The Effect of Prenatal Hypoxia on Cardiomyocyte Development and Postnatal Heart Health

Kimberley J. Botting

B. Biomedical Sci. (Hons)

Discipline of Physiology School of Medical Sciences Faculty of Health Science

September 2013

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy to The University of Adelaide

Table of contents

ABSTRACT	vi	
DECLARATION	viii	
ACKNOWLEDGEMENTS ix		
RELATED PUBLICATIONS .	Х	
LIST OF FIGURES AND TAE	BLExii	
COMMONLY USED ABBRE	VIATIONSxv	
1. CHAPTER ONE – LITE	RATURE REVIEW5	
1.1 Published review: I	Botting K.J., Wang K.C.W., Padhee M, McMillen I.C.,	
Summers-Pearce B	., Rattanatray L., Cutri N., Posterino G.S., Brooks D. A.,	
Morrison J.L. Early	Origins of Heart Disease: Low birth weight and determinants	
of cardiomyocyte e	ndowment. Clinical and Experimental Pharmacology and	
Physiology. 2012;3	9:814-823 ¹ 5	
1.1.1 Summary (A	Abstract)5	
1.1.2 Introduction	۱6	
1.1.3 Cardiomyoo	zyte development6	
1.1.4 Cardiomyoo	cyte turnover and polyploidization in postnatal life	
1.1.5 The effect of	f IUGR in species where cardiomyocyte maturation occurs	
after birth		
1.1.6 The effect o	f IUGR in species where cardiomyocyte maturation occurs	
before birth		
1.1.7 Postnatal ca	rdiac consequences of IUGR26	
1.1.8 Concluding	remarks	

	1.2	Review for submission: Early Origins of Heart Disease: IUGR and postnatal	
		cardiac metabolism	27
		Introduction	27
		1.2.1 Cardiac metabolism	28
		1.2.2 Effect of IUGR on postnatal cardiac metabolism	37
		1.2.3 The effect of obesity and insulin resistance on cardiac metabolism	38
		1.2.4 The effect of cortisol on cardiac metabolism	42
		1.2.5 The effect of cardiac hypertrophy on cardiac metabolism	46
		1.2.6 Conclusion	49
	1.3	Experimental hypotheses	50
2.	CHA	APTER TWO	57
	2.1	Abstract	57
	2.2	Introduction	58
	2.3	Methods	60
		2.3.1 Animal model and surgical procedures	60
		2.3.2 Arterial blood gas measurements	61
		2.3.3 Tissue collection	61
		2.3.4 Total number of cardiomyocytes and capillary length density	62
		2.3.5 TUNEL	64
		2.3.6 Measurement of mRNA expression	64
		2.3.7 Quantification of protein abundance	69
		2.3.8 Statistical analysis	69

	2.4	Result	s7	0
	2.5	Discus	ssion7	9
	2.6	Conclu	usion8	2
3.	CHA	APTER '	THREE	7
	3.1	Abstra	.ct	7
	3.2	Introd	uction8	8
	3.3	Metho	ds9	1
		3.3.1	Animal model9	1
		3.3.2	Experimental protocol9	2
		3.3.3	Blood pressure analysis	3
		3.3.4	Post mortem collection of tissue9	3
		3.3.5	Total number of cardiomyocytes9	4
		3.3.6	Measurement of mRNA expression9	6
		3.3.7	Quantification of protein abundance9	7
		3.3.8	Statistical analysis10	0
	3.4	Result	s10	1
		3.4.1	Maternal data10	1
		3.4.2	Birth and postnatal growth10	1
		3.4.3	Blood pressure	6
		3.4.4	Organ weights10	6
		3.4.5	Cardiomyocyte number10	6
		3.4.6	Markers of cardiac hypertrophy10	17

	3.5	Discussion	115
	3.6	Conclusion	123
4.	CHA	APTER FOUR	127
	4.1	Abstract	127
	4.2	Introduction	129
	4.3	Methods	132
		4.3.1 Animal model	132
		4.3.2 Experimental protocol	132
		4.3.3 Post mortem collection of tissue	133
		4.3.4 Quantification of plasma substrate and hormone concentrations	133
		4.3.5 Measurement of mRNA expression	134
		4.3.6 Quantification of protein abundance	138
		4.3.7 Statistical analysis	139
	4.4	Results	139
		4.4.1 Plasma analysis	139
		4.4.2 Expression of genes involved in fatty acid metabolism	139
		4.4.3 Expression and abundance of glucose transporters	146
		4.4.4 Abundance of regulators of fatty acid and glucose metabolism	146
	4.5	Discussion	151
	4.6	Conclusion	156
5.	CHA	APTER FIVE	159
	5.1	Overall discussion	159

	5.2	Overall Conclusion	166
6.	REF	FERENCES	

ABSTRACT

Environmental factors can act in early life to increase the risk of disease in adulthood. Animal models demonstrate that intrauterine growth restriction (IUGR) results in a greater susceptibility to cardiac ischaemia/reperfusion injury and reduced cardiac power during reperfusion than Control offspring in postnatal life. Despite having an equivalent utilisation of fatty acids and glucose for cardiac ATP production prior to ischaemia/reperfusion, IUGR offspring have decreased utilisation of fatty acids and increased reliance on glycolysis for ATP production compared to Control offspring during reperfusion. We therefore aimed to determine if IUGR reduces cardiomyocyte endowment and alters the expression of cardiometabolic genes in postnatal life. We determined that IUGR due to placental restriction from conception, which causes chronic fetal hypoxaemia and hypoglycaemia, reduced the number of cardiomyocytes in the heart of sheep in late gestation. In addition, IUGR fetuses had the same percentage of apoptotic cardiomyocytes, length of coronary capillaries and expression of the majority of genes whose upregulation occurs during hypoxia, compared to Controls. Furthermore, we found that IUGR reduced cardiomyocyte endowment in adolescent guinea pigs if they were exposed to Maternal Hypoxia (MH) and were female, but not if they were male or if IUGR was induced by Maternal Nutrient Restriction (MNR). IUGR offspring exposed to MH had increased expression of the transcriptional regulator of fatty acid metabolism, $PPAR\alpha$, and increased expression of fatty acid transporters, FATP1, FAPT6 and FABPpm, but offspring exposed to MNR only had an increased expression of FATP6, compared to Control. Interestingly, IUGR male offspring, but not female offspring, had decreased expression of factors in the sarcoplasm that regulate fatty acid activation (FACS) and transport of active fatty acids into the mitochondria for fatty acid β -oxidation (AMPK α_2) and ACC) if exposed to MNR, but a decrease in only FACS and AMPK α_2 if exposed to MH. Interestingly, only IUGR females exposed to MH had increased activity of the metabolic fuel gauge, AMPK, suggesting that a decrease in ATP may be related to the deficit in cardiomyocyte endowment. In conclusion, we have shown that in response to placental restriction, reducing cardiomyocyte endowment whilst maintaining the total length of coronary capillaries, results in the heart being normoxic, despite chronic hypoxaemia, in late gestation. Furthermore, this data suggests that females are more likely to have reduced cardiomyocyte endowment, following IUGR, in adolescence than males and that cardiomyocytes may be influenced by hypoxia more than nutrient restriction. Furthermore, we have demonstrated that IUGR programs changes in cardiometabolic gene expression in the absence of other IUGR pathologies such as cardiac hypertrophy, hypertension and increased plasma fatty acid and cortisol concentrations.

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree or diploma in my name, in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Kimberley Botting September 2013

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my principle supervisor A/Prof Janna Morrison for her support throughout my PhD. You had confidence in me and allowed me to contribute to the group, both in my own research and the research of others. Your knowledge, guidance, patience and perseverance have made this experience rewarding and I am very grateful. Thank you for always acting in my best interest and in particular for continuing to support me after the flood.

I would like to thank the members of the Early Origins of Adult Health Research Group, both past and present. In particular I would like to thank my co-supervisor Professor Caroline McMillen for her support, wealth of knowledge and passion for research; Darran Tosh, Robb Muirhead, Bernard Chuang and Bang Hoang for their assistance in gene analysis; Stacey Dunn, Robb Muirhead and Rajan Poudel for their assistance with protein analysis; Song Zhang for her assistance with plasma assays; Bang Hoang, Poh Song, Michelle Lloyd, Melissa Walker, Dr. Kimberley Wang, Rajan Poudel and Long Nguyen for their assistance with maintenance of the guinea pig cohort and post mortems; and Melissa Walker for her surgical skills. I am very grateful for each of your contributions and I could not have done it without you. I am also extremely grateful for the animal care and support provided by Jayne Skinner and the staff at the IMVS, without which the guinea pig cohorts would not have been possible.

I would like to sincerely thank Prof Jens Nyengaard and his staff at the University of Aarhus for all of their help and kindness during my visit to count cardiomyocytes.

I would especially like to thank my laboratory manager and friend, Stacey Dunn, for her continued support over my entire PhD. It's been a long journey and you were always there to make the experience easier and enjoyable.

To my family, thank you for your guidance and support throughout my studies and for your constant love and encouragement. I am grateful for everything you have done for me.

ix

RELATED PUBLICATIONS

List of Publications from Other Work Performed during Candidature

Original Manuscripts

- Wang KC, Brooks DA, Botting KJ, Morrison JL, IGF-2R-Mediated Signaling Results in Hypertrophy of Cultured Cardiomyocytes from Fetal Sheep. *Biology of Reproduction*, 2012; 86(6), 183.
- 2. Soo PS, Hiscock J, **Botting KJ**, Roberts CT, Davey AK, Morrison JL, Maternal undernutrition reduces P-glycoprotein in guinea pig placenta and developing brain in late gestation. *Reproductive Toxicology.*, 2012; 33(3), 374-81.
- Wang KC, Zhang L, McMillen IC, Botting KJ, Duffield JA, Zhang S, Suter CM, Brooks DA and Morrison JL, Fetal growth restriction and programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb, *Journal of Physiology*, 2011; 589(Pt 19), 4709-22.
- 4. Posterino G, Dunn SL, **Botting KJ**, Wang W, Gentili S, and Morrison JL, Changes in cardiac troponins with gestational age explain changes in cardiac muscle contractility in the sheep fetus, *Journal of Applied Physiology*, 2011; 111(1), 236-43.
- 5. Nguyen LT, Muhlhausler BS, **Botting KJ**, Morrison JL, Maternal undernutrition alters fat cell size distribution, but not lipogenic gene expression, in the visceral fat of the late gestation guinea pig fetus, *Placenta*, 2010; 31(10) 902-9.
- Wallace SJ, Morrison JL, Botting KJ and TW Kee, Second harmonic generation and two-photon excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments, *Journal of Biomedical Optics*, 2008; 13(6) art. no. 064018.

- 7. Morrison JL, Botting KJ, Soo PS, McGillick EV, Hiscock J, Zhang S, McMillen IC and Orgeig S, Antenatal steroids and the IUGR fetus: Are exposure and physiological effects on the lung and cardiovascular system the same as in normally grown fetuses?, *Journal of Pregnancy*, Epub November 2012.
- 8. **Botting KJ***, Wang KC*, Padhee M, Zhang S, Caroline McMillen I, Suter CM, Brooks DA, Morrison JL, Early origins of heart disease: Low birth weight and the role of the insulin-like growth factor system in cardiac hypertrophy, *Clinical and Experimental Pharmacology and Physiology*, 2012; 39(11), 958-64.
- Botting KJ, Wang KC, Padhee M, McMillen IC, Summers-Pearce B, Rattanatray L, Cutri N, Posterino GS, Brooks DA, Morrison JL., Early origins of heart disease: Low birth weight and determinants of cardiomyocyte endowment, *Clinical and Experimental Pharmacology and Physiology*, 2011; 30(9), 814-823.

Invited Editorials

- Morrison JL, Souter C, Botting KJ, Nyengaard JR, Does maternal obesity change cardiomyocyte endowment? *Expert Review in Obstetrics and Gynecology*, 2013; 8(1), 1-3.
- Morrison JL, Botting KJ, Does a growth-restricted fetus have fewer cardiomyocytes than a normally grown fetus? *Expert Review in Obstetrics and Gynecology*, 2012; 7(4), 301-303.
- 12. Morrison JL, Wang KCW, Brooks DA, **Botting KJ**, Fetal heart growth: IGFs and Sex, *Expert Reviews in Obstetrics and Gynecology*, 2009; 4(3), 255-259.

LIST OF FIGURES AND TABLE

Chapter 1.1

Figure 1. Proliferation of fetal mononucleated cardiomyocytes is regulated by multiple
signalling pathways that stimulate or inhibit cyclins and cytokinesis7
Figure 2. Apoptosis is critical for cardiac development and can be mediated by the
mitochondrial dependent intrinsic pathway and the death receptor mediated extrinsic pathway.
Table 1. Timing of multinucleation and proportion of mononucleated and multinucleated
cardiomyocytes in adult life in a range of species17
Figure 3. Mean gestational PaO_2 is positively related to fetal body weight and heart weight in
the late gestation sheep fetus
Figure 4. Regardless of the model of IUGR employed, IUGR in sheep results in an increased
percentage of mononucleated cardiomyocytes across late gestation
<u>Chapter 1.2</u>
Figure 1. Cardiac fatty acid and glucose metabolism
Figure 2. The balance between fatty acid and glucose metabolism
<u>Chapter 2</u>
Table 1. Primer sequences used in quantitative real-time reverse transcription-PCR to
measure genes of interest
Table 2. Fetal arterial blood gas measurements. 71
Table 3. Fetal body and heart weight measurements. 72
Figure 1. Placental restriction reduced the total number of cardiomyocytes in the right
ventricle

Figure 2. The effect of IUGR on cardiomyocyte apoptosis74
Table 4. mRNA expression of HIFs, genes with hypoxia response elements, and genes
involved in cardio-protection and HIF-α stability76
Figure 3. The effect of IUGR on the length of capillaries
Figure 4. Placental restriction does not change the protein abundance of PHD-1, but increases
the protein abundance of PHD-2 in the left ventricle
<u>Chapter 3</u>
Table 1. Primer sequences used in Quantitative Real-Time Reverse Transcription-PCR to
measure genes of interest
Figure 1. Maternal body weight weight prior to treatment102
Figure 2. Maternal body weigt and food intake per body weight during treatment103
Figure 3. Gestational age at birth, litter size and birth weights
Figure 4. Postnatal growth
Figure 5. Basal blood pressure
Table 2. Postnatal body weight, absolute organ weights and relative organ weights
Figure 6. Heart weight and left ventricular weights
Figure 7. Cardiomyocyte number111
Figure 8. Cardaic mRNA expression of insulin-like growth factors

Figure 10.	Cardiac abundance and activity of CaMKII1	114
-	-	

Chapter 4

Table 1. Primer sequences used in Quantitative Real-Time Reverse Transcription-PCR to
measure genes of interest
Figure 1. Plasma concentrations of gluocse, non-esterified fatty acids and cortisol141
Figure 2. Cardiac mRNA expression of transcriptional regulators of fatty acid metabolism.
Figure 3. Cardiac mRNA expression of fatty acid tranporters143
Figure 4. Cardiac mRNA expression of genes involved in transport of fatty acids into the
mitochondria and fatty acid oxidation144
Figure 5. Cardiac mRNA expression of genes involved in fatty acid activation and regulation
of mitochondrial uptake
Figure 6. Cardiac mRNA expression and abundance of glucose transporters147
Figure 7. Cardiac abundance and activity of AMPK148
Figure 8. Cardiac adundance and activity of ACC149
Figure 9. Cardiac abundance and activity of AS160150

Chapter 5

COMMONLY USED ABBREVIATIONS

A-C	
ACADL	Long chain acyl-CoA dehydrogenase
ACADM	Medium chain acyl-CoA dehydrogenases
ACADVL	Very Long chain acyl-CoA dehydrogenase
ACC	Acetyl-CoA Carboxylase
ACE	Angiotensin converting enzyme
ACTH	Adrenocorticotropic hormone
Adm	Adrenomedullin
ADP	Adenosine diphosphate
Akt	Protein kinase B
AMP	Adenosine monophosphate
АМРК	Adenosine monophosphate-activated protein kinase
Ang-II	Angiotensin-II
ANGPT	Angiopoietin
ANP	Atrial natriuretic peptide
ATP	Adenosine triphosphate
AT-R	Angiotensin receptor
β-AR	Adrenergic receptor - beta
CAs	Catecholamines
CD36	Fatty acid translocase
CDK	Cyclin dependent kinase
CPT-I β	Carnitine palmatonyl transport protein –I beta
CRH	Corticotrophin-releasing hormone
CVD	Cardiovascular disease

d	Day
DRs	Death receptors
ERK	Extracellular signal-related kinase
ETC	Electron transport chain
FABPpm	Plasma membrane specific fatty acid binding
FACS	Fatty-acyl CoA synthetase
FADD	Fas-Associated protein with Death Domain
FADH ₂	Flavin adenine dinucleotide
FATP	Fatty acid transport protein
FGF2	Fibroblast growth factor 2
FGFR	Fibroblast growth factor receptor
Flk-1	Vascular endothelial growth factor receptor 1
G_0	Cell cycle - gap zero phase (resting/quiescent)
G ₁	Cell cycle - first gap phase
G_2	Cell cycle - second gap phase
GLUT	Glucose transporter
GR	Glucocorticoid receptor
GS	Glycogen synthase
GSK-3β	Glycogen synthase kinase-3 beta
H-FABP	Heart-type fatty acid binding protein
HIF	Hypoxia inducible factor
НК	Hexokinase
HPA	Hypothalamic-pituitary adrenal
HRE	Hypoxia response element

IGF-1	Insulin-like growth factor-1
IGF-1R	Insulin-like growth factor-1 receptor
IGF-2	Insulin-like growth factor-2
IGF-2R	Insulin-like growth factor-2 receptor
iNOS	Inducible nitric oxide synthase
IUGR	Intrauterine growth restriction
LBW	Low birth weight
LDH	Lactate dehydrogenase
LV	Left ventricle
LVH	Left ventricular hypertrophy
М	Cell cycle - mitosis
MCD	Manalyl CoA dehydrogenase
MH	Maternal hypoxia
miR	MicroRNA
NADH	Nicotinamide adenine dinucleotide
NEFA	Non-esterified fatty acid
NRG1	Neuregulin 1
PDH	Pyruvate dehydrogenase (PDH)
PFK	Phospho-6-fructose kinase I
PHD	Prolyl hydroxylase
PI3K	Phosphoinositide-3 kinase
РКС	Protein kinase C
PPAR	Peroxisome proliferator-activated receptor
PR	Placental restriction

R-Z	
Rb	Retinoblastoma protein
RV	Right ventricle
RXR	Retinoid X receptor
S	Cell cycle - DNA synthesis phase
T ₃	Thyroid hormone
TCA	Tricarboxylic acid
Tie-2	Tyrosine-protein kinase receptor
UPE	Umbilicoplacental embolization
VEGF	Vascular endothelial growth factor