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Abstract

We present a calculation of the magnetic moment and magnetic polarisability
of the nucleon. The calculation is performed using the background field
method of lattice QCD. Dynamical results are from 323 x 64 configurations
with 2+1 flavours of quark provided by the PACS-CS group through the
ILDG. These lattices use a clover fermion action and Iwasaki gauge action
with = 1.9 and physical lattice spacing ¢ = 0.0907(13) fm. Quenched
results come from 323 x 40 lattices using a FLIC fermion action and Symanzik
improved gauge action with § = 3.2 and a = 0.127 fm.

The Landau energy is a crucial effect in the calculation of magnetic po-
larisabilities for charged particles. We derive the Landau levels and show
their effect using examples of proton energy shifts in a background field.

Next we investigate the effects of moving the origin of the background
gauge potential. This procedure looks similar to the technique of twisted
boundary conditions, but we explain how for a quantised background field
there is no change in the physical states, and show evidence using tree level
calculations.

We present magnetic moment calculations for the proton and neutron,
with a comparison between quenched and dynamical background field results
as well as three point function results. We use the variational method in
order to isolate excited states so that we can present results for the magnetic
moment of the lowest lying odd-parity proton and neutron states.

Finally we present a calculation of the magnetic polarisability of the neu-
tron. We investigate ways of improving the plateau behaviour of the energy
shift, including the use of a variational analysis with a variety of source and
sink smearings. Results are compared with experimental values.
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Chapter 1

Introduction

The Standard Model of particle physics has been an incredibly successful
theory for describing much of the physical world. The bulk of everyday
matter is made up of protons and neutrons. These in turn are formed from
the combination of quarks and gluons under the part of the Standard Model
known as quantum chromodynamics (QCD). In order to learn more about
the properties of these particles and how they come to be, we must calculate
them from the first principles of QCD. The only way to solve QCD at low
energies is via the lattice.

Lattice QCD is a technique for simulating QCD interactions on a discre-
tised space-time grid. Vast computational resources are needed to calculate
physical observables to a reasonable precision. As computer power increases
over time we are able to perform more precise calculations with more accu-
rate parameters. Algorithms are also being improved all the time, decreasing
errors and allowing us to reach ever closer to physical parameters. Lattice
calculations allow us to test the standard model by comparing lattice results
with physical results measured by experiment. As lattice results improve
we also have the ability to make real predictions for many observables. In
Chapters 2 and 3 we visit some of the key points in the overview of quantum
chromodynamics and how calculations are implemented on the lattice. We
provide citations to references which present the full details.

One interesting set of properties is the electromagnetic structure of hadrons.
These values describe how hadrons interact with EM fields and require an
understanding of both QCD and QED to calculate. In this work we calculate
the magnetic moment and magnetic polarisability of the proton and neutron.
These are fundamental properties which describe the response of the particle



to an applied static magnetic field.

In order to calculate these properties on the lattice we use the background
field method. This is a technique which simulates a classical electromagnetic
field across the whole lattice. We are able to create a constant magnetic field
which allows us to access the magnetic moment and polarisability via the shift
in the energy due to the field. Formulating the background field method on a
lattice with periodic boundary conditions requires a quantisation condition to
produce a uniform magnetic field. Previous background field method results
have been from lattices which were too small for the quantisation condition
to be used in the calculation. In these cases the quantisation condition was
avoided through various means which introduced errors in the calculation.
The results for the magnetic polarisability in this work are the first ones
calculated on a periodic lattice with a uniform background field everywhere.
Chapter 4 describes the formulation of the background field method, with
particular attention paid to the crucial quantisation condition.

In order to perform accurate background field method calculations we
need a strong understanding of the issues which can arise. We have investi-
gated the Landau levels, an effect due to the quantisation of orbital angular
momentum for a charged particle in a magnetic field. This effect is very im-
portant in the calculation of the magnetic polarisability of a charged particle
and as a result we do not report polarisability values for the proton in this
work.

Another issue is the choice of origin for the gauge potential which creates
the background field. Moving the origin is equivalent to multiplying each
gauge link by a constant phase. This is closely linked to the lattice technique
of twisted boundary conditions. Although one might expect moving the
origin to therefore change the energy levels, we show that only the relative
coupling of states is affected, and explain why this is so.

Having covered these concerns we present our calculation of the magnetic
moment of the proton and neutron in Chapter 8. We have results from both
dynamical and quenched configurations, with the details of the quenched
calculation being found in Appendix A. Using the variational method we
are also able to calculate magnetic moments for the lowest lying odd-parity
states of the proton and neutron. We perform a chiral extrapolation of our
results to compare with experiment.

Finally we present our calculation of the magnetic polarisability of the
neutron in Chapter 9. The polarisability calculations prove much less straight
forward than the moment. We investigate how the results may be improved



through the use of different smeared sources. Again we have results from
both dynamical and quenched configurations which are compared with ex-
periment.



Chapter 2

Quantum Chromodynamics

2.1 The Standard Model

The Standard Model represents our best understanding of three of the four
fundamental forces that shape our universe [1]. These forces are electromag-
netism, the weak interaction and the strong interaction. Electromagnetism is
experienced by particles carrying electric charge and is mediated by photons,
which are chargeless and massless. The weak force acts on the property of
weak isospin and is carried by massive bosons, the charged W, and W~
and the neutral Z° At high energies the electromagnetic force and the weak
force become unified into a single force called the electroweak force.

The third force described by the standard model is the strong interaction
[1]. The strong interaction is felt by particles which have colour charge and
the associated force carrying bosons are called gluons. The only particles
that carry colour charge are quarks and gluons. The name “colour” comes
from the fact that three different colours combine to make a colour neutral
particle in the same way that different colours of light combine to produce
white light. The charges are called red, green and blue for quarks and anti-
red, anti-green and anti-blue for anti-quarks. Each gluon carries both colour
and anti-colour and has zero mass. Quarks are fermions and come in six
types, called “flavours”, which are arranged into three generations. There are
also three generations of leptons each with a charged lepton and a neutrino.
These six flavours of quark and six leptons combined with the force carrying
bosons and the Higgs represent all of the known fundamental particles. With
the recent discovery of the Higgs boson [2,3], all of the fundamental particles



of the Standard Model have been observed experimentally.

Quarks and gluons combine through the strong force to create composite
particles called hadrons. When a quark and an anti-quark combine they
create a bosonic particle called a meson. The lightest mesons are the pions,
which are formed from the combination of up and down quarks with their
anti-particles. Pions are important in describing low-energy properties of
other particles because virtual pion loops are readily formed, creating a “pion
cloud” which surrounds the particle. When three quarks combine they form a
fermionic particle called a baryon. The most common baryons are the proton
and neutron, which make up the vast majority of everyday matter. There
are also theorised types of particles such as tetraquarks and pentaquarks
which are made from four and five quarks and anti-quarks respectively, and
glueballs which are composed entirely of gluons.

2.2 Gauge field theory

Each of the forces described by the Standard Model is formulated as a gauge
field theory [1]. Gauge field theory requires that the interactions of the fun-
damental particles remain invariant under local symmetry transformations
of a gauge group. The combined gauge group of the Standard Model is
U(1) x SU(2) x SU(3). The groups U(1)weak hypercharge a0 SU(2)weak isospin
were combined into the unified electroweak group by Glashow, Weinberg and
Salam, for which they received the Nobel Prize in 1979.

The gauge field theory describing the strong interaction is called quantum
chromodynamics (QCD) [1]. The symmetry group of QCD is SU(3)colour-
SU(3) is composed of all complex 3 x 3 matrices that are unitary ( UTU =
UUT =1) and have a determinant of 1. This group is non-abelian, meaning
that elements in the group do not commute, i.e. in general,

[A,B] = AB — BA #0. (2.1)

It is the structure of the gauge symmetry group that leads to many of the
properties of QCD.

Two of the most important properties of QCD which were recognised
early on are confinement and asymptotic freedom. Confinement refers to the
fact that we never see isolated quarks in nature. It comes about because
the potential energy between the quark anti-quark pair of a meson increases
linearly as the distance between them increases. This so called “string”



breaks when the energy is large enough to produce a quark anti-quark pair
out of the vacuum. These newly created quarks combine with the existing
ones to form two mesons. Similarly, when one of the quarks in a baryon is
pulled away a quark anti-quark pair is produced which combines with the
existing quarks to form a meson and a baryon. Since confinement can not be
shown analytically, the ability to reproduce and investigate this behaviour is
a major advantage and proof of concept for lattice QCD.

Asymptotic freedom [1] refers to the fact that at high energies (or equiv-
alently, small distances) the effective coupling constant of the strong interac-
tion approaches zero. This means that high energy probes of hadron structure
should be able to detect quarks which are approximately free. As a conse-
quence of asymptotic freedom it is possible to calculate some aspects of QCD
perturbatively, but only in high energy processes where the effective coupling
is small.

2.3 The quark model

Before the idea that particles like the nucleon were made up of smaller
elementary particles, it was noticed that hadrons could be organised into
families with underlying internal symmetries. Murray Gell-Mann (who also
coined the term quark) came up with a system for organising particles called
“the Eightfold Way”. Under this system, baryons and mesons are collected
into octets in which their position describes the electric charge of the particle
as well as a property called “strangeness”. The same principle can be applied
to the spin-3/2 baryons to give us the baryon decuplet. This approach was
able to predict the discovery of the 2~ baryon.

The term strangeness came about because certain particles such as kaons
were seen to decay much more slowly than expected, which was considered
strange behaviour [4]. Once the quark model was developed it was under-
stood that the reason for this behaviour was that those particles contained a
strange quark such that they could only decay via weak interactions, which
are slower than strong decays. This is where the strange quark gets its name.

The structure of these multiplets arises due to an internal symmetry of
quarks called SU(3)favour Symmetry. This symmetry relies on the fact that
the masses of the up, down and strange quark are quite similar, at least
when compared to the masses of the hadrons they comprise. The symmetry
is broken however due to the fact that the strange quark mass is around ten



times that of the up and down quarks. This mass difference leads to the
difference in masses of the members of each multiplet.

It was originally believed that flavour symmetry was the fundamental
symmetry of QCD. This was disproved when a new particle was discovered,
the ATt which is made up of three up quarks which are all spin-up [4]. Since
this is forbidden by the Pauli exclusion principle there needed to be another
internal property to separate the quarks, and colour was invented.

2.4 The QCD Lagrangian

In quantum field theory we use the Lagrangian formalism for describing sys-
tems and calculating their equations of motion. The dynamical behaviour of
quarks and gluons is governed by the QCD Lagrangian,

Laen = () (i Dy — m)(a) — Tr (Fu ™), (2.2)

where 1, ¢ are four-component Dirac spinors representing the quark fields,
v are the v-matrices in the Dirac representation [5], and D,, is the covariant
derivative

D, =0,+igA,. (2.3)

The field strength tensor, F),, is defined by,
F,., =0,A, —0,A, +ig[A,, A (2.4)

The gauge fields, and therefore the field strength tensor, can be linearly
combined from the generators of SU(3),

Aua) = 3 M), Fule) = 30 5 F (o), (2.5)

a=1

where A* are the generators of SU(3). They are represented by 3 x 3 traceless
Hermitian matrices satisfying Tr(\\’) = §%° and [’\Q—E, %b] = if“bcg, where
fe¢ are the antisymmetric structure constants. There are eight generators,
corresponding to eight different types of gluon.

Due to the non-abelian nature of SU(3), the F? term in the Lagrangian

gives rise to A® and A* terms which desribe 3 and 4 gluon vertices. This



means that gluons carry colour charge and can interact with each other,
which is a major difference between QCD and QED.

From the Lagrangian density we calculate the QCD action by taking the
integral over space-time,

Seep = / d*zLocp (¥, 9, Ay)
- /d%@/}(x) (iv" D, —m) Y(z) — %/d%Tr (FwF")
= Sp+ 8,

where we have broken the action into a fermionic part and a gluonic part.
The QCD Lagrangian and action must be invariant under both global
and local SU(3) transformations. i.e. for local transformations,

Ar) = Go)A,@)6 (@) - “G@)d (G (@),  (26)

where G(z) = exp(iw®(z)A,). These symmetries govern the interactions of
QCD and give rise to the conservation of colour charge.

2.5 Expectation values

We calculate observables in QCD from vacuum expectation values following
the Feynman path integral approach [1]. We begin with the Euclidean space-
time partition function, also known as the vacuum-to-vacuum amplitude,
which is written as,

Z = / DA, DyYDpe?, (2.7)

where A, is the gauge field and 7 and 1 are fermion fields which are repre-
sented by Grassman variables. S is the QCD action, given by,

S = / d'z (%TrFWFW — z/?sz) , (2.8)

where M is the Dirac operator. To calculate the partition function we take
advantage of the Grassman algebra [1], which describes the anti-commuting

8



fermion fields, {¢,,%,} = 0. This allows us to integrate out the fermion
fields exactly, leaving us with,

Z = / DA, detM e @3 Euw ) (2.9)

which is an integral only over gauge configurations.
In order to obtain results for physical observables we calculate vacuum
expectation values

(0) = (QO|Q) = %/DAMOdetMe‘SG, (2.10)

where O is some operator or combination of operators that we are interested
in. [DA, indicates a functional integral over all of the infinite possible
configurations of the gluon field. detM e~%¢ is a weighting for each gauge
configuration, where Sg is the gauge action. The result is normalised by the
partition function.



Chapter 3
Lattice QCD

Problems in QED are generally solved using a perturbative expansion in the
coupling. This is possible due to the fact that the coupling is small, so that
higher order terms quickly become negligible. In QCD at large energies we
have asymptotic freedom so the coupling becomes small and perturbation
theory can be used. At lower energy scales however the dynamics of QCD
give rise to a coupling that is large and a non-trivial vacuum structure. Thus
a non-perturbative approach is required.

3.1 Lattice gauge action

Lattice gauge theory was developed by Wilson [6] as a method for solving
QCD non-perturbatively. In lattice theory we discretise space-time into a
Euclidean hypercube lattice with finite volume V' and lattice spacing a. In
the standard formalism the quark fields ¢(z) exist at the lattice sites and
the gauge fields are represented by links from each lattice site to each of its
neighbours in the form of SU(3) colour matrices. Derivatives are replaced
with finite differences and integrals with discrete sums. The definition of the
gauge links is given by the path ordered integral,

U,(z) =Pexp (—ig/ dNA,(x + )x/l)) , (3.1)
0
where the ;1 index labels the direction from the lattice site at x to the site

at © + aji, a is the lattice spacing and g is the QCD coupling constant.
For a sufficiently smooth gauge field and small lattice spacing this can be

10



approximated as, '
U,(z) =~ emi9edn(@), (3.2)

The transformation property of the fields under a general local gauge trans-
formation A(X) is given by,
V() = A2)Y(x),  Uulz) = AM2)U,(2)AT(z + ). (3.3)

The product of gauge links around a closed path is called a Wilson loop. The
smallest such loop is a square called a plaquette [1],

Pou(®) = (Uu(@)Us( + U} (x + 9)US(2)) (3.4)

Using the unitarity of the gauge transformation (AAT = ATA = 1) and the
cyclic property of the trace it is easy to see that the plaquette is gauge
invariant. We can write the plaquette more explicitly as,

P

MV(:E) =€

Using the Baker-Campbell-Hausdorff formula for non-commuting operators
this can be written as,

—igaAH(x)e—igaAy(x—i-u) eigaAM (z+v) 6igaAl,(:/lc)7 (35)

Py, (x) = 79 (Fuwt0(@), (3.6)

We see clearly that the field strength tensor is encoded in the plaquettes.
Expanding the exponential in Eq. (3.6) gives,

1
P,(z) = 1—iga®F,, + §gQa4FWF“” +0(a*) (3.7

1 2
1= SReTr [P (a)] = a4% (TrF,, F* + O(a?)) (3.8)

Using the definition of the plaquette in Eq. (3.8) it is possible to define
what is known as the Wilson gluon action,

Sw=p3"S 01— %ReTr P, (2)])- (3.9)

xr  u>v

In the continuum limit where the lattice spacing a — 0 we have,

1 4
Z — g dm,
O(a®) — 0,
g9 1
Sw = 8% / d4x§TrFWF‘“’.

11



Therefore to match the continuum action we require that 8 = 6/g*. The
errors in the Wilson gluon action are O(a?) and O(g?a?). It is possible to
remove the a? errors using other Wilson loops. We use 2 x 1 and 1 x 2
rectangular loops, which have different O(a?) errors that cancel with those
in P,, to give an improved action,
1 1
S = B X 50 Pu) = 151 R + 501 - B 310

xr  u>v

= a' ) > HFW,FW +0O(a) +(9(g2a2)} . (3.11)

T  u>v

This improved action has errors which are O(a?) and O(g%a?). There are
several methods for calculating perturbative corrections to the coefficients of
the plaquette and rectangle terms. Mean field complements the two extra
links in Ry, with 1/ud where u is the mean link, ug = (}P,,). An alternative
approach uses the renormalization group transformations to determine the
corrections. The Iwasaki action is one such, given by [1],

Stwasaki = B8 Y Y (P — 0.0907 R}:?) . (3.12)

T p,v

3.2 Lattice fermion action

After the gauge action the next step is to discretise the quark part of the QCD
action on the lattice. From the QCD Lagrangian we obtain the Fuclidean
space-time continuum Dirac fermion action,

V(' Dy +m)y, (3.13)

where D, is the matrix form of the covariant derivative from Eq. (2.3). Wil-
son discretised this action by simply replacing the derivatives with a central
difference formula and representing the gluon fields by the previously defined
link variables,

PP D = o 0() S0 [Ua@le + ) — Ul — a(e — )] (314

By Taylor expanding U, and 9 and taking the limit a — 0 the continuum
equation is recovered as required for physical consistency. Using this defini-
tion of the covariant derivative we have the simplest possible lattice fermion
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action, known as the “naive” fermion action,

Sy = my Y d(@)()

= D d(@)M[UI(y), (3.15)

where M? is the Dirac operator interaction matrix and * are the gamma
matrices given in the Dirac representation. The Taylor expansion shows that
the error in the naive action is O(a?).

The problem with the naive fermion action is that it gives rise to 16
flavours of quarks. This can be seen by taking the inverse of the free field
propagator, obtained from the Fourier transform of the action with U, =1
for all gauge links,

_ i :
S (p) = my + - Z*y“ sinp,a, (3.16)
o

which has 16 zeros within the Brillouin cell, =% < p, < 7, in the limit
mg — 0. This is known as the fermion doubling problem and makes the
naive fermion action unacceptable.

3.2.1 Wilson action

Wilson solved the fermion doubling problem by adding an irrelevant dimen-
sion five operator called the “Wilson term” to the action. The operator
is “irrelevant” because it is proportional to a and therefore vanishes in the
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continuum limit. This gives the action known as the Wilson action,

Sw o= my > b))

+% S Gyt [U(@)d(e + ) — Ul — p)i(e — )]

~%a Z O [Un@)i(w + ) = 20(2) + Ule = (e — )] (3.17)
= Y b

+% S (@) [(7 = U@ + 1) — (7 + 1)U (@ — )i (x — )]

T,
> e My, (3.18)
z?y
where the interaction matrix M" is written as,

aMY U] =6y~ £y [(r VU b+ (VUL Bin|  (3:19)
w

with the rescaling,
k = 1/(2mga+ 8r) (3.20)
P =/ mga+4ry =/ 2k. (3.21)

Here r is what is known as the Wilson parameter and is almost always given
the value r = 1. The addition of this term suppresses the 15 extra flavours of
quark by giving them a mass proportional to r/a. Unfortunately the Wilson
action has O(a) errors and breaks chiral symmetry.

3.2.2 Clover action

In order to improve upon the O(a) errors of the Wilson action, Sheikholeslami
and Wohlert [7] added another irrelevant operator term of dimension 5, called
the “clover” term. This removes the O(a) errors without ruining Wilson’s
fix of the doubling problem. The resulting Sheikholeslami-Wohlert (clover)

action is,

iaCqwkr -

Ssw = Sw — Tw(x)o-ul/Fuuw(x)7 (3.22)
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where o0, = %[’yu,%]. The clover coefficient, C'syy = 1 at tree level, must
be tuned to effectively remove O(a) errors. The most common method is
non-perturbative improvement [8]. The SW action is known as the clover
action because the field strength tensor in the term is calculated from the
four plaquettes surrounding a point on the lattice in the pr plane, which
make a shape like a four leaf clover. Using the previous definition of the
plaquette from Eq. (3.8) we get an expression for the field strength tensor,

2 G 1 1 1 1 1
90°Fuy = —- o0 — o0t — ST (0% —oWn |, (3.23)

where O,(},,) is the sum of the four plaquettes in the v plane around x and 1/3
of the trace is subtracted to make F),, traceless. Using this definition of the

field strength tensor with the SW action gives us a fermion action accurate
to O(a?).

3.3 Correlation functions

Recall the expression for the expectation value of an observable,
N A 1 A
(0) = (Q|O|Q) = 7 /DA#OdetM e 5%, (3.24)

An important such expectation value on the lattice is the two point corre-
lation function. Here we are interested in baryon energies so we use baryon
interpolating functions as our operators,

Ga(t,p) = Y e P(Qxp(x)¥p(0)[0). (3.25)

This describes the amplitude for a baryon being created at zero and then an-
nihilated at space-time point z. |€2) is the non-trivial QCD vacuum state. We
insert a complete set of Hamiltonian eigenstates and note the interpolating
field couples to all states with the correct quantum numbers,

Gat,p) = Y Y e PXQxs(@)B,s,a)(B,s,alxz(0)[Q),  (3.26)

We assume a wall boundary condition in time such that states do not traverse
the boundary. The translation operator e*¥* where P is the four momen-
tum operator, is applied so that the creation and annihilation operators act
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at the same point,

Ga(t.p) = D3 e Xt Py p(0)e (B, s, q)(B, 5.q |x5(0)|Q)

B,s,q x

= 3 S X Q) (0)] B, s, ) B 5. s (0)])
B,s,q X

= > e ,a(Qlxs(0)| B, s, a) (B, s, q|x5(0)|)
B,s,q

= 3 S Un(0)]B s, p ) (B p [X5(0)]9)

S

then we define,

(QlxslB.5.a) = Asqth
<Bvsaq|>_(B|Q> = )‘B,qwgv (327>

where %, 1% are Dirac spinors, 1% = ,/%—gu(p,s), and A, \ are the cou-
plings of the interpolators at the sink and source. We can then write the
correlation function as,

5 M _
Go(t,p) =Y _|Appl|* e Fm P E—BB > u(p, s)u(p, s) (3.28)
B

S

Recalling that lattice QCD is formulated in Euclidean space time, we replace
t — —it. We project out zero momentum such that Eg = Mp, resulting in,

_ -p+ Mp
Go(t.0) =S A2 Mpt DT VB 3.29
2(t,0) EB] Bal’e T (3.29)

We can calculate a baryon effective mass via,

aM(t) = In (%) , (3.30)

where it is understood in the above formula that the appropriate element of
G+(0,1) is considered based on the desired spin and parity of the baryon. The
effective mass contains contributions from all of the excited states created
by the interpolator as well as the ground state. The higher energy states
are exponentially suppressed such that at large times only the ground state
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contribution remains. By waiting for the effective mass to plateau and then
fitting we can extract the mass of the baryon ground state.

At zero momentum the even-parity spin-up and spin-down states propa-
gate in the (1,1) and (2,2) components of the Dirac matrix respectively. In
standard mass calculations the spins are equivalent in the ensemble average
so the average of spins can be taken to improve statistics. In our background
field calculations, however, we need to take advantage of the fact that spin-up
and spin-down energies are different in the presence of a magnetic field.

3.4 Interpolating fields

In order to actually calculate the two point baryon correlation function we
express the baryon interpolating fields in terms of quark fields. The standard
type 1 interpolator for the proton is written,

Y1 = € (u TP d)ue, (3.31)

where €% is the Levi-Civita tensor, C' is the charge conjugation matrix (=
Y072 in the Dirac representation), and u and d are Dirac spinors representing
up and down quarks respectively. T indicates a transpose in the Dirac index
and a, b, and ¢ are colour indices which are summed over. We can also define
the adjoint field,

1= X];,YO _ EabcuaT<de750TucTT)
GGbCﬂa(db’y0’75OT’70ﬂCT), (332>

where we have inserted (7°)2 = I to get 4 = u'7° and d = d'7°. Using these
definitions we can then write the quark level correlation function,

Gorr(t.D) = 3 e Q™ (ut (@) (C7)apdl() u ()

e a (0) (A4(0) (1" €1 ) i5T(0)) 19)

_ Z _efip-xeabcea’b’c’ (C’Ys)aﬁ (7075TCT70)Q/5/

() (ue (2)db(2)) u ()2 (0) (4 (0)a5" (0)) [2)(3.33)

Here o, 8, and v and o/, #’, and 4/ are Dirac indices and there is a sum over
a, B, o, and B’. The Grassmann integration, cf. (2.7), demands we make
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all possible contractions between the quark fields, replacing pairs of 1t with
the inverse fermion matrix, M !, which corresponds to Wick’s theorem. This
gives us the correlation function in terms of quark propagators,

Gy = D = X e (C)as (1" 11 )

X

{80 S S + S5 S St |

_ Z_e szeabc abc{scc lTr[Ssa’(C«,YSSgb’,.yO,yE)TC’T,YD)T

U,y
X

[Szcl (C’YSSgb/’YOfYSTCT"YO)TSaal],Y,y/ }’ <334>

where the Feynman propagators are defined,
S 5 =S 5(x,0) = (Q|contraction between u(z) and ﬂ%(0)|§2> (3.35)

and similarly for S;. The two point correlation function for the neutron
is obtained the same way but with up and down quarks switched in the
interpolating field. The numerical values of the Feynman propagators are
calculated from the matrix inverse of the Dirac operator for the appropriate
fermion action on a given background gauge field,

SF(yuﬁa b;I,Oé,CL) = <M71>y’ﬁ’b (336)

zT,a,a)

which gives the amplitude for a quark to go from space-time point x with
Dirac index « and colour a to point y with Dirac index § and colour b.
3.5 Gauge field ensemble

In order to get a final value for the expectation value we must perform the
functional integral [ DA,. We cannot calculate correlation functions on an
infinite number of gauge fields so we replace the functional integral with an
average over a finite gauge ensemble,

0) ~ % > OHUH, (3.37)

where the configuration {U} is selected with probability,
detM e~ (3.38)
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A gauge ensemble is generated using an importance sampling Monte Carlo
technique. Each configuration is generated from the one before it by propos-
ing random (or pseudo-random) updates U — U’ which are accepted with
probability P(U — U’) = e=2% where AS = S[U’] — S[U]. This results in
an ensemble which is representative of the physical world.

It is possible to save a great deal of computation by simply setting
det M = 1 because the remaining gluonic part of the action is entirely local.
This is known as the quenched approximation and is equivalent to suppress-
ing disconnected pion loops. The effect of the quenched approximation on
observables is non-trivial. In this work we perform calculations on both
quenched and dynamical gauge configurations and compare the results.
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Chapter 4

The Background Field Method

4.1 Introduction

The background field formalism is a well established technique for inves-
tigating electromagnetic properties in lattice QCD [9-21]. It allows us to
introduce a classical electric or magnetic field over the lattice and determine
hadron properties by looking at the change in energy. The technique is easy
to implement computationally. Calculations proceed like any other lattice
calculation but with a slight modification to the gauge field. This modifi-
cation comes in the form of a U(1) phase factor which multiplies the usual
gauge links. By making the appropriate choice of phase factors it is possible
to introduce a constant electric or magnetic field on the lattice.

We calculate propagators with a given background field and then combine
them to produce hadron correlators with a magnetic field present. Unlike
many lattice calculations, up and down quarks must be treated separately
due to their different charges. We consider propagators in background fields
related by the same factor as the relationship between their charges. Hadron
energies at zero momentum are extracted in the usual way, except that the
effective masses are shifted by the presence of the background field. For a
constant magnetic field the relationship between the field and the effective
mass of a particle of charge e is given by [9, 11],

E(B) :M—u-B+@—4—WﬁBQ+(’)(B3), (4.1)

2M 2
where we define i to be the magnetic moment, and 3 to be the magnetic
polarisability. The term e|B|/2M describes the Landau energy. From this
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relation the magnetic moment and magnetic polarisability of a hadron can
be determined.

The addition of a magnetic field to the lattice can have subtleties and
cause additional issues which may not be immediately apparent. In Chap-
ter 6 we discuss the Landau levels, an effect that arises due to the quantisation
of orbital angular momentum, which affects charged particles. In Chapter 7
we look at twisted boundary conditions, a technique which is similar in im-
plementation to the background field method. In particular, we explore how
a shift in the origin of the background field can have unintended consequences
for background field calculations.

There are also issues which are specific to electric fields. One is the
realness of the phase, which is in question because electric background fields
involve the zeroth (or time) dimension [20]. Another is that charged particles
in electric fields are moved by the field, making their zero momentum state
hard to pin down. Understanding issues like these is crucial for performing
precise background field method calculations.

4.2 Formulation

The background field method is formulated by beginning in the continuum
limit. We modify the QCD Dirac operator with the addition of a term
describing minimal electromagnetic coupling.

D, = 0.+9G,
=D, = 0.+ 9G,+qA,.
where g is the QCD coupling, G, is the gluon field, ¢ is the electromagnetic

coupling, and A, is the electromagnetic gauge field. The EM gauge field is
then discretised in the same manner as the gluon field in Eq. (3.1),

T+afl
U;SB) (r) = exp (zq/ dyuAu(y)) , (4.2)
which for an appropriately smooth, continuous gauge field results in,

UlSB)(x) ~ laeAn(@), (4.3)
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This term then multiplies the normal gauge links. Therefore we can simply
consider the gluon field to have been modified by a U(1) phase,
Uu(e) = Ulle) = Un(0)UP(w)

W
— Uu (I)equ”(I) ’

and otherwise perform all calculations as usual using these modified gauge

links.

4.3 Quantising the magnetic field

In order to perform useful calculations with the background field method we
need to have a magnetic field with a well defined magnitude and direction.
We use Maxwell’s equations to make a choice of gauge potential which will
give us a constant field along one axis,

B = VxA (4.4)
B, =By =Fi, = Ay — A
= 0,4, — 0,A,. (4.5)

There are multiple (in fact infinite) possible choices for A, (z) which lead to
the same physical field B. We commence with,

which gives a constant magnetic field of strength B in the z-direction. We
test that this gives the correct value for the magnetic field on the lattice
by examining a single plaquette. A plaquette is the smallest example of a
Wilson loop, which is a closed path of gauge links. It is calculated from the
product of the gauge links over the path, with backwards links represented
by Hermitian conjugates U (x). It was shown in Equation (3.8) that the field
strength tensor is encoded in the plaquettes on the lattice,

P, (z) = exp (iga’F,(z)) . (4.7)

In our case of a constant background field this equation is exact because
the higher order terms involve a derivative of at least second order. The
definition of the background field link in Equation (4.3) is also exact in this
case.
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For a general plaquette P,, (not near the boundary of the lattice) we get,

» . ;2
zaeByezaeB(era) — el €B, (48)

e
as we hope. However, when we get to the boundary where y = N, — 1 there
is a discontinuity in the gauge field due to the periodic boundary conditions

which gives us,

o—iaeB(Nya—a) ,iaeB(0) _ ,—ia%eB(N,~1) (4.9)

In order to correct for this discontinuity we use the only other free variable
available in Equation (4.5), which is A,. We give A, the following values,

_ |NyBz, y/a=(N,—1)
Ay = { 0, elsewhere. (4.10)

Such that at the y/a = N, — 1 boundary we now get,

—iaeB(Nya—a) jiaeBNy(z+a) iaeB(0) ,—iae BNy(x)

(& € = €

eia2 eB )

—iaeB(Nya—a) jia’>e BNy

€ e €

as required. There is then another problem when we arrive at the double
boundary, x = N, — 1 and y = N, — 1. At this point the result of the
plaquette is,

» N ) . _ I 5
e iaeB(Nya a)ezaeBNy(O) meB(())6 iaeBNy(Nga—a) _ ela eBem eBNme' (411>

e
The only way for this to result in the value we want is if,

pia’eBNy Ny _ 1, (4.12)
which is only true under the condition [12],

2mn

N,N,’

eBa* = (4.13)

Here n can be any integer, so we have a quantisation condition which limits
the available choices of magnetic field strength for a uniform field everywhere.
This condition is very important in background field method calculations
because the energy relation given in Eq. (4.1) is only valid for small fields.
If we are working on a small lattice then the magnetic field will be large and
higher order terms will begin to dominate. This motivates us to not only
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U' (x,y+a)

(x,y+a) (x+a,y+a)
< ®
A
Uf(x,y) U,(xta,y)
v
x) T (xtay)
U, (x,y)
(X,y+a) exp(laeB (y+a)) (x+a,y+a)
< ®
A
1 1
v
xy) T (xtay)

exp(-1aeBy)

Figure 4.1: Top: The definition of a general plaquette of gauge links. Bottom:
The values of the background field links U, ;(LB)(x) for a general plaquette away
from the boundary.
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(x,0) exp(iaeB(0)) (x+a,0)
@< ®

A

v

(x,Nya-a)

(x+a,N,a-a)

exp(-1aeB(N,a-a))

(x,0) exp(iaeB(0)) (x+a,0)
< ®

A

exp(-1aeBNx) exp(iaeBN,(x+a))

v

(x,Nya-a)

(x+a,Nya-a)

exp(-iaeB(N,a-a))

Figure 4.2: Top: A plaquette at the edge of the lattice, y = N, — 1. Bottom:
The same plaquette with the boundary terms added to the background field
links to correct for the discontinuity.
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(N,a-a,0) exp(iaeB(0)) (0,0)
@« ®

A

exp(-iaeBN,(N,a-a)) exp(iaeBN,(0))

v

»
»

[
AN . (ON,a-
(Pea-a,Nya-) exp(-iaeB(N,a-a)) 9

Figure 4.3: The plaquette at the corner of the lattice, v = N, -1,y = N, —1.

use a large number of lattice sites but also a relatively large lattice spacing
a. However we still have to be careful of discretisation errors and our use of
improved actions will be of utility.

Historically the computational cost for having a large enough lattice to
meet the small field requirement has often been found to be impractical.
As a result of this, other calculations have used ways of getting around the
quantisation condition, allowing them to use smaller fields than the lattice
would otherwise allow. One technique is to use a linearised version of the
background field gauge links,

UP) = e — 1+ iaqA,, (4.14)

which has O(a?) errors. It was shown in [20] that in the electric field case
this introduces order E? errors and has a significant effect on the calculated
polarisability. In our magnetic field case the errors would be order B? and
we would expect a similarly significant impact on the magnetic polarisability
results. One also has the difficulty of introducing a fixed boundary condition
in a spatial direction of the lattice. Another technique is to use the full expo-
nential form for the background field gauge links but avoid the quantisation
condition by again using a fixed boundary condition in the x direction [15].
An early paper [12] used the exponential phase factor and periodic boundary
with the corrected phase along the boundary but ignored the quantisation
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condition from the corner. They put the quark source at the centre of the
lattice to reduce the errors from the discontinuity in the magnetic field at
the boundary.

Due to the unpredictability of the errors associated with these methods
for avoiding the quantisation condition we are committed to using the fully
quantised, uniform field for our calculations.
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Chapter 5

Simulation Details

Our background field method calculations primarily use the 2+1 flavour
dynamical QCD gauge configurations provided by the PACS-CS collabora-
tion [22] through the International Lattice Data Grid [23]. They are 32% x 64
lattices made using a non-perturbative O(a)-improved Wilson quark action
and Iwasaki gauge action. Simulations were carried out at § = 1.9, corre-
sponding to a lattice spacing in the physical limit of @ = 0.0907(13) fm. We
used four values of the hopping parameter x,q corresponding to pion masses
from 622 to 282 MeV with k¢=0.13640. The full details of each ensemble
are given in Table 5.1, where a determined from the Sommer parameter of
ro = 0.49 fm are also provided.

Fud m, (MeV) a (fm) # cfgs
0.13700 622 0.1022(15) 320
0.13727 512 0.1009(15) 320
0.13754 388 0.0961(13) 400
0.13770 282 0.0951(13) 400

Table 5.1: Simulation details.

The Sommer scale [24] involves calculating the static quark potential and
then fitting to the Sommer parameter, defined by,

_ dV(r)
- dr r=ro

e =1.65 (5.1)

Given the physical value of the Sommer parameter ry = 0.49 fm one can then
determine the lattice spacing.
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It should be noted that these configurations are dynamical only in the
QCD sense. There was no magnetic field included when they were calculated,
so the sea quarks do not “see” the field. The background field can be put
on the sea quarks straightforwardly by generating a separate Markov chain
for each field strength using the background field modified gauge links in the
fermion action. This is obviously very computationally expensive because the
calculation of the fermion determinant is already the most difficult part of the
gauge field generation. The other problem with this approach is that because
there is a separate ensemble for each field strength the correlation between
the zero and non-zero field correlation functions is lost. Our results exploit
this correlation extensively. Without this, tens of thousands of dynamical
gauge fields are required and must be left for future consideration.

Alternatively to the full calculation there exist techniques for a reweight-
ing of configurations in order to correct for the background field [25]. This is
less computationally intensive than just recalculating each gauge field, but
the extent to which the necessary correlations are preserved remains to be
investigated. In this work we ignore the effect of the background field on
the sea quarks. While we expect these contributions to be small, it will be
important to eventually include them in future precision comparisons with
experiment.

For our propagators we use a Clover fermion action with Csyy = 1.715
determined non-perturbatively [8]. Unless otherwise specified, all our prop-
agators use the interpolating fields,

X7 = (u" Cysd)u, (5.2)
for the proton and for neutron,
X1 = (d"Crysu)d. (5.3)

In order to improve ground state overlap we employ fermion source smearing
on our interpolating fields using stout-smeared links. Again unless other-
wise specified, all propagators used 100 sweeps of gauge-invariant Gaussian
smearing at the source with a smearing coefficient of 0.7. We used peri-
odic boundary conditions in all the spatial dimensions and a fixed boundary
condition in time.

We calculated propagators at six non-zero field strengths, corresponding
ton =1, -2, 3, 4, -6, -8 in the quantisation condition given by Eq. (4.13).
Using the relationships ¢ = —e/3 and ¢, = 2¢/3 to combine up and down
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quark propagators with the appropriate field strengths resulted in hadrons
in fields of strength eB = -0.087, 40.174, -0.261, -0.345 GeV at the physical
lattice spacing. This is not quite as efficient as the choice of fields we used in
our quenched calculation (Appendix A.1), but gives us all of the four smallest
available field strengths.

5.1 Error analysis

The standard deviation for a large sample of uncorrelated measurements can
be written as,

N

1 72
Oy = NZ(:@ — )2, (5.4)

=1

where IV is the sample size, x; is the value for measurement ¢ and Z is the
sample average. In using Eq. (5.4) each entry of x; must be a measurement.
However, in Monte Carlo, each sample need not be a measurement. Only
after averaging over several samples does one obtain an estimate suitable for
Eq. 5.4. We therefore perform our error analysis using the jacknife method.
Performing a jackknife involves creating N subensembles by removing the
nth configuration of the original ensemble,

1 N

i=1i#n

The variance is then given by,

2
Oy

S S - X (5.6)

where X is the mean of all the X; subensemble measurements. In order
to get errors for the correlation functions, the energy shifts, and the mo-
ment /polarisability values we use a third order jacknife. This requires a
complement set with the ith, jth, and kth configurations removed for all
values of i, 7, and k. One challenge of a third order jackknife are the huge
memory requirements, which scale approximately like O(N3), such that we
sometimes have to group some configurations into bins.
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Our fits of the effective energies and of the energy shift as a function
of the background field were performed using linear least squares fits. The

naive x? is defined by,
X\
=y < - ) , (5.7)

i=1

where k is the number of points, X; is the value at point ¢, y; is the value
predicted by the fit at that point, and o; is the error at that point. The
degrees of freedom is just the number of data points minus the number of
fit parameters (1 for effective mass fits). The 3, is a measure of how
well the data fits the model, with a value on the order of 1 suggesting a
good fit. However, there can again be correlation in the values used in the
fits, such as between adjacent time slices when fitting the effective mass or
between background field strengths when fitting p or 8. This would lead to
overconfidence in the quality of our fits, so we take this into account by using
the full covariance matrix in the calculation of our 32 ; values,

k
X = Z(Xi — 1) (C )i (X5 — ), (5.8)

where C' is the covariance matrix, defined by,

where X; and 7]- are the ensemble averages at points 7 and j and X, X is the
ensemble average of the product of the two points. This gives an accurate
measure of the quality of the fit.
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Chapter 6

Landau Levels

6.1 Introduction

Observe the equation which describes the energy for a particle in a uniform
magnetic field [9, 11],
E(B) :M—M-B+@—4—”532+0(33). (6.1)
2M 2
In addition to the bare mass and the terms involving the magnetic moment
and polarisability, there is another term which is proportional to the magni-
tude of the magnetic field,
e|B|
oM’
where e > 0 is the elementary charge, B is the magnetic field strength and
M is the mass of the particle. This term is called the Landau energy, and
it arises from the quantisation of angular momentum for a charged particle
in a magnetic field. The charge in this case refers to the overall charge of
the hadron, so it is expected to be zero for a neutral particle such as the
neutron. For the proton however the term is non-zero, and has a significant
effect when performing background field calculations.

When calculating magnetic moments the relevant term in the energy re-
lation of Eq. (6.1) is isolated from the other terms by taking a difference of
correlation functions. Taking the difference of a spin-up and spin-down ef-
fective mass or taking the difference of positive and negative fields causes all
the terms in the equation except for the magnetic moment term to cancel, in-
cluding the Landau energy term, leaving terms of order B3. This allows us to

(6.2)
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calculate magnetic moments of charged particles without direct interference
by the Landau energy term.

The magnetic polarisability term is isolated by taking the average of spin-
up and spin-down or positive and negative fields to remove the moment term,
and then subtracting off the zero-field mass separately. This however does not
remove the Landau energy term, which cannot be cancelled by any combina-
tion of spins or fields. This means that the effective energies that we must try
to fit in order to calculate magnetic polarisabilities will always include this
extra energy for charged particles. It is possible to calculate analytically the
size of the Landau energy given we know the charge and mass of the particle
and the strength of the magnetic field. This value could then be subtracted
from the spin averaged effective mass to leave only the contribution from
the polarisability. In practice however, this won’t necessarily work because
Eq. (6.1) only tells part of the story. The energy-field relation describes the
shift in energy due to a magnetic field for the ground state of a particle. In
addition to the ground state Landau energy there exists an infinite tower of
Landau levels with energy given by,

B
E, = %(Qn +1) for n=0,1,2,3, ... (6.3)

All of these levels contribute to the background field correlation function.
Like any excited state these are exponentially suppressed in large Euclidean
time. Unfortunately at typical field strengths used in background field calcu-
lations the difference between the energy levels is much less than the differ-
ence between, say, the nucleon and its first excited state (the Roper). This
means that it takes much longer for the higher Landau levels to be suppressed
and leave only the ground level, by which time it is likely that the signal will
be overcome by noise.

Another problem created by the Landau levels relates to momentum
states. The Landau energy comes from charged hadrons with non-zero or-
bital angular momentum. The typical effective mass calculation used in
background field calculations involves projection to a zero momentum plane
wave eigenstate with coordinate-space wavefunction,

s (6.4)

and thus will project a superposition of Landau levels. This will affect the
proton magnetic moment results as one relies on the cancellation of the en-
ergy associated with the Landau levels in subtracting different spin or field

33



orientations. We have found that the effect of this on the magnetic moment
calculation appears to be small as the proton effective energies used to calcu-
late the magnetic moment are similar in quality to those for the neutron. This
can be seen in the effective energy plots in Section 8. In the future it would
be interesting to project to the lowest Landau level. In this investigation we
will probe the nature of this state in a uniform field.

The way the Landau levels could be handled is to replace the projection
to a plane wave with a projection to the lowest Landau level.

Zwo )(0x (2)x(0)]0), (6.5)

which results in a correlation function where only the lowest Landau level
contributes to the energy of each state. In Ref. [21] this technique was inves-
tigated using the wave function of a ground-state harmonic oscillator,

Yl (z) = el (6.6)

They investigated the finite volume and finite lattice spacing effects on the
Landau level wavefunction and found that the discretisation effects on the
wave function of the lowest Landau level were negligible, but that the finite
volume effects were important, motivating the determination of the finite vol-
ume Landau ground state wave function for projection. We hope to perform
further research into this technique in the future.

6.2 Derivation

The Landau levels can be derived [26] by considering the Dirac equation for a
point-like particle with charge e in an external electromagnetic field defined
by its potential A,(z),

("0, — er" A, — m)i(x) = 0, (6.7)

This can be rewritten more explicitly by breaking +* into v° and 4* and then
multiplying both sides by 7,

00
10 T =09+ e it er g + ) (6.8)
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We then choose the Dirac representation of the gamma matrices and write
this as,
R

82?

where the matrices are defined,

==y ) a=n=(2 7). Gw)

One then writes 1) = (i), which leads to the pair of coupled equations

=(a-p—ea-A+eA+ pm). (6.9)

z% = o-(p—eA)x+eA% +mo, (6.11)
Z(Z)_;( = o-(p—eA)p+eA’x —myx. (6.12)

Then, as with the background field method, we choose a vector potential
that gives a constant magnetic field B along the z axis, A = A% = A% =

AY = Bx. We take a stationary solution of energy E, 1) = e tE! (i)) SO
that Eq. (6.11) and (6.12) become,

(BE—m)¢p = o-(b—eA)x (6.13)
(E+m)x = o-(p—eA)g, (6.14)

which we can combine to eliminate y and get an equation for ¢:
(E* —m®)¢

p + e’ B*2* — eB(o, + 2zp,)]¢
+ (eBz — p,)* + eBa.)¢. (6.15)
This is the Hamiltonian of a harmonic oscillator. Since p,, p, and o, commute

with the right-hand side, we constrain the particle to the z — y plane (by
setting p, = 0) for simplicity and look for a solution of the form

¢(x) = '™V f(x) (6.16)
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where f(x) satisfies equation (6.15),

A+ B - eBo] J0) = (B ). (617

Constraining B to be positive such that eB > 0, we define extra variables,

- Bty

E? —m?
a = ——,

eB
so that Eq. (6.17) simplifies to,

( d +w2—az)f:af.

dw?

If f is an eigenvector of o, with eigenvalue a = +1,

f = (‘}(C)l) fora=1
f = (f01> fora = —1,

(i~ ) o) = ~(a+ ), a =1

dw?

then f, satisfies

which has the solution, written in terms of a Hermite polynomial H,(w):
fo = ce " PH, (w).

Given that Hy = 1, one can see that this has the same form as the suggested
ground state wavefunction in Eq. 6.6. However this is only a solution if we
have a + a =2n+1, for n = 0,1, 2, .... Therefore the energy levels are given
by,

E* = m*+eB2n+1-0q)

B
E = m\/1+€—2(2n+1—a).
m
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Then using the small # expansion of /1 +z with z = 5 (2n+1 — a),

2 3

x Xz T
Vitz=1+2 -2+ 4+0(@*
tr=1+g-ZF++ (zh),

we can get the required energy expansion:

eB eB  (eB)?
E = Cont1)—a— —

m Qm( n+1) a2m 8m3
eB)3 eB)*
(Sml (2n + 1 _ 04)3 + O<<m7)

(2n+1—a)’

+

). (6.18)

The first term is just the mass and the second term describes the energy due
to the Landau levels. The third term is actually equivalent to the magnetic
moment term in Eq. (6.1), as it is proportional to «, which is the eigenvalue
of o, which appears in the spin operator. The higher order terms can safely
be ignored for e B < m. Therefore we have shown that the Landau levels for
a charged particle in a magnetic field are given by,

B
Elondan = %(27} +1) for n=0,1,2,3,... (6.19)

with a wavefunction proportional to Eq. 6.6 for a particle of charge e and
mass m in a field B.

6.3 Examples

We can see evidence of the Landau levels in some of our energy shift plots.
These are plots of the average of spin-up and spin-down energies with the
zero-field mass subtracted off. That means that the only effects that should
be present are the magnetic polarisability, the Landau energy and some neg-
ligible higher order contributions.

Figure 6.1 displays an effective energy plot for the average of spin-up and
spin-down protons in a magnetic field with the zero-field mass subtracted.
This is from our earlier (quenched) calculation using the heaviest quark mass
considered at the smallest background field strength. The details of this cal-
culation are found in Appendix A. We notice that there were two very
distinct plateaus that occur at different energy levels with a constant down-
ward slope between them. We fit these plateaus and find values of 45.3 MeV
and 19.5 MeV, a difference of approximately 26 MeV. Using knowledge of
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Figure 6.1: Spin-averaged energy shift from an earlier quenched background
field calculation.
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the lattice parameters and the magnetic field that we are working with, we
can calculate the expected difference in energies between two Landau levels.
As derived in Eq. (6.19) the difference between the first and second Landau
levels (or any adjacent levels) is given by,

¢|B| ¢|B|
2M M
where e is the charge of the particle, B is the strength of the magnetic field
and m is the mass of the particle.
Our quenched calculation used a 323 spatial lattice with lattice spacing

0.127 fm. For the mass we have to use the mass calculated on this lattice,
rather than the physical mass, so M = 1670 MeV.

(3—1)= (6.20)

elB] 3.2 1

M nxnycﬂﬂ
B 3-2m 1
©322(0.127fm)2 1670 MeV
= 26MeV,

where the factor of 3 is associated with the quark charge. This is almost
exactly what is given by the difference in plateaus from the effective energy
plot. We are therefore led to believe that the drop that we see from one
energy level to another is due to the Landau levels. The experimental value
for the magnetic polarisability of the proton is positive and the polarisability
term in Eq. (6.1) has a minus sign. This means that the contribution to the
effective energy from the polarisability should be negative. The fact that we
see the energy shift as positive in this region is thus due to the Landau levels.

We can also calculate the expected energy shift due to the polarisability
using the experimental value, which for the proton is 1.940.5 (10~* fm?) [27],

47t (eBa?*)?
2 e2a*
4w (eBaz)QB
ez 2at
137 327
= 1.9 x 10~* fm?
20127 fm)i goz (19X 107w

= 3.3MeV

4
BB —
25

This value is very small, only a fraction of even the lowest Landau level
energy, due to the fact that the lattice spacing is quite coarse, allowing a
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Figure 6.2: Spin-averaged energy shift from our dynamical background field
calculation.

small field. Since it is so small it may not be possible to extract this shift
even if we project to the lowest Landau level. In the example from Fig. 6.1
if we assume that the levels we have fit are the third and second Landau
levels then subtracting the energy of the lowest level from the second plateau
results in a value which is consistent with a shift of 3 MeV. This relies on the
fact that by this time the errors have grown quite large, and the value is also
consistent with zero. Therefore it may be necessary to use somewhat larger
background fields for calculating polarisabilities of charged particles simply
because the shift will otherwise be too small to resolve.

Figure 6.2 displays another effective energy plot for the average of spin-up
and spin-down in a magnetic field with the zero-field mass subtracted, this
time from our dynamical calculation. Again it is at the heaviest available
quark mass (although much lighter than the heaviest quenched calculation)
and the smallest magnetic field. Here we again see multiple plateaus, al-
though not nearly as clearly as in the quenched case. There is a sort of
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plateau at 18-19 and then a quick drop to a quite clear plateau at 21-24.
This is followed by a downwards drift to zero at 25-28 which could be fit
as a plateau due to the large errors at those times. We can again calculate
the expected Landau levels given the properties of this lattice, with lattice
spacing a = 0.10224 fm and lattice nucleon mass M = 1420 MeV,

elB|  3-2m 1

M Ny Ny G2 M
B 32 1
©322(0.10224 fm)?2 1420 MeV
= 48 MeV.

This is larger than for the quenched case due to the finer lattice spacing
and smaller nucleon mass. Therefore we would expect the Landau levels to
be suppressed more quickly. Comparing this value to the plateaus in the
effective energy plot we see that it is too large to be associated with the
plateau in the middle at about 20 MeV. The value is consistent with the
difference between the first plateau at time slice 18 and the last time slice
before signal is lost, where the value is approximately zero. We also see that
the value is again positive up until the loss of signal, in conflict with the
negative mass shift we expect from the polarisability.
We can again calculate the expected energy shift due to the effect of the
polarisability,
4—7TBBQ — 4_7‘-5(63612)2
2 2 e2a*
47 (eBa?)?
2 2(147
13 3-2m 4 3
= 2010224 fm)1 gz (L0 107
= 8.0MeV.

The only thing which has changed from the quenched calculation is that the
lattice is finer, which leads to a larger field strength. This value is larger
than the one from the quenched lattices, but is still small compared to the
Landau level energies. Due to the large errors and inconclusive plateaus it is
probably not worth trying to draw too many conclusions about which levels
we might be seeing.
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These examples show clearly that the Landau levels are affecting back-
ground field method effective energy plots. It is also clear that the lowest
level is not the only one which is present. We believe that implementing a
projection to the finite volume wave function of the lowest Landau level will
allow us to remove the contributions coming from the higher levels. From
there we hope that we can simply calculate the Landau contribution and
subtract it in order to get the pure polarisability based mass shift. If the
technique works it may be that the error associated with the Landau energy
makes it difficult to resolve a value when the field is weak and therefore the
shift is small. Since the Landau levels scale with B and the polarisability
term scales with B? there could arise problems when going to very small field
strengths, making it harder to achieve the same level of precision we could
get with neutral particle polarisabilities. These are interesting issues to be
investigated in the future.
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Chapter 7

Twisted Boundary Conditions

7.1 Introduction

Twisted boundary conditions (TBCs) are a technique used in lattice QCD
to access momenta other than the usual multiple of 27 /L on a lattice with
spatial volume L3 [28,29]. A phase or “twist” of ¢ is introduced to the
gauge field, which shifts the momentum of a particle by ¢/L in the direction
altered by the phase. The phase can be introduced in a number of ways, such
as in a chunk on the boundary, or uniformly through the lattice with phase
e/l Although twisted boundary conditions are not directly related to the
background field method, they are important to understand due to the way
they can arise naturally in background field calculations.

The boundary phase ¢ can be spread out across all the sites of the lattice
via gauge transformation. This looks similar to the background field method,
which also introduces a phase at all sites of the lattice, except that in twisted
boundary conditions the phase is constant. Twisted boundary conditions
in background field calculations were touched on briefly in Ref. [30] in the
context of electric polarisabilities.

In the infinite volume limit a translation of a component of the gauge
field such as,

Ay = By = B(y — vo), (7.1)

is a simple gauge transformation and therefore has no effect on any calculated
observables. If we define the origin of the gauge field as the point where
A = 0, then this translation moves the origin of the field from y = 0 to

Y = Yo-
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When formulating the background field method in Section 4 we chose
A, = —By in order to produce a background field B. Had we chosen A, =
—B(y—yp) the resultant background field would have been the same. Due to
the periodic boundary conditions on the lattice, however, these choices are
not directly related by a gauge transformation. Making the second choice for
A, results in the following change in the gauge links,

U (2) = VU, () — U'P(z) = 200 (2), (7.2)

where Uj(z) is the pure QCD gauge link. As stated this does not change
the magnetic field induced on the lattice and therefore does not affect the
energy shift due to the magnetic moment or polarisability. However it does
change the nature of the two-point function calculated on this transformed
field. This will be explored in detail.

We can rewrite the modified links as,

6iw(y—yo)U1 (z) = iU iy T T, (z), (7.3)

so we can see that we have effectively multiplied each z-direction gauge link
on the lattice by a constant phase e®¥ . This phase appears to be equivalent
to a twisted boundary conditions phase.

In this chapter we will first briefly describe how twisted boundary con-
ditions work. We will use tree level lattice calculations to demonstrate the
effect of twisted boundary conditions on an effective mass. However, we will
then show that when combined with a quantised background magnetic field
a twist-like phase has no effect on the physical states. Finally we will explain
why this happens by illustrating how the phase can be removed through a
gauge transformation making use of the periodic boundary conditions and
the quantised form of the background field.
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7.2 Twisted boundary conditions and
momentum shifts

Begin by considering the naive fermion action on the lattice, with two de-
generate flavours of quarks and gauge links U, (x) modified by a U(1) phase
exp (1aA,(x)),

1
2

Sy = 5 30 407" |Uu) exp (ia A, (%)) a(x + 1)

x?ﬂ

Uj(oc = i) exp (—iaA,(x = i) alox = )] +my 3 a()a(x) (74)

Here we have quark fields ¢(z) and g(z) which satisfy periodic boundary
conditions and we take the U(1) field to have the value

w w
A= R .

The constant field can be described by splitting the term into two z-dependent
parts that act on the quark fields

Sy = % XZ exp(—ia(w/L)z) q(x)yv" [Uu(x) exp (z’a(w/L)(z—i—é))q(x—i—ﬂ)—

U (o = ) exp (ia(w/ L) (2 — 2) Ja(x = )] +my Y- a(x)a(x). (7.6)

Here we have defined z = 22 = (0,0,0, 2). We can then choose to redefine
our quark field variables to absorb the terms that pre-multiply them.

() = exp(ia(w/L)z)q(x)

q(x) = eXp(—ia(w/L)z> 4(x) (7.7)

Such that our fermion action is now given by

3 1

1= 5, Zﬁ(x)’y“ (U, (x)q(x + 1) — Ug(x — [@)§(x — fi)] +my Z(j(x)g(X%

xvﬂ X,/fL
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which is the same as Eq. (7.4) except that the U(1) field is gone and the quark
fields now satisfy twisted boundary conditions in the z direction instead of
periodic ones, .

j(z+ L) =e"™q(z

flz k)= e (7.9)

q(z+ L) =e"q(2).

We can then write the resultant free propagators in terms of both ¢(x) and
q(x),

- R _ dk4 1 ei(ker,%/L)-x s TL
S(x) = (((x)q(x)) = / P D = = /W5 (x),
2m L3 Ek: it (b, + )+ M

(7.10)
where the sum is over lattice momenta k = (27/L)n and n is a vector
of integers. S(x) satisfies twisted boundary conditions and S(x) satisfies
periodic boundary conditions. The momentum in the denominator of the
propagator has been shifted by w/L in the z-direction, such that there is
now no zero momentum state.

7.2.1 Examples

In order to examine the effects of twisted boundary conditions we make use
of tree level calculations. We do this because the effect of twisted boundary
conditions when using a small twist can be quite small and when using a
large twist it introduces a large amount of statistical error, making the effect
hard to see.

Tree level calculations are done by setting the gauge field to the iden-
tity everywhere (before applying any background field or twisted boundary
phase). This means that propagators can be quickly produced since there is
no ensemble to average over and only one propagator per quark flavour is re-
quired. The resultant correlation functions give smooth effective masses with
zero error. Of course setting the gauge field to unity turns off all QCD inter-
actions, making the calculation a poor representation of a physical hadron.
Despite this we can take advantage of the lack of statistical error to draw
some meaningful conclusions.

The following tree level calculations were calculated on a 323 x 128 lattice
using a clover fermion action. Boundary conditions are periodic in the spatial
dimensions and fixed in the time direction. Where noted we use twists in
one spatial direction of exp(iw/L) with w = 2mn/N,N,. The twists on the
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Figure 7.1: Tree level effective mass plot showing a normal neutron effective
mass (no twist), an effective mass shifted by a uniform twist (constant twist),
one shifted by a boundary twist, and one with a uniform twist and boundary
twist designed to cancel each other out.

47



up and down quark are related by their charges in the same manner as
the background magnetic field. This leads to the up quarks having twice
the momentum and in the opposite direction to the down quarks. For a
neutral particle this results in a net momentum of zero, however the internal
momenta of the quarks still leads to an increase in energy. Each correlation
function uses a point sink and a source smeared with 40 sweeps of Gaussian
smearing unless otherwise specified.

Figure 7.1 shows a tree level calculation of a neutron effective mass with
different types of twist. The top two curves both describe twisted boundary
conditions, one with a constant phase of exp(iw/L) on every z direction link
and one with the phase applied only at the  boundary as one lump of phase
exp(iw). According to the derivation of the twisted boundary conditions we
expect both of these ways of applying twisted boundary conditions to cause
the same increase in the neutron energy. We see that they do have the same
asymptote value, although the approach to the asymptote and the large time
behaviour are slightly different and this is associated with changes in the
strength with which excited states are created. The lower curves are for the
plain neutron mass without any twisted boundary conditions and for the case
where a uniform twist and a boundary twist of the opposite sign have both
been applied together. The combination of the two types of twist cancel
each other, giving the same energy as for the plain neutron mass, albeit with
a different decay behaviour again. In both cases, the presence of a phase
throughout the lattice has enhanced the role of excited states relative to the
ground state in our smeared-source local-sink correlators.

In order to test this in lattice QCD conditions we performed some calcu-
lations with twisted boundary conditions on actual gauge fields. Figure 7.2
shows fitted neutron effective mass values comparing a normal neutron mass
with a neutron where each quark has been given a uniform twist propor-
tional to its charge. The third point is a prediction for the twisted boundary
condition value based on a constituent quark model. This prediction in-
volves giving each quark a mass equal to one third of the measured neutron
mass and a momentum of —w/L for the down quarks and 2w/L for the up
quark. The total energy is then determined by a sum over the quark en-
ergies > Ey = > \/p;+mj. The predicted value agrees very well with
the twisted value, suggesting that the effect of the uniform twist is what we
expect it to be.

This result gives new insight into the way in which finite volume effects
alter the masses of hadrons. The finite volume discretises the momenta
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Figure 7.2: Fitted neutron effective mass values. The left point is the neutron
mass with periodic boundary conditions. The middle point is the mass shifted
by the addition of a uniform twist on the lattice. The right point is a simple
quark model prediction for the energy change based on the expected shift in
the minimum momentum for each quark from the twist.
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available to the quarks as they compose the hadrons. In the case of twisted
boundary conditions, the important p’= 0 momentum is unavailable and the
true ground state is modeled poorly. However, as V' — oo, the momenta
needed will become available and the mass will drop. Similar effects are on-
going in the periodic boundary condition case where gaps in the available
momenta force quarks into higher momentum states, thus increasing their
energy on the finite volume. We note this quark-model based insight is com-
plementary to effective field theory insights into finite-volume effects where
gaps in the available momenta tend to suppress otherwise attractive meson
loop contributions.

We also performed QCD calculations using a boundary twist expected to
give the same momentum shift. This resulted in very large statistical errors
which caused the point to be consistent with both the original mass and the
uniformly twisted boundary condition mass, making the effect inconclusive.
Calculating the energy with a uniform twist and a large boundary twist
designed to cancel the uniform twist also had these very large errors. It
seems that having a large discontinuity in the phase of the gauge field at the
boundary causes instability in the calculation which leads to large statistical
variation.

7.3 Twist-like phases with a background field

Next we examined tree level calculations which combine our quantised uni-
form background field with a twist-like phase, as in Eq. (7.3). The twist-
like phase is the same as that in the previous section, proportional to w =
2mn /N, N, multiplied by the quark charge. We found that in tree level back-
ground field calculations using the neutron interpolator x; = (d¥ Cysu)d the
up and down quark in the parentheses formed a neutral scalar diquark which
did not “feel” the background field. The measured magnetic moment was
simply that of the remaining down quark.

Figure 7.3 shows some tree level neutron effective masses, including some
modified by either a constant U(1) phase, a background magnetic field, or
both. The dip at the right hand end of some curves is simply an effect of
the fixed time boundary. The top curve is for a pure twist of a magnitude
proportional to our magnetic field quanta with n = 3, shifting the momenta
by w/L = 3(2w/N,N,) for the down quarks and w/L = —2 - 3(27/N,N,) on
the up quark. This is equal to the phase which is introduced by choosing A, =
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Figure 7.3: Above: Neutron effective masses in background magnetic fields
and twisted boundary conditions. The bottom curve is the neutron effective
mass and the top curve is the effective mass with twisted boundary conditions
(in the form of a uniform U(1) phase). In the middle are two curves which are
almost on top of each other, one for the neutron in a background magnetic
field, and one with both a magnetic field and a constant U(1) phase.

Below: The same curves as above with the scale zoomed in. The bottom
curve is for a neutron in a background magnetic field and the top curve is
for both a magnetic field and a constant U(1) twist.
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—B(y — 3) for our background gauge field. The resultant net momentum is
zero, however the quarks are required to move in opposite directions, causing
the total energy of the neutron to be increased by a significant amount. The
two curves in the middle, above the bare mass curve, are almost degenerate.
These are the curves for the energy in a background magnetic field and for
the combination of the magnetic field and the U(1) phase used in the case
of the first curve. Clearly the phase has not shifted the energy level in the
same way that it did without the background magnetic field present.

Figure 7.3 also has a plot of the same effective masses so we see the same
nearly degenerate curves at a closer scale. Here we can tell that the curve
with the twist comes in slightly higher than the one with just the magnetic
field. It appears that the two curves are approaching the same asymptotic
value, but due to the lack of statistical error they are true asymptotes and
never actually reach that value. This means that the presence of the twist-
like phase has changed the excited state overlap of the correlation function
without changing the energy level of the ground state.

Since the choice of background gauge potential changes the overlap of
states with the smeared interpolators, we want to know which choice gives
the best behaviour. The only choice that seems “special” is the one where
the constant phase term is zero. We found the most rapid approach to
plateau behaviour in the effective mass occurred when the origin of the Gauge
potential coincides with the origin of the propagator. Non-trivial phases in
these links give rise to state overlaps favouring excited states over the desired
ground state. We also tested this by moving the origin of the field via a
constant phase and then putting the quark origin at the same point. We
found that this did indeed give the best behaviour in terms of the flatness of
the effective mass approach to the asymptote in our tree level calculations.

The previous figures have all been from propagators calculated with 40
sweeps of gauge-invariant Gaussian smearing, including the non-trivial U(1)
phases demanded by gauge invariance. We chose this source smearing be-
cause it is what we had been using in calculating our non-tree level quenched
results. Since the U(1) phase changes only the overlap of a background field
correlation function we thought to try a point source and verify no sensitiv-
ity to the origin of the gauge potential. Figure 7.4 compares a background
magnetic field effective mass with a magnetic field plus twist-like phase effec-
tive masses where both use a point source. The two curves are found to be
completely degenerate, meaning that the U(1) phase has zero effect on back-
ground field propagators that use a point source and sink. It is the smearing
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Figure 7.4: Tree level neutron effective masses. The left most curve is the
mass with 40 sweeps of fermion source smearing. The curve which comes
down to meet the first curve is again the mass but using a point source.
The top curve is actually two degenerate curves, one for the neutron in a
background magnetic field and the other for a magnetic field and a constant
U(1) twist-like phase, both using a point source.
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of the fermion source that allows the U(1) phase to change the strength of the
states participating in the correlation functions. We note the twist-like phase
does not alter the spectrum. Only the overlap of excited states is changed in
the correlation function.

7.3.1 Explanation

We have seen that twisted boundary conditions have no effect when intro-
duced with a uniform background magnetic field so long as they both use
the quantised phase term w = 27n/N, N, with n an integer. This can be
explained by making use of a two-dimensional 4 x 4 lattice to demonstrate.
We use our usual background magnetic field defined on a periodic lattice,

Ui(z,y) = exp(—iwy).

_ Jexp(+iwnyx), y=(ny—1)
Us(z,y) = { 1, elsewhere.

which we modify by adding a constant twist across the whole lattice

Ui(z,y) = exp(—iwy) exp(iw) = exp(—iw(y — 1)).

This is equivalent to shifting the origin of the gauge potential by one lattice
site, as seen in Figure 7.5 a) and b), from y = 0 to y = 1. We then apply a
gauge transformation which we define,

exp(+iwdz), y=0

Glr,y) = { 1, elsewhere. (7.11)

This is the identity over most of the lattice, but changes the U;(x,y) values
along the bottom row,

Ui(z,0) = G(z,0)Ui(z,0)G(x +1,0)
= exp(4diwz) exp(iw) exp(—4iw(x + 1))
= exp(—3iw)
except at the boundary x = n, — 1 = 3 where we get,
Ui(3,0) = G(3,0)U:(3,0)G(0,0)
= exp(12iw)exp(iw) exp(0))
= exp(13iw) = exp(—3iw) exp(16iw)
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The boundary part of Us(x,y) is also changed with the top row going to 1,

Us(z,3) = G(z,3)Usy(x,3)GT(,0)
= exp(0) exp(4iwzx) exp(—4iwr)
= exp(0) =1

while the Us(z,y) for the bottom row is changed to what the top row used
to be,

Us(z,0) = G(z,0)Us(x,0)G(x,1)
= exp(4iwz) exp(0) exp(0))

= exp(4diwz)

This results in Figure 7.5 ¢), which is almost the same as a) but with the
top row at the bottom and an unwanted term in U;(3,0). We then take
advantage of the periodic boundary conditions to simply take the bottom
row and put it at the top, giving us Figure 7.5 d).

In order to make d) look like a) we need to get rid of the exp(16iw)
term in U;(3,0). Fortunately this is extremely easy when we just look at
the definition of w. Due to the periodic boundary conditions there is a
quantisation condition on the allowed values of w,

2w
~ N,N,

o (7.12)

where n can be any integer. For our 4 x 4 demonstration we have N, = N, =
4, which means the unwanted term is,

exp(16iw) = exp(16i27/(4-4)) = exp(i27) =1 (7.13)

Therefore the unwanted term disappears due to the “magic” of our quantisa-
tion condition. This leaves us with exactly the field we started with, before
adding the constant phase. Thus, the phase has no effect. This holds for
larger lattices using the same quantisation condition and explains why we
do not see any change in the effective mass when a constant twist-like phase
is added to a background field calculation. For other background field cal-
culations which do not have the same quantisation condition then twisted
boundary conditions could still be a significant concern, in addition to the
errors from avoiding the quantisation.
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Figure 7.5: Diagram showing the effect of a constant phase on a 4 x 4 lattice
and how it can be gauge transformed away. The (x,y) coordinates are shown
for each lattice site and the exponents of the U(1) links are shown between
them. a) shows a standard background field implementation with the gauge
potential origin at (0,0). b) shows the field shifted by the constant phase ¢
in the z direction. c¢) shows the effects of the gauge transformation. d) has
the coordinates shifted via periodic boundary conditions to put the bottom
row at the top.
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7.4 Summary

In this section we have shown that the choice of gauge potential for creating
a background magnetic field can have an effect on the relative overlap of
excited states in the correlation function. The physical states, however, are
not affected. This has been verified using tree level calculations of background
field correlation functions with a twist-like phase added. It has also been
shown explicitly through a description of how a gauge transformation and
periodic boundary conditions can be used to remove the phase completely.

The changes to the excited state spectrum are due to phases introduced
to the smeared fermion source. When using a point source the addition of
a twist-like phase has no effect on the calculation. When using a smeared
source the effect of the phase on the excited state overlap is minimized when
the origin of the gauge field and the origin of the quark propagators is the
same.
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Chapter 8

Magnetic Moment

8.1 Introduction

The magnetic moment is one of the most fundamental electromagnetic prop-
erties of a system. There are a number of definitions depending on the type
of system that is being described. One of the simplest definitions is that
associated with a planar loop of current,

p=1IS, (8.1)

where p is the magnetic moment, I the current and S the surface area en-
closed by the loop. The direction of the moment is conventionally given by
the right hand rule. This definition can be generalised to the case of an
arbitrary distribution of current J,

1
u:§/r><JdV, (8.2)

where r is a vector pointing from the origin to the location of the volume
element dV. These are actually generalised cases of a single charged particle
moving along a circular path, for which the magnetic moment is

1
B=5qr XV, (8.3)
where r is the position of the charge relative to the centre of the circle and
v is the velocity of the charge. From this we see that magnetic moments are

closely bound with angular momentum.
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The moment can also be seen as a measurement of the strength and
direction of the torque induced on a system in the presence of an externally
applied magnetic field,

T =p x B, (8.4)

where 7 is the torque and B is the magnetic field. This is, for example, the
force which aligns the needle of a compass with the earth’s magnetic field.

The magnetic moment can more accurately be called the magnetic dipole
moment, the coefficient of the first term in the multipole expansion of a
general magnetic field. In Nature there do not appear to exist any mag-
netic monopoles (particles with magnetic charge), although some theories do
suggest that they could be found.

In the context of hadron physics the magnetic moment of a particle is due
to contributions associated with the angular momentum of the quarks that
make up the hadron. There can be contributions from not only the valence
quarks but the sea quarks as well. The magnetic moment is due primarily to
the intrinsic spin of the quarks. The ability of a charged particle with only
spin angular momentum to produce a magnetic moment is best seen in the
electron, for which the magnetic moment is clearly established.

On the lattice, in addition to the background field method, the magnetic
moment can also be calculated using three point functions [31-33]. This
is done by calculating electromagnetic form factors and then extrapolating
to zero momentum, where the form factors can be related to the magnetic
moment. This technique is effective but less direct than the background field
method. We will compare our magnetic moment results with some that were
calculated using the three point function method.

8.2 Quark model prediction

It is worth touching on the naive constituent quark model prediction of the
magnetic moment for the proton and neutron. This model uses the SU(6)
spin-flavour representation where the only degrees of freedom are the spins
(up, down) and the flavours (u, d, s) of the quarks. In this representation
the proton spin-up state can be written as,

1
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and the neutron can likewise be written as,

) = ——=[2(dtdtud)sym — (drdbart)sym). (8.6)

L
V18
The subscript sym indicates all symmetric combinations of the three quarks
in the term. For the second term there are six combinations (three locations
for the singly represented flavour and swapping the doubly represented ones)
and three combinations for the first term (since the doubly represented quarks
are not distinguishable). The 1/1/18 term normalises the states,

(ptlpt) = (ntnt) = 1. (8.7)

To calculate the magnetic moment in the quark model we use the mag-
netic moment operator i which acts on the states to pull out the contribution
of each quark.

(ptlalpt)
1 . .
= — (Aututdyifututddom + (utuldt]ilutuldt)om)
1
= 15 (432 — pa) + 6(pu — pru + p1a))
1
BERT) (2411, — 12414 + 6p1q)
4 1
= —lby — =g 8.8
SHu — 3 (8.8)
The neutron is the same except with u and d quarks swapped,
) 4 1
(ntlant) = FHd = gl (8.9)

We can then give each quark one third of the nucleon mass and use an
analogy to the Dirac moment to get the moments of the quarks in terms of

the nuclear magneton puy = QK;N,
1

SHu = —Ha = pN (8.10)

Inserting these values into Equations (8.8) and (8.9) gives us the quark model
prediction for the magnetic moments of the proton and neutron,

Hp = 3N, fa = —20N. (8.11)
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These are close to the experimental values of 2.8 and —1.9uy for the pro-
ton and neutron respectively. The SU(6) spin-flavour quark model provides
a reasonable representation of the magnetic moments of all octet baryons.
However there are fascinating discrepancies [34, 35].

8.3 Method

The use of the background field method for calculating magnetic moments
has been well established [9,13,15,19]. Recall the energy-field relationship
for a hadron in a uniform magnetic field [9,11],
e|B| 4rm
E(B)_M_“"B—{_W_?
In theory we could calculate an effective mass in a magnetic field and simply
fit it to the four terms in this equation, however this would be very difficult
and imprecise. Instead we isolate the terms we are interested in before trying
to fit against the field. To calculate the magnetic moment we use the fact that
the relevant term contains a dot product between the field and the magnetic
moment itself. This means that the energy shift is dependent on the angle
between the field and the spin of the particle.

On the lattice, where we have the spin quantised and field aligned on
the z-axis, the shift has equal magnitude, but opposite sign, when the spin
and field are aligned versus when they are anti-aligned. All the other terms
in Eq. (8.12) are independent of the alignment of the spin and the field.
This means by taking differences we can get all the terms other than the
moment term to cancel out (neglecting higher order terms). This difference
can be taken between either spin-up and spin-down or between the field in
the positive z-direction and the field in the negative z-direction.

1 1
§5E =3 (Er(B) — E((B)) = —uB. (8.13)
In the ensemble average these two approaches are identical. Since each
correlation function already comes to us with spin-up and spin-down sepa-
rate, it is more efficient for us to use a difference of spins. Using positive
and negative fields does give somewhat higher statistics, but this is roughly
equivalent to doing extra fermion sources for the same cost.
There are a number of ways of taking the difference of spins to isolate the

magnetic moment term from Eq. (8.12), but some are more effective than

BB* + O(B?). (8.12)
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others. The simplest is to just fit spin-up and spin-down and then subtract
one from the other.

AE(B) = ((G4(B, 1)) it — (GL(B. 1)) 5ir) /2, (8.14)

where the subscript f; implies a fit to the effective mass as described in
Eq. (3.30) or effective energy in the case of combinations of correlation func-
tions. However this provides little insight into the appropriate fit windows
for obtaining the best measure of AE. The uncertainties in G4 and G are
correlated and it is essential to take advantage of this.

Another way is to construct a ratio of spin-up and spin-down correlation
functions before fitting for the energy shift,

AE(B) = % (%)ﬁ{ (8.15)

This method allows for fluctuations in the correlation function which are
independent of the spin to cancel. This results in smaller errors in the spin
difference value, ranging from around 2 MeV to 4 MeV as opposed to 6 to
15 MeV for each of the correlators.

The fit can be improved further by recognising that many of the fluctu-
ations are not affected by the presence of the background field. This can
be seen in Figure 8.1, which shows spin-up effective mass values with and
without a magnetic field. Although each line has small ups and downs they
are almost completely parallel to each other, at least up until the later times
when noise is intruding. This means we can cancel out a lot of correlated
errors by subtracting off the zero field mass explicitly. This can be achieved
using the construct,

1 Bt Bt
AE(B) = - <M) - <M) ’ (8.16)
2 GT<07 t) fit Gi(O, t) fit
but again this can be improved by combining the difference into one ratio,

1 (Gy(B,1) G,(0,1)
aem) =5 (G Gf(BJ))M‘ (347

Using this form allows for correlated errors to cancel between spin-up and
spin-down as well as field on and field off. It requires only a single fit and
results in the smallest possible errors, with some as low as half an MeV.
This provides us with strong constraints on the fit regime. In addition, this
construction constrains AE = 0 exactly at B = 0.
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Figure 8.1: Neutron spin-up effective mass plot. Each line represents a dif-
ferent background field strength from zero field at the top to the largest field
at the bottom. The source is at ¢ = 16.
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Figure 8.2: Spin-difference effective energy plot from Eq. (8.17) at r =
0.13700 where m, = 622 MeV. The circles are for the neutron and the
squares are for the proton. The energy shift increases in magnitude with
field strength.

8.4 Results

8.4.1 Effective energies

Using the ratio described in Eq. (8.17) we construct effective measures for AE
from the difference of spins. In order to extract a value for the energy shift we
have to find plateaus in the effective energy and fit to a constant in that time
window. We judge our fits based on the criteria of the x3.; of the fit and the
size of the errors. We use a covariant x? as described in Eq. 5.8. To minimize
the uncertainties we select the earliest possible fit window that results in an
acceptable 3 ; value. We constructed an algorithm which attempts to chose
a fit window automatically by following this approach, trying to choose a
window that would be acceptable at all the field strengths for a given mass.
Although this automated approach was effective much of the time, we never
totally got past the need to examine the graphs and associated 3., values.
Figures 8.2 to 8.5 show these spin-difference energy shifts at various field
strengths obtained via Eq. (8.17) for each of the quark masses considered.
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Figure 8.3: Spin-difference effective energy plot from Eq. (8.17) at r =
0.13727 where m, = 512 MeV. The circles are for the neutron and the squares
are for the proton. The mass shift increases in magnitude with field strength.

Usually in lattice calculations we have to wait for Euclidean time evolution
to kill off the excited state contributions, however we see that there is very
little excited state effect apparent for both the proton and neutron, with
the lines coming in flat right from the source. In general the spin-difference
energy shift curves are very flat and we immediately see that there is an
approximately linear progression in the shifts. This matches what we would
expect from the linearly increasing magnetic field strengths and the linear
dependence of the magnetic moment term in the energy shift on the field.
It also appears that the neutron effective energies are generally flatter than
those for the proton and have smaller errors, even taking into account the
smaller magnitude of the neutron’s shifts. This may be due to the effect of
there not being a proper zero momentum state to project onto for the proton
as described in Chapter 6. The errors get larger and the noise at late times
becomes more significant as we go to lighter quark masses, as is typical for
lattice calculations. At the lightest quark mass the proton effective energies
become quite noisy, with some of the noise appearing to affect points as early
as time slice 21. All other masses look good well into the range where we

65



—
o
o
I
1

|

o
T
i

| I
[AV] =
o o
o o

[

|

I
o
o
o

]

Spin—Difference Energy Shift (MeV)

16 18 20 22 24
t

Figure 8.4: Spin-difference effective energy plot from Eq. (8.17) at r =
0.13754 where m, = 388 MeV. The circles are for the neutron and the squares
are for the proton. The mass shift increases in magnitude with field strength.

want to be fitting.

We observe that the effective energy curve appears to be flatter at the
two smaller field strengths. The two larger field strengths still give plateaus
which can be easily fit, however these plateaus are not as long as for the
smaller fields. There are also cases where the larger field strengths have a
section which is totally flat, then a slight drift in the curve, and then another
plateau. This leads to ambiguity as to where in Euclidean time we should fit.
As stated above we tend to fit as early as possible so long as the x3; is good.
Since plateaus are flat the x?’s are great, but the later plateaus are just as
good and have about the same error. It is likely that the plateaus at earlier
times are affected by some small excited state contributions which change
their value. Therefore we choose to fit at the later plateaus. We also restrict
ourselves to always fitting in the same window for each field strength and
quark mass. This ensures that we do not introduce systematic bias between
the values by picking and choosing the best windows in each separate case.

Despite the drift over time in the effective energies for the higher field
strengths the value of the magnetic moment is not actually very dependent
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Figure 8.5: Spin-difference effective energy plot from Eq. (8.17) at r =
0.13770 where m, = 282 MeV. The circles are for the neutron and the squares
are for the proton. The mass shift increases in magnitude with field strength.

on the choice of fit window. The reasons for this are described in the next
subsection, but we can demonstrate that this is true by redoing the calcu-
lation with a number of different fit windows. Table 8.1 contains magnetic
moment values for the neutron at a number of different fit windows. We see
that at every quark mass there is not a lot of change in the magnetic moment
values as the fit window is changed. The only values that don’t agree within
errors are the ones from the earliest fit window, and that is only because the
errors in general are very small. This suggests that time slice 19 may have
just a little bit of excited state contamination, making it too early to fit.
The smallest errors at each quark mass come from the 20-22 and 20-24 fit
windows. This is probably because they start earlier than the other windows,
where the errors in the effective energy are slightly smaller. Although these
two fit windows agree almost perfectly in terms of effective energy fits and
moment values, the shorter window has better x2., values «~ 1, so we use
that as our window for all the spin-difference energy shift fits.
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K
Window | 0.13700  0.13727  0.13754  0.13770
19-21 | -1.187(12) -1.300(13) -1.420(16) -1.486(36)
20-22 | -1.194(11) -1.317(15) -1.462(22) -1.483(30)
21-23 | -1.198(13) -1.338(20) -1.454(27) -1.500(40)
22-24 | -1.201(15) -1.343(25) -1.454(32) -1.508(49)
20-24 | -1.199(10) -1.321(15) -1.462(20) -1.485(31)

Table 8.1: Magnetic moment values for the neutron in units of nuclear mag-
netons (uy) at each k value for a variety of fit windows.

8.4.2 Magnetic field dependence

Once we have fit our spin-differenced effective energy shifts we must then fit
against the field strength. This allows us to isolate the magnetic moment
value from the p - B mass shift. Thanks to the way we calculate our spin-
difference in Eq. (8.17) the zero field point is exactly zero by construction.
Therefore we can attempt to fit our mass shift using only a single parameter
fit. The result of trying to fit a purely linear function to all four points was
unacceptably large x2.; values. This is because the data points do not follow
a perfectly linear relationship with the field. We see evidence of this fact even
in the energy shift plots, where the difference between the plateaus at each
successive magnetic field strength gets noticeably smaller each time. This is
an effect of the higher order terms described in the energy-field relation of
Eq. (8.12). What this says is that the larger field strengths we are using are
somewhat too large, making the higher order terms in B non-negligible.

In order to take into account the higher order contributions at the larger
field strengths we need to add extra terms into our fit. We know from
Eq. (8.12) that the quadratic term in B is cancelled out by the spin-difference,
so the next polynomial term we can add is a B3 term. We perform our least
squares fit of the four field strengths to the function,

AE(B) = aB + bB?, (8.18)

which allows us to fit all four points comfortably. This fit is shown by the
dashed line in Figures 8.7 and 8.6. The coefficient for b in Eq. (8.18) is allowed
to vary freely and results in quite a large value with significant error. Since
B3 is still fairly small at the largest field strengths the coefficient has to be
large to have any noticeable effect. The value of the linear coefficient, from
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which the magnetic moment is derived, is not affected much by the variations
in the cubic coefficient. This means that the energy shift measured at the
two largest field strengths can vary quite significantly and the difference will
be absorbed into the cubic coefficient without affecting the magnetic moment
result. This is the reason for the relative lack of fit window dependence we
found in the previous subsection. It also tells us that the two smaller field
strength points are the main drivers of the magnetic moment value.

Since the first two points are the most important ones for determining the
magnetic moment it is prudent to perform a fit that focuses on them alone.
We use a one parameter linear fit on these points since we expect the higher
order contributions to be negligible at the small field strengths. This allows
us to check that the cubic term we introduced to fit the larger field strength
points is not unduly affecting our magnetic moment result. The linear fit to
the first two points can be seen as the solid line in Figures 8.7 and 8.6. The
magnetic moment value coming from the linear coefficient agrees very well
with that from the cubic fit. Although the linear fit looks good to the eye it
has larger x3; values. This is because of the extremely small errors in the
spin-difference energy shift fits, which are only about 1%, so even a very small
amount of higher order effect is enough to give large x*’s. A comparison of
the fit values and 3 ; values for the neutron using 2 points and 1 parameter
versus 4 points and 2 parameters can be found in Table 8.2.

Using both a cubic and linear fit gives us confidence that we are using a
small enough magnetic field for our level of precision. Since the fit is con-
strained to go through the point (0,0) we can get a magnetic moment value
using only a single field strength. Without higher field strengths, however, it
would be impossible to tell if there are higher order contributions in effect. If
our lattice was half the size, for example, the smallest field strength available
would have large B? contributions such that the measured magnetic moment
value would be smaller. A second field strength is required to be able to see
that there are higher order effects in play.

8.4.3 Magnetic moment as a function of pion mass

The magnetic moment is taken from the linear coefficients of the fits to the
field. The magnetic moment is reported in units of nuclear magnetons, which
are reached by,

AE e
1

== 2M 1
¢B 2MN} N (8.19)
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Figure 8.6: Plots of the fits of the spin-difference energy shift to the magnetic
field strength for the neutron. The solid line is a one parameter linear fit to
just the first two points. The dashed line is a two parameter cubic fit to all

four points.

2 point, 1 parameter

4 point, 2 parameter

k| pn (o) Xébof fin (p1n) Xilo
0.13700 | -1.17(2) 12.2 1.19(2) 1.3
0.13727 | -1.28(2) 4.6 11.32(2) 0.6
0.13754 | -1.43(3) 4.4 11.46(3) 1.3
0.13770 | -1.43(3) 6.8 -1.48(4) 1.6

Table 8.2: Magnetic moment values and x?3.; values from the fits of the energy
shift to the field strength for the neutron in units of nuclear magnetons ()
at each k value comparing the 1 parameter 2 point fits with the 2 parameter

4 point fits.
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where we have started with Eq. (8.13) and introduced the elementary charge
e since we actually fit the energy shift against e B, such that AE/eB is equal
to the fit parameter a in Eq. (8.18). We then bring in twice the physical
nucleon mass My in order to get the nuclear magneton (uy = 2;&), noting
that we are using natural units (¢ = h = 1).

Figure 8.8 displays a plot of the proton magnetic moment values as a
function of the square of the pion mass as a measure of the quark mass.
It includes both the dynamical results, the earlier quenched results and a
comparison to a three point function calculation [32]. The details of the
quenched calculation can be found in Appendix A. There is decent agreement
between the three sets of results, with the dynamical values sitting on a
slightly higher curve for the three heavier quark masses where statistical
errors are small enough to discern a difference. This is a reasonable behaviour
to expect as arising from the addition of sea quark contributions [35].

Figure 8.9 shows the neutron magnetic moment as a function of the pion
mass squared. Again we see reasonable agreement between the quenched, dy-
namical and three point function results, with the heavier dynamical points
seeming to trend to a larger value than the quenched. We see the lightest
dynamical point has a smaller value than expected with the trend approxi-
mately flat from the second lightest mass. A similar effect is observed for the
proton. Seeing both the proton and neutron have the same trend suggests
that there is some systematic effect in play. The effect is mostly likely due
to finite volume effects, which would be expected to increase significantly as
we reach lighter quark masses [36]. This is also consistent with the fact that
the quenched results are from a larger physical lattice than the dynamical
results.

The lines are chiral fits using the approach from Ref. [37], and guide the
anticipated trajectory to the physical point. The reason the extrapolated
values are smaller in magnitude than the experimental values is expected to
come from finite volume effects at all points as those have not been examined
here.

8.5 0Odd Parity Nucleon

In addition to the ground state nucleon we are also interested in the magnetic
moment of excited states of the proton and neutron, including odd-parity
states. These can also be calculated using the background field method.
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K 0.13700 0.13727 0.13754 0.13770 extrap. exp.
pp (py) | 1.86(2)  2.01(3) 2.23(3) 2.28(6) 2.69(12) 2.79
fn (un) | -1.19(1) -1.32(2) -1.46(2) -1.48(3) -1.83(8) -1.91

Table 8.3: Magnetic moment values for the proton and neutron at each quark
mass as well as the extrapolated and experimental values. Values are in units
of nuclear magnetons.
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Figure 8.8: The magnetic moment of the proton as a function of pion mass
squared. The left-most point is the experimental value. The dotted line is
a chiral fit based on Ref. [37]. The three point function results are from

Ref. [32].
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Figure 8.9: The magnetic moment of the neutron as a function of pion mass
squared. The left-most point is the experimental value. The dotted line is

a chiral fit based on Ref. [37]. The three point function results are from
Ref. [32].
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Only one such calculation has been attempted before [38], leaving a lot of
potential for discovery.

We can access odd-parity states from our normal correlation functions
that use interpolators which transform positively under parity transforma-
tions using a parity projection. The Euclidean space correlation function can
be written as,

G(t,p) = Y _ e "PHQIx(0)| B, p, s)(B, p, s|x(0)|), (8.20)

Where (2 is the QCD vacuum, y and Y are the sink and source interpolating
fields, B are intermediate baryon states, p is the momentum of the state and
s is the spin. We define the coupling of each state to the interpolators A,
and the Dirac spinors u, 4. For even-parity we have, at the sink,

Mp+

(Qx|BT,p,s) = Ap+ . e (p, ), (8.21)
which for odd-parity is replaced by,
Mp—
<Q|X|B_7p78> = )‘B* Ejf 75“3’(p7 8)' (822>
For odd-parity at the source we get,
_ _ 5 Mp-
(B7,p,sIXl) = Ap- EBBi (0, 8)757%
B Mn_
= —Ap- Ej— up-(p,s)Vs (8.23)
So we then have, for odd-parity,
> (QIxIB~,p,s)(QIx|B™.p. s) (8.24)

- Z —Ap-Ap-7s Z up- (P, s)up- (P, 5)7s (8.25)

o “p+ Mp-
Z —Ap-Ap- 75 5, Vs (8.26)
_ - Mn
=3 g dp B (8.27)
2 2,



which allows us to write our correlation function in terms of even and odd-
parity components,

T “p+ Mp+
et _ Nt \ Epyt ) P T MBt
( 7p) ; B+AB+€ 2EB+

_ _ —v-p+ Mp-
_ Ao N Bp-t_ 1 PT VB

At p = 0 we can define a parity projection operator,
L 1
= (1) (5.28)

which allows us to isolate the odd-parity parts of the correlation function,
as they are in the (3,3) and (4,4) components of the Dirac matrix for spin-
up and spin-down respectively. This gives us correlation functions which
asymptote to the lowest lying odd-parity state. We can take the difference of
spins and fit the energy shift to extract the magnetic moment just as in the
ground state case. Statistical uncertainties will prevent us from exploring
the polarisabilities of these states.

8.5.1 Initial results

Initially we tried the same interpolating field as we used for the ground state
calculation,

x1 = (d"Crysu)d, (8.29)

which has historically proved effective at accessing the nucleon ground state.
This gave us very poor signal when looking at the odd-parity spin-difference
energy shift. We therefore decided to try using another nucleon interpolating
field,

X2 = (d"Cu)vsd. (8.30)

This interpolating field resulted in a strong signal for the spin-difference for
both the proton and the neutron, as shown in Figures 8.10 and 8.11. These
effective energies display the characteristic linear progression we expect from
a magnetic moment effect. Although these energy shifts could easily be fit
to extract a magnetic moment value we needed to understand why we got
such different results with y; and ys.
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Figure 8.10: Spin-difference energy shift for the odd-parity proton using a x»
interpolating field at xk = 0.13700 for all four field strengths.
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Figure 8.11: Spin-difference energy shift for the odd-parity neutron using a
X2 interpolating field at x = 0.13700 for all four field strengths.
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The reason for the difference in results for the two interpolator forms is
that the two lowest lying —1/2 states, the N*(1535) and the N*(1650), are
quite close to each other in mass. The difference is just about 100 MeV,
compared to 500 MeV between the ground state and the first even-parity ex-
citation (the Roper resonance). As a result the lowest lying odd-parity state
is not easily isolated by just waiting for the next state to be exponentially
suppressed. This means that our x; and ys energy shifts contain contri-
butions from both of the two lowest lying odd-parity states. The coupling
of each of these states is different for each interpolating field, giving us the
difference in the effective energies. Any result we get for the moment using
X2 could not be said to have come from a well defined state. We need to
effectively isolate the two states, which we do using the variational method.

8.5.2 Variational method

Accessing the masses of ground states requires only the exponential suppres-
sion of excited states at large Euclidean times. In order to access excited
state masses we use the variational method [39-43]. We construct a correla-
tion matrix from a set of basis operators which spans the state space. Using
N different interpolators we can isolate up to N different states from the
spectrum. We write the correlation function matrix at zero momentum as a
sum over all excited states,

= ZA?X?‘(MJ, (8.31)

where \; and S\j are the couplings of state a to the interpolating fields y;
and x; at the sink and source respectively. We use our operator basis to
construct a linear combination of interpolators which perfectly isolates each
of N baryon states |B,),

(@) = Y un) (5:32)
(@) = 3 vl (5.33)

such that ¢ and ¢ have good overlap with state o and zero overlap with
any other state.
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Since the only ¢ dependence in Eq. (8.31) comes from the exponential
term we can write a recurrence relation for times ¢y and At using the vector
from Eq. (8.32),

o —mMa A o
Gij(to + At)u§ = e ™G5 (to)us, (8.34)

for sufficiently large ¢ty and At. We can then multiply by [Gy;(t)] ™" from the
left to get,
[(G(to)) Gty + Ab)|u® = e mBly® (8.35)

This is an eigenvalue equation for eigenvector u® with eigenvalue ¢® = exp(—m,At).
We can do the same thing using the sink eigenvector v* on the left,

U?Gij(t() + At) = GimaAtUiaGij@()), (836)
and then multiplying by [G;;(to)] ™" from the right,
ve[G(ty + At)(G(tg)) 7] = e MRy (8.37)

These two eigenvalue equations are solved and the eigenvectors are then used
to diagonalise the correlation matrix at time ¢y and ty + At, projecting out
the mass eigenstates,

VG (tul = 59PN\ emmat, (8.38)

J

There is some freedom to the choice of the variational parameters t, and At.
The tg must be early enough that there is enough of all the states we want to
project still present, but not so early that a large amount of higher unwanted
excited states are contributing significantly. We tried out a number of values
relative to the source at t, = 16, with tg = 17,18,19,20 and At = 1,2, 3, 4.
We found the best results came from starts of 18 and 19 and steps of 2 and
3, which seems to be fairly typical [39]. Values in the results section come
from tg = 18 and At = 2.

Using the parity and eigenstate projected correlation functions we can
use our standard analysis techniques to extract effective masses. The same
techniques can be applied to background field correlation functions, only with
a few subtleties. A separate set of eigenvalue equations must be solved for
each combination of spin-up and spin-down, field on and field off. The point
is that the Hilbert space changes and one must first isolate the state before
combining it with staéces from the other Hilbert spaces. In other words, the

eigenvectors v and v} are field and spin dependent and a recurrence relation

cannot be written for combinations of spins and fields.
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8.5.3 Results

We performed our analysis using a 2 x 2 correlation matrix with y; and
X2 type interpolators with 100 sweeps of Gaussian smearing at the source
and a point sink. An important concern when using the variational method
with background field method calculations is correctly identifying the states
that are given by the analysis. The eigenvector equation is solved separately
for each spin and field strength and for each jackknife sub-ensemble in the
complement set before the ratio in Eq. (8.17) is taken, so we must ensure
that for each case we are combining the same state for field on and field off
and for spin-up and spin-down.

The eigenmasses that result from solving the eigenvalue equation come in
no particular order. The easiest way to order them is by the magnitude of the
mass, which works well in a well spaced spectrum, but fails in our case. We
found that for both the proton and neutron excited states we had one state
which increased in energy when the field was turned on and one state which
decreased with the field on. This indicates that one has a positive magnetic
moment and the other has a negative moment. Since the direction of the
energy shift is opposite for opposite spins, this means that for either spin-up
or spin-down the field will move the effective energies of each state towards
each other, potentially crossing. The difference in the zero-field masses of
the states was small enough that we found even at the smallest field strength
the energies were degenerate for one of the spins and that at higher field
strengths the order switched. Therefore we had to find another method for
ordering the states.

This is similar to the problem of tracking states across multiple pion
masses when using the variational method for pure spectroscopy, as the or-
dering of the masses may change. One technique is to create a matrix from
the products of the eigenvectors at two different quark masses [42], or in our
case, field strengths,

M = w*(B)-w"(B). (8.39)

Here the state labels o and 8 vary across row and column respectively and
w* = G2 (to)u® is an orthogonal version of the eigenvector obtained directly
from the symmetric eigenvalue equation. We begin with Eq. (8.34) and
multiply by G2 (t) from the left and insert the identity /7 = G2 (t,)Gz (o)
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to get,

G2 (to)G(to + MG 2 (t) G2 (t)u = e ™A G2 (o) u
G2 (ty)G(tg + AYG 2 (t)w® = e ™Ay, (8.40)

such that G2 (tg)G(to + At)G2(ty) is a real symmetric matrix with or-
thogonal eigenvectors w®. The values of the matrix elements can be used
to determine the order of states. Consider a case where the state with the
lower eigenvalue is labelled a and the higher eigenvalue state is labelled b.
When M2 and M® are large (~ 1) it means that the states are coupling
strongly to the same source/sink at both field strengths, so the labelling of
those states is correct. When M® and M are larger it means that those
two eigenstates have swapped positions in the spectrum and the labels need
to be swapped.

We found that this technique was partially effective, but that for some
field changes the diagonal term was only slightly larger than the off-diagonal.
In other cases one of the diagonal terms was the largest, but the off-diagonals
were larger than the other diagonal term, making the order ambiguous. This
led to getting the correct state labels for some sub-ensembles but not others,
especially at the first non-zero field strength, which revealed the error in a
massive uncertainty in the eigenvalues at that field strength.

We noted that for both the odd-parity proton and neutron the first state
always had a large yo component and the second state had a large x; compo-
nent, while the smaller component fluctuated quite a bit. Therefore we chose
to order the states simply by finding single largest contribution in u® or v®
to either state. If the largest contribution was from the y» interpolating field
then that state was designated state 1 and the other state was state 2 and
vice versa if y; was the largest component. This technique was very effective
and gave us unambiguous states from which to construct correlation function
ratios.

Figure 8.12 shows the left eigenvector values for the odd-parity proton
and neutron. In each case there is a clear dominant contribution from either
X1 Or Y2. A reasonably systematic variation of the eigenvectors is observed as
the external field changes the Hilbert space. The largest errors are generally
found on the zero field and smallest two fields. This is in contrast to what
we have seen in effective energies, where the errors generally increase with
the field strength.
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Figure 8.12: Plot of the left eigenvector values associated with the point sink
for the odd-parity proton and neutron at each spin and field strength for the
heaviest pion mass. Each group of points goes from left to right, zero field
to largest magnetic field. The hollow circles are for y; and the solid circles

are for ys.
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8.5.4 Effective energies

Once we have a way to keep our ordering of states consistent for changing
fields and masses we still need to identify what those states actually are.
Figure 8.13 shows the spin-down effective mass at zero field for state 1 and
2. The masses begin to overlap and cross in the region where the signal
is becoming noisy, but at the important early region where the eigenvalue
equation was actually solved and the projected mass can be fit there is a
clear distinction between the masses. The ordering of states at non-physical
pion mass is non-trivial as the ordering can change [42,43], but our result
is consistent with previous odd-parity mass spectrum calculations where a
lighter quark mass next to the physical values has been investigated. We
therefore determine that state 1 is the S11(1535) and state 2 is Sp;(1650).

Figures 8.14 to 8.17 display the projected spin-difference energy shifts
for the odd-parity proton. The first state has negative energy shifts which
are reasonably flat and display the characteristic linear progression with in-
creasing field strength. The plateaus are lost to noise much earlier than the
even-parity ones, but are not problematic to fit. Most of the curves are flat
right from time slice 17, however some plateau later so to avoid any small
excited contributions still present at the earliest times we choose for our fit
windows 20-21 at kK = 0.13700 and 19-21 at the other masses. These fit win-
dows give x3, values close to 1 except at the lightest mass considered where
a couple of them are a bit higher due to there being no ideal fit window.
At k = 0.13754 the second field strength sits much closer to the third field
strength than we would expect.

Looking at the second state the curves are much less clear. There are
still significant excited state contributions at the first few time slices, but we
expect the third and higher odd-parity states to be high enough in energy
to be exponentially suppressed after a short time. However if one of these
higher states had a large magnetic moment it could bring the energy down
enough to prevent it being suppressed. The second state signal is lost to
noise earlier than the first, giving us little time in which to find a plateau.
Some fields have fittable plateaus from 18-19, but enough of them are still
trending larger at these times to make us believe that this is too early. We
again use Y3 values to guide our fit windows. At k = 0.13700 the best
window is 20-21, which gives a x3; less than one for each field strength. At
the other masses we use a window of 19-20. This gives a slightly too large
X3t Value (= 3) at the second field strength for £ = 0.13754 and the third
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Figure 8.13: Spin-down effective mass plots for states 1 and 2 from projected
correlation functions at k = 0.13700. Top plot is for zero background field
and below is for the smallest non-zero field strength used.

84



200

100

—100

—200 =

Spin—Difference Energy Shift (MeV)

—-300 m

17 18 19 20 21 22
t

Figure 8.14: Spin-difference energy shift plot for odd-parity proton states
from the variational analysis at x = 0.13700. Two states are illustrated for
four different field strengths. State 1 is the negative energy shifts and state
2 is the positive shifts. The curves are ordered with the magnitude of the
shifts increasing with the strength of the magnetic field as of times 20-21.

field strength for x = 0.13770, but the other field strengths give very good
values, making this the best window overall. At x = 0.13754 the second field
strength actually sits above the fourth, which is completely at odds with our
expectations. There is no fit window for which this isn’t the case. Since this
is the same mass where state 1 gave an unexpected shift for the second field
we conclude that the variational analysis has had difficulty in separating the
states at this field and mass. The second field for state two also sits higher
than expected at the other masses as well.

Figures 8.18 to 8.21 display the projected spin-difference energy shifts for
the odd-parity neutron. These follow the same general trends as the proton,
but with smaller shifts and opposite signs. We use the same fit windows as
for the proton, 19-21 for state one and 19-20 for state two, except at the
heaviest mass considered, where both states are fit starting 1 time slice later.
These fit windows give the x2 ; values closest to one. We have the same
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Figure 8.15: Spin-difference energy shift plot for odd-parity proton states
from the variational analysis at k = 0.13727. Two states are illustrated for
four different field strengths. State 1 is the negative energy shifts and state
2 is the positive shifts. The curves are ordered with the magnitude of the
shifts increasing with the strength of the magnetic field as of times 18-19.
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Figure 8.16: Spin-difference energy shift plot for odd-parity proton states
from the variational analysis at k = 0.13754. Two states are illustrated for
four different field strengths. State 1 is the negative energy shifts and state
2 is the positive shifts. The curves are ordered with the magnitude of the
shifts increasing with the strength of the magnetic field except that for state
2 the second non-zero field strength gives the largest shift as of times 18-19.
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Figure 8.17: Spin-difference energy shift plot for odd-parity proton states
from the variational analysis at k = 0.13770. Two states are illustrated for
four different field strengths. State 1 is the negative energy shifts and state
2 is the positive shifts. The curves are ordered with the magnitude of the
shifts increasing with the strength of the magnetic field for state 1. For state
2 the points are almost all degenerate.
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Figure 8.18: Spin-difference energy shift plot for odd-parity neutron states
from the variational analysis at x = 0.13700. Two states are illustrated for
four different field strengths. State 1 is the positive energy shifts and state
2 is the negative shifts. The curves are ordered with the magnitude of the
shifts increasing with the strength of the magnetic field as of time slice 18.

difficulties with the second field strength not following the trend we expect,
especially at k = 0.13754 and k = 0.13727 where it has a smaller shift than
the first field for state two.

8.5.5 Fits to the field

Figure 8.22 shows the fits of the spin-difference mass shifts to the magnetic
field strength for the two lowest lying odd-parity proton states. As in the
even-parity case we used two fits, a one parameter fit to the first two points
and a two parameter fit to all the points. For the first state there is very good
agreement between the two fits, with very little cubic contribution apparent
at the heavier masses. For the second state there is still not that much
difference, due to the fact that in cases where the second field strength point
sits higher than expected, the first field strength sits lower than expected in
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Figure 8.19: Spin-difference energy shift plot for odd-parity neutron states
from the variational analysis at k = 0.13727. Two states are illustrated for
four different field strengths. State 1 is the positive energy shifts and state
2 is the negative shifts. The curves are ordered with the magnitude of the
shifts increasing with the strength of the magnetic field as of time slice 18.
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Figure 8.20: Spin-difference energy shift plot for odd-parity neutron states
from the variational analysis at k = 0.13754. Two states are illustrated for
four different field strengths. State 1 is the positive energy shifts and state
2 is the negative shifts. The curves are ordered with the magnitude of the
shifts increasing with the strength of the magnetic field for state 1. For state
2 the first and second field strengths are switched in the region of 18-19.
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Figure 8.21: Spin-difference energy shift plot for odd-parity neutron states
from the variational analysis at k = 0.13770. Two states are illustrated for
four different field strengths. State 1 is the positive energy shifts and state
2 is the negative shifts. The curves are ordered with the magnitude of the
shifts increasing with the strength of the magnetic field as of time slice 18.
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a manner which mostly compensates.

Figure 8.23 shows the same fits for the odd-parity neutron states. Here
the first state is again easy to fit, with almost zero cubic contribution visible
except at the lightest quark mass. The second state has the same trend of
the second field strength point being quite different from the predicted value,
but with the first point varying in the opposite direction in a manner that
gives fairly clear fits. The discrepancy in the values for the second state at
the second field strength could be due to excited state contamination since
we have only used a 2 x 2 correlation matrix here. Although the odd-parity
spectrum shows a large gap between the two states we are examining and
the next lightest state [42], a large magnetic moment could lead to an energy
shift in the presence of a magnetic field which lowers the energy enough to
interfere with the states we are considering. Future study using more sources
may yield an improved result.

8.5.6 Magnetic moment as a function of pion mass

Figure 8.24 shows the odd-parity proton magnetic moment values as well as
the even-parity values for comparison. The first odd-parity state, which we
take to be the Sf;(1535) follows a similar trend to the even-parity ground
state, but at a slightly smaller magnitude. The values for the second state are
less clear, with no obvious trend and large uncertainties. Due to the relative
difficulty in fitting the energy shifts and in particular the second field strength
these results can only be considered exploratory. Despite this we can make
some strong statements about the magnetic moment of this state, which we
take to be the Sf;(1650). It clearly has a negative sign, opposite to that of
the lowest lying even and odd-parity states. The magnitude of the moment
is less than that of the first state but quite distinct from zero.

Figure 8.25 displays the moment values for the neutron states. The situ-
ation is very similar to that of the proton states. The first state (SY,(1535))
has a gentle downward trend and a magnitude slightly smaller than that of
the even-parity ground state. Here we used a simple linear extrapolation to
get an idea of the trend to the physical pion mass. The second odd-parity
nucleon state (S?(1650)) appears to have a mostly flat trend, although due
to the large errors the trend is not at all definitive. The sign is clearly pos-
itive, opposite that of the other neutron states, and the magnitude is less
than that found for the lowest lying odd-parity state.
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Figure 8.23: Fits of the spin-difference mass shift to the magnetic field
strength for the two lowest lying odd-parity neutron states. The solid line is
a linear fit to the first two points and the dashed line is a linear plus cubic
fit to all four points. State 1 is illustrated by the positive values while state
2 is the negative values.
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Figure 8.24: Magnetic moments of the proton and its odd-parity excitations
as a function of pion mass. The solid circles are the even-parity results
presented previously, the hollow circles are the first odd-parity state and the
hollow squares are the second odd-parity state. At the far left the asterisk
indicates the experimental value for the ground state [27] and the diamonds
indicate the quark model predictions as described in Table 8.4.
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Figure 8.25: Neutron magnetic moments as a function of pion mass. The solid
circles are the even-parity results presented previously, the hollow circles are
the first odd-parity state and the hollow squares are the second odd-parity
state. At the far left the asterisk indicates the experimental value for the
ground state [27] and the diamonds indicate the quark model predictions as

described in Table 8.4.
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8.5.7 Quark model prediction

As in the even-parity case it is possible to calculate the magnetic moment
of the odd-parity nucleon using a constituent quark model. This value is
much more valuable in this case because there do not exist any experimental
results for the magnetic moment of the odd-parity proton or neutron states
at present. Therefore the quark model prediction is useful for giving us a
framework to compare our results within.

In the SU(6) constituent quark model the lowest lying odd-parity states
of the nucleon are [N2P, 5) and [N*P, j5), where the notations 2Py j» and * P /o
indicate total quark spin S = 1/2,3/2 (25 + 1 = 2,4), orbital angular mo-
mentum L = 1, and total angular momentum J = 1/2. The wave-functions
of these states can be written explicitly,

1 1 11
|N2P1/2> = E P <1§mlm3|§§> (841)
1 1
X {Wml lﬁ (X%S¢”+X%S¢A)} + ¢, lﬁ (xPms” +X§S¢A)] }
1 3 11
IN'Pyjy) = 7 > (15 mums|55) [¥hm, X, @ + Yim Xon, 8] (8.42)

mpms

where 1, y, and ¢ denote the spatial, spin, and flavour wave-functions. The
superscripts s or p(A) indicate that they are totally symmetric among the
three quarks, or mixed-symmetric, odd (even) under the exchange of the first
two quarks.

The observed physical odd-parity nucleon resonances are mixtures of
these SU(6) spin-flavour states,

’811(1535» = ‘N2P1/2> cos 6 — ’N4P1/2> sin @ (843)
511(1650)) = |[N?Py /o) sin @ + |[N* Py ) cos 0 (8.44)

The magnetic moment of these states is then calculated using the mag-
netic moment operator,

p=p’+ pt (8.45)
where p° indicates the magnetic moment due to the intrinsic spin of the
quark and p! is the part due to the orbital angular momentum of the quark.

The magnetic moment for the S11(1535) and S1;(1650) therefore has terms
from the spin angular momentum and orbital angular momentum of the
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SU(6) states, plus a term from the spin angular momentum of the mixing
of the two SU(6) spin-flavour states (the orbital angular momentum of the
states is orthogonal and so has no mixing term). This method was used to
calculate the magnetic moment in Ref. [44].

The quark model was expanded upon by another group in Ref. [45]. They
added contributions from the spin and orbital angular momentum of the sea
quarks and introduced a Goldstone boson which is emitted in a P-wave state
((I,) = 1). The values predicted by each model for the magnetic moment
are given in Table 8.4. For three of the four states the additions in Ref. [45]
serve to increase the magnitude of the moment by a small amount. For the
S1;(1650) however, the additional terms led to a moment with the opposite
sign to that of the first prediction.

It is interesting to compare these results with our lattice results to evalu-
ate the merit of the expanded model. The model predictions can be seen on
Figures 8.24 and 8.25, with the solid diamonds representing Ref. [44] and the
hollow diamonds representing Ref. [45]. For the lowest lying odd-parity pro-
ton and neutron states we had extrapolated values of 2.0(3) px and -1.4(2)
puy respectively from a simple linear extrapolation. These values are both
in agreement with the predictions of both models, with the central values
falling between them.

Our world’s first calculation of the second lowest-lying odd parity nucleon
states allows us to bring some insight to the situation. Of particular inter-
est is the S} (1650) value, where the signs of the model predictions differ.
Our lattice results for the Sj;(1650) are negative, with the central value sig-
nificantly larger in magnitude than in Ref. [45]. Our SY,(1650) result has
a slightly smaller central value than the two model values but agrees with
them both well within errors.
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Table 8.4: Predictions for the magnetic moment of the two lowest lying odd-
parity nucleon states from the quark model of Ref. [44] and an expanded
model of Ref. [45]. Values are in units of nuclear magnetons. The predic-
tions are compared to our lattice results in Figures 8.24 and 8.25, with the
solid diamonds representing Ref. [44] and the hollow diamonds representing
Ref. [45]. Our lattice results are from a simple linear extrapolation for each
of the four states.

Baryons Mass | NCQM [44] xCQM [45] Lattice (this work)
(MeV) (k) (k) ( )

Sh 1535 1.89 2.0 2.0(3)
SO 1535 1.28 157 14(2)
Sf 1650 0.11 20.29 -0 8(3)
S9. 1650 0.95 0.98 0.7(3)
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Chapter 9

Magnetic Polarisability

9.1 Introduction

The magnetic polarisability is a property of a system of charged particles
which measures the degree to which it deforms in the presence of a magnetic
field. On the lattice we see this as a shift in the effective mass of a hadron
proportional to B2. Proton polarisabilities can be measured experimentally
via Compton scattering [46-48]. The neutron polarisability is somewhat
more difficult due to the absence of a neutron target and having no overall
charge, but can be done indirectly by scattering low energy neutrons off a
heavy nucleus or from deuteron cross sections [49,50]. These calculations
rely on the the sum rule,

a+f= = /OO dwUtOt(w), (9.1)
0

272 w?

where « is the electric polarisability, 8 is the magnetic polarisability, w is
the photon energy and o is the scattering cross-section. This results in anti-
correlated errors for o and 5. The error on the experimental value of magnetic
polarisability is large for both the proton and neutron. We therefore have
the opportunity to make a prediction for the physical values through lattice
QCD. There is currently no other method for calculating polarisabilities on
the lattice than the background field method.

However calculating the polarisabilities of a charged particle using the
background field method is problematic. For the electric polarisability the
presence of the field causes a force on the particle which complicates the static
energy solution [17,18]. For magnetic polarisabilities we have the issue of the
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Landau levels, as described in Chapter 6. Landau levels make it impossible
to extract a clean ground state energy using the typical zero momentum wave
function projection. For this reason we do not present proton polarisability
results in this work. In the future we hope to develop finite-volume based
techniques which will allow us to deal with the Landau levels accurately.

Even for a neutral particle like the neutron the polarisability is more
difficult to calculate than the magnetic moment. First of all this is because
the polarisability is a B? effect, making it much smaller than the order B
moment effect at the small field strengths we are using. We also find that
the spin-averaged energy shift used in calculating the polarisability takes a
long time to plateau, making it difficult to fit. In the following we investigate
the use of different sources and sinks in order to try and improve the plateau
behaviour of the energy shifts.

9.2 Method

Recall again the energy-field relationship for a hadron in a uniform magnetic
field [9,11],

e|B] B 47

E(B)=M—p B+ r—

BB* + O(B?). (9.2)
As discussed in Chapter 8, the sign of the magnetic moment term in this
equation is opposite for spin-up and spin-down. We can take advantage of
this to remove that term from the energy by taking the average of spin-
up and spin-down. Since we are now looking only at the neutron magnetic
polarisability the Landau energy term e|B|/2M is zero and can be ignored.
This leaves us with just the bare, zero-field mass and the polarisability term
in addition to higher order terms. As with the spin-difference used in the
moment calculations there are multiple ways of constructing our spin-average
from correlators, such as,

AE(B) = (Gy(B,t) it — G1(0,8) it + GL(B, ) pir — G1(0, ) ir) /2, (9:3)

1 (GB.Y) G(B,1)
BB =5 (( 0.1 )f + (G0 )f> S

or,



Neutron «£=13727
1350 I I I T T T T

1300

1250

1200 | -

Spin—Averaged Effective Mass (MeV)

1150 | | | | | | |
18 20 2 24 26 28 30

Euclidean Time

Figure 9.1: Spin-averaged effective mass for the neutron with zero field mass
still included. The top line (squares) is for zero field and the bottom line
(circles) is for the smallest non-zero field strength.

Here the subscript s again indicates a fit of the effective energy. Using what
we learned from the magnetic moment calculations, the best results come
from using a single fit,

B 1 (G+(B,t) G¢(B,t)
ABB) =5 <GZ<0,t> G,(0.0 >f (5:5)

Making sure to combine field on and zero field correlation functions before
fitting is even more important here than in the spin-difference case. Figure 9.1
shows the spin-averaged effective mass with the field off and field on. At
each point in time the values agree within error because the shift due to
the polarisability is smaller than the error in the overall energy. However,
the uncertainties are highly correlated and largely cancel in taking the ratio.
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This provides a correlator directly related to the physical quantity of interest.
Moreover, the covariance matrix based x3; provides a direct measure of the
quality of this signal. Although Figure 9.1 displays a slight downward trend
this is due to the close scale used to show the small effect. A plateau can
easily be fit from ¢ = 22 to t = 30 with a good x3; of 0.56.

9.3 Results

9.3.1 Effective energies

We take the average of spin-up and spin-down correlation functions and re-
move the zero field mass using the ratio defined in Eq. (9.5). The resultant
effective energies are shown in Figures 9.2 to 9.5. We see immediately that
the behaviour is very different from what we saw for the spin-differences in
Figures 8.2 through 8.5. Instead of being very flat right from the source,
these effective energies all start at approximately zero and then decrease
monotonically. Only the smallest field strength shows anything like a good
plateau, all of the other higher field strengths are still decreasing up until
the time when they are overtaken by statistical noise.

We can compare these for the neutron to proton spin-averaged energy
shifts, given by Figure 9.6. The experimental value for the proton magnetic
polarisability is very similar to the neutron, so we would expect the plots to
be similar in the absence of other effects. Instead we see clear influence from
the Landau levels, leading to a positive energy shift and much larger errors.

As they are, the neutron effective energies are extremely difficult to fit.
In typical mass spectroscopy a lack of plateau at early times is generally
due to excited state overlap in the correlator. Our bare effective mass plots
illustrated in Fig. 9.1 do reveal a systematic drift in the energy suggesting
some improvement in the interpolating field may be possible. Our previous
technique of fitting at the earliest possible time that gives an acceptable value
for the x3, is not effective, because the only windows that give decent y?
values are those that are fitting into the giant errors at the onset of noise.

9.3.2 Source smearing

Since these effective energies cannot be accurately fit we had to look for ways
to improve them. We tried to improve our plateau behaviour using different
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Figure 9.2: Spin-averaged energy shift proportional to the magnetic polar-
isability for the neutron at x = 0.13700. Field strengths go from top to
bottom, weakest to strongest.

sources. We experimented with a number of different source smearings in ad-
dition to our usual 100 sweeps of smearing, by varying the number of sweeps
while keeping the smearing fraction the same. We tried 16 and 35 sweeps of
smearing as well as trying a point source. The results of the different smear-
ings for spin-up and spin-down are shown in Figure 9.7. For the spin-average
it was found that each of the smeared sources gave approximately the same
result. The plots of spin-up and spin-down show that the smeared sources all
agree with each other by time slice 24, indicating that by then the majority
of the excited state contributions have been suppressed. The point source
starts with huge excited state contaminations and is approaching agreement
with the smeared sources as it is overcome with noise.

One thing we noticed in Figure 9.7 is that for spin-up the best plateau
behaviour comes from the source with 16 sweeps of smearing and for spin-
down the best behaviour comes from 100 sweeps of smearing. We therefore
decided to combine these two smearings when constructing our spin-average.
The result of this combination is shown in Figure 9.8. As expected the
combined smearing results in a much improved behaviour, with a nice early
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Figure 9.3: Spin-averaged energy shift proportional to the magnetic polar-
isability for the neutron at x = 0.13727. Field strengths go from top to
bottom, weakest to strongest.

plateau up to time slice 24 where all the curves agree.

Taking the idea of combining smearings further, we can use the variational
method to find the best possible combination for extracting the ground state.
Details of the variational method can be found in Section 8.5.2, but the basic
process is that we construct a correlation matrix from different sources and
sinks,

Gyi(t) = D™ (Qhax;l2) (9.6)
= D AAZe Pl (9.7)
then solve a pair of eigenvalue equations to get left and right eigenvectors,
[(G(t))'G(to + Ab)Ju® = e ™y (9.8)
ve[Gto + At)(G(ty)) ] = e MRy (9.9)

which project out individual eigenstates,

VGt = 57PN N et (9.10)
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Figure 9.4: Spin-averaged energy shift proportional to the magnetic polar-
isability for the neutron at x = 0.13754. Field strengths go from top to
bottom, weakest to strongest.

Using an N x N correlation matrix it is possible to isolate up to N different
states depending on how well your interpolator basis spans the state space.
We could in theory apply background field method techniques to the excited
states, although the signal tends to get weaker quickly as you go to higher
excited states. For this purpose though we are only interested in the ground
state.

We applied the variational analysis using a 2 x 2 correlation matrix of
sources and sinks with 16 and 100 sweeps of smearing at the heaviest mass
and smallest field strength. As discovered in Section 8.5 the eigensystem
must be solved separately for spin-up field off, spin-down field off, spin-up
field on, and spin-down field on. We construct our spin-average with bare
mass subtracted from the projected correlation functions. The eigenvectors
are approximately the same for each of the different spin-field combinations.
Thanks to this the correlation between the errors is mostly maintained and
the errors stay small.

Figure 9.9 shows a comparison between the plain 100 sweeps of smearing
correlation functions and the projected ground state from the variational
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Figure 9.5: Spin-averaged energy shift proportional to the magnetic polar-
isability for the neutron at x = 0.13770. Field strengths go from top to
bottom, weakest to strongest.

method using tg = 18 and At = 3. The projected ground state follows a
similar trajectory to the normal correlation function. We do not see the
good asymptotic behaviour that was exhibited in Figure 9.8. This indicates
there is more than a single excited state contamination and significantly
more sources are required. The projected energy shift does show errors that
grow slightly more slowly than those from the normal correlation function
which could lead to an improved fit. While some improvement is observed
in the 2 x 2 analysis, in that the projected correlator sits below the single
100 sweep correlator, we defer a more ambitious examination of correlation
matrix techniques to the future.

In addition to the 2 by 2 correlation matrix using 16 and 100 sweeps
of smearing we also tried some other operator bases. We tried different
interpolator forms, with a 2 x2 matrix of y; and x5 at 100 sweeps of smearing.
We tried a 3 x 3 matrix using the point source in addition to the 16 and 100
sweeps of smearing, and we tried a 4 X 4 matrix using 16 and 100 sweeps of
smearing with both y; and ys.

We tried a variety of values for the variational parameters ¢, and At.
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Figure 9.6: Proton spin-averaged energy shift for the heaviest quark mass at
all field strengths. The top line is the smallest field strength, with the other
three agreeing well within errors for most of the relevant time frame.
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Figure 9.7: The shift in the energy due to the smallest magnetic field at
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represent different smeared fermion sources. For spin-up, from top to bottom
at t = 20: 100 sweeps, 35 sweeps, 16 sweeps and point source. For spin-down
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Figure 9.8: Spin-average energy shift for the neutron at the smallest field
strength and heaviest mass. The dashed lines represent the 100 sweeps of
smearing and 16 sweeps of smearing sources. The solid line is from combining
spin-up with 16 sweeps and spin-down with 100 sweeps.
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Figure 9.9: Spin-averaged energy shift for the neutron at the smallest field
strength and heaviest mass. The squares are from a 2x2 correlation matrix
with 16 and 100 sweeps of smearing at the source. The circles are with the
usual 100 sweeps of source smearing.
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This included typical values of t, = 17,18,19,20 with At = 1,2,3,4. We
also tried using later times like ¢y = 24,25 in the area we might be hoping
to fit. This did not significantly affect the projected energies at these times,
but caused the time slices just after the source to have large uncertainties.
None of these combinations led to any noticeable improvement in the plateau
behaviour beyond the original 2 x 2 analysis.

Since we can not find any significant improvement in the energy shifts
through the use of different smearings we need to choose a way of getting a
best estimate for the energy shift from the effective energies we have. Looking
at the different smearings and combinations thereof we can see that all of
the different effective energies agree well at time slice 24 for the heaviest
mass. There are similar points at the other masses. The agreement makes it
plausible that the ground state has been isolated and we use these points as
our estimate for the effective energy shift associated with the polarisability
and apply our fits to these values

The lack of early plateaus for the neutron despite the fact that there
seems to be very little excited nucleon contributions is hard to explain. One
hypothesis is that the effect is evidence that the neutron does actually ex-
perience Landau levels. Although the total charge of the hadron is zero, the
charge radius of the particle is non-zero, due to the internal distribution of
the quarks. It is therefore possible that the neutron does feel the magnetic
field, but with a much smaller effective charge than the proton. This would
lead to extremely closely spaced Landau levels which would decay smoothly
in the effective mass. This seems to be consistent with what we see in our
spin-averaged energy shift plots, but will require further study.

9.3.3 Magnetic field dependence

Figure 9.10 shows plots of the spin-averaged energy shift against the magnetic
field strength. These points have significantly larger relative errors than the
spin-difference points used in the magnetic moment calculations. The first
field strength has significantly smaller errors than the others at all quark
masses. This makes the first point the most important one in the fit. We fit
the mass shift to a quadratic term which is proportional to the polarisability.
As with the moment case the fit is constrained to go through zero. Again
we see that there are clearly some higher order contributions which become
large at the two largest field strengths. We therefore require an extra term in
our polynomial to fit these points. In this case we add a quartic term since
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2 point, 1 parameter 4 point, 2 parameter
K B, (fm® x 107%) X2, B, (fm® x 107%) 2,
0.13700 1.06(90) 0.04 1.08(81) 0.20

0.13727 1.17(15) 0.23 1.17(13) 0.98
0.13754 0.97(10) 1.60 0.98(10) 1.15
0.13770 1.20(13) 3.66 1.20(13) 2.17

Table 9.1: Magnetic polarisability values and x3,; values from the fits of the
energy shift to the field strength for the neutron in units of fm® x 1074 at
each k value comparing the 1 parameter 2 point fits with the 2 parameter 4
point fits.

the spin-difference had a cubic term. With the quartic term included all four
points can be fit. We also perform a single parameter quadratic fit to just
the first two points. Comparing both gives an important consistancy check
since the quartic contribution is quite large. The values of the polarisability
from the one and two parameter fits are given in Table 9.1. The table shows
that the 1 and 2 parameter fits agree well within errors. This is largely a
symptom of the fact that the first point drives the value to such an extent
that the later points don’t have that much effect so long as they are within
a reasonable range where the quartic term can handle them. This gives us
greater confidence in our results because the energy shift plots at the smallest
field are the most reasonable to fit, so the difficulty in fitting the higher fields
has less effect.

Table 9.1 also displays x3,; values which are «~ 1 or even below for both
1 and 2 parameter fits except at the lightest quark mass considered where
they are a bit larger due to the first point sitting lower than expected.

9.3.4 Magnetic polarisability as a function of pion mass

Using the values from the fits of the mass shift to the field strength we can plot
values for the magnetic polarisability of the neutron against the pion mass
squared. The polarisability is given in units of fm® x 10~*. Figure 9.11 shows
the polarisability as a function of pion mass squared. Included are both the
quenched and dynamical results. There is good agreement between the two
sets of results. Both are quite constant across the regime explored, with the
lightest point appearing somewhat, but not statistically significantly, higher.
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Figure 9.10: Plots of the fits of the spin-averaged mass shift to the magnetic
field strength for the neutron. The solid line is a one parameter quadratic
fit to just the first two points. The dashed line is a two parameter quadratic
plus quartic fit to all four points.
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Figure 9.11: The magnetic polarisability of the neutron as a function of pion
mass squared. Shown are quenched and dynamical values. The point on the
far left is the experimental value. The dashed line represents a chiral fit to
the dynamical results.

The point at the far left is the experimental value.

In order to make a prediction at the physical pion mass we performed a
chiral extrapolation. The electromagnetic polarisabilities of the nucleon were
investigated thoroughly by Bernard, et. al. in the early 90s [51]. Focusing
on the leading and next-to-leading terms which are divergent in the chiral
limit we have,

8m7|— ™ MN

g, =91, C [(M - 02) 1n(m7r)] : (9.11)
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with,

2

e
= ——— =4.36-10""fm”
06722 o
and ¢y estimated via,
2
_ 9ga
Cg = ———
2(Ma — My)
Here ks = —0.12 is the isoscalar anomalous magnetic moment and g4 = 1.26,

with My the physical nucleon mass. This allows us to write an equation for
the magnetic polarisability of the neutron as a function of the pion mass,
including terms regular for m, — 0,,

Cgy  C (3(1 — Ks)A

+= s

n = a+
b 8m, T

- c2> In(my) + bm? (9.12)

We include a constant and an m2 term which are fit freely. The result of
this fit is given by the dashed line in Figure 9.11. The line is consistent with
the experimental value within its (large) error bars. Our extrapolated value
at the physical pion mass is 1.8 + 0.2 x 10~*fm?®, where the error quoted
includes only the statistical uncertainty. Due to the sharp curvature in the
chiral region the extrapolated value is quite sensitive to changes in the fit
parameters.
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Chapter 10

Conclusion

In this work we have shown the effectiveness of the background field method
at calculating magnetic properties of hadrons on the lattice. In order to get
the most accurate results possible we have performed the first calculation
which uses a uniform quantised magnetic field with an exponential phase
and periodic boundary conditions.

We have thoroughly investigated issues that need to be understood before
performing background field method calculations. We looked at how Landau
levels interfere with magnetic polarisability calculations with charged parti-
cles. These Landau levels can not be easily taken into account but may be
able to be dealt with using a projection onto the lowest Landau energy state.

We described the connection between the origin of the background field
and the technique of twisted boundary conditions. Certain choices for the
gauge potential that give rise to the background magnetic field cause a con-
stant phase to be included at every site on the lattice. This phase is remi-
niscent of the type of phase used to implement twisted boundary conditions,
however cancellations resulting from the quantisation of the phase mean that
it has no effect on physical states. The choice of origin for the field still has
an effect on the excited state overlap of a smeared source correlation function
and we showed that the best behaviour comes when the quark source and
background field source were coincident.

We were able to perform excellent magnetic moment calculations for the
proton and neutron. Effective energies were flat and easy to fit and higher
order contributions were easily taken into account in the fit to the field.
Chiral extrapolations indicated a good approach to the physical values.

Using the variational method we were also able to investigate the mag-
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netic moment of odd-parity nucleon states. We found strong signals for the
lowest lying odd-parity states, the Sf;(1535) and S, (1535). Our calculated
moments have a projected chiral behaviour which suggests good agreement
with predictions made using the chiral constituent quark model. In addi-
tion we performed an exploratory calculation of the magnetic moment of
the S}, (1650) and SY,(1650). Our values for the two lowest lying odd-parity
states support the prediction of an expanded quark model which produced a
different sign for the moment of the Sj;(1650) than the simplest model.

Calculating the magnetic polarisability of the neutron proved more diffi-
cult than the moment. This was due to the fact that it took a lot of Euclidean
time evolution for the effective energies to move towards a plateau. We in-
vestigated the use of different fermion source and sink smearings to improve
the plateau behaviour, including the use of the variational method. There
was no significant improvement to be found, but we were still able to con-
struct a plausible criterion for where ground state saturation was achieved
and obtain tentative polarisability results which were in good agreement with
experiment (within the large error bars of the latter). From chiral pertur-
bation theory the extrapolated value for the magnetic polarisability of the
neutron was 1.8 0.2 x 10~*fm?*, where the error quoted includes only the
statistical uncertainty.

Overall we have been very successful with our background field method
calculations. In the future we hope to improve our results in a number of
ways: By moving to lighter quark masses to make the chiral extrapolation
easier; using larger correlation matrices to nail down the second odd-parity
state; projecting Landau levels to be able to do the proton polarisability;
investigating the potential for Landau level effects on the neutron; performing
a volume analysis to properly account for finite volume effects. We look
forward to presenting this future work.
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Appendix A
Quenched Results

A.1 Simulation details

Our quenched calculations were performed on 323 x40 lattices using a Symanzik
improved gauge action. We used a FLIC fermion action with g = 4.52 and
seven values of the hopping parameter x,q. These give us a lattice spacing
a = 0.128 fm and pion masses m, = 840, 775, 693, 626, 540, 435 and 275
MeV. We use periodic boundary conditions in the spatial dimensions and a
fixed boundary condition in time.

For each mass we had an ensemble of 192 configurations. We used four val-
ues of the dimensionless magnetic field value eBa® = 27n/n,n, = +0.0061,
-0.0123, +0.0245, -0.0492, corresponding ton = 1, —2, 4, —8. This is the field
experienced by the d quark, with the u quark experiencing —2 times these
values for a field B experienced by a proton of -3 times these values. By
choosing fields related to the previous field by a factor of -2, the same factor
relating the quark charges, we require only five propagators (not including
zero field) to get both quarks in four non-zero magnetic field strengths. The
propagators were source smeared with 40 sweeps of Gaussian smearing with
a smearing coefficient of 0.7.

A.2 Magnetic moment

The calculation of the quenched magnetic moment and magnetic polaris-
ability results follows the same method as for the dynamical results. We
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construct a spin-difference effective energy using the form,

1 (G:(B.1) G,(0,1)
268 =5 (G0 Gf(B,w)m‘ A

Figures A.1-A.7 show the spin-difference effective energy shifts for the
proton and neutron at all seven quark masses. We see in each plot the
expected progression to larger energy shifts as the strength of the field in-
creases. Here the field doubles each time unlike the linear progression we
used for the dynamical results, so although the gap between the curves gets
larger at higher field strengths the shift due to the field is getting proportion-
ally smaller, just as in the dynamical case. There appears to be more excited
state contribution than we saw with the dynamical results, likely due to the
40 sweeps compared to 100 sweeps for the dynamical results which improved
the ground state overlap.

The proton and neutron are similar in the shapes of their curves, with
the neutron taking longer to reach a plateau at the larger field strengths,
but also maintaining signal for longer. As expected the signal gets more and
more noisy as we move to lighter quark masses, however the three smallest
field strengths are reasonable in each case. The largest field strength shows
significant curvature at early times and does not reach a good plateau at the
lighter quark masses. This is the reason we switched our field strengths from
1, =2, 4, =8 to 1, —2, 3, 4 when we performed our dynamical calculation.
Although it required an extra propagator to be calculated the data point for
the 3rd field strength was much more useful than the overly large one here.

We determined fitting windows based on the same criteria as described
in Section 8.4.1, looking for the earliest possible window with a reasonable
X3 Value. Although there was no difficulty in finding an acceptable window
for each mass and field, the late plateaus at high field strengths and increase
of noise at light quark masses meant that we could not pick a single window
to apply across every fit. Despite this we tried to keep them as consistent as
possible and since the first two field strengths which are the most important
to the moment value are mostly flat, we are confident that no significant
systematic error is introduced by the choice of fit windows.

Figures A.8 and A.9 show the fits of the spin-difference energy shift
against the field strength. As with the dynamical results we had to in-
clude a cubic term in order to fit the third and fourth field strengths with an
acceptable y? value. Again we performed a single parameter fit to just the
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Figure A.1: Quenched QCD energy shifts for the difference of spin-up and
spin-down at m, = 840 MeV for all field strengths. The top (positive) curves
are for the neutron and the bottom (negative) curves are for the proton.
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Figure A.2: Quenched QCD mass shift for the difference of spin-up and spin-
down at m, = 775 MeV for all field strengths. The top (positive) curves are
for the neutron and the bottom (negative) curves are for the proton.
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Figure A.3: Quenched QCD effective energies for the difference of spin-up
and spin-down at m, = 693 MeV for all field strengths. The top (positive)
curves are for the neutron and the bottom (negative) curves are for the
proton.
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Figure A.4: Quenched QCD effective energies for the difference of spin-up
and spin-down at m, = 626 MeV for all field strengths. The top (positive)
curves are for the neutron and the bottom (negative) curves are for the
proton.
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Figure A.5: Quenched QCD effective energies for the difference of spin-up
and spin-down at m, = 540 MeV for all field strengths. The top (positive)
curves are for the neutron and the bottom (negative) curves are for the
proton.
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Figure A.6: Quenched QCD effective energies for the difference of spin-up
and spin-down at m, = 435 MeV for all field strengths. The top (positive)
curves are for the neutron and the bottom (negative) curves are for the
proton.
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Figure A.7: Quenched QCD effective energies for the difference of spin-up
and spin-down at m, = 275 MeV for all field strengths. The top (positive)
curves are for the neutron and the bottom (negative) curves are for the
proton.

first two points for consistency and found that the two results agreed within
errors.

Figures A.10 and A.11 show the magnetic moment values from the quenched
configurations as a function of pion mass squared. They are compared
with values from another quenched calculation which used the form factor
method [32]. For the proton the two sets of values agree quite well through-
out the range of pion masses. The neutron values from our background field
calculation are somewhat larger than the form factor ones, although the large
errors on the form factor values means they agree in the light quark mass
region.
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Figure A.8: Fits of the quenched proton spin-difference effective energy shift
against the field at each quark mass. The solid line is a 1 parameter fit to
the first two points, the dashed line is a 2 parameter fit to all 4 points.
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Figure A.9: Fits of the quenched neutron spin-difference effective energy shift
against the field at each quark mass. The solid line is a 1 parameter fit to
the first two points, the dashed line is a 2 parameter fit to all 4 points.
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Figure A.10: The magnetic moment of the proton as a function of pion mass

squared. The left-most point is the experimental value. Form factor results
taken from Ref. [32].
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taken from Ref. [32].
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A.3 Magnetic polarisability

Figures A.12 to A.18 show effective energy plots for the shift due to the
magnetic field averaged over spin-up and spin-down neutrons. These follow
the same general trend as the dynamical versions, starting as a small shift
and growing with Euclidean time before becoming overcome with noise. The
curves do not all start at a point like the dynamical ones did because the
smaller amount of source smearing used on the quenched propagators has
resulted in more excited state contamination at early times. The smallest
field strength plateaus fairly well but is consistent with zero at almost every
mass. This is because the smallest field strength here is very small and the
ensemble is not as large as our dynamical ensemble, leading to larger errors.
The lightest mass is so noisy that the plots do not retain signal for long
enough to extract any meaningful results, therefore we do not include them
in our polarisability results.

Figure A.19 shows the fits of the spin-averaged energy shift to the mag-
netic field strength. We performed a two parameter fit with quadratic and
quartic terms at all four points and a purely quadratic fit to the first three
points. The quadratic coefficients of the two fits (which give the polaris-
ability) agreed within errors. We could include the third point in the one
parameter fit because it has larger errors than we saw in the dynamical re-
sults so the higher order contributions are not apparent at that field strength.
The final quenched polarisability results can be seen in Section 9.3.4 in Fig-
ure 9.11.
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Figure A.12: Quenched QCD energy shifts for the average of spin-up and
spin-down at m, = 840 MeV for all field strengths.
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Figure A.13: Quenched QCD energy shifts for the average of spin-up and
spin-down at m, = 775 MeV for all field strengths.
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Figure A.14: Quenched QCD energy shifts for the average of spin-up and
spin-down at m, = 693 MeV for all field strengths.
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Figure A.15: Quenched QCD energy shifts for the average of spin-up and
spin-down at m, = 626 MeV for all field strengths.
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Figure A.16: Quenched QCD energy shifts for the average of spin-up and
spin-down at m, = 540 MeV for all field strengths.
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Figure A.17: Quenched QCD energy shifts for the average of spin-up and
spin-down at m, = 435 MeV for all field strengths.
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Figure A.18: Quenched QCD energy shifts for the average of spin-up and
spin-down at m, = 275 MeV for all field strengths.
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Figure A.19: Fits of the quenched neutron spin-averaged effective energy
shift against the field at each quark mass. The solid line is a 1 parameter fit
to the first three points, the dashed line is a 2 parameter fit to all 4 points.
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