INTRACELLULAR *STAPHYLOCOCCUS AUREUS* IN CHRONIC RHINOSINUSITIS

Neil Cheng-Wen Tan

MBBS BSc (hons.) MRCS DO-HNS

Submitted in fulfilment of the Degree of Doctor of Philosophy March 2013

Department of Otolaryngology, Faculty of Health Sciences

The University of Adelaide, Adelaide, Australia

Dedicated to my wonderful wife, Harriet

and our precious children, Thomas and Arabella.

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the university library, being made available for photocopying and loan, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis as listed below resides with the

copyright holder(s) of those works;

Identifying intracellular *Staphylococcus aureus* in chronic rhinosinusitis: A direct comparison of techniques

Tan NC, Tran H, Foreman A, Jardeleza C, Vreugde S, Wormald PJ. American Journal of Rhinology and Allergy. 2012, 26(6):444-9

Prevention of false positive binding during immunofluorescence of *Staphylococcus aureus* infected tissue biopsies

<u>Tan NC</u>, Tran H, Roscioli E, Wormald PJ, Vreugde S. Journal of Immunological Methods. 2012, 384(1-2):111-7

The multiplicity of *Staphylococcus aureus* in chronic rhinosinusitis: Correlating surface biofilm and intracellular residence

Tan NC, Foreman A, Jardeleza C, Douglas RG, Tran H, Wormald PJ. The Laryngoscope. 2012, 122(8):1655-60

Intracellular *Staphylococcus aureus***: The Trojan horse of recalcitrant chronic rhinosinusitis?** <u>Tan NC</u>, Foreman A, Jardeleza C, Douglas RG, Vreugde S, Wormald PJ. International Forum of Rhinology and Allergy. 2013, Feb 19. [Epub ahead of print]

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australian Digital These Program (ADTP) and also through web search engines, unless permission had been granted by the University to restrict access for a period of time.

Dr Neil Cheng-Wen Tan

Date.....

TABLE OF CONTENTS

Declaration	iii
Acknowledgments	vii
Publications Arising From This Thesis	ix
Presentations Arising From This Thesis	x
Prizes Arising From This Thesis	x
Abbreviations	xi
List of Tables	xiii
List of Figures	xiv
Abstract	xvi

Chapter 1: Introduction	1
1.1 Chronic Rhinosinusitis	1
1.1.1 Definition	1
1.1.2 Epidemiology	3
1.1.3 Aetiopathogenesis	
1.1.4 Microorganisms and CRS	5
1.1.5 Treatment of CRS	6
1.2 Staphylococcus aureus	12
1.2.1 Taxonomy and biology	12
1.2.2 Biochemical and genetic properties	13
1.2.3 Pathogenicity mechanisms	15
1.2.4 Staphylococcus aureus infection in humans	22
1.3 Bacterial Biofilms	27
1.3.1 Definition	27
1.3.2 Structure, formation and life-cycle	
1.3.3 Function and properties	29
1.3.4 Identification techniques	
1.3.5 Biofilms in disease	
1.3.6 Biofilms in CRS	34

1.4 Intracellular Bacteria	
1.4.1 Definition	
1.4.2 Mechanism of internalisation	
1.4.3 Function and properties	44
1.4.4 Identification techniques	45
1.4.5 Intracellular organisms in human disease	49
1.4.6 Intracellular bacteria in CRS	
1.5 Small Colony Variants	57
1.5.1 Definition	
1.5.2 Pathological consequences	59
1.5.3 Identification	
1.5.4 SCVs in disease	60
1.5.5 SCVs in CRS	61
Literature Review Summary	62
Studies To Be Conducted	65

· · · · · · · · · · · · · · · · · · ·	
2.1 Abstract	69
2.2 Introduction	70
2.3 Methods	
2.4 Results	76
2.5 Discussion	
2.6 Conclusion	85

Chapter 3: Prevention of false positive binding during immunofluorescence	of
Staphylococcus aureus infected tissue biopsies	.86
3.1 Abstract	.89
3.2 Introduction	.90
3.3 Methods	.91
3.4 Results	.95
3.5 Discussion	103
3.6 Conclusion	104

Chapter	4:	The	multiplicity	of	Staphylococcus	aureus	in	chronic	rhinosinusitis:
Correlati	ing	surfa	ce biofilm and	d in	tracellular resid	ence	••••		

4.1 Abstract	
4.2 Introduction	
4.3 Methods	
4.4 Results	
4.5 Discussion	
4.6 Conclusion	

Chapter 5: Intracellular Staphylococcus aureus: The Trojan horse of recalcitrant

chronic rhinosinusitis?	
5.1 Abstract	
5.2 Introduction	
5.3 Methods	
5.4 Results	
5.5 Discussion	
5.6 Conclusion	

Chapter 6: Small colony variants and phenotype switching of intracellular

Staphylococcus aureus in chronic rhinosinusitis	4	1	4	5
---	---	---	---	---

147

Chapter 7: General Discussion	168
7.1 Thesis Synopsis	169
7.2 Future Directions	173
7.2.1 Refinement of intracellular bacteria detection and harvesting techniques	173
7.2.2 Effect of intracellular infection on symptomatic outcomes	174
7.2.3 Characterisation of immunological responses to intracellular infection	174
7.2.4 The fate of intracellular Staphylococcus aureus	175
7.3 Conclusion	176
Bibliography	177

ACKNOWLEDGMENTS

The journey that begins with a set of ideas and culminates in the submission of a PhD thesis is never one that can be borne alone. To this end, there are many people that I would like to acknowledge who have, at some point, given their assistance in my work or simply been there for support.

Firstly, I would like to thank Professor PJ Wormald as my principle supervisor. He has offered a source of guidance, leadership, but above all inspiration in all my endeavours; not only as a remarkable academic, but as a world class surgeon with whom I have had the honour of spending time with. I sincerely thank you for your support and confidence in taking me in under your tutelage and providing me with the life-changing opportunity that has been my PhD.

The support that I have received from the laboratory scientists within our group has been fantastic, and therefore I would like to thank our chief scientist Dr Sarah Vreugde for her advice and suggestions that have always improved the quality of my work. Also to Dr Hai Tran, Dr Clare Cooksley and Mr Eugene Roscioli for their enthusiasm and assistance in teaching a complete novice the techniques necessary to complete my studies. I would also like to thank Ms Lyn Waterhouse at Adelaide Microscopy for her assistance and guidance in the microscopy techniques utilised in my work.

Much of the work presented in this thesis stems from ideas and suggestions borne from the work of previous scholars within our group. I would like to thank Dr Andrew Foreman for his advice right from the start of my PhD, and recognise that I could not have completed this work without your help. To my co-researchers, Dr Camille Jardeleza, Dr Richard Douglas and Miss Amanda Drilling, I thank you for your helpful discussions and assistance in the papers we have written.

To the rest of the Department of ENT at The Queen Elizabeth Hospital; Dr Sam Boase, Dr Phil Chen, Dr Brendan Hanna, Dr Thanh Ha, Dr Daniel Cantero, Mr Sathish Paramasivan, Dr Ahmed Bassiouni, Dr Sukanya Rajiv, Dr Edward Cleland, Dr Vikram Padhye, Miss Dijana Miljkovic and Mrs Irene Frazier. I thank you for your friendship, the laughter and the many cups of coffee that we have shared over the course of my time here.

A special mention has to go to Ms Lyn Martin, who, from the very first day that I stepped into the department has been a pillar of support, advice and most of all, friendship. My family and I have valued the opportunity to have got to know you and hope this will continue in the future.

I am extremely grateful to my sources of financial support; The European Rhinologic Society for a bursary and the University of Adelaide for a full scholarship, without which I could not have stayed and completed my PhD.

To my fantastic parents, Choong Siong and May Tan, who selflessly devoted themselves to my upbringing, for teaching me right and wrong and the importance of hard work. I could not have made it through life without knowing that you have been there for me, in good times or in bad and for that I truly thank you, and hope that I have made you proud with my achievements.

To my siblings; my elder brother Stuart and his family; Clare, Millie and Connie, I thank you for always being someone to look up to both as a doctor and as a person. To my sister, Charlotte, you have always been there to give support and advice when needed and for that I thank you. Also to my parents-in-law, Peter and Sarah Staveacre, who supported our decision to move to Australia to complete these studies and made many trips out to visit us so I thank you as well.

Although they will not be aware of what I have been doing at the time, I sincerely hope that my children, Thomas and Arabella, will one day understand what I have tried to achieve. Firstly to Thomas; I hope that you understood why I could not always come home in time to put you to bed every night, but thank you for always being a source of laughter and joy as we spent your earliest years in Australia. Secondly to our little girl Arabella; you won't know a thing about your time here in Australia, having been born a few weeks before we returned to England, but the anticipation that your mother and I have had over the past months in preparing for your arrival made the actual event even more exciting. I hope that one day you may both be interested enough to look at this thesis and understand what I was doing all those evenings and weekends away at work.

Finally, to my dearest wife Hattie. I cannot thank you enough for everything that you are to me. From the earliest days of agreeing to fly across the world with me, to actually getting on a plane with an 8 week old baby and then surviving the highs and lows of my research you have been an unwavering source of support, ideas, comfort and above all, love. Being on the other side of the world away from our families has not always been easy, but I truly feel that our time here has taught us the strength and depth of our relationship. All that I have achieved is yours to share, for without you I could not have made it here. I love you and thank you.

PUBLICATIONS ARISING FROM THIS THESIS

Identifying intracellular *Staphylococcus aureus* in chronic rhinosinusitis: A direct comparison of techniques

<u>Tan NC</u>, Tran H, Foreman A, Jardeleza C, Vreugde S, Wormald PJ. American Journal of Rhinology and Allergy. 2012, 26(6):444-9

Prevention of false positive binding during immunofluorescence of *Staphylococcus aureus* infected tissue biopsies

<u>Tan NC</u>, Tran H, Roscioli E, Wormald PJ, Vreugde S. Journal of Immunological Methods. 2012, 384(1-2):111-7

The multiplicity of *Staphylococcus aureus* in chronic rhinosinusitis: Correlating surface biofilm and intracellular residence

Tan NC, Foreman A, Jardeleza C, Douglas RG, Tran H, Wormald PJ. The Laryngoscope. 2012, 122(8):1655-60

Intracellular *Staphylococcus aureus*: The Trojan horse of recalcitrant chronic rhinosinusitis?

<u>Tan NC</u>, Foreman A, Jardeleza C, Douglas RG, Vreugde S, Wormald PJ. International Forum of Rhinology and Allergy. 2013 Feb 19. [Epub ahead of print]

Staphylococcus aureus small colony variants and phenotype switching of intracellular *S. aureus* in chronic rhinosinusitis

<u>Tan NC</u>, Cooksley C, Roscolio E, Drilling A, Douglas R, Vreugde S, Wormald PJ. Submitted to Journal of Allergy and Clinical Immunology

PRESENTATIONS ARISING FROM THIS THESIS

Intracellular *Staphylococcus aureus* and chronic rhinosinusitis University of Adelaide, Dept. of Surgery Research Meeting, Adelaide, November 2011

The multiplicity of *Staphylococcus aureus* in chronic rhinosinusitis: Correlating surface biofilm and intracellular residence

Australian Society of Otolaryngology, Head and Neck Surgery, Adelaide, March 2012

Intracellular *Staphylococcus aureus* **and chronic rhinosinusitis** Australian Society for Medical Research, SA scientific meeting, Adelaide, June 2012

Intracellular *Staphylococcus aureus*: The Trojan horse of recalcitrant chronic rhinosinusitis?

American Rhinologic Society, Washington DC, USA, September 2012

Intracellular *Staphylococcus aureus*: The Trojan horse of recalcitrant chronic rhinosinusitis?

The Queen Elizabeth Hospital Research Day 2012, Adelaide, October 2012

Management of the recalcitrant sinus infection

15th Advanced FESS Course, Adelaide, November 2012, invited speaker

PRIZES ARISING FROM THIS THESIS

Intracellular *Staphylococcus aureus*: The Trojan horse of recalcitrant chronic rhinosinusitis?

The Queen Elizabeth Hospital Research Day, Best Presentation, Adelaide, October 2012

The role of biofilms in chronic rhinosinusitis

The Ian Mackay Essay Prize, The Royal Society of Medicine, London, UK, March 2013

ABBREVIATIONS

APC	Antigen presenting-cells	FnBPB	B Fibronectin-binding protein B
ARS	Acute rhinosinusitis	HGT	Horizontal gene transfer
ABRS	Acute bacterial rhinosinusitis	HNP	Human neutrophil peptides
AEC	Airway epithelial cells	HRQo	L Health-related quality of life
AERD	Aspirin-exacerbated respiratory disease	IgG	Immunoglobulin G
ATCC	American Type Culture Collection	IHC	Immunohistochemistry
CDS	Codon sequences	IL	Interleukin
ClFA	Clumping factor A	INCS	Intranasal corticosteroids
ClFB	Clumping factor B	IQR	Interquartile range
CF	Cystic fibrosis	LDH	Lactate dehydrogenase
CRS	Chronic rhinosinusitis	LLO	Listeriolysin O
CSLM	Confocal scanning laser microscopy	MEM	Minimum essential medium
CSR	Cell surface receptors	MHC	Major histocompatibility complex
СТ	Computed tomography	MOI	Multiplicity of infection
DAPI	4',6-diamidino-2-phenylindole	MMP	Matrix metalloproteinases
DNA	Deoxyribonucleic acid	MSCR	AMM Microbial surface components
EB	Elementary body	recogn	izing adhesive matrix molecules
ECF	Extracellular fluid	NOD	Nucleotide Oligomerization Domain
ECM	Extracellular matrix	OCT	Optimal cutting medium
EM	Electron microscope	PAMP	Pathogen-associated molecular patterns
EPS	Extracellular polymeric substances	PBS	Phosphate buffered saline
ESS	Endoscopic sinus surgery	PFGE	Pulsed field gel electrophoresis
F(ab')	Fragment antigen-binding region of	PI	Propidium iodide
	antibody	PMN	Polymorphonuclear leukocytes
FACS	Fluorescence-activated cell sorting	PNA	Peptide nucleic acid
FC	Flow cytometry	PRR	Pattern recognition receptors
Fc	Fragment crystallisable	PV	Panton-Valentin
FcR	Fc receptor	QS	Quorum Sensing
FCS	Fetal calf serum	RAST	Radioallergosorbent test
FISH	Fluorescence in situ hybridisation	RB	Reticulate body
FESS	Functional endoscopic sinus	RCT	Randomised controlled trial
	surgery	RNA	Ribonucleic acid
FnBPA	Fibronectin-binding protein A	rRNA	Ribosomal RNA

SaPI	Staphylococcal pathogenicity	TB	Tuberculosis
	islands	TBS-T	Tris-buffered saline and 0.05% tween-
Sbi	Staphylococcal binder of	20 buffer	
	immunoglobulin	TCR	T-cell receptor
SCV	Small colony variant	TGF-β	Transforming growth factor-beta
SE	Staphylococcal enterotoxins	TIMP	Tissue inhibitor of MMP-1
SEA	Staphylococcal enterotoxin A	TLR	Toll-like receptor
SE-L	Staphylococcal enterotoxin-like	TMB	(3,3',5,5'-Tetramethylbenzidine
	toxins	TSS	Toxic shock syndrome
SFB	Serum free protein block	UIFM	Upright immunofluorescence
SPA	Staphylococcal protein A		microscopy

LIST OF TABLES

Table 1.1: Major and minor symptoms of rhinosinusitis 1
Table 1.2: Comparison of American and European guidelines for CRS diagnosis
Table 1.3: Staphylococcal virulence factors involved in bacterial pathogenesis
Table 1.4: S. aureus related infectious processes in humans
Table 1.5: Non-professional phagocyte cell types capable of internalising bacteria44
Table 1.6: Intracellular pathogens in human disease 49
Table 1.7: Summary of studies reporting intracellular S. aureus detection in CRS
Table 1.8: Characteristic features of wild-type and SCV S. aureus 58
Table 2.1: CSLM-FISH/PI versus IHC for identification of intracellular S. aureus80
Table 3.1: Direct immunofluorescence of S. aureus slide smears by IgG conjugates97
Table 4.1: Characteristics of CRSwNP, CRSsNP and control group
Table 4.2: Comparison of CRS Intracellular S. aureus positive and negative groups118
Table 4.3: Overall biofilm and intracellular S. aureus results 118
Table 4.4: Microbiological results of swabs 119
Table 4.5: Intracellular infection rates compared to culture status 119
Table 5.1: Demographic details of patient cohorts 135

LIST OF FIGURES

Figure 1.1: Scanning electron micrograph of S. aureus 12
Figure 1.2: Comparison of antigen and superantigen binding to T-cell receptor22
Figure 1.3: Scanning electron micrograph of a bacterial biofilm
Figure 1.4: CSLM image of <i>S. aureus</i> biofilm labelled with FISH probe
Figure 1.5: Pinocytosis and receptor-mediated endocytosis
Figure 1.6: Macropinocytosis and zipper mechanisms of internalisation
Figure 1.7: TEM images demonstrating intracellular S. aureus
Figure 1.8: Detection of <i>S. aureus</i> in human sinonasal tissue section by IHC48
Figure 1.9: CSLM images of Primary Nasal Epithelial Cells incubated with S. aureus48
Figure 1.10: Small colony variants of S. aureus 58
Figure 2.1: Detection of intracellular <i>S. aureus</i> by CSLM-FISH/PI77
Figure 2.2: CSLM-FISH/PI appearance of consecutive z-plane images
Figure 2.3: Detection of <i>S. aureus</i> in paraffin sections of sinus mucosa tissue by IHC79
Figure 2.4: Immunofluorescence of tissue explants infected with <i>S. aureus</i>
Figure 3.1: False-positive fluorescence of formalin-fixed patient biopsies
Figure 3.2: Blocking effects of normal human IgG
Figure 3.3: Representative images of <i>S. aureus</i> slide smears
Figure 3.4: Blocking of rabbit IgG binding to <i>S. aureus</i> -infected tissue sections102
Figure 4.1: CSLM images of intracellular S. aureus
Figure 4.2: CSLM Images taken at multiple z-planes within a piece of tissue

igure 5.1: Representative CSLM image of intracellular S. aureus
igure 5.2: S. aureus intraoperative culture, early and late relapse rates in
the post-operative course
igure 6.1: SCVs in CRS mucosal samples15
igure 6.2: Staphylococcal entereotoxin detection from <i>in vitro</i> infection experiments .16
igure 6.3: Effects of long term intracellular infection with S. aureus ATCC 13565
on airway epithelial cells16

ABSTRACT

Chronic Rhinosinusitis (CRS) is a heterogeneous disease characterised by recurrent and persistent episodes of nasal obstruction, discharge and facial pain or pressure. Patients suffering from CRS experience considerable morbidity and have impaired qualities of life. The gold standard treatment of cases that fail medical therapy is endoscopic sinus surgery (ESS). Despite the proven efficacy of ESS, the modern sinus surgeon will see a subset of patients who persistently fail any attempt to improve their disease profile. Recent research into CRS had identified bacterial biofilms, in particular those mediated by Staphylococcus aureus to hold a potential role in the aetiopathogenesis of this disease. Patients with biofilms suffer from more severe preoperative symptoms and have worse postoperative outcomes. As a consequence, numerous anti-biofilm therapies have been developed including biofilm dispersal agents and biocidal agents. Despite showing early promise in vitro, the use of these therapeutic agents in vivo has not translated to a conclusive clinical benefit. Recent studies have identified that S. aureus can invade non-professional phagocytic cell types such as epithelium with the ability to survive and replicate intracellularly. This led to the hypothesis that by exploiting the intracellular environment, bacteria may evade host immunity, topical antimicrobial therapy and establish a niche for survival with potential reservoirs for chronic or relapsing *Staphylococcal* infections. Therefore, this PhD thesis set out to investigate whether intracellular S. aureus plays a disease modifying role in CRS.

Chapter 1 critically reviews the context of the work included in this thesis pertaining to CRS, *S. aureus*, biofilms and intracellular infections.

ABSTRACT

Chapter 2 validates a novel imaging technique using confocal scanning laser microscopy (CSLM) coupled with dual staining of fluorescence in situ hybridisation (FISH) probes and nucleic acid counterstains (propidium iodide, [PI]), to identify the presence of intracellular *S. aureus* in whole mucosal specimens, with a direct comparison to previously reported techniques of immunohistochemistry (IHC). The study reported the benefits and drawbacks of each technique, and identified specific roles for their use when examining tissue specimens. The major advantage of CSLM-FISH/PI was that simultaneous biofilm analysis was possible in the same piece of tissue.

Chapter 3 investigated the unexpected phenomenon of false-positive antibody binding in *S. aureus* infected tissue specimens when performing IHC in paraffin embedded tissue sections. This was hypothesised to be caused by protein A expression in the bacterial cell wall that continued to bind IgG-class antibodies with high affinity. A methodology was developed and validated to overcome this issue, with significant implications when performing future IHC experiments.

Chapter 4 utilised the previously reported CSLM-FISH/PI protocols for intracellular *S. aureus* detection in a cohort of CRS and control patients. For the first time the association between biofilms and intracellular infection was reported, suggesting that the biofilm may offer a conditioned environment to allow invasion of *S. aureus* to deeper tissue layers.

Chapter 5 followed a wider cohort of patients in their postoperative course in order to ascertain whether a relationship between intracellular infection and disease recalcitrance could be identified. The results found that intracellular *S. aureus* infection at the time of surgery was significantly associated with failure of medical and surgical therapy in the

postoperative patients. This reinforced the theory that the intracellular location provides bacteria with a protective niche where they can avoid host elimination and topical antimicrobial therapy.

Chapter 6 investigated whether the concept of bacterial phenotype switching following intracellular infection in airway epithelial cells occurs as a mechanism of allowing these organisms to decrease their virulence and evade innate immunity. It was found that *S. aureus* reduces production of its superantigenic enterotoxins as a consequence of internalisation; however, this reduction in virulence was reversible after lysing the host cells and a single sub-culture step. Additionally, for the first time we demonstrated that intramucosal organisms harvested from sinonasal biopsies demonstrate altered phenotypic growth patterns and lack of coagulase activity consistent with small colony variants (SCV). This represented another potential explanation for why bacteria are so capable of internalising and persisting in epithelial tissues.

The findings of this thesis have provided novel insights alluding to a role of intracellular *S. aureus* in CRS. The versatility of *S. aureus* in altering its phenotypic characteristics to take advantage of the local environment makes it troublesome to fully eradicate and significant associations can be made between intracellular infection and recalcitrant disease. Future research should be directed towards identifying novel treatment strategies that can effectively target intracellular organisms.