Flow Visualization and Simulation of Miscible Displacement with Gravity Domination

A thesis Submitted for

Doctor of Philosophy in

Petroleum Engineering

By

Zeeshan Mohiuddin

Supervisors:

Dr Manouchehr Haghighi Dr Yvonne Stokes Dr Themis Carageorgos

Australian School of Petroleum

Faculty of Engineering, Computer and Mathematical Sciences

The University of Adelaide, Australia

September 2013

TABLE OF CONTENTS

List of Fig	gures	v
List of Ta	ables	vii
Abstract		viii
Stateme	nt of Originality	x
Acknowl	edgements	xi
List of Pu	ublications	xii
Abbrevia	ations, Prefixes and Symbols	xiii
CHAPTER	R 1 INTRODUCTION	1
1.1	Miscibility	1
1.2	The Importance of Miscibility in Petroleum Engineering	2
1.3	Problems Associated with Miscible Gas EOR	4
1.3.	1 Problem Due to Less Viscosity of Injected Gas	5
1.3.	2 Problem Due to Less Density of Injected Gas	5
1.3.	3 Gravity-Dominated Miscible Displacement	6
1.4	Research Gap	8
1.5	Research Aims and Objectives	9
1.6	Scope of Work	9
1.6.	1 Experimental	9
1.6.	2 Simulation	10
CHAPTER	R 2 LITERATURE REVIEW	11
2.1	Pore-Scale Visualization	11
н	lele-Shaw Cells	11
С	Capillary Tube	11
Р	owder or Beads Pack	12
G	ilass Micromodel	13
C	Other Visualization Techniques	14
2.1.	1 Pore-Scale Visualization for Miscible Displacement	14
2	1.1.1.1 Experimental Studies on Miscible Displacement with Gravity Effects	15
2.2	Pore-Scale Simulation	21
2.2.	1 Pore Network Modelling	22
2.2.	2 Pore Scale Simulation Studies on Gravity-Dominated Miscible Flow	24

CHA	PTER 3	RESEARCH METHODOLOGY	28
3.	.1 Intr	oduction	
3.	.2 Det	ailed Methodology	
	3.2.1	Literature Review Methodology	29
	3.2.2	Pore-Level Experiments' Methodology	
	3.2.3	Pore-Level Simulation	
	3.2.3.	1 Development of the Simulation Model	
	3.2.3.	2 Simulation and Experimental Results Comparison	
	3.2.3.	3 Sensitivity Studies	
CHA	PTER 4	Visualization Studies	
4.	.1 Experi	imental Facilities Construction	
	4.1.1	Glass Micromodel Construction	
	4.1.1.	1 Pattern Design	
	4.1.1.2	2 Transferring Image from MATLAB to Paintbrush	
	4.1.1.	3 Transferring Pattern to a Photoresist Film	
	4.1.1.4	4 Application of Photoresist on Glass	
	4.1.1.	5 Sandblasting	
	4.1.1.	6 Fusing Glass Plates	
	4.1.1.	7 Mounting Syringe Connections	42
	4.1.2	Construction of Micromodel Holding Rig	42
	4.1.3	Fluids used in Experimental Studies	45
	4.1.4	Piping and Instrumentation	47
	4.1.5	Experimental Procedure	
	4.1.6	Image Processing	49
4.	.2 Mis	cible Displacement Experiments	51
	4.2.1	Calculations in the Full Domain	53
	4.2.1.	1 Total Pore Volume	53
	4.2.1.	2 2Surface Area (Whole Domain)	53
	4.2.1.3	3 Depth	53
	4.2.1.4	4 Cross-Sectional Area of the Inlet Port	53
	4.2.2	Calculations in the Grains Domain	54
	4.2.2.	1 Total Grains Area	55
	4.2.2.2	2 Surface Area (Grains Domain)	55

		4.2.2.3	Porosity	55
		4.2.2.4	Effective Width	55
		4.2.2.5	Grains Domain Velocity and Injection Rate Determination	56
	4.3	Expe	erimental Results	58
	4	.3.1	Experiments Representing Near Wellbore Flow Rates	58
		4.3.1.1	Experiment with First Model	58
		4.3.1.2	2 Experiment with Second Model	61
	4	.3.2	Experiments Representing Reservoir Flow Rates	63
	4.4	Expe	eriment with Different Orientations	66
	4	.4.1	0 Degree Cases	66
	4	.4.2	30 Degree Cases	66
	4	.4.3	45 Degree Cases	67
	4	.4.4	60 Degree Cases	67
	4	.4.5	90 Degree Cases	68
	4.5	Erro	r Analysis	74
	4	.5.1	Sources of Error (Human)	74
	4	.5.2	Sources of Error (Instrument)	74
	4	.5.3	Sources of Error (Calculation and Estimation)	75
C⊦	IAPT	ER 5	FLOW SIMULATION	77
	5.1	Мос	del Geometry used in Experiments Results Comparison	77
	5.2	Mat	hematical Model	79
	5.3	Mes	hing	81
	5.4	Мос	del Parameters	82
	5	.4.1	Inlet Velocity	82
	5	.4.2	Diffusion Coefficient	83
		5.4.2.1	Using Rackett (1970) correlation	84
		5.4.2.2	Using Tyne and Calus (1975) correlation	84
		5.4.2.3	Using Basic Definition of Molar Volume	84
	5.5	Expe	erimental and Simulation Results Comparison	84
	5	.5.1	Qualitative Comparison	85
		5.5.1.1	Qualitative Comparison of Cases in the First Pattern	85
		5.5.1.2	2 Qualitative Comparison of Cases in the Second Pattern	87
		5.5.	1.2.1 Injection at the Rate of 0.005 cm ³ /min	87

5.5	5.1.2.2 Injection at the Rate of 0.002 cm ³ /min	89
5.5.2	Quantitative Comparison	91
5.5.2	.1 Quantitative Comparison of Cases in the First Pattern	91
5.5.2	.2 Quantitative Comparison of Cases in the Second Pattern	93
5.5	5.2.2.1 Injection at the Rate of 0.005 cm ³ /min	93
5.5	5.2.2.2 Injection at the Rate of 0.002 cm ³ /min	94
CHAPTER 6	SIMULATION STUDIES	97
6.1 Co	mparison with a Previous Work	97
6.1.1	The Work of Stevenson et al.	97
6.1.2	Simulation Study using Developed Numerical Model	99
6.1.2	.1 First Breakthrough Scenario	
6.1.2	.2 Second Breakthrough Scenario	
6.2 Se	nsitivity Studies	
6.2.1	Sensitivity Based on Mobility Ratio, Density and Angle of Tilt	105
6.2.1	.1 Region 1	
6.2	2.1.1.1 0 Degree Cases	
6.2	2.1.1.2 Cases with Dip Angle Higher than 0 Degrees	
6.2	2.1.1.3 Role of Viscosity Change	
6.2.1	.2 Region 2	
6.2.2	Sensitivity Based on Domain Velocity	119
6.2.3	Sensitivity Based on Heterogeneity	120
6.2.3	.1 Heterogeneity Based on Grains Packing	
6.2.3	.2 Heterogeneity Based on Layers of Different Grains Packing	124
CHAPTER 7	CONCLUSION	
REFERENCES	5	
APPENDIX A	1: Source Code for Generating Grains	
APPENDIX A	2: Grain Arrangements	150
APPENDIX B: Detailed Designed of the Experimental Rig151		
APPENDIX C: Image Processing Source Code154		
APPENDIX D: Source Code for Creating Multiple Layers of Grains		

List of Figures

Figure 1-1: Schematic of Immiscible Gas Swelling of Oil in Porous Media (BP-Amoco 1999)	1
Figure 1-2: Schematic of Miscible Gas Displacement in the Porous Media (BP-Amoco 1999)	2
Figure 1-3: Underriding of heavier and overriding of lighter fluid during WAG process (Rao 2006)	6
Figure 1-4: Schematic of Gas Assisted Gravity Drainage Process (Rao 2006)	7
Figure 2-1: Comparison of the Work by Stevenson et al. (2004) and Tiffin and Kremesec (1988)	25
Figure 3-1: Methodology Adopted in the Research Work	28
Figure 3-2: Methodology to Determine Appropriate Visualization Method for Experimental Study	30
Figure 3-3: Methodology for Gap Identification (Experimental Studies)	30
Figure 3-4: Methodology for Experimental Facilities Development	31
Figure 3-5: Angular Tilting of the Model in (a) x-y plane (b) y-z plane	32
Figure 4-1: Schematics of the Patterns used in the Experimental Study	36
Figure 4-2: Workflow adopted to import actual geometry from MATLAB to MS Paintbrush	37
Figure 4-3: Dead Volumes in the Pattern	38
Figure 4-4: (A) Schematic of a Photoresist Film, (B) UV Light Exposure Unit	39
Figure 4-5: The Rate and Temperature Increment for Fusing Glass Plates	41
Figure 4-6: Schematic of the Designed Rig	43
Figure 4-7: Tilting of the Micromodel in y-z Plane (A) Axis Representation (B) Fabricated Rig	44
Figure 4-8: Tilting of the Micromodel in x-y Plane (A) Axis Representation (B) Fabricated Rig	45
Figure 4-9: Phase Diagram of Pure CO ₂ (Vermeulen 2011)	46
Figure 4-10: Flow Diagram	48
Figure 4-11: Image Processing of the Captured Snapshot	50
Figure 4-12: Schematic of the Patterns used in the Experimental Study	53
Figure 4-13: Schematic of 3-D View of the Micromodel	54
Figure 4-14: Grains Domain of the Patterns used in the Experimental Study (A) Pattern 1 (B) Pattern 2	. 55
Figure 4-15: (A) Snapshots of Experiments Conducted in the First Micromodel at Injection Rate of 0.00)5
cm ³ /min (B) Pre-Breakthrough Profile (C) Pre- and Post-Breakthrough Profile	60
Figure 4-16: (A) Snapshots of the Experiments Conducted in the Second Micromodel at Injection Rate	of
0.002 cm ³ /min (B) Pre-Breakthrough Profile (C) Pre- and Post-Breakthrough Profile	62
Figure 4-17: (A) Snapshots of the Experiments Conducted in the Second Micromodel at Injection Rate	of
0.002 cm ³ /min (B) Pre-Breakthrough Profile (C) Pre- and Post-Breakthrough Profile	65
Figure 4-18: (A) Comparison of all Cases at 0° (B) Saturation Profile Comparison of all Cases at 0° until	1
Breakthrough	69
Figure 4-19: (A) Comparison of all Cases at 0° (B) Saturation Profile Comparison of all Cases at 30°	70
Figure 4-20: (A) Comparison of all Cases at 45° (B) Saturation Profile Comparison of all Cases at 45°	71
Figure 4-21: (A) Comparison of all Cases at 60° (B) Saturation Profile Comparison of all Cases at 60°	72
Figure 4-22: (A) Comparison of all Cases at 90° (B) Saturation Profile Comparison of all Cases at 90°	73
Figure 4-23: Volume Ignored due to Air Lock	75
Figure 5-1: Porous Geometry used in Experimental and Simulation Studies	78
Figure 5-2: The Inlet port (A) without filleted edge and (B) with filleted edge	79
Figure 5-3: Meshing of the Porous Domain	81
Figure 5-4: Qualitative experimental and simulation comparison for the first pattern	86
Figure 5-5: Qualitative experimental and simulation matching for the second pattern at 0.005 cm 3 /mi	in
injection rate	88
Figure 5-6: Qualitative experimental and simulation matching for the second pattern at 0.002 cm 3 /mi	in
injection rate	90

Figure 5-7: Quantitative experimental and simulation matching for the first pattern (flow rate 0.005 cm^3/min)
Figure 5-8: Quantitative experimental and simulation matching for the second pattern (flow rate 0.005 $\frac{3}{2}$
cm ⁻ /min)
Figure 5-9: Quantitative experimental and simulation matching for the second pattern (flow rate 0.002
cm ⁻ /min)
Figure 6-1: Graph of Breakthrough Saturation versus Darcy–Rayleigh Number (G)
Figure 6-2: Concentration Peak 0.2 mol/m [°] at the Exit Boundary
Figure 6-3: Comparison between Breakthrough Saturation, Sb, (%) against the Calculated Darcy–
Rayleigh Number, G, for the First Breakthrough Scenario (A) Cartesian Plot and (B) Semi-Log Plot 101
Figure 6-4: Pore-Scale Images for the First Breakthrough Scenario (Injection from Bottom)
Figure 6-5: Comparison between Breakthrough Saturation, S_{br} (%) against the Calculated Darcy–Rayleigh
Number, G, for the Second Breakthrough Scenario (A) Cartesian Plot and (B) Semi-Log Plot103
Figure 6-6: Pore-Scale Images for the Second Breakthrough Scenario (Injection from Bottom)
Figure 6-7: Snapshots for Different Mobility Ratios and Density Differences Cases for Region 1
Figure 6-8: Graphs of S _b vs. Cos θ for Various Density Differences at Particular Mobility Ratios in Region 1 110
Figure 6-9: Graphs of S _b vs. Cos θ for Various Mobility Ratios at Particular Density Differences in Region 1
Figure 6-10: Breakthrough Saturation vs. Cos (θ) for Range of Mobility Ratios and Density Differences 112
Figure 6-11: Snapshots for Different Mobility Ratios and Density Differences Cases for Region 2
Figure 6-12: Graphs of S _b vs. Cos θ for Various Density Differences at Particular Mobility Ratios in Region 2
Figure 6-13: Graphs of S _b vs. Cos θ for Various Mobility Ratios at Particular Density Differences in Region
2
Figure 6-14: Breakthrough Saturation vs Cos ($ heta$) for Range of Mobility Ratios and Density Differences
using Domain Velocity of 0.8 ft/day119
Figure 6-15: Breakthrough Saturation vs Cos ($ heta$) for Range of Mobility Ratios and Density Differences
using Domain Velocity of 0.4 ft/day120
Figure 6-16: Pattern used to Study Heterogeneity Based on Layers of Different Grains Packing
Figure 6-17: Snapshots at the Breakthrough 127
Figure 6-18: Comparison of Breakthrough Occurring at Different Dip Angle in Mix Pattern
Figure A2-7-1 Circular Arrangement of the Numerically Controlled Pattern
Figure A2-7-2 Distribution of Distances between the Centres of Circles for (a) Pattern 1 and (b) Pattern 2

List of Tables

Table 4-1: Geometric Arrangements of the Two Patterns Designed	37
Table 4-2: Optimum Parameters to Prepare Glass Micromodel	40
Table 4-3: Density and Viscosities Contrast of Different North Sea Light Oil Reservoirs (Fayers, Hawes	et
al. 1981)	46
Table 4-4: Experimental Calculations Considering Full Domain	54
Table 4-5: Experimental Calculations Considering Grains Domain	56
Table 4-6: Calculation of the Perkins and Johnson (1963) Dimensionless Number	57
Table 5-1: Inlet Velocities Provided in Simulation during Experimental Results Matching	82
Table 6-1: Variables Range in the Sensitivity Study	. 106
Table 6-2: Geometric Arrangements of the Designed Patterns	. 121
Table 6-3: Patterns used to Study Heterogeneity Based on Grains Packing	. 122
Table 6-4: Snapshots at the Breakthrough	. 123
Table 6-5: Configuration of Pattern used to Study Heterogeneity Based on Layers of Different Grains	
Packing	. 124

Abstract

Gravity assisted miscible gas injection into oil reservoirs is an efficient method of Enhanced Oil Recovery (EOR). Carbon dioxide injection into aquifers for sequestration purposes is another application of miscible displacement under gravity control. This dissertation reports pore-scale experimental and simulation studies to determine the role of different parameters on the frontal stability of the miscible displacement process under gravity domination.

Experimental studies were based on visualization of first contact miscible flooding under gravity domination. Visualization was conducted using the glass micromodel technique. Facilities were designed and fabricated to perform the experiments. Two micromodels with different patterns of loose packing and close packing were prepared through the sandblasting technique. The porous patterns for these micromodels were generated using the MATLAB program. The injection of the lighter and less viscous iso-octane was carried out in comparatively heavier and high viscous butanol. The injections were carried out at different dipping angles ($0 \le \theta \le 90$) and injection velocities (representing near wellbore and reservoir flow rates). The images were captured and processed to analyse the frontal movement and to estimate the concentration of injecting fluid in the flow domain. The experimental results presented in this thesis demonstrate the dependencies of various characteristics such as dip angle and porous medium heterogeneity on the process at pore scale.

The simulation studies were performed using the Finite Element Analysis technique. The simulation model was initially validated by matching results with flow visualization experimental studies using glass micromodels. The Navier–Stokes, continuity and convection-diffusion equations were used in the simulation instead of Darcy's law. Wide ranges of parameters applicable for Enhanced Oil Recovery and CO_2 sequestration were used in the sensitivity study. Dip angles (θ) between 0° and 180° (for up-dip and down-dip situations), different domain velocities, density differences of 50 to 900 kg/m³ between the injecting and displaced fluids and viscosity ratios from 1 to 100 (to include light and heavy oils) were investigated. Snapshots were captured in each simulation case for visual comparison of the frontal advancement. In addition, breakthrough saturation was plotted against cos (θ) to quantify the competition

between viscous and gravity forces in the gravity-dominated miscible displacement process.

The pore-scale study suggests that the stability of a miscible process can be influenced by several factors. When gravity acts in favour of displacement and there is a moderate to large density difference, angular tilt is the most important parameter influencing displacement. When the density difference is small, then the mobility ratio and flow velocity also play a role. When gravity opposes displacement and buoyancy forces are dominating, results show little sensitivity to the actual tilt angle. Better displacement is seen for lower density difference and for higher flow velocity; yet, again, the mobility ratio only impacts on displacement when the density difference is quite small.

The sensitivity simulation studies were performed based on: (a) mobility ratio, density difference and angle of tilt; (b) domain velocities; and (c) local and global heterogeneity. The sensitivity study for $0 \le \theta \le 90$ suggests a region that is sensitive to angular dip. The region $90 < \theta \le 180$, however, is more sensitive to the density difference between injection and inplace fluids. For $0 \le \theta \le 180$ mobility ratio might be significant if the density difference between injection and inplace fluids. For $0 \le \theta \le 180$ mobility ratio might be significant if the density difference between injection and inplace fluid is small. Sensitivity based on domain velocity suggests that large reduction in domain velocities might lose the inertial effects and might cause overriding, especially for the high-dipping angle cases. Sensitivity based on heterogeneity suggests that decreasing grain spacing promotes the fluid mixing. Therefore, in less permeable zones, the overriding of lighter fluid can be reduced even in high-dipping angle cases.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature :_____

Zeeshan Mohiuddin

Australian School of Petroleum

The University of Adelaide, Australia.

Acknowledgements

I would like to especially thank Dr Manouchehr Haghighi and Dr Yvonne Stokes for their continuous guidance and support. Moreover, I would like to acknowledge Dr Themis Carageorgos and Dr Danny Gibbins for their assistance during the experimental and image processing work. I would also like to thank my family who supported me during the tough times in my PhD studies.

List of Publications

Zeeshan Mohiuddin, Manouchehr Haghighi and Yvonne Stokes (2013). 'Pore level visualisation and simulation of CO_2 miscible injection with gravity domination', Energy <u>Procedia</u>, **37**: 6885–6900.

Zeeshan Mohiuddin, Manouchehr Haghighi and Yvonne Stokes. 'Pore level visualisation and simulation of CO₂ miscible injection with gravity domination', paper presented at the 11th International Conference on Greenhouse Gas Control Technologies, Kyoto International Conference Centre, Japan, 18–22 November 2012.

Zeeshan Mohiuddin, Manouchehr Haghighi, Yvonne Stokes, Themis Carageorgos and Danny Gibbins. 'Pore scale visualization and simulation of miscible displacement process under gravity domination', paper IPTC 15310 presented at the International Petroleum Technology Conference Bangkok, Thailand, 15–17 November 2011.

Zeeshan Mohiuddin and Manouchehr Haghighi. 'Visualization of CO₂ displacement process under gravity domination'', paper SPE 144101 presented at the SPE Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 19–21 July 2011.

Abbreviations, Prefixes and Symbols

Breakthrough Saturation (S_b)

Carbon Capture and Storage (CCS)

Cyclic Gas Injection (CGI)

Density Difference $(\Delta \rho)$

Diffusion Coefficient (D_o)

Enhanced Oil Recovery (EOR)

First Contact Miscibility (FCM)

Gas Assisted Gravity Drainage (GAGD)

Hue Saturation and Value (HSV)

Original Oil in Place (OOIP)

Minimum Miscibility Pressure (MMP)

Mobility Ratio (M)

Multiple Contact Miscibility (MCM)

Red Green Blue (RGB)

Water Alternating Gas (WAG)