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Abstract 

Cyanobacterial blooms could reduce the available volume of source water for use as drinking, 

sanitation and irrigation due to the associated toxins which could be severely harmful to 

humans and animals. Generally, the majority of cyanotoxins are intracellular in healthy 

populations but they could be released into the surrounding waters when the membranes are 

compromised by aging or chemical stress. However, conventional water treatment processes 

are not able to remove the dissolved toxins but only intracellular toxins in the intact cells. 

Although various chemical compounds have trialled for cyanobacterial bloom control or 

cyanobacterial cells/metabolites removal in water treatment processes, the effect of these 

treatments on the membrane integrity and toxin fate of cyanobacterial cells have not been 

systematically studied and compared. This study evaluated the effectiveness of copper 

sulphate (CuSO4), chlorine, potassium permanganate (KMnO4), hydrogen peroxide (H2O2) 

and ozone on the cell integrity, densities, toxin release and degradation of Microcystis 

aeruginosa cultured with ASM-1 medium. All of these technologies can compromise the cell 

membrane of cyanobacteria to varying degrees. Chlorine showed the strongest ability to 

impair the cell integrity with a majority (≥ 88%) of the cells compromised within the first 

minute. Ozone dose of 6 mg L
-1 

also could induce 90% lysis of the cyanobacterial cells in 5 

minutes and the cell lysis rate of KMnO4 (10 mg L
-1

) was 0.829 h
-1

. CuSO4 and H2O2 could 

not only destroy the viability of cyanobacterial cells but also showed algistatic potential over 

the 7 day treatment. All the chemicals expect CuSO4 could remove the total toxins and 

chlorine was the most effective one with the fastest rate up to 2161 M
-1

s
-1

.
 
Although the 

intracellular toxins were liberated due to cell lysis, there was no build-up of dissolved toxins 

detected during chlorine and H2O2 exposure which may due to the faster toxin oxidation rates 

than release rates. 1 and 3 mg L
-1

 KMnO4 degraded both the intracellular and extracellular 

toxins with the cyanobacterial cells remaining intact while ozone induced significant increase 

of dissolved toxins. Wastewater reuse is important for irrigation; however, cyanobacterial 

blooms occurred frequently in the wastewater treatment systems with the ideal conditions for 

cyanobacterial growth. Tertiary treated effluent water was applied to investigate the cell lysis 

and toxin kinetics based on culture medium study. Similar impacts on the cyanobacterial cells 

were found using wastewater and medium but higher oxidant demand may be needed for 

wastewater treatment due to the higher concentrations of dissolved organic materials. In 

addition, the advantages and drawbacks of these chemicals on the downstream water quality 
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were assessed to suggest the water authorities to choose the suitable option against 

cyanobacterial issues.  
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