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“Don’t panic.”

Douglas Adams, The Hitchhiker’s Guide to the Galaxy
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Abstract

Faculty of Sciences

School of Chemistry & Physics

Doctor of Philosophy

by Matthew Ryan Henderson

Diamond, prized as both a gemstone and a cutting and polishing material, has recently
been recognised for another remarkable property, a host of optically active colour centre
defects. With the rise of interest in these colour centres, due to the unique optical
properties, comes a need for interfacing with other optical platforms. Recent advances
have attempted to fabricate optical structures from the diamond itself, or to combine
these colour centres with the well-known fabrication techniques of other materials by
placing nanodiamond crystals on the surface of other structures, such as microdisks,

microspheres, and optical fibres.

This thesis presents a new approach to this integration by demonstrating the fabrica-
tion of a hybrid nanodiamond-glass material. This technique embeds the nanodiamond
within the optical structure, offering interaction with the bound optical fields, protec-
tion, and ease of fabrication. A range of optical structures has previously been fabricated

from the chosen glass, tellurite, and fabrication of an optical fibre is demonstrated here.

Also presented is the derivation of a model describing coupling of an emitter to an optical
fibre. While used here to investigate coupling of diamond colour centres to the optical

fibre modes, it is more generally applicable to any emitter.

These results show the first steps of a new approach to diamond integrated photonics.
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