Magnetic Properties of the Nucleon in a Uniform Background Field

Thomas James Primer

Supervisors: Derek Leinweber, Waseem Kamleh

The University of Adelaide School of Chemistry and Physics Discipline of Physics

June 2013

Abstract

We present a calculation of the magnetic moment and magnetic polarisability of the nucleon. The calculation is performed using the background field method of lattice QCD. Dynamical results are from $32^3 \times 64$ configurations with 2+1 flavours of quark provided by the PACS-CS group through the ILDG. These lattices use a clover fermion action and Iwasaki gauge action with $\beta = 1.9$ and physical lattice spacing a = 0.0907(13) fm. Quenched results come from $32^3 \times 40$ lattices using a FLIC fermion action and Symanzik improved gauge action with $\beta = 3.2$ and a = 0.127 fm.

The Landau energy is a crucial effect in the calculation of magnetic polarisabilities for charged particles. We derive the Landau levels and show their effect using examples of proton energy shifts in a background field.

Next we investigate the effects of moving the origin of the background gauge potential. This procedure looks similar to the technique of twisted boundary conditions, but we explain how for a quantised background field there is no change in the physical states, and show evidence using tree level calculations.

We present magnetic moment calculations for the proton and neutron, with a comparison between quenched and dynamical background field results as well as three point function results. We use the variational method in order to isolate excited states so that we can present results for the magnetic moment of the lowest lying odd-parity proton and neutron states.

Finally we present a calculation of the magnetic polarisability of the neutron. We investigate ways of improving the plateau behaviour of the energy shift, including the use of a variational analysis with a variety of source and sink smearings. Results are compared with experimental values.

Statement of originality

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution in my name and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Acknowledgements

First of all I would like to thank my supervisors Derek and Waseem. Their guidence and advice has enabled me to produce a thesis I am proud of. Progress hasn't always been easy, but I have learned an amazing amount from them and it has made me a better physicist. I would also like to give special thanks to Matthias Burkardt, whose insight was crucial in getting us unstuck from the mud on a number of occassions.

Next I would like to thank all the PhD students I have shared my time with, both for the physics discussions and for the social interactions, whether at lunch or off at conferences or on an indoor soccer court. I would especially like to thank Dale and Ben, who always had time to help me track down recalcitrant seg faults and the like. This has been a really great group of people to spend five years studying with.

Finally I would like to thank my family, who have always been supportive of me. They were happy for me to persue what I was interested in and have also pushed me to be the best that I can. Thanks to them I have had countless opportunities to try and explain my work in laymans terms and what the real world significance of it is. If I ever work out an answer I'll let you know.

Contents

1	Introduction	1
2	Quantum Chromodynamics	4
	2.1 The Standard Model	4
	2.2 Gauge field theory	5
	2.3 The quark model	6
	2.4 The QCD Lagrangian	7
	2.5 Expectation values	8
3	Lattice QCD 1	0
	3.1 Lattice gauge action	0
	3.2 Lattice fermion action	2
	$3.2.1$ Wilson action $\ldots \ldots 1$	3
	3.2.2 Clover action $\ldots \ldots 1$	4
	3.3 Correlation functions	5
	3.4 Interpolating fields	7
	3.5 Gauge field ensemble	8
4	The Background Field Method 2	0
	4.1 Introduction	0
	4.2 Formulation	21
	4.3 Quantising the magnetic field	2
5	Simulation Details 2	8
	5.1 Error analysis $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 3$	0
6	Landau Levels 3	2
	6.1 Introduction $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 3$	2

	6.2	Derivation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 34$
	6.3	Examples
_	-	
7	$\mathbf{T}\mathbf{w}$	sted Boundary Conditions 43
	7.1	Introduction
	7.2	Twisted boundary conditions and momentum shifts 45
		7.2.1 Examples $\dots \dots \dots$
	7.3	Twist-like phases with a background field
		7.3.1 Explanation $\ldots \ldots 54$
	7.4	Summary
8	Ma	gnetic Moment 58
0	8.1	Introduction 58
	8.2	Quark model prediction 59
	8.3	Method 61
	8.4	Results 64
	0.1	8.4.1 Effective energies
		8.4.2 Magnetic field dependence
		8.4.3 Magnetic moment as a function of pion mass 69
	8.5	Odd Parity Nucleon
	0.0	8.5.1 Initial results
		8.5.2 Variational method
		8.5.3 Results
		8.5.4 Effective energies 83
		8.5.5 Fits to the field
		8.5.6 Magnetic moment as a function of pion mass 93
		8.5.7 Quark model prediction
9	Mag	gnetic Polarisability 101
	9.1	Introduction
	9.2	Method
	9.3	Results
		9.3.1 Effective energies $\ldots \ldots 104$
		9.3.2 Source smearing $\ldots \ldots 104$
		9.3.3 Magnetic field dependence
		9.3.4 Magnetic polarisability as a function of pion mass 114
10	Cor	nclusion 118
τU		

A Que	enched Results 1	26
A.1	Simulation details	126
A.2	Magnetic moment	126
A.3	Magnetic polarisability	136

List of Figures

$4.1 \\ 4.2 \\ 4.3$	Top: Plaquette definition. Bottom: Background field plaquette.Plaquettes at the edge of the latticeCorner plaquette.Corner plaquette.	24 25 26
$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	Example of Landau levels from quenched calculation Example of Landau levels from dynamical calculation	38 40
$7.1 \\ 7.2 \\ 7.3 \\ 7.4 \\ 7.5$	Twisted boundary effective masses at tree level Neutron effective mass twisted boundary conditions comparison. Background field and twisted boundary eff. masses at tree level. Energies with background field and TBCs at different smearings. Example 4×4 lattice with shifted origin background field	47 49 51 53 56
8.1	Neutron effective mass plot with background field on	63
8.2	Spin-difference effective energy plot at $\kappa = 0.13700.$	64
8.3	Spin-difference effective energy plot at $\kappa = 0.13727$	65
8.4	Spin-difference effective energy plot at $\kappa = 0.13754$	66
8.5	Spin-difference effective energy plot at $\kappa = 0.13770.$	67
8.6	Neutron spin-difference mass shift vs held strength	70
8.7	Proton spin-difference mass shift vs field strength	71
8.8	Proton magnetic moment as a function of pion mass squared.	73
8.9	Neutron magnetic moment as a function of pion mass squared.	74
8.10	Odd parity proton spin-difference energy shift	77
8.11	Odd parity neutron spin-difference energy shift	77
8.12	Eigenvector values from the odd-parity variational analysis	82
8.13	Projected spin-down effective mass for the odd-parity neutron.	84
8.14	Odd parity proton spin-difference energy shift at $\kappa = 0.13700$.	85
8.15	Odd parity proton spin-difference energy shift at $\kappa = 0.13727$.	86
8.16	Odd parity proton spin-difference energy shift at $\kappa = 0.13754$.	87

8.17	Odd parity proton spin-difference energy shift at $\kappa = 0.13770$. 88
8.18	Odd parity neutron spin-difference energy shift at $\kappa = 0.13700$. 89
8.19	Odd parity neutron spin-difference energy shift at $\kappa = 0.13727$. 90
8.20	Odd parity neutron spin-difference energy shift at $\kappa = 0.13754$. 91
8.21	Odd parity neutron spin-difference energy shift at $\kappa = 0.13770$. 92
8.22	Odd parity proton spin-diff. mass shift vs field strength 94
8.23	Odd parity neutron spin-diff. mass shift vs field strength 95
8.24	Magnetic moment of the proton and its odd-parity excitations. 96
8.25	Magnetic moment of the neutron and its odd-parity excitations. 97
9.1	Spin-averaged neutron effective mass including bare mass 103
9.2	Spin-averaged energy shift at $\kappa = 0.13700.$
9.3	Spin-averaged energy shift at $\kappa = 0.13727.$
9.4	Spin-averaged energy shift at $\kappa = 0.13754.$
9.5	Spin-averaged energy shift at $\kappa = 0.13770.$
9.6	Proton spin-averaged energy shift at $\kappa = 0.13700.$ 109
9.7	Spin-up and spin-down energy shifts at different smearings 110
9.8	Spin-averaged energy shift with combined smearings 111
9.9	Spin-averaged energy shift from variational analysis 112
9.10	Spin-averaged mass shift vs field strength
9.11	Neutron magnetic polarisability as a function of m_{π}^2 116
A.1	Quenched spin-difference energy shift at $m_{\pi} = 840$ MeV 128
A.2	Quenched spin-difference energy shift at $m_{\pi} = 775$ MeV 128
A.3	Quenched spin-difference energy shift at $m_{\pi} = 693$ MeV 129
A.4	Quenched spin-difference energy shift at $m_{\pi} = 626$ MeV 129
A.5	Quenched spin-difference energy shift at $m_{\pi} = 540$ MeV 130
A.6	Quenched spin-difference energy shift at $m_{\pi} = 435$ MeV 130
A.7	Quenched spin-difference energy shift at $m_{\pi} = 275$ MeV 131
A.8	Proton spin-difference energy shift vs field strength 132
A.9	Neutron spin-difference energy shift vs field strength 133
A.10	Quenched proton magnetic moment as a function of m_{π}^2 134
A.11	Quenched neutron magnetic moment as a function of m_{π}^2 135
A.12	Quenched spin-average energy shift at $m_{\pi} = 840$ MeV 137
A.13	Quenched spin-average energy shift at $m_{\pi} = 775$ MeV 137
A.14	Quenched spin-average energy shift at $m_{\pi} = 693$ MeV 138
A.15	Quenched spin-average energy shift at $m_{\pi} = 626$ MeV 138
A.16	Quenched spin-average energy shift at $m_{\pi} = 540$ MeV 139

A.17 Quenched spin-average energy shift at $m_{\pi} = 435$ MeV.	•	• •	139
A.18 Quenched spin-average energy shift at $m_{\pi} = 275$ MeV.		• •	140
A.19 Neutron spin-average energy shift vs field strength. \therefore		• •	141

List of Tables

5.1	Simulation details.	28
8.1 8.2 8.3	Neutron magnetic moment values for different fit windows Neutron magnetic moment values from 1 and 2 parameter fits. Magnetic moment values for the proton and neutron	68 70 73
8.4	Magnetic moment values for odd-parity states.	100
9.1	Neutron magnetic polarisability values from 1 and 2 parameter fits	114