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Abstract

The caloron correspondence (introduced in [32] and generalised in [25, 33, 41]) is a tool
that gives an equivalence between principal G-bundles based over the manifold M × S1

and principal LG-bundles on M , where LG is the Fréchet Lie group of smooth loops in the
Lie group G. This thesis uses the caloron correspondence to construct certain differential
forms called string potentials that play the same role as Chern-Simons forms for loop group
bundles. Following their construction, the string potentials are used to define degree 1
differential characteristic classes for ΩU(n)-bundles.

The notion of an Ω vector bundle is introduced and a caloron correspondence is developed
for these objects. Finally, string potentials and Ω vector bundles are used to define an Ω
bundle version of the structured vector bundles of [38]. The Ω model of odd differential
K-theory is constructed using these objects and an elementary differential extension of
odd K-theory appearing in [40].
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Introduction

The caloron correspondence appeared initially in the guise of a bijection between certain
isomorphism classes of periodic instantons, or calorons, on R4 and isomorphism classes of
monopoles on R3.

Considering monopoles for loop groups and their twistor theory, Garland and Murray
established in [16] a correspondence between SU(n)-calorons on R4 and monopoles on R3

with structure group LSU(n), the Fréchet Lie group of smooth loops in SU(n). By virtue
of being periodic, a caloron on R4 may be naturally viewed as an instanton on R3×S1, thus
the work of Garland and Murray may be viewed as establishing a relationship between
certain geometric data on SU(n)-bundles over R3×S1 and similar data on LSU(n)-bundles
on R3.

The underlying principle of this original caloron correspondence—as it was first described
by Murray and Stevenson [32]—is that, for any compact Lie group G and manifold M ,
there is a bijective correspondence between G-bundles over M × S1 and LG-bundles over
M , with LG the Fréchet Lie group of smooth loops in G. This procedure gives a sort of
fake dimensional reduction, whereby the circle direction of the G-bundle P → M × S1 is
hidden in the fibres to obtain an LG-bundle P→M and vice-versa.

The caloron correspondence may be thought of as the bundle-theoretic generalisation of
the following simple observation. If X,Y and Z are sets, then denoting by Y X the set of
all functions X → Y , there is a bijection

c : ZX×Y
∼−−→

(
ZY
)
X (I.1)

given by sending f 7→ f̌ with

f̌(x)(y) := f(x, y)

for x ∈ X and y ∈ Y . In the case that X,Y and Z are finite-dimensional manifolds,
let Map(X,Y ) be the set of all smooth maps X → Y . If Y is compact then Map(Y,Z)
becomes a (smooth) Fréchet manifold. The map (I.1) now gives a method by which one
may study smooth maps from X into the infinite-dimensional manifold Map(Y, Z) by
instead studying smooth maps from X × Y into Z. In fact, in the case that X = M ,
Y = S1 and Z = G, the map (I.1) gives a bijective correspondence between the space
of sections of the trivial G-bundle over M × S1 and the space of sections of the trivial
LG-bundle over M . For general (non-trivial) G-bundles, the caloron correspondence is a
twisted version of this equivalence.

The caloron correspondence outlined thus far gives a means by which one may more
easily study LG-bundles, which are necessarily infinite-dimensional manifolds, by instead
studying their finite-dimensional G-bundle counterparts. Perhaps more importantly, the
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caloron correspondence may be extended to incorporate geometric data. In [32] it was
shown that a G-bundle over M × S1 equipped with a G-connection is equivalent to an
LG-bundle over M equipped with an LG-connection and an extra geometric datum called
a Higgs field, which is essentially the component of a connection on a G-bundle over M×S1

in the S1 direction.

Using this geometric caloron correspondence together with the machinery of bundle gerbes,
Murray and Stevenson developed a useful generalisation of string classes. String classes
first appeared in the work of Killingback [27] on string structures; the string theory versions
of the spin structures that are important in quantum field theory. Taking a compact Lie
group G one may ask whether a given LG-bundle P→M admits a lifting of the structure
group to the Kac-Moody group L̂G, which is a central extension of LG by S1 (see [36], for
example). The obstruction to such a lift is a class in the degree three integral cohomology
of M . In the case that P = LQ → LM is given by taking smooth loops in a G-bundle
Q → M , Killingback showed that this obstruction is given by transgressing the first
Pontryagin class p1(Q) of Q. Thus the string class is

s(P) =

∫̂
S1

ev∗ p1(Q) ∈ H3(LM)

where ev : S1 × LM → M is the evaluation map and
∫̂
S1 denotes integration over the

fibre in integral cohomology. The string class of P measures the obstruction to P having
string structure; i.e. a lifting to an L̂G-bundle. String structures are important in string
theory because, as the work of Killingback shows, the loop bundle LQ → LM has a
Dirac-Ramond operator if and only if LQ has a string structure.

Murray and Stevenson used the caloron correspondence to extend the work of Killingback
by first defining the string class for all LG-bundles P→M and showing that it satisfies

s(P) =

∫̂
S1

p1(P )

where p1(P ) is the first Pontryagin class of the caloron transform P of P. They also
showed, using bundle gerbes, that a de Rham representative for the string class is given
by

− 1

4π2

∫
S1

〈F,∇Φ〉

where F is the curvature of a chosen LG-connection on P, ∇Φ is the covariant derivative
of a chosen Higgs field Φ on P and 〈·, ·〉 is the (normalised) Killing form.

In his PhD thesis [41] and together with Murray in [33], Vozzo generalised the caloron
correspondence to principal bundles with structure group ΩG; the Fréchet Lie group of
smooth loops in G based at the identity. The key innovation here is the use of framings
to establish a correspondence between ΩG-bundles over M and G-bundles over M × S1

equipped with a distinguished section over M × {0}. As before, this correspondence
generalises to incorporate connective data, which must necessarily be compatible with the
framing data on the G-bundle side.

Murray and Vozzo also defined (higher) string classes, which are characteristic classes
for ΩG-bundles that live in odd integral cohomology. Fixing the ΩG-bundle P→ M and
choosing an ΩG-connection A and Higgs field Φ, explicit de Rham representatives for these
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characteristic classes called string forms are given by

sf (A,Φ) = k

∫
S1

f(∇Φ, F, . . . ,F︸ ︷︷ ︸
k − 1 times

),

where f is an ad-invariant symmetric polynomial on the Lie algebra g of G of degree k and
F, ∇Φ are as above. If A denotes the corresponding connection on the caloron transform
P of P, it turns out that the string forms satisfy

sf (A,Φ) =

∫̂
S1

cwf (A),

where cwf (A) is the Chern-Weil form associated to f and A. The higher string classes give
a version of Chern-Weil theory for loop group bundles different from the more analytic
approach of [35]. In addition, by considering the path fibration PG → G which is a
smooth model for the universal ΩG-bundle, Murray and Vozzo show that the construction
of the higher string classes provides a geometric interpretation of Borel’s transgression
map τ : H2k(BG)→ H2k−1(G) (see [2] for details).

This thesis grew out of the attempt to answer a natural question that arises when one
contrasts the theory of string classes for loop group bundles to the familiar Chern-Weil
theory. In Chern-Weil theory, differential form representatives for characteristic classes
of the G-bundle P → X are given in terms of the curvature of a chosen connection
A on P . Whilst the characteristic cohomology classes of the bundle P are necessarily
independent of the choice of A, the differential form representatives are not. There are
well-known differential forms, the Chern-Simons forms introduced in [11], that measure
the dependence of the Chern-Weil forms on the choice of connection. It is natural to
ask, therefore, whether such forms exists in the context of loop group bundles and string
classes.

The first part of this thesis deals with the construction of the string potentials, which are
the analogues of Chern-Simons forms for loop group bundles. Like Chern-Simons forms,
the string potentials come in two different flavours: one has relative string potentials,
which live on the base space of a loop group bundle and encode the dependence of the
string forms on the choice of connection and Higgs field; and total string potentials, which
live on the total space and carry secondary geometric data associated to a particular choice
of connection and Higgs field.

Within the framework of the differential characters of Cheeger and Simons [10], the total
Chern-Simons forms become differential characteristic classes (characteristic classes valued
in differential cohomology). This thesis hints at a similar interpretation for the total string
potentials by constructing such classes in a limited setting.

The interpretation of the relative string potential forms is more involved and proceeds
by analogy with the codification of relative Chern-Simons forms given by Simons and
Sullivan in [38]. In that paper, the authors use relative Chern-Simons forms to define an
equivalence relation on the space of connections on a given vector bundle. The space of
isomorphism classes of structured vector bundles, i.e. vector bundles equipped with such
an equivalence class of connections, determines a functor from the category of compact
manifolds with corners to the category of abelian semi-rings. Passing to the Grothendieck
group completion, one obtains a multiplicative differential extension of the even-degree
part of topological K-theory. By a result of Bunke and Schick [6] this differential extension,
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denoted here by Ǩ0, is isomorphic to any other differential extension of even K-theory via
a unique isomorphism.

The Simons-Sullivan model of even differential K-theory is built upon vector bundles
rather than principal bundles1, since the even topological K-theory of a compact manifold
M has a natural construction in terms of vector bundles over M . Topological K-theory
is a generalised cohomology theory and as such has a ‘homotopy-invariant’ representation
as homotopy classes of maps into a spectrum KU . By the well-known Bott Periodicity
Theorem this spectrum is 2-periodic and in fact

K0(M) ∼= [M,BU × Z] and K−1(M) ∼= [M,U ],

where U = lim−→U(n) is the stabilised unitary group and BU is its classifying space. Using

this representation, it is clear why even K-theory K0(M) may be represented by vector
bundles over M . In fact, as M is taken to be a smooth manifold, one may define K0(M)
using only smooth vector bundles.

The odd K-theory of M is a little more subtle and is usually defined in terms of vector
bundles over ΣM+, the reduced suspension of M+ := M t {∗}. This is problematic when
attempting to construct a differential extension after the fashion of Simons-Sullivan as
ΣM+ is rarely a smooth manifold so it is not clear how to incorporate differential form
data. The homotopy-theoretic model for K−1(M) gives a clue as to how to resolve this
issue: by pulling back the path fibration PU → U one may construct odd K-theory using
ΩU -bundles, or rather their associated vector bundles, over M . The benefits of this are
two-fold since the building blocks of the theory are bundles over M that may additionally
be taken to be smooth without loss of generality.

The latter part of this thesis introduces Ω vector bundles, which are the associated vector
bundles of ΩGLn(C)- and ΩU(n)-bundles. As with their frame bundles, there is a caloron
correspondence for Ω vector bundles that may be extended to incorporate the appropriate
connective data. A model for odd topological K-theory is given in terms of Ω vector
bundles and the odd Chern character is computed in this model in terms of characteristic
classes of the underlying Ω vector bundles. Using the relative string potentials to define
an equivalence relation on connective data, this model is refined to give a differential
extension of odd K-theory: the Ω model. Using the work of Bunke and Schick [5, 6, 7]
and Tradler, Wilson and Zeinalian [40] it is shown that the Ω model is isomorphic to the
odd part of differential K-theory, thereby giving the desired codification of relative string
potentials.

An outline of this thesis is:

Chapter 1. This chapter gives a detailed review of the construction of the caloron
correspondence as formulated by Murray and Stevenson [32] for free loop groups and
Murray and Vozzo [33] for based loop groups. Following this, an in-depth exposition of
the construction of string forms and string classes is presented.

Chapter 2. This chapter describes the construction of the relative and total string
potential forms for loop group bundles and collects some facts about these objects used
in subsequent chapters. Following a brief review of differential cohomology, in particular
Cheeger-Simons differential characters, the total string potentials are used to construct
degree 1 differential characteristic classes for ΩU(n)-bundles.

1though, of course, the two are naturally related by the frame bundle and associated vector bundle
functors.
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Chapter 3. This chapter focusses on the introduction of Ω vector bundles. These ob-
jects are Fréchet vector bundles with typical fibre LV and structure group ΩG for some
complex vector space V and matrix group G ⊆ GL(V ) with its standard action on V . A
caloron correspondence is developed relating Ω vector bundles over M to framed vector
bundles over M ×S1 that respects the frame bundle functor and principal bundle caloron
correspondence. A version of the Serre-Swan theorem is proved for Ω vector bundles,
which shows that every Ω vector bundle over compact M may be regarded as a smoothly-
varying family of modules for the ring LC over M . This module structure is used to define
connective data (module connections and vector bundle Higgs fields) on Ω vector bundles,
which fit into a geometric caloron correspondence for vector bundles.

After introducing the analogue of Hermitian structures for Ω vector bundles, together with
an associated caloron correspondence, a model for odd K-theory is defined by applying
the Grothendieck group completion to the abelian semi-group of isomorphism classes of Ω
vector bundles. The odd Chern character is computed in this model of odd K-theory in
terms of string forms of the underlying Ω vector bundles.

Chapter 4. Based on the results of Chapters 2 and 3 and following a review of the Simons-
Sullivan construction of [38], a differential extension of odd K-theory is constructed in
terms of Ω vector bundles. This construction uses the relative string potential forms to
generate an equivalence relation on the space of module connections and Higgs fields of a
given Ω vector bundle, an equivalence class of which is called a string datum. The Ω model
is given by applying the Grothendieck group completion device to the abelian semi-group
of (a certain collection of) isomorphism classes of structured Ω vector bundles; Ω vector
bundles equipped with string data.

Bunke and Schick showed in [6] that differential extensions of odd K-theory are non-unique
and that additional structure is required in order to obtain differential K-theory, which is
unique up to unique isomorphism. Nevertheless, by relating the Ω model to a differential
extension appearing in a recent paper of Tradler, Wilson and Zeinalian [40], the caloron
transform is used to show that the Ω model defines the odd part of differential K-theory.
The effect of this it two-fold, as it provides a sort of homotopy-theoretic interpretation of
the Ω model as well as a proof that the TWZ differential extension defines odd differential
K-theory, a result not previously obtained.

Appendices. Appendix A provides background material on Fréchet spaces and Fréchet
manifolds, a proof that the path fibration PG → G gives a model for the universal ΩG-
bundle and some results on direct limits of directed systems of manifolds. Appendix B
discusses the integration over the fibre operations on differential forms and in singular
cohomology. Appendix C records the Bunke-Schick definition of differential extensions
together with some results that are required in this thesis.

Remark on conventions. Unless stated otherwise all smooth finite-dimensional mani-
folds are taken to be paracompact and Hausdorff (so that they admit smooth partitions
of unity) and all maps between smooth manifolds are smooth. All unadorned cohomol-
ogy groups H• represent integer-valued singular cohomology and Ωd=0(M) denotes the
space of closed differential forms on the smooth manifold M . The symbol G shall usu-
ally denote a smooth connected finite-dimensional Lie group, with Θ its (left-invariant)
Maurer-Cartan form and g = Lie(G) its Lie algebra. The terms ‘G-bundle’ and ‘principal
G-bundle’ are used interchangeably. The circle group S1 is regarded as the quotient of R
modulo the equivalence relation x ∼ y ⇔ x = y+ 2kπ for some k ∈ Z and the equivalence
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class of 0 defines a distinguished basepoint for S1, which is also denoted 0. The integration

over the fibre operation
∫̂
S1 is always taken with respect to the canonical orientation on

S1 inherited from R. The Fréchet Lie group of smooth maps S1 → G with pointwise
group operations is denoted by LG and the subgroup of those maps sending 0 ∈ S1 to the
identity in G is denoted ΩG.
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