The functional role and requirement for

long-chain omega-3 polyunsaturated fatty

acids in breeding gilts and sows

Robert J. C. Smits

October 2011

Robinson Institute and School of Paediatrics and Reproductive Health

Discipline of Obstetrics and Gynaecology

The University of Adelaide

A thesis submitted to The University of Adelaide in fulfilment of the

requirements for the award of the degree of Doctor of Philosophy

Table of Contents

List of Tab List of Figu Abstract Declaration Publication Acknowled General In	les ires n is arising lgements troduction	5 8 10 12 13 14 16
Chapter 1 1.1 1.2 1.2.1 1.2.2 1.2.3 1.2.4	Review of the literature Introduction Structure, synthesis and metabolism of long-chain polyunsaturated fatty acids Nomenclature of fatty acids Fatty acid synthesis Synthesis of polyunsaturated fatty acids Piecespretries from short obein acceptial fatty acids to long obein PLIEA	18 18 19 19 21 22
1.2.4 1.2.5 1.3	Metabolism of omega-6 and omega-3 polyunsaturated fatty acids to eicosanoids Nutrient requirements for pigs	25 26 28
1.3.1 1.3.2 1.4	Current nutrient requirements for polyunsaturated fatty acids in pig diets Dietary sources of long-chain polyunsaturated fatty acids for pigs The response to long-chain omega-3 fatty acids supplied from fish oil on	29 30
1.4.1 1.4.2	reproduction and fertility in gilts and sows Fertility responses to omega-3 polyunsaturated fatty acids in gilts and sows Commercial studies evaluating diet supplementation with omega-3 PUFA from fish oil	32 32 35
1.5 1.5.1 1.5.2	Functional role of omega-3 polyunsaturated fatty acids in female reproduction Effects of omega-3 polyunsaturated fatty acids on prostaglandin synthesis Effects of omega-3 and omega-6 polyunsaturated fatty acids on progesterone	36 36
1.5.3	synthesis Effects of omega-3 polyunsaturated fatty acids on follicular growth and oocyte maturation	38 40
1.5.4	Effects of omega-3 polyunsaturated fatty acids on ovulation rate, embryo survival and conception rate	42
1.5.5 1.6	Uptake of omega polyunsaturated fatty acids in the reproductive tract and conceptus Conclusion	43 44
Chapter 2	General Materials and Methods	47
2.1 2.1 1	Animals and treatment	41 17
2.1.1	Treatment allocation	48
2.1.3	Animal Ethics	49
2.2	Diets and ingredients	50
2.3	Experimental feeding regimen	51
2.4	Fatty acid analysis	52
2.4.1 212	Plasma samples	52 53
2.5	Statistical analysis	54
Chapter 3 3.1	Effect of omega-3 fatty acid supplementation on reproductive performance in sows Introduction	56 56

3.2 3.2.1 3.2.2 3.2.3 3.2.4 3.3 3.3.1 3.3.2 3.3.3 3.4	Materials and Methods Animals and diets Feeding and animal management Fatty acid analysis Statistical analysis Results Dietary levels of omega-3 PUFA Effect of diet on lactation performance Reproductive performance at the subsequent parity Discussion	57 57 58 59 60 60 61 69
Chapter 4	Effect of omega-3 supplementation on reproductive performance in gilts. I. Effect of duration Introduction	73 73
4.2	Materials and Methods	74
4.2.1	Animais and diets	74
4.Z.Z	Feeding and animal management	70
4.2.3 121	Statistical analysis	76
43	Results	77
4.3.1	Plasma fatty acid response to supplementation	77
4.3.2	Treatment effect on live weight and fatness	77
4.3.3	Onset of oestrus and reproductive performance	78
4.4	Discussion	86
Chapter 5 5.1	Effect of omega-3 supplementation on reproductive performance in gilts. II. Effect of dose Introduction	90 90
5.2 5.2.1	Animals and diets	91
5.2.2	Feeding and animal management	91
5.2.3	Fatty acid analysis	93
5.2.4	Statistical analysis	93
5.3	Results	94
5.3.1	Plasma fatty acid response to supplementation	94
5.3.2	Treatment effect on live weight and fatness	95
5.3.3	Age at mating and onset of oestrous	95
5.3.4	Ovulation rate and embryo survival	96
5.4	Discussion	103
Chapter 6	Effect of omega-3 supplementation on lactation and embryo survival in high parity sows	106
6.1	Introduction	106
6.2	Materials and Methods	107
6.2.1	Animals and diets	107
6.2.2	Feeding and animal management	108
6.2.3	Statistical analysis	109
6.3	Results	110
6.3.1	Litter performance following prefarrowing dietary treatment	110
6.3.2	Sow lactation feed intake and weight and backfat loss	110

6.3.3 6.3.4 6.4	Weaning to oestrus interval, pregnancy rate, ovulation and embryo survival Sow removals Discussion	111 111 119
Chapte 7.1 7.2 7.2.1 7.2.2 7.2.3 7.3 7.3.1 7.3.2 7.4	 r 7 The effect of omega-3 PUFA supplementation from fish oil fed during lactation and through to day 28 of gestation on subsequent reproductive performance in sows Introduction Materials and Methods Animals and diets Feeding and animal management Statistical analysis Results Effects of lactation diets on sows weaned and postweaning onset of oestrous Subsequent reproductive performance Discussion 	123 123 124 124 125 127 128 128 128 138
Chapte 8.1 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.3 8.3.1 8.3.2 8.3.3 8.3.4 8.4	 r 8 The effect of omega-3 PUFA supplementation fed prior to mating and in early gestation on embryo survival and peri-implantation progesterone level in sows Introduction Materials and Methods Animals and diets Feeding and animal management Blood collection and analysis Statistical analysis Results Diet fatty acids Plasma fatty acid profile Reproductive performance postweaning and early pregnancy Plasma progesterone response to dietary treatment and time of gestation Discussion 	142 143 143 144 145 146 147 147 147 147 148 149 157
Chapte 9.1 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.2.5 9.3 9.3.1 9.4	 r 9 Effect of addition of omega-3 derived PGE₃ and PGE₂:PGE₃ ratio on progesterone production from in-vitro granulosa cell cultures Introduction Materials and Methods Preparation of reagents Tissue collection and preparation Tissue cultures Progesterone assessment Statistical analysis Results Main effect of hCG in mediating progesterone response to prostaglandin E Discussion 	161 163 163 164 165 166 167 167 167
Chapte	r 10General Discussion	177
Refere	nces	188

List of Tables

Table 1.1	Selected fatty acid content (g/100 g total fatty acid) of common dietary ingredients available as fats and oils for pigs	31
Table 3.1	Ingredient and calculated nutritional composition of lactation diets fed prefarrowing and during lactation (as fed basis) to sows allocated to either a control diet (Control) or a diet containing omega-3 PUFA from 3 g fish oil/kg of diet (Omega-3)	63
Table 3.2.	Fatty acid composition (g/100 g total fatty acids as fed basis) of lactation diets fed prefarrowing and during lactation (as fed basis) to sows allocated to either a control diet (Control) or a diet containing omega-3 PUFA from 3 g fish oil/kg of diet (Omega-3)	64
Table 3.3	Litter size and birth weight of piglets born to sows fed prefarrowing and during lactation either a control diet (Control) or a diet containing omega-3 PUFA from 3 g fish oil/kg of diet (Omega-3)	65
Table 3.4	Average piglet weight at day 3 and weaning, piglet daily gain and average daily intake of sows fed prefarrowing and during lactation either a control diet (Control) or a diet containing omega-3 PUFA from 3 g fish oil/kg of diet (Omega-3)	66
Table 3.5	The subsequent reproductive performance of Control and Omega-3 sows following weaning and cessation of dietary treatments	67
Table 4.1	Ingredient and calculated nutritional composition of experimental diets (g/kg as fed basis) fed to gilts allocated to either a control diet (Control) or a diet containing omega-3 PUFA from 3 g fish oil/kg of diet (Omega-3) until mating	80
Table 4.2	Fatty acid composition of experimental diets (g/100 g total fatty acid as fed basis) fed to gilts allocated to either a control diet (Control) or a diet containing omega-3 PUFA from 3 g fish oil/kg of diet (Omega-3) until mating	81
Table 4.3	Live weight and backfat P2 and weight and P2 gain (mean \pm SE) on the subset of gilts between 24 weeks of age and mating fed Control or Omega-3 diets for either 6 weeks or 3 weeks prior to mating	82
Table 4.4	Puberty response and age at mating (mean \pm SE) of gilts fed Control diets or Omega-3 diets containing 3 g fish oil/kg of diet fed for either 6 weeks or 3 weeks prior to mating	83
Table 4.5	Farrowing rates (sows successfully farrowed from 1^{st} mating) and first parity litter size (mean \pm SE) following feeding of Control diets or Omega-3 diets containing 3 g fish oil/kg of diet fed for either 6 weeks or 3 weeks prior to mating	84
Table 5.1	Ingredient and calculated nutritional composition of experimental diets (g/kg as fed basis) fed to gilts allocated to either a control diet (Control), or an omega-3 PUFA diet containing 3 g fish oil/kg of diet (Omega-3 3 g/kg) or 10 g fish oil/kg (Omega-3 10 g/kg) until slaughter at 25.2 ± 0.1 d of pregnancy	97

5

Table 5.2	Fatty acid composition of treatment diets offered to gilts on Control, Omega-3 3 g/kg or Omega-3 10 g/kg from 24 weeks of age to early gestation (g/100 g total fatty acids as fed basis)	98
Table 5.3	Mean \pm SE live weight and backfat P2 of gilts fed unsupplemented diets (Control) or diets with omega-3 PUFA from fish oil at either 3 g fish oil/kg of diet or 10 g fish oil/kg of diet from 24 weeks of age through to 25 days of gestation	99
Table 5.4	The proportion of gilts mated and the mating age, and the proportion of gilts removed from the herd as when gilts were fed unsupplemented diets (Control) or diets with omega-3 PUFA from fish oil at either 3 g fish oil/kg of diet or 10 g fish oil/kg of diet from 24 weeks of age through to 25 days of gestation	100
Table 5.5	Pregnancy rates and mean \pm SE ovulation rate and embryo number and embryo survival of gilts fed unsupplemented diets (Control) or diets with omega-3 PUFA from fish oil at either 3 g fish oil/kg of diet or 10 g fish oil/kg of diet assessed at slaughter at 26.2 \pm 0.1 d of gestation	101
Table 6.1	Ingredient and calculated nutritional composition of experimental diets (g/kg as fed basis) fed to sows prefarrowing, during lactation and postweaning allocated to either a control diet (Control) or a diet containing omega-3 PUFA from 3 g fish oil/kg of diet (Omega-3)	112
Table 6.2	Fatty acid composition of treatment diets offered to sows during lactation (g/100 g total fatty acids as fed basis)	113
Table 6.3	Litter size of piglets born to sows fed for 7.5 ± 0.2 d prefarrowing either a Control diet Control or Omega-3 diet containing omega-3 PUFA from 3 g of fish oil/kg of diet	114
Table 6.4	Average piglet and litter daily gain between d 1 and prior to weaning at 25.6 ± 0.2 d of age when sows were fed a Control diet or Omega-3 diet containing 3 g fish oil/kg of diet prefarrowing, during lactation and postweaning to mating	115
Table 6.5	Sow lactation feed intake and live weight and back fat P2 between d 1 and weaning at 26.5 ± 0.2 d of age when sows were fed a Control diet or Omega-3 diet containing 3 g fish oil/kg of diet prefarrowing, during lactation and postweaning to mating	116
Table 6.6	Weaning to oestrus interval, pregnancy rate, ovulation and embryo recovery in sows fed Control and Omega-3 sows fed diets supplemented with 3 g fish oil/kg of diet prefarrowing, during lactation and postweaning to mating and slaughtered at 23.3 ± 0.1 d of gestation	117
Table 7.1	Ingredient and calculated nutritional composition of experimental lactation diets fed prefarrowing and during lactation and gestation diets fed after mating until 28 d (as fed basis)	132
Table 7.2	Fatty acid composition of treatment diets offered to sows during lactation (g/100 g total fatty acids as fed basis)	133
		6

Table 7.3	Resumption of oestrous and weaning to oestrus interval of sows fed a lactation diet prefarrowing and during lactation either unsupplemented (Control) or supplemented with omega-3 PUFA as 3 g fish oil/kg of diet (Omega-3)	134
Table 7.4	Subsequent farrowing rate and litter size born of sows following being fed either a Control or Omega-3 supplemented lactation diet prefarrowing, during lactation and postweaning and a Control or Omega-3 supplemented gestation diet during early pregnancy	135
Table 7.5	Subsequent litter size total born within weaned parity 1, parity $2 - 3$ and old sows (parity $4 - 7$) fed either Control or Omega-3 lactation diets prefarrowing, during lactation and postweaning and Control or Omega-3 gestation diets fed during early pregnancy	136
Table 8.1	Ingredient and calculated nutritional composition of experimental lactation diets fed prefarrowing and during lactation and postweaning and experimental gestation diets fed after mating until slaughter (as fed basis)	151
Table 8.2	Fatty acid composition of treatment diets offered to sows during lactation (g/100 g total fatty acids as fed basis)	152
Table 8.3	Fatty acid composition of plasma (g/100 g total fatty acids) on d 10 and 14 gestation taken from sows (n = 9 per treatment) fed either unsupplemented (Control) or Omega-3 lactation diet prefarrowing, during lactation and postweaning and unsupplemented (Control) or Omega-3 gestation diet during early pregnancy	153
Table 8.4	Subsequent pregnancy, ovulation rate, embryo number and embryo survival for sows fed either unsupplemented (Control) or Omega-3 lactation diets prefarrowing, during lactation and postweaning and unsupplemented (Control) or Omega-3 gestation diets during early pregnancy	154
Table 8.5	Mean ± SE plasma progesterone (ng/mL) sampled on different days of gestation from sows fed either unsupplemented (Control) or Omega-3 lactation diets prefarrowing, during lactation and postweaning and fed unsupplemented (Control) or Omega-3 gestation diets during early pregnancy	155
Table 9.1	Treatment plan of reagent addition to 150 μL granulosa cell culture for a final cell density of 0.5 x 10 ⁶ cells/mL, 25 ng/mL of IGF-1 and 0.1 IU hCG/mL in final culture volume (250 $\mu L)$	168
Table 9.2	In-vitro progesterone production from cultured granulosa cells derived from pre- ovulatory porcine ovarian follicles in the presence of PGE_2 and PGE_3 with and without hCG	169
Table 9.3	Treatment progesterone response from cultured granulosa cells in the presence of PGE_2 and PGE_3 in different ratios with and without hCG	170

List of Figures

Figure 1.1	The molecular structure of linoleic acid (LIN), an 18 carbon chain omega-6 fatty acid, numbered from the carboxyl end to the distal methyl end and illustrating the cis- Δ 9, Δ 12 position of the cis double bonds	20
Figure 1.2	The molecular structure of α -linolenic acid (ALA), an 18 carbon chain omega-3 fatty acid, with a <i>cis</i> - Δ^9 , Δ^{12} , Δ^{15} position	20
Figure 1.3.	Biosynthesis of malonyl CoA, the first step of fatty acid synthesis via the enzyme, acetyl CoA carboxylase	21
Figure 1.4	Stoichiometry of malonyl- Co A elongation to palmitate $(CH_3 (CH_2)_{14}COO^{-})$ in the cytosol from the enzyme complex, fatty acid synthetase	22
Figure 1.5	Metabolic pathway of the omega-6 fatty acid from LIN to ARA through desaturation-elongation-desaturation enzymatic reactions	23
Figure 1.6	Metabolic pathway of the omega-3 fatty acid from ALA to EPA and DHA	24
Figure 1.7	The metabolism of ARA (C20:4, n-6) to prostaglandins, thromboxanes and leukotrienes	27
Figure 1.8	The metabolism of the PUFA, eicosapentaenoic acid (C20:5, n3) to prostaglandins, thromboxanes and leukotrienes	28
Figure 3.1	The frequency of litter size total born in the parity subsequent to sows being fed a control diet (Control) or a diet containing 3 g of fish oil/kg of diet (Omega-3) in the previous parity for a total of 27 d from 8 d prefarrowing continuing in lactation until weaning at 18.7 \pm 0.1 d	68
Figure 4.1	Mean \pm SE plasma fatty acids in gilts (n = 6 per treatment) at 0, 3, 7 and 21 d from the commencement of feeding either the Omega-3 or unsupplemented Control diet fed <i>ad libitum</i> between 24 and 27 weeks of age	85
Figure 5.1	The fatty acid profile of gilts (n=6 per treatment) at 24 weeks of age (Day 0 of feeding) fed diets unsupplemented in omega-3 PUFA (Control) or increasing in dietary fish oil at 3 g fish oil/kg of diet or 10 g fish oil/kg diet on plasma fatty acids collected at 3 d and 25 d of gestation	102
Figure 6.1	The frequency (%) of recovered embryos per sow following feeding prefarrowing, during lactation and postweaning to mating a diet containing no fish oil (Control) or an omega-3 diet containing 3 g fish oil/kg of diet (Omega-3) at 23.3 ± 0.1 d gestation	118
Figure 7.1	Schematic representation of treatment feeding regimen of unsupplemented lactation and gestation diets (Control) and omega-3 supplemented diets as fish oil (Omega-3)	131

Figure 7.2	Subsequent litter size (total born) x parity at weaning (mean \pm SE) when sows are fed combinations of unsupplemented (Control) or omega-3 diets containing fish oil (Omega-3) either during lactation, postweaning and/or early pregnancy	137
Figure 8.1	Mean ± SE plasma fatty acid levels (n = 9 per treatment) between d 10 - 14 of sows fed the dietary regimen of Control – Control, Control – Omega-3, Omega-3 – Control or Omega-3 – Omega-3	156
Figure 9.1	Raw mean \pm SE for a dose-response of progesterone in a preliminary sample (n = 4 per treatment) to determine the experimental dose for PGE	171
Figure 9.2	Effect of PGE ₂ and PGE ₃ at 320 ng/mL ($P < 0.05$) in culture media compared to Control (BTCM) on in-vitro progesterone production from granulosa cells (0.5 x 10 ⁶ /mL) in tissue culture media (n = 8 per treatment)	172
Figure 9.3	Effect of PGE ₂ : PGE ₃ ratio using solutions of PGE at 320 ng/mL concentration on progesterone production from granulosa cells (0.5×10^{6} /mL) in tissue culture media (n = 8 per treatment)	173

Abstract

The potential for supplemented omega-3 polyunsaturated fatty acids (PUFA) to increase sow reproductive performance when supplied from isocaloric diets containing low levels (3 - 6 g/kg of diet) of fish oil as a partial replacement for tallow was investigated. In the first experiment, there was an increase of 1 piglet live born (P < 0.05) to sows at the subsequent parity fed a supplemented diet before farrowing and during lactation. In contrast, litter size was unaffected when gilts were fed a supplemented diet with fish oil during puberty and early pregnancy. Furthermore in gilts, increasing the duration or level of supplementation did not improve litter size or embryo survival, possibly due to their inherently high level of fertility (82% embryo survival). In subsequent experiments, the effect of omega-3 supplementation on reproduction was evaluated in older parity sows known to have an inherently lower level of fertility compared with gilts. In parity 4 - 7 sows fed a supplemented diet prefarrowing and during lactation continuing to mating, embryo survival at 23 d was increased (Omega-3 70% vs 61% in Controls; P =0.054), without affecting ovulation rate. Subsequent experiments examined the response when supplemented diets were fed either during lactation continuing to mating; or after mating and during early gestation; or across both periods from lactation through to early gestation. Litter size born was maximised in the subsequent parity in sows fed fish oil diets from lactation to early gestation for 28 d, with the response being greatest in higher parity sows (+0.7 live born; and +0.9 total born, P < 0.05). In the following experiment this increases was associated with a 19% increase in embryo survival with omega-3 supplementation (P = 0.061). There was no effect on live weight or backfat during lactation; litter weight gain; piglet wean weight; and sow intake when gilts or sows were fed supplemented diets. The increase in embryo survival and litter size consistently observed in the sow studies was associated with increases in the omega-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and were independent of energy intake or energy metabolism. Partially replacing tallow (wt/wt) with 3 – 6 kg levels of fish oil did not change plasma levels of the essential omega-6 fatty acids, linoleic acid (LIN) and arachidonic

acid (ARA). Using in-vitro cultures of granulosa cells it was demonstrated that progesterone production is increased with prostaglandin E₃ and there was evidence for PGE₃ to enhance the steroidogenic response to PGE₂. It is proposed that specific long-chain omega-3 fatty acids increases embryo survival in older sows due to improved oocyte quality and/or embryo development, possibly through synergistic activities of PGE₂ and PGE₃ on progesterone levels in the local ovarian-uterine circulation. Supplementation of diets with EPA and DHA from fish oil offers pig producers a nutritional approach to improve sow litter size in older parities thereby increasing longevity and lifetime performance.

Keywords: Omega-3 PUFA, sow fertility, embryo survival, longevity, prostaglandins, progesterone

Declaration

I declare that this thesis is my own work and contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Robert J. C. Smits, and, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person or persons, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan, photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time

Robert J.C. Smits

May 2012

Publications arising

- R.J. Smits, B.G. Luxford, M. Mitchell and M.B. Nottle (2011). Sow litter size is increased in the subsequent parity when lactating sows are fed diets containing n-3 fatty acids from fish oil. Journal Animal Science 89: 2731-2738
- R.J. Smits, B.G. Luxford, M. Mitchell and M.B. Nottle (2011). Sow fertility is improved by feeding diets supplemented with omega-3 fatty acids from fish oil during lactation through to early pregnancy. Journal of Animal Science. 89 (E-Supplement 2). Abstract 192, P.109
- R.J. Smits, D.T. Armstrong, L. Ritter, M. Mitchell and M.B. Nottle (2010). Progesterone production from granulosa cells of sows is enhanced equally by omega-3 derived prostaglandin E₃ and omega-6 derived prostaglandin E₂. Reproduction, Fertility and Development 22 (Supplement). P. 134 (abstract 334)

Co-authored publications

M. Mitchell, R. Smits, N.O. Palmer, A.N. Filby and M. Lane (2010). Dietary omega-3 fatty acid supplementation alters embryo development and metabolism in sows. Reproduction, Fertility and Development 22 (Supplement: SRB abstract 337). P. 137

Research reports

R.J. Smits and M. Mitchell (2009). Evaluation of supplementing long-chain omega-3 fatty acids as a nutritional approach to increase productivity and longevity in gilts and sows. Final Research Report, 2F-102. Pork CRC, Willaston, SA.

Acknowledgements

The preparation of this thesis is the culmination of several years of experiments and scientific enquiry into nutritional – reproduction interactions. Many researchers and students over the years have helped initially motivate me in commencing this study, and through their encouragement and support I have been able to complete this PhD and achieve one of my personal goals.

I wish to sincerely thank my Principal Supervisor, Associate Professor Mark Nottle for his effort in keeping me focused on the task and guiding my experimental program to fruition. Mark, I appreciate your encouragement and confidence in me to become one of your successful students. As co-supervisor, Dr Megan Mitchell provided many pivotal discussions on the scientific findings and possible explanations. Megan, your assistance in developing the structure of the thesis and experimental designs is appreciated. Dr Brian Luxford (Rivalea), Prof. David Armstrong (University of Adelaide) and Mr David Apps (University of Adelaide, Waite Campus) also provided technical input when required and direction during the study and are gratefully acknowledged.

I sincerely thank Mr Paul Pattison and Dr Brian Luxford at Rivalea Australia for providing facilities and resources and a considerable amount of flexibility in my position to achieve my goal. I especially would like to thank you Brian, for your supervision, encouragement and helping me keep the sometimes insurmountable task within reach. The Pork Cooperative Research Centre and Dr Roger Campbell in particular, are gratefully acknowledged for funding the majority of experiments described herein. Assistance from many staff at the Rivalea R&I Unit, the commercial piggeries at Corowa and the abattoir staff of Diamond Valley Pork are gratefully acknowledged for helping collect data and working with me during the conduct of these experiments. I have a great respect and appreciation for the skills and work ethic of a lot of people within our company and I thank everyone who showed an interest in what I was doing and why I was doing it.

14

Dr David Cadogan (Feedworks Pty Ltd.) initially convinced me that omega-3 fatty acids could influence reproduction and would be a great topic to research. I thank you for your encouragement, Dave, as well as Mr Malcom Ballard (Feedworks, USA) and Dr Mark Wilson (Zinpro Corporation, USA) for their interest and financial support of travel to attend international conferences.

Finally, I wish to sincerely thank Michelle and my family for their unquestioning support and patience over the years. You never doubted my endeavour or perseverance. To my children: you may not have understood what I was writing in 'the book', but one day you will understand why.