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Abstract

Studies investigating the role that complex microbiotas associated with animals and humans play in health and wellbeing
have been greatly facilitated by advances in DNA sequencing technology. Due to the still relatively high sequencing costs
and the expense of establishing and running animal trials and collecting clinical samples, most of the studies reported in the
literature are limited to a single trial and relatively small numbers of samples. Results from different laboratories,
investigating similar trials and samples, have often produced quite different pictures of microbiota composition. This study
investigated batch to batch variations in chicken cecal microbiota across three similar trials, represented by individually
analysed samples from 207 birds. Very different microbiota profiles were found across the three flocks. The flocks also
differed in the efficiency of nutrient use as indicated by feed conversion ratios. In addition, large variations in the microbiota
of birds within a single trial were noted. It is postulated that the large variability in microbiota composition is due, at least in
part, to the lack of colonisation of the chicks by maternally derived bacteria. The high hygiene levels maintained in modern
commercial hatcheries, although effective in reducing the burden of specific diseases, may have the undesirable effect of
causing highly variable bacterial colonization of the gut. Studies in humans and other animals have previously
demonstrated large variations in microbiota composition when comparing individuals from different populations and from
different environments but this study shows that even under carefully controlled conditions large variations in microbiota
composition still occur.
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Introduction

A range of studies have investigated the structure of the

microbiome in the gut of broiler chickens. Comparison across

studies has proven difficult because of the variety of different

methods used; e.g. culture based studies [1], G+C profiling

analysis [2], quantitative PCR [3], and 16S rRNA based studies.

The 16S-based methods have used a number of different

approaches including terminal restriction fragment length poly-

morphism analysis [4], temporal temperature gradient gel

electrophoresis [5], denaturing gradient gel electrophoresis

(DGGE) [6], low throughput clone analysis [7] or multivariate

curve resolution [8]. More recently high throughput next

generation sequence based studies have been performed [9].

Inter-study comparisons are also complicated by the different ways

that results have been reported, with some papers detailing

populations down to the class and genus level whereas other

studies simply demonstrate similarities or differences, for example

in DGGE gel profiles, without any detailed quantitative taxonomic

information.

Compounding these difficulties are different approaches to

sample analysis with some studies looking at results from

individual birds and others using pooled samples [10]. The

analysis of individual bird samples has demonstrated significant

variation in microbiota structure within single treatment groups

[11] and the use of pooled samples does not allow the

characterization of this potentially important variation. Further

complicating any cross-study analysis is the wide variation in

experimental or field conditions investigated with variation across

the birds (source, breed, age, sex, history), feed, environmental

conditions, and different treatments investigated.

Accepting that there are obvious limitations to cross-study

comparison, an underlying issue is that there appears to be a high

degree of variation in the overall structure of the microbiota

observed in different studies. The current study is directed at

addressing this finding to determine if the apparent microbiota

variation across trials is real or simply an artifact of different

experimental designs or analysis methods. This issue is important

because the outcome would influence the design of future research

into ways in which we might aim to manipulate the microbiota to

improve health and productivity. Scientific rigor requires a
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hypothesis to be supported by replicated results. However, most

published studies investigating changes in the microbiota of

chickens and other animals have used single trials, usually

contrasting the microbiota in two or more treatment groups. In

some studies the results of multiple trials with different variables

have been reported but only rarely have results been reported for

replicated trials. In a previous study we investigated microbiota

changes associated with a Clostridium perfringens infection and

although some key changes in microbiota could be replicated

across trials an important finding was that there were large

differences in the microbiota in the control groups between trials

[12].

We were concerned that even with the carefully controlled

conditions applied previously there were significant differences

seen from trial to trial. We have now sought to understand and

characterize the amount of variation seen in the cecal microbiota

of birds across a set of three trials in which the chicken source,

feed, and growing conditions were all tightly controlled and

replicated as far as practically possible. The results highlight the

variability in microbiota structure found across replicate trials and

also shows the significant microbiota variation seen between

animals within a single uniformly derived and treated group.

Materials and Methods

Chicken Trials
The protocol used to perform the animal trials was as described

[9] but with a slightly modified feed formula. Briefly, one-day old

male Cobb 500 broiler chickens were transferred from a

commercial hatchery (Baiada Hatchery, Willaston, SA, Australia)

to a rearing pen in a temperature-controlled room. At the

hatchery the chicks received the vaccines that are routinely used in

broiler chicks in Australia; Marek’s, Newcastle Disease and

Infectious Bronchitis. The feed supplied ad libitum, comprised of

44.4% of wheat, 17% soybean meal, 15% barley, 10% canola

meal, 5% peas, 3.2% meat meal, 3% tallow, 1% limestone, 0.5%

vitamin mix, and traces of salt, lysine HCl, DL-methionine and

threonine. All of the feed for the replicate trials came from the

same batch of commercially prepared crumbles and was stored in

cool dry conditions for five months between the first and last trial.

The lighting regime for the trials started with 22–23 hours per day

gradually reducing to 12 hours per day by day 9 and for the rest of

the trial period. For the first 13 days post-hatch the birds were

housed together in a single concrete floored pen with fresh,

untreated, sawdust and shavings for bedding material. After day

13 the chickens were transferred in pairs to 48 open wire

metabolism cages located in a temperature-controlled room (23–

25uC). Birds were initially placed in pairs for an acclimation period

to minimize stress associated with separation and were then moved

into individual cages on day 15. The individual housing prevents

competition for feed, minimises behavioural issues and allows for

the precise feed intake of each individual chicken to be measured.

Birds were culled on day 25 and cecal luminal contents were

collected from one ceca from each bird for microbial analysis.

Feed Conversion Ratio (FCR) was calculated as a ratio of feed

consumed and weight gained. Therefore, lower ratios indicate that

the bird is more efficient at converting food into body mass. Three

identical trials, trials 1, 2, and 3, were performed over a 5-month

period.

Animal Ethics Statement
All animal work was been conducted according to the national

and international guidelines for animal welfare. The animal trials

were approved and monitored by the Animal Ethics Committees

of the University of Adelaide (Approval No. S-2010-080) and the

Department of Primary Industries and Resources, South Australia

(Approval No. 08/10).

DNA Preparation and PCR Amplification of 16S
Ribosomal DNA Gene Sequences
DNA was prepared as detailed by Stanley et al. [9]. Briefly, total

DNA was isolated using the method of Yu and Morrison [13]

except that homogenization was done using a Precellys 24 tissue

homogenizer (Bertin Technologies) at maximum speed of

6500 rpm, twice, 3 x 10 seconds each time. Quantity and quality

of DNA was inspected on a NanoDrop ND-1000 spectrophotom-

eter. DNA was amplified using Bio-Rad iProof DNA polymerase.

The primers used amplified the V1–V3 region of the 16S rRNA

gene (forward primer [14], 59 AGAGTTTGATCCTGG 39;

reverse primer, a truncated version of W31 [15], 59

TTACCGCGGCTGCT 39) and both primers also incorporated

sequences for 454 sequencing. The reverse primers consisted of a

set of primers that included a barcode sequence unique to each

specific bird sample in a given amplicon pool. Amplification of

products was performed in an Eppendorf Mastercycler.

High Throughput Sequencing and Analysis of 16S rRNA
Gene Amplicons
16S rRNA gene amplicons were sequenced using a Roche/454

FLX Genome Sequencer, according to the manufacturer’s

instructions. Sff files were split into fasta and qual files using

PyroBayes [16] and chimeric sequences removed using pintail

[17]. Sequence quality trimming settings were: sequence length

300–600 bases, no ambiguous sequences, minimum average

quality score of 25 and maximum homopolymer run of 6

nucleotides, using Qiime v1.3.0 [18]. OTUpipe [19], combining

USEARCH and UCLUST scripts [20,21], was used to perform

denoising error-correction, abundance and amplicon estimation

and OTU picking. After OTUs were assigned, using 97%

sequence similarity, all of the remaining analysis used Qiime

v1.3.0 software using Qiime defaults for that version, unless stated

otherwise. Taxonomy was assigned using a Blast method against

the GreenGenes database [22] and further confirmed using the

EzTaxon database [23]. All samples represented by less than 1000

sequences were removed from the analysis. After this step, samples

collected from 207 different birds remained; 70, 74 and 63 samples

for trials 1, 2, and 3 respectively. Rare OTUs with less than 10

sequences and present in less than 5 samples were removed from

further consideration. Normalization of OTU table counts was

done by performing multiple rarefactions 100 times and averaging

counts. The resulting multiple rarefied OTU table was used for all

further analysis including making OTU network tables in Qiime.

Networks were visualised in Cytoscape 2.8.0. Significance of

between trial differences was inspected using the R package ade4

(Analysis of Data functions for Ecological and Environmental data

in the framework of Euclidean Exploratory) [24]. The sequence

data and sample metadata have been submitted to the MG-RAST

public database under ID No.’s 4537568.3 to 4537776.3.

Results

Performance of the Three Flocks
FCR is the most widely used performance measure in the

poultry industry; it represents a measure of how efficiently a bird

uses feed towards growth. Since FCR is calculated as the ratio of

consumed feed and gained weight, flocks with the lowest FCR

values, that need lowest amount of food per kg of weight, are

regarded as the best performing. As we measured the FCR of each
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individual bird we were able to characterize the overall flock

performance and build up a detailed profile of the performance of

individual birds within each flock (Figure 1). Based on the three

distribution plots, it is apparent that the flock from trial 2 had the

most desirable FCR distribution. Trial 1 had the lowest mean

FCR value, however, trial 2 had a similar mean but a narrower

distribution and fewer birds with undesirable extremely high FCR.

Trial 3 had the least desirable profile with the highest mean and

the highest standard deviation from the mean.

Cecal Microbiota
A total of 627,613 quality trimmed sequences were produced

with an average number of sequences per sample of 2,565, 2,899

and 3,705 for trials 1, 2 and 3, respectively. ANOVA (p-value

,0.05) was used as a statistical measure to define OTUs that were

in differential abundance between trials. This showed that 58% of

all OTUs were differentially abundant. Reducing the p-value to

0.001 resulted in 30.3% of all OTUs being identified as

differentially abundant between the three trials. The lowest

Bonferoni corrected Qiime ANOVA p-value was 2.47e227,

indicating that the differences were highly statistically significant.

Alpha and beta diversity were inspected using all the metrics

available in the Qiime package. Alpha diversity metrics showing

significant difference between trials were: Chao1 (Figure 2A),

Observed Species, PD Whole Tree and Singles with all curves

resembling the plot given in Figure 2A. The alpha diversity metrics

show the difference in the number of OTUs at chosen

phylogenetic levels. Each of the metrics demonstrated that trial

3 had the highest number of species and, based on the Singles

alpha metric, also the highest number of low abundance OTUs.

There were only slight differences in alpha diversity identified

using Simpson, Reciprocal Simpson, Shannon (Figure 2B), Dom-

inance, Doubles or Equitability protocols. This group of alpha

diversity metrics reveal the distribution of OTU abundance to

determine if a few species dominate or there is more equal species

distribution. Based on these results all samples from the three trials

had similar OTU distribution with no strongly dominant taxa.

Non-phylogenetic beta diversity metrics grouped samples from the

three trials into three fully separated groups; the Spearman metric

completely separated samples from trial 3 from two separated but

close groups of samples originating from trials 1 and 2.

Unweighted (Figure 3A) and Weighted (Figure 3B) Unifrac also

showed some but not total separation of the samples from each

trial. Between trials PCA analysis (Figure 4) performed in the R

ade4 phylogenetic package, demonstrated that the microbiota

structure of the birds in each trial are different with Monte Carlo

p-value of 0.001. Based on the PCA component loadings, the PC1

axis is most influenced by Lactobacillus crispatus and Lactobacillus

helveticus and in the opposite direction Lactobacillus reuteri. PCA2 is

most determined by Parabacteroides distasonis, Lactobacillus taiwanensis

and an unknown Clostridiales in one direction and Bacteroides fragilis

in the opposite direction. Generally, OTUs driving the difference

between the trials were Lactobacillus, Clostridium and Bacteroides-

related as demonstrated in OTU bar-plots provided in Figure S1.

This is further emphasized by the weighted network diagram

(Figure 5) which not only shows the separation of birds across trials

but also confirms that trial 3 had much more diverse samples,

many elements of which are not shared with the birds in trials 1

and 2. The differences at an OTU level can be clearly seen in the

bar chart (Figure 6). Trial 3 birds had higher bird to bird variation

Figure 1. Distribution of FCR values given as a probability density function across the three trials. Trial 1 grey, trial 2 black, and trial 3
light grey.
doi:10.1371/journal.pone.0084290.g001
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and more diverse microbiota. Even at a high taxonomic level there

were differences between the trials; for example, the ratio of

Bacteroidetes to Firmicutes was 0.41, 0.13 and 0.22 for trials 1, 2,

and 3 respectively, indicating large differences in the microbiota of

each trial.

Discussion

This study has, for the first time, analysed the cecal microbiota

of a large number of individual birds distributed across a series of

repeated trials conducted over a 5-month period. The three

replicate trials used healthy birds, sourced from the same hatchery,

fed the same food and reared under similar conditions, to

investigate batch effects from one trial to another. Access to such a

large data set, across multiple replicated trials and many birds, has

allowed us to make some interesting comparative observations

about the structure of chicken gut microbiota across and within

trials. The data presented shows unexpectedly high differences in

the microbiota between the three trials. Clearly there is a high

degree of variability in the establishment and maintenance of the

microbiota and this may influence the health and productivity of

birds as suggested by the different FCR performance profiles seen

for each flock. Studies in humans [25] and other animals [26] have

previously demonstrated that despite the possible presence of a

core microbiota there are large variations in overall microbiota

composition when comparing individuals from different popula-

tions and from different environments but the current study shows

that even under carefully controlled conditions large variations in

microbiota composition can occur.

The advances in technology for microbiota analysis have

resulted in a flood of new studies linking microbiota to various

health outcomes. Intestinal microbiota has recently been identified

as a major determinant of health and wellbeing in experimental

animal model systems and in humans. The microbiota can

influence the host in a range of different ways including (i)

providing a source of digestive enzymes and thus enhancing

nutrient availability, (ii) outcompeting and destroying potential

pathogens and (iii) ensuring development of a healthy immune

system [27]. Aberrant microbiota development, resulting in

alterations of intestinal microbial colonisation have been associ-

Figure 2. Alpha diversity plots across the three trials. Rarefaction plots for samples from trial 1 (red), trial 2 (green) and trial 3 (blue), based on
Chao1 (A) and Shannon index (B).
doi:10.1371/journal.pone.0084290.g002

Figure 3. Beta diversity plots across the three trials. 3D PCoA plots based on unweighted (A) and weighted (B) UniFrac from trial 1 (red), trial 2
(green) and trial 3 (blue).
doi:10.1371/journal.pone.0084290.g003
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ated with allergies, obesity, diabetes and altered immune system

development [27]. Differences in intestinal microbiota between

batches of newly hatched chickens may account for different

responses to antibiotic treatment and different susceptibility to

disease [28,29]. Thus, across the animal kingdom, development of

a healthy intestinal microbiota is a crucial step in the first days of

life that may determine future health and fitness.

Because of the potential health and productivity influences of

the gut microbiota it is important to consider the possible causes of

the high level of variation seen across replicated trials and how this

variation could be controlled and reduced. In humans it has been

reported that deprivation of maternal microbiota during caesarean

birth produces aberrant microbiota in infants that is more

representative of microbiota derived from skin and environmental

bacteria rather than vaginally derived bacteria [30]. The spread of

fecal bacteria is diminishing in modern infants. For example,

establishment of common fecal bacteria is delayed in western

countries, while in countries in the middle east and Africa even

caesarean section delivered infants acquire stable fecal populations

within a week [31]. Adlerberth et al [31] suggested that excessive

hygiene limits circulation of fecal bacteria today, thus altering

microbiota composition in newborns. The same authors suggested

that the recorded increase, over the last decade, in Staphylococci,

a bacterium not previously regarded as intestinal, occurs due to

lack of competition from ‘‘professional’’ gut microbiota. The fact

that colonization with microbiota previously foreign to the gut is

facilitated by standard hygienic measures may cause some

concern. We speculate that we may be seeing a somewhat similar

effect in the trials reported here, with the chickens randomly

colonised by bacteria originating from the wider environment

rather than predominantly from maternally derived bacteria.

Arriving into the world by hatching from an egg is very different

to mammalian birth but they share in common the almost

immediate exposure of the young to maternal microbiota. In

mammals the newborn are immediately exposed to vaginal

bacteria during birth. In birds the hatching chick is exposed to

bacteria on the surface of the egg and in the immediate nest

environment; the bacteria on the egg surface and in the nest are

largely derived from the parents. However, in modern commercial

chicken hatcheries high hygiene levels are generally maintained;

eggs are usually washed and fumigated to remove bacterial

contamination, and hence chicks are not exposed to the same

bacteria that they would likely see in a natural setting. Rather, they

must be colonized by bacteria encountered in the wider

environment, for example in the boxes that they are transported

in, from the first feed that they receive, and from the people

handling them. We hypothesize that this somewhat random

exposure to bacteria, from a variety of different sources, is the basis

for the wide batch to batch variation seen in the structure of gut

microbiota that we have observed in the trials reported here.

Figure 4. Multivariate analysis PCA plot. The plot is based on between groups (trials) analysis using the ade4 R phylogenetic package. Monte
Carlo testing was applied using 999 permutations.
doi:10.1371/journal.pone.0084290.g004
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Apajalathi et al. [2] have demonstrated that the first days of a

chicks life are critical in establishing a normal stable microbiota

[2]. This indicates that young chicks are often well advanced in

establishing a stable microbiota before they leave the hatchery. A

future goal, which was beyond the scope of this study, is to

determine whether microbiota variability in chicks can be

controlled by deliberate exposure to adult microbiota.

The high cost of both animal trials and sequencing has resulted

in most published microbiota studies in different experimental and

production animals originating from a single trials. The data

present here strongly point to problems in reproducing this kind of

data even when using near identical conditions. Moreover, the

high within batch animal to animal variation suggests a need for

high numbers of samples if the microbial profile investigated is to

be faithfully represented, even within a trial. These considerations

should be taken into account when designing experiments to study

animal microbiota.

Supporting Information

Figure S1 Boxplots of the OTUs most differentially
abundant (p,10210) between the 3 trials. Generated using

R phylogenetic package ade4 and Qiime analysis outputs. The p-

values are calculated using Qiime ANOVA. For OTUs with

similarity to closest type strain in EzTaxon database .95%,

taxonomy is given as EzTaxon strain and similarity, for OTUs

with lower similarity taxonomy is given at an order level.

(DOCX)
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