
 

PUBLISHED VERSION  

 

 

Simon De Deyne, Daniel J. Navarro, Gert Storms 
Associative strength and semantic activation in the mental lexicon: evidence from 
continued word associations 
Proceedings of the 35th Annual Meeting of the Cognitive Science Society, 2013 / pp.2142-
2147 

 

© Authors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/83798  

 

PERMISSIONS 

 
 As per email correspondence received 8/07/2015 

 

 

 

 

 

 

3 August 2015 

http://hdl.handle.net/2440/83798


Associative strength and semantic activation in the mental lexicon: evidence from

continued word associations

Simon De Deyne (simon.dedeyne@ppw.kuleuven.be)a,b

Daniel J. Navarro (daniel.navarro@adelaide.edu.au)b

Gert Storms (gert.storms@ppw.kuleuven.be)a

a University of Leuven, Department of Psychology, Tiensestraat 102, 3000 Leuven, Belgium
b University of Adelaide, School of Psychology, 5005 Adelaide, Australia

Abstract

In a word association task, the probability of producing a cer-
tain response to a cue is considered to be a direct measure of
associative strength between words in the mental lexicon. The
common single word association procedure is limited, since
the number of words connected to a cue might be underesti-
mated when a single response is asked. The continued asso-
ciation task overcomes this limitation by asking a person to
generate multiple associative responses. To test whether con-
tinued strengths allow a better approximation of our lexicon,
an experiment was conducted in which participants judged the
associative strength between words.

Our results show that in contrast to other semantic tasks, con-
tinued strength predicts weak to moderate judgments only.
Two explanations based on the sampling of information and
differential semantic activation of later responses in continued
association are proposed. Theoretical implications for seman-
tic activation and methodological implications for derivation
of strength are discussed.
Keywords: associative strength, semantic relatedness; word
associations.

The free word association task has been used extensively to

investigate processes and structure in semantic and episodic

memory. The task is attractive because it is unconstrained

and straightforward, and no apriori restrictions are formulated

about what types of relationships between words are deemed

relevant. It leads to a rich and varied source of information.

Compared to constrained tasks such as feature generation,

it tends to provide more thematic relations like DOCTOR -

NURSE. There is increasing agreement that this thematic in-

formation determines much of how natural language concepts

are used both in daily life and in language phenomena studied

in the lab including semantic priming, metaphor comprehen-

sion, categorization and induction (e.g. Lin & Murphy, 2001;

Wisniewski & Bassok, 1999).

An influential metaphor for the representation of this

knowledge presents the mental lexicon as a weighted graph,

where the structure of the links between the nodes (words)

determines how words relate to each other and get their mean-

ing. Obviously, the value of such a representation hinges on

how the words are connected and on what determines the

strength of these connections. The key assumption under-

lying the word association task, is that the number of peo-

ple that generate a specific response to a cue is an indica-

tion of the strength between cue and response. Approximat-

ing the relations in the lexicon through word associations ex-

plains numerous phenomena: facilitation of word process-

ing in associative priming (Hutchison, 2003), the probabil-

ity of recall in cued-recall tasks (Nelson, Zhang, & McK-

inney, 2001), reaction times in lexical decision (De Deyne,

Navarro, & Storms, 2012) and generation frequencies in flu-

ency tasks (Griffiths, Steyvers, & Tenenbaum, 2007). More-

over, the overlap of the distributions of these strengths for two

words indicates how semantically related they are and this is

the basis of the success of lexico-semantic models such as

Latent Semantic Analysis (LSA, Landauer & Dumais, 1997)

and topic models (Griffiths et al., 2007).

Associative strength is central to how we process the mean-

ing of words, but the traditional way of measuring it, through

asking a participant a single word association, is not with-

out limitations. The response frequencies from the single

word association task are considered reliable only for the very

strong associates, since weaker responses are often missing

(Nelson, McEvoy, & Dennis, 2000). This lack of weak asso-

ciations is seen as a general drawback of the word association

procedure (Aitchison, 2003, p. 101) and has been responsi-

ble for questioning the results of previous findings in numer-

ous tasks such as mediated priming (e.g., Chwilla, Kolk, &

Mulder, 2000). Presumably, this reflects dominance effects

where for a cue like UMBRELLA a single strong associate

such as RAIN accounts for almost all responses (Nelson &

Bajo, 1985). While the exact causes of dominance effects are

not well understood, it is obvious that they make the response

distributions overly sparse, and bias all kinds of association

derived strength measures.

Recently, a large-scale continued word association

database was completed involving over 70,000 participants

and 3 million responses (De Deyne, Navarro, & Storms,

2012). In contrast to previous studies, a continued word asso-

ciation task was used in which subjects were presented a short

list of stimulus or cue words and asked to give three different

responses to each of these cues. The goal of the present study

is to investigate how word association frequencies in contin-

ued tasks map onto associative strength. If single word as-

sociations tend to underestimate or be unreliable for weaker

responses, then we would expect that using information en-

coded in later responses might alleviate this problem. This

would support previous findings where semantic relatedness

derived from continued association norms results in a bet-

ter predictor of semantic tasks including pair-wise similarity

judgments (De Deyne, Peirsman, & Storms, 2009), prototypi-

cality judgments (De Deyne, Voorspoels, Verheyen, Navarro,
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& Storms, 2011), and response times in the lexical decision

task (De Deyne et al., 2012).

Since continued word association data only became avail-

able recently (cfr. De Deyne et al., 2012), few have studied

strength derived from multiple responses and how it relates

to other measures of associative strength. For instance in the

study of Garskof (1965) calculated strength using continued

associations to 20 cues and found that a weighted sum de-

pending on the rank of the response correlated higher than a

measure of strength that did not take into account response

position. In contrast to previous work, this study presents

a systematic comparison of measures of strength by look-

ing at the contribution of continued responses alongside that

of single responses using a recently proposed task in which

participants judge associative strength of word pairs directly

(Koriat, 2008; Maki, 2007) and compare it to single associate

strength measures.

Sometimes the best way to understand a phenomenon is to

take a step back. To aid the interpretation of the pattern of re-

sults from the judgment of associative strength task, the sec-

ond part of this paper describes additional evidence by com-

paring expected strengths of continued responses with the ob-

served strengths of these responses in the continued task. This

analysis allows us to interpret quantitative differences (due to

the sampling regime in continued association), and qualita-

tive differences in terms of the types of semantic information

activated in later responses.

Judgment of Associative Strength Experiment

In a series of experiments on associative strength, Maki

(2007) asked subjects to estimate how many people out of 100

would consider two words to be associated. Using a similar

judgment of association strength task, our goal was to find out

whether continued responses provide a better approximation

compared to a single response procedure.

To test this hypothesis we compared various models, start-

ing with a simple one that predicts judgments using the word

association counts of the first three response positions (R1,

R2, R3). Strength can be forward strength (FS), or the proba-

bility that a certain response is generated given a cue or back-

ward strength (BS): the probability of a certain cue given a

specific response. These measures are easily derived by di-

viding the frequency of a certain response by the total number

of responses for that cue.

Method

Participants Fifty native Dutch speaking psychology stu-

dents participated in exchange for course credit.

Stimuli and Materials The stimuli were selected from a set

of more than 12,000 Dutch cues that were part of a large scale

continued word association database described in De Deyne

et al. (2012). Similar to De Deyne et al. (2012) single and

multiple response strength were derived from the graph G1

based on the first response G2 based on the secondary and G3

for tertiary responses. These graphs were obtained by con-

verting the bimodal cue by response matrix to a unimodal cue

by cue matrix by retaining those responses present in the set

of cues. This makes it possible to get estimates of both back-

ward and forward strength since all responses are also present

as a cue in such a graph. For each cue, FS was calculated us-

ing only the first response (G1) or including the sum of all

three responses G123. The cues were determined randomly

subject to following conditions. Only responses that were

present both in G1 and G123 were considered. The differ-

ence in response strength was calculated and responses were

selected that differentiated between both graphs.

A total of 80 associated cues and responses were chosen

to cover the entire range of forward and backward strength

between 0 and 1. All words in the judgment tasks were

unique and only Dutch words were admitted that had a word

frequency larger than one in the SUBTLEX-NL word fre-

quency norms (Keuleers, Brysbaert, & New, 2010). Similar

as in Maki (2007), 20 unrelated pairs such as RAFT–LION or

TASK–SIN were added to the 80 related pairs. Since these

do not share any associations, their forward and backward

strengths equaled zero.1

Procedure Participants were tested during a collective ses-

sion in a computer room using an online survey. Simi-

lar to Maki (2007) the subjects were familiarized with the

word association task. Each participant was asked to give

three responses to a set of 15 cues in a task identical to the

one described in De Deyne et al. (2012). Upon completion

of the word association study they were directed to the in-

struction page for the judgment of associative strength study

and asked to estimate how many out of a hundred persons

from Belgium, would give a certain association. An example

was shown for a highly related pair (CAPTAIN–BOAT) and a

weakly related pair (CAPTAIN–HAT). Finally, they were told

to use a sliding scale to indicate their judgments and to con-

sider the entire range of the scale from 0 to 100. A total of

100 items were presented in a randomized order and had the

following format: In a word association task, the word X

was presented. How many people out of 100 responded with

the word Y? The judgment of associative strength task took

about 10 minutes on average to complete.

Results and Discussion

The average of all ratings was calculated and the Spearman-

Brown formula for split-half reliability was applied on the

data from 50 subjects. The result showed that the ratings were

highly reliable: rsplithal f (100) = .99.

The judgment of association strength as a function of

normed association based on single response strength FS1 is

plotted in Figure 1. This Figure shows that weak and moder-

ately strong normed associates are overestimated in the judg-

ments of strength (as indicated by their relative position to-

ward the diagonal), while strong associates tend to be under-

estimated. This is in line with the previous findings reported

1A full list of the stimuli is available from http://www
.smallworldofwords.com/experiments/
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Figure 1: Scatter plot for judged and normed FS1 together

with regression line and confidence bounds.

by Maki (2007). The relative contribution of different instan-

tiations of associative strength measures based on continued

association was investigated through a series of regression

analyses where we focused on straightforward predictors that

corresponded to interpretable and theoretically interesting as-

pects of strength.2

Strength in related pairs In a first series of analyses, only

the related items are considered as these data have non-zero

values for both forward and backward strength measures. The

results of the analyses are presented in Table 1. The sim-

plest model predicts judgments of associative strength by

the normed strength of the first response (FS1). Model 1

accounts already for 56% of the variance and found a sig-

nificant effect of FS1, β = .75, p < .01. A second model

is one where strength is averaged over all three responses:

FS123 = (FS1 +FS2 +FS3)/3). This predictor was signifi-

cant (β = .70, p < .01), but the model only captured 49% of

the variance. In contrast to previous studies (cfr. De Deyne

et al., 2011, 2012), the added information from R2 and R3

does not improve the prediction of the judgments of associa-

tions strength. Model 3 considers the possibility that judged

strength is a function of both forward and backward strength

of R1. Both FS1(β = .70, p < .01) and BS1(β = .21, p < .01)

were significant predictors and provided the best account of

the data so far.

Next, we investigated if R2 and R3 responses provide ad-

ditional information beyond that captured in R1. Model 4

expands Model 1 by including FS2, resulting in significant

effects for FS1 (β = .75, p < .01) but not FS2 (β = .11,ns)

resulting in little extra variance accounted for (see Table 1).

Similarly, no effect was found for FS3 in any additional anal-

ysis that was not accounted for by either FS1 or FS2. So these

will not be discussed further.

2To reduce the skew in the count-based strength measures a log-
transformation was used.

Table 1: Regression models (#M) for the prediction of judged

associative strength. Only significant models are reported and

adjusted R2s are used throughout.

Related

M F-test Regression Equation R2

1 F(1,78) = 99.8 69 + 22FS1 .556

2 F(1,78) = 75.9 88 + 14FS123 .487

3 F(2,77) = 58.9 83 + 21FS1 + 16BS1 .594

4 F(2,77) = 51.7 74 + 22FS1 + 7FS2 .562

5 F(3,76) = 52.0 90 + 17FS1 + 8BS1 + 29Rel .659

25% Quantile

1 ns – –

2 F(1,37) = 6.4 71 + 91FS123 .125

3 F(1,37) = 4.3 59 + 14FS2 .080

4 F(2,36) = 8.5 102 + 16FS2 + 43BS1 .284

5 F(3,35) = 11.3 107 + 17FS2 + 22BS1 + 38Rel .448

A final model considered the role of relatedness. It is

quite possible that when faced with uncertainty about exact

strength, participants use the semantic relatedness between

the cue and target to infer how strongly associated they are.

Semantic relatedness was calculated as the cosine between

the cue and response vector (see De Deyne et al. (2012) for

additional details). Intuitively a high cosine indicates many

shared associates between two words, while a low cosine

indicates few shared associates. Model 5 gave the best fit

of the data (R2 = .66), with significant effects for both FS1

(β= .59, p< .01) and relatedness (Rel, β= .31, p< .01). BS1

was no longer significant (β = .10,ns).

Modeling weak strengths Still, it might be too early to

conclude that normed strength from later responses never pre-

dicts strength judgments. As can be seen from Figure 1, FS1

at the low end of the scale does not distinguish much of the

observed judged data. Possibly, strength derived from later

responses results in more stable estimates for those responses

that occur less frequent as R1. At this low end of the FS1

scale, participants might make use of richer information, cor-

responding to information encoded in FS2, FS3, backward

strength, or semantic relatedness.

To investigate if the weak strengths are better captured by

R2 and R3, a subsection of the data presented was selected by

placing a cut-off at the first quartile of FS1, as most of the

remaining data were not explained by FS1.

The same models as presented before were now used to

predict these data. The results for FS1 in Model 1 confirmed

the pattern in Figure 1, as it was unable to predict any data.

A significant effect for summed strength FS123 (β = .38, p <
.05) was found in Model 2, explaining 13% of the variance.

Since FS1 did not explain the data, a new model consisting

of FS2 was tested and found significant (β = .32, p < .05).

The following models therefore use FS2 rather than FS1. In

Model 4, both FS2 (β = .38, p < .01) and BS1 (β = .47, p <
.01) were significant and accounted for 28% of the variance.
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The final model including relatedness explained most of the

variance (45%) with a significant effect of FS2 (β = .40, p <
.01) and relatedness (β = .47, p < .01), but no significance

for backward strength BS1 (β = .24,ns).

Together, these results support the idea that the judgment

of association strength task is sensitive to normed associa-

tive strength, and closely replicates the previous findings of

(Maki, 2007). However, our main goal was to investigate

whether continued responses lead to better approximations

of judged strength. Our findings support this hypotheses, but

only for weak or moderate strengths. Since no large-scale

studies have looked at the effect of continued associations,

the next section will go into detail about which mechanisms

might cause these results.

What factors determine the contribution of

continued responses?

A question that arises from the previous findings is why

strength measures that include R2 and R3 responses systemat-

ically improve the prediction in a variety of semantic tasks

such as similarity judgment tasks or lexical decision tasks

(De Deyne et al., 2012), but not in the judgment of associa-

tion task. Can we provide an explanation why they capture no

additional information compared to R1 strengths at the high

range of the scale?

Sampling without replacement hypothesis. A first expla-

nation is based on the idea that continued responses are bi-

ased due to the continued nature of the task. More precisely,

participants are not allowed to repeat a response. Especially

when a certain R1 association is very dominant, the propor-

tion of participants who did not generate it as R1 but could

generate it as R2, will be very low. Summing strengths in

these cases might bias strength for such a response. In other

words, the strength measures for R2 and R3 do not take into

account this sampling without replacement. As consequence

of the restriction of sampling without replacement, we expect

FS2 to be heavily biased for the strong responses, but at least

capture moderate and weak strengths. If sampling without

replacement is the main factor governing the observed fre-

quencies for continued responses, then the derived expected

strengths for the secondary and tertiary association response

should closely agree with the observed strength for R2 and

R3.

Given a specific cue with N different responses one can de-

rive the expected R2 response count for x from its probability

as a first response R1 as follows:

P(R2 = x) = P(R1 = x)
N

∑
i=1,i6=x

P(R1 = i)

1−P(R1 = i)
(1)

The same principle holds for the derivation of the joint

expected response for R3. For each of the 12,428 cues in

G1, the expected R2 strengths were calculated using Equa-

tion 1. If differences between expected and observed FS2

strengths are primarily caused by the sampling without re-

Figure 2: Averages and SD for correlation between expected

and observed FS2 (left-hand y-axis) grouped by entropy (H).

A histogram of entropy for each cue with counts was added

(right-hand y-axis).

placement, then the expected and observed values should be

similar up to some random noise. For each of the cues,

the correlations between expected and observed strength dis-

tributions were obtained and had an average correlation of

r(12428) = .71(SD = .13). At this point, it is not clear what

determines high or low agreement. A corollary from the

strength without replacement explanation is that the degree of

bias in FS2 or FS3 will depends on the set-size or heterogene-

ity of the R1 response distribution which can be formalized as

entropy H:

H =
N

∑
i=1

pilog2
1

pi

(2)

where N is the size of the vocabulary or number of different

responses and pi is the probability for the ith response. H

increases as the responses become more heterogeneous and

equals zero if all responses were identical.

Figure 2 shows the average correlations binned as function

of the entropy for the cues. For cues with few responses, the

correlation between expected and observed counts is lower.

Similarly, the cues with a very heterogeneous response set

corresponding to the high entropy words at the right-hand

side of Figure 2 also exhibit lower agreement than average

entropy cues. A possible explanation of the former effect

is due to dominance effects previously observed in cued re-

call (Nelson & Bajo, 1985), where a single strong response

inhibits the retrieval of other weaker ones. For these low

entropy cues we expect higher utility of FS2 or FS3 in the

judgment of associative strength assuming that the effect of

dominance is removed once the response is generated and

additional information becomes accessible. The latter effect

could be due to unreliability, where at the high extreme cues

elicit only idiosyncratic responses. Little benefit of FS2 can

be expected for high entropy cues, since there is no reason

to expect very heterogeneous responses to become more co-

herent in the later responses. For these cues it should be dif-
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ficult predicting associative strength whether this strength is

based on FS1 or FS2. New pilot studies seem to support this

entropy interaction. However, there are number of reasons

why sampling restrictions cannot completely explain the ob-

served response distributions for continued responses. First

of all, this does not explain why the heterogeneity or entropy

increases when more than one response per cue is asked. Sec-

ond, it might be the case that for different response positions,

distinct types of semantic information becomes available.

Time course of Semantic Activation Hypothesis. A pos-

sible explanation why some R2 and R3 responses are gener-

ated much more (or less) frequent than expected based on

R1 when sampling without replacement is taken into account

stems from the idea that qualitatively different sources of in-

formation are accessed. A first possibility is that the type

of response for R2 and R3 is influenced by the previous re-

sponse beyond previously noted sampling restrictions. Such

an order effect is called chaining, and can be illustrated for

the cue SWISS, where MOUNTAINS is given more frequently

as an R1 (57%) than R2 (16%), while it is expected 26% of

cases in R2. Together with the observation that SNOW is given

less frequently than expected from its R1 counts, one can as-

sume an associative chain: SWISS → MOUNTAINS → SNOW.

The presence of chaining can be quite easily investigated,

and previous research suggest this phenomenon is quite rare

(De Deyne & Storms, 2008).

Second, the different time course of automatic and qualita-

tively different types of semantic information might be a more

important factor. Consider for example the cue GORILLA

where MONKEY is generated in 72 times as R1. It is expected

to occur 21 times as R2 yet occurs only 6 times. At the same

time, BIG is generated 18 times as R2, but is expected to oc-

cur 6 times at most. Perhaps linguistic or superficial informa-

tion like superordinate labels precede entity properties as in

this example. Both behavioral (Santos, Chaigneau, Simmons,

& Barsalou, 2011) and fMRI studies (Simmons, Hamann,

Harenski, Hu, & Barsalou, 2008) support the idea that gradu-

ally deeper semantic information becomes activated. For ex-

ample, in an experiment by Santos et al. (2011), participants

generated about 1.7 responses in a continued time delimited

task. In this study, later responses tended to convey a shift

from primarily linguistic responses towards taxonomic- and

especially thematic- and entity-related responses.

Perhaps a better way to study the time course of seman-

tic activation is based on a comparison between observed and

expected response frequencies for continued responses given

the response distribution of the first response. Such a compar-

ison is more accurate compared to previous approaches since

it is not biased by (lack of) opportunity to generate a previous

response in the continued procedure. To investigate what type

of information is different in the second and third response of

the word associations, we calculated the expected response

frequencies for R2 and R3 (cfr. Equation 1) and compared

them with the observed response frequencies by subtracting

observed from expected R2 and R3. A positive value indicates

Figure 3: Distribution of semantic knowledge for observed

responses in R2 and R3 that are either over- or underestimated

based on expected R2 and R3 responses.

that the observed response in R2 or R3 is less likely to be gen-

erated than expected and this information is underestimated

in R2 or R3. A negative value indicates that the response is

generated more often than expected and is overestimated in

the observed R2 or R3 counts. Since it is practical unfeasible

to manually code all possible cue-response pairs only a subset

of the data was used. For each of the +12,000 cues the most

extreme (one positive, one negative) responses were listed,

once for R2 and once for R3. Both sets were sorted and only

the 1,000 most negative and 1,000 most positive differences

were retained for further analysis.

The relationship between 2,000 R2 and 2,000 R3 cue-

response pairs was coded as either as entity, introspective,

lexical, thematic or taxonomic using similar guidelines as

those described in De Deyne and Storms (2008) and Santos

et al. (2011). Entity responses encode properties of the cue

(e.g., MOON-YELLOW), introspective pairs encode evaluation

or affect towards the cue (MOON-PRETTY), lexical attributes

encode linguistic properties such as word compound comple-

tions, idioms, or rhyme (MOON-walk), thematic information

could refer to agents, time and place of an action etc. (MOON-

ASTRONAUT), taxonomic encodes super-,sub- and coordi-

nates, synonyms and antonyms (MOON-PLANET). A detailed

discussion of the implications for various types of semantic is

beyond the scope of our illustration. For current purposes, we

are mainly interested in identifying potential systematicity in

qualitative response changes as a function of response posi-

tion. The results in Figure 3 indicate that this is strongly the

case. The largest effect is for taxonomic information which

is much less likely to occur R2 and R3 than expected. To a

lesser extend, there is also a shift where less lexical responses

are generated as R2 or R3. The positive shift shows that en-

tity and thematic responses are generated more frequent than

expected for R2 and R3. These findings support the previ-

ous conclusions that linguistic information (encoded lexical)

precedes conceptual types of information such as entity and

thematic information. In contrast to the findings of Santos et

al. (2011), our findings also show that taxonomic information

is available early in the generation process.
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This result also offer a potential qualitative interpretation

of the contrast between a lack of effect of FS2 in the judged

associative strength task and its significant contribution in

similarity judgment and other more semantic tasks if seman-

tic knowledge related to entity features and thematic roles is

better encoded in R2 and R3. Clearly, follow-up studies are

needed to further evaluate these hypotheses.

Discussion and Conclusion

Using a judgment of associative strength task, we investigated

the role of normed strength derived continued word associ-

ations. In contrast to previous reports where denser repre-

sentations derived from second and third responses provided

better estimates of distributional relatedness and lexical cen-

trality (De Deyne et al., 2012), we found that the contribution

of these responses is limited to weak or moderate response

strengths. Moreover, in contrast to previous studies, simply

summing response frequencies systematically resulted in in-

ferior predictions for judgments of associative strength. Our

interpretation of this finding is based on the notion that later

responses are likely to underestimate the highest strengths

due to sampling without replacement.

When comparing expected strengths under sampling with-

out replacement against the observed strengths, the differ-

ences in R2 and R3 are very systematic and point out how

semantic activation of types of knowledge changes over time,

an issue which has been notoriously difficult to measure us-

ing other paradigms including priming. Importantly, using

expected response frequencies for continued responses in

comparison with actual observed response frequencies might

provide a less biased baseline for tracking the time-course

of semantic activation through continued association tasks.

While different semantic information in continued responses

strongly reflects the divergence between expected and ob-

served counts for R2 and R3, it should be noted that other fac-

tors might also play a role. Since none of the responses in the

association data is stemmed, it is quite likely that some part

of the discrepancies will disappear when the data is processed

this way. Our findings also result in a number of method-

ological recommendations as we have shown that ignoring

sampling without replacement is problematic for low entropy

cues and the use of single or combined strength measure de-

pends on the type of task under consideration (ranging from

associative to more semantic in nature).

At a theoretical level, our results challenge the main con-

clusions about the supposed overestimation bias of weak

and moderate associates in judgments of associative strength

(Maki, 2007; Koriat, 2008). The previous interpretation rests

on the assumption that word association frequencies veridi-

cally reflect strength and only a small number of different

responses are available (as is the case in single word associa-

tion). Instead, we propose that this bias might not be due to

the judgments themselves but could equally be an artifact of

the single association procedure which underestimates low to

medium responses.
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