldn't have overcome the difficult times.

Finally, I would like to thank my Mum, Dad, Sisters, Kim, and my church friends. It's a blessing having you people in my life. Truly, I couldn't have done this without your love and support.

"Call to me and I will answer you and tell you great and unsearchable things you do not know." – Jeremiah 33:3

Nick Chang, August 2012

List of Symbols

η_{abs}	Pump absorption fraction
η_{eff}	Pump delivery efficiency
η_{mode}	Mode overlap efficiency
η_{slope}	Slope efficiency
γ	Gain coefficient
λ	Wavelength
σ_{al}	Effective absorption cross section of the laser wavelength
σ_{ap}	Effective absorption cross section of the pump wavelength
σ_{el}	Effective emission cross section of the laser wavelength
σ_{ep}	Effective emission cross section of the pump wavelength
σ_l	Absorption cross section for the laser transition
σ_p	Absorption cross section for the pump transition
$ au_s$	Upper state storage lifetime
$ riangle_l$	Laser inversion density
$ riangle_l^z$	Laser inversion density per unit area (Rod-integrated)
$ riangle_p$	Pump inversion density
$ riangle_p^z$	Pump inversion density per unit area (Rod-integrated)
A_p	Pump cross section area
C_{up}	Upconversion rate
$f_{\rm lens}$	Effective focal length of the thermal lens
F_c	Cavity finesse
f_l	Fractional Boltzmann population of the laser transition
f_p	Fractional Boltzmann population of the pump transition

G	Round trip gain of the laser
h_s	Gain medium height
I_l	Laser intensity
I_p	Pump intensity
$L_{\rm cav}$	One-way cavity loss
l_s	Gain medium length
M^2	Beam propagation factor
N_2^z	Excited manifold density per unit area (Rod-integrated)
N_2^{Total}	Total excited upper-state (N2) population
N_t	Doping cencentration per unit volume
$P_{av(\mathrm{CW})}$	Average power in CW operation
P_{cav}	Laser intra-cavity power
P_{out}	Output power
P_p	Pump power
P_{th}	Threshold power
r_0	Radius of the waist
R_{laser}^t	De-excitation rate via lasing
R_{oc}	Reflectivity of the output coupler
R_{pump}^t	Pump excitation rate
R_p	Reflectivity of the coating for double pass pumping
r_p	Radus of the pump
r_s	Radius of the gain medium
$t_{\rm scatter}$	Backscatter time
v_l	Frequency of the laser wavelength
V_{pump}	Volume pumped by the pump light
v_p	Frequency of the pump wavelength
W_{ij}	Radiative decay rate from level i to level j

w_s	Gain medium width
AOM	Acousto-optic modulator
AR	Anti-reflection
BD	Beam diameter
CPFS	Coplanar folded slab
CW	Continuous wave
DA	Full divergence angle
DI	Deionized
EDFL	Erbium doped fibre laser
EO	Electro-optic
ESA	Excited state absorption
ETU	Energy-transfer-upconversion
FSR	Free spectral range
FWHM	Full width half maximum
GSD	Ground-state depletion
LIDAR	Light detection and ranging
MP	Multi-phonon
NA	Numerical aperture
OSA	Optical spectrum analyzer
PBSC	Polarization beam splitter cube
PRF	Pulse repetition rate
QWP	Quarter-wave plate
RTP	Rubidium Titanyle Phosphate
TEC	Thermo-electic cooler
TFP	Thin film polarizer
YAG	Yttrium aluminum garnet

List of Figures

1.1	The schematic of a LIDAR system.	2
1.2	A schematic of a coherent laser radar system.	4
1.3	Schematic of the Yb,Er:glass slave laser.	8
1.4	Energy back conversion path in Yb-sensitized ${\rm Er}^{3+}$ systems. $\ . \ . \ .$	9
1.5	Energy-level diagram for Er:YAG	10
1.6	Absorbed fraction for a diode pumped Er:YAG crystal	14
2.1	Crystal-field energy levels in Er:YAG	19
2.2	Emission and absorption spectra of Er:YAG at room temperature	19
2.3	Pump absorption in Er:YAG versus different doping concentration.	21
2.4	Symbols for the quasi-three-level laser model of Er:YAG	22
2.5	Schematic of an end-pumped resonator used in Beach's model	26
2.6	Predicted laser threshold power against output coupler reflectivity	32
2.7	Predicted slope efficiency versus output coupler reflectivity	33
2.8	Predicted output power versus output coupler reflectivity	34
2.9	Predicted output power versus incident pump power.	35
2.10	Schematic of an end-pumped resonator used in Auge's model	36
2.11	Predicted pump and cavity radii along the z axis of the crystal. $\ . \ .$	38
2.12	Absorption saturation versus launched pump power	40
2.13	Predicted round-trip gain versus intracavity power.	42
2.14	Predicted round trip gain versus incident pump power	43

List	of	Figures
		0

2.15	Predicted output power versus incident pump power	44
3.1	3-D schematic of the laser slab.	48
3.2	A schematic of the slab holder.	49
3.3	A schematic of the pump configuration	50
3.4	The setup of the pump laser diode packages.	50
3.5	Beam divergence of the collimated outputs of the two diodes	52
3.6	Setup for pump absorption optimization	53
3.7	Spectra of the pump after the gain medium	53
3.8	Schematic of the combined pump beams	54
3.9	Output powers from the PBSC versus diode current.	54
3.10	Definition of path lengths for the pump configuration $\ldots \ldots \ldots$	55
3.11	Pump beam radius versus collimating distance.	56
3.12	A photo of the pump setup and the laser resonator	58
3.13	Measured fluorescence spectrum of Er:YAG	58
3.14	Schematic of the master laser	59
3.15	Plot of the predicted thermal lens for the Er:YAG gain medium	61
3.16	The standing-wave resonator Paraxia model	63
3.17	The multi-mode standing wave resonator	65
3.18	Output power in multiple-mode versus pump power	65
3.19	Spectrum of the multi-longitudinal mode output.	66
3.20	Measured output power and the predictions of the Auge model. $\ . \ .$	67
3.21	Plot of output power versus incident pump power	68
3.22	The scanning Fabry-Perot cavity.	69
3.23	The multi-mode Er:YAG master laser output.	70
3.24	The single-mode Er:YAG master laser output	71
3.25	Single frequency operation checked by the grating OSA	71
3.26	Self-heterodyne linewidth measurement setup.	72

3.27	Frequency fluctuation spectrum of the single frequency Er:YAG laser.	73
3.28	Intensity profile of the Er:YAG laser output.	74
3.29	Beam quality measurement for the master laser	75
4.1	Schematic of the laser slab	78
4.2	Predicted output power versus the OC reflectively	80
4.3	Schematic of the high power slave laser head	81
4.4	Schematic of the slab holder design	82
4.5	Picture of the Er:YAG laser slab holder.	82
4.6	Picture of the 40W pump diode	84
4.7	Emission spectrum of the pump diode.	85
4.8	The deionized water cooling system for the pump laser diode. $\ . \ . \ .$	86
4.9	Measured output power of the laser diode. \ldots \ldots \ldots \ldots \ldots \ldots	87
4.10	Spectra of the laser diode output	88
4.11	Pump beam radius evolution versus distance	89
4.12	Predicted thermal lensing versus launched pump power	90
4.13	Spectra of the launch pump and the transmitted pump	92
4.14	Spectrum of the absorbed pump	93
4.15	Schematic of the standing wave resonator (top view). \ldots	93
4.16	Multi-mode output power versus pump power	94
4.17	Spectrum of the standing wave Er:YAG laser in CW operation	95
5.1	Schematic of the initial Q-switched laser	98
5.2	Pulse formed after the opening of the Q-switch	98
5.3	Schematic of the RTP Pockels	99
5.4	Measured transmission and reflection of the TFP	100
5.5	Performance of the preliminary laser in CW operation.	102
5.6	The 500 ns Q-switched pulse at an average power of 2 mW	102
5.7	Coating damages on the Er:YAG slab.	103

5.8	Schematic of the final Q-switched Er:YAG laser
5.9	Photographs of the final Q-switched laser
5.10	Average output power versus pump in Q-switched operation 106
5.11	A plot of the Q-switched pulse train
5.12	Dependence of average output power on PRF
5.13	Measured and expected ratio of average power versus PRF 108 $$
5.14	Dependence of pulse energy on PRF
5.15	Damage to the HR coating on the Er:YAG slab
5.16	Plot of normalized pulse waveforms versus time
5.17	Pulse width as a function of pulse energy
5.18	Beam quality measurement of the Q-switched laser
5.19	Plot of the average output power versus pump current
5.20	Dependence of average output power on PRF
5.21	Measured and expected ratio of average power versus PRF 115
5.22	Dependence of pulse energy on PRF
5.23	Normalized pulse waveforms versus time
6.1	General scheme for resonant pumping of a Er:YAG medium 120
6.2	Pump absorption experiment without lasing
6.3	Pump absorption versus incident pump power
6.4	Pump absorption measurement for pulsed pumping
6.5	Measured transmission of the pump versus time
6.6	Experimental setup for the fluorescence measurement
6.7	Fluorescence spectra for $\mathrm{Er}(0.5\%)\mathrm{:}\mathrm{YAG}$ at different pump currents. . 126
6.8	Plot of 1 µm emission versus pump current
6.9	Green flashes observed during Q-switched operation
6.10	Spectra of the fluorescence of Q-switched $\mathrm{Er}(0.5\%)\mathrm{:}\mathrm{YAG}$ at several
	PRFs

6.11	Normalized fluorescence power versus PRF
6.12	Green fluorescence and the laser pulse observed during Q-switching 129
6.13	Predicted and measured pump absorption versus pump power 132
6.14	Comparison of the measured and simulated pump transmission 133 $$
6.15	Absorption coefficient versus pumping time
6.16	Predicted N_2 population versus pumping time
6.17	N_2^{Total} versus slab length for Er(0.5%):YAG
6.18	Average N_2^{Total} population (ions/s) versus slab length
6.19	Predicted N_2^{Total} population for 1% and 0.5% Er:YAG
7.1	Schematic of injection seeding system
7.2	Schematic of double end-pumped gain medium
7.3	Schematic of an end-pumped CPFS gain medium
7.4	Ring resonator design incorporating the CPFS slab
D 1	Four lower manifolds involved in 1.6 um emission and unconversion 155
B.1	Four lower manifolds involved in 1.6 μ m emission and upconversion. 155 Deputation transport over time for 550 mW of pump power 157
B.1 B.2	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power 157 Pound trip gain versus launched power
B.1 B.2 B.3	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power
B.1B.2B.3B.4	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power
B.1B.2B.3B.4C.1	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power
 B.1 B.2 B.3 B.4 C.1 C.2 	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power
 B.1 B.2 B.3 B.4 C.1 C.2 C.3 	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power
 B.1 B.2 B.3 B.4 C.1 C.2 C.3 C.4 	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power
 B.1 B.2 B.3 B.4 C.1 C.2 C.3 C.4 C.5 	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power 157 Round trip gain versus launched power
 B.1 B.2 B.3 B.4 C.1 C.2 C.3 C.4 C.5 C.6 	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power 157 Round trip gain versus launched power
 B.1 B.2 B.3 B.4 C.1 C.2 C.3 C.4 C.5 C.6 C.7 	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power
 B.1 B.2 B.3 B.4 C.1 C.2 C.3 C.4 C.5 C.6 C.7 C.8 	Four lower manifolds involved in 1.6 µm emission and upconversion. 155 Population transport over time for 550 mW of pump power

List of Figures

E.1	The schematic of the base block of the laser head
E.2	The schematic of the left block of the laser head
E.3	The schematic of the right block of the laser head
F.1	Specifications of the DILAS laser diode
G.1	The schematic of the CPFS Er:YAG slab

List of Tables

1.1	Spatial resolution versus pulse duration.	3
1.2	$\mathrm{PRF}_{\mathrm{max}}$ versus lidar range	3
1.3	Summary of the early EDFL-pumped Er:YAG lasers	11
1.4	Summary of the early diode-pumped Er:YAG lasers	12
2.1	Physical parameters of Er:YAG crystal	18
2.2	Quantum numbers of the lowest energy electronic stats of the ${\rm Er^{3+}}.~$.	18
2.3	$(N_2/N_t)_{\rm min}$ for Er:YAG at 1645 nm and 1617 nm	24
2.4	$(N_2/N_t)_{\rm max}$ for Er:YAG at 1532 nm and 1470 nm pump wavelength.	25
2.5	List of important parameters and symbols introduced in the model	27
2.6	Er:YAG parameters used in modeling.	31
2.7	Parameters used in the model	37
2.8	Er:YAG parameters used in modeling.	42
3.1	Specifications of the 1470nm laser diode	51
3.2	Design parameters for the pump beam	56
3.3	Comparison of the predicted and measured pump beam radii. $\ . \ . \ .$	57
3.4	Paraxia resonator modeling results	63
3.5	Parameters used for the multi-mode laser model	66
4.1	Parameters used to model the high power CW Er:YAG laser	80
4.2	Specifications of the 40 W pump laser diode for the laser head	85

List of Tables

4.3	Requirements for the DI-water used to cool the DILAS laser diode 86
4.4	Dimensions and divergence of the pump beam
4.5	The predicted pump beam radii at several locations
4.6	Modelled mode size and stability results
5.1	Specifications of the RTP Pockels cell at 1645 nm
6.1	Radiative decay rate for Er:YAG at room temperature
6.2	Parameters used in the model
B.1	Radiative decay rate for Er:YAG at room temperature