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ABSTRACT

Essays on Continuous Time Diffusion Models

Di Yuan

During the past few decades, continuous time diffusion models have become an

integral part of financial economics. Especially, in certain core areas in finance, such as

interest rate, asset pricing, option pricing, portfolio selection and volatility modelling,

continuous time diffusion models have proved to be a very attractive way to conduct

research and gain economic intuition. This thesis makes three main contributions to

the field of continuous time diffusion models.

First, we propose regime-switching Heston, GARCH, and CEV stochastic volatil-

ity models where all parameters are allowed to vary depending on the state of the

economy. Then we apply these models to describe the dynamics of S&P 500 and

VIX. We find strong evidence of regime shifts for all models. The CEV model is

statistically preferred to other two nested models in explaining dynamics of data.

Second, because the true transition density functions of regime-switching stochas-

tic volatility models are unknown, the standard maximum likelihood estimation can-

not be conducted. We first conduct the maximum likelihood estimation with closed-

form likelihood expansions for regime-switching continuous time stochastic volatility

models.

Third, to approximate a continuous time diffusion process, researchers often use

the Euler approximation in the literature. Theoretically, the smaller the discretization

interval is, the more accurate the Euler approximation is expected to be. However,

even when the discretization interval is too small, the accuracy of the Euler approx-

imation can get worse because of the roundoff error and random number generator

bias. A variety of univariate and multivariate diffusion models from the literature

are considered. We use the solution of a diffusion process when it is available and
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usable as a benchmark. The Milstein approximation is also adopted to compare the

accuracy of the Euler approximation. Depending on the problem of interest, different

criteria are used to measure accuracy of approximation. The percentage error and

strong convergence can be examined when a good approximation of sample path of

a diffusion model is required. The weak convergence is preferred for the cases where

approximation of moments of the process matters. In our Monte Carlo simulation

studies of diverse diffusion models, we measure accuracy of the Euler approximation

not only by using those criteria but also by looking at end point of the approxima-

tion. The simulation results show that an appropriate discretization interval must be

picked for different diffusion models when applying the Euler approximation.
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CHAPTER 1

Introduction

During the past few decades, continuous time diffusion models have become an

integral part of financial economics. Especially, in certain core areas in finance, such as

interest rate, asset pricing, option pricing, portfolio selection and volatility modelling,

continuous time diffusion models have proved to be a very attractive way to conduct

research and gain economic intuition (Sundaresan (2000)).

This thesis makes three main contributions to the field of continuous time diffusion

models by addressing the following research questions.

(1) Could we combine regime shifts with continuous time stochastic volatility

models to explain the dynamics of multivariate diffusion models?

(2) How do we conduct maximum likelihood estimation to estimate regime-

switching stochastic volatility models where the true transition density func-

tions are unknown?

(3) How do we choose an appropriate time interval for a continuous time diffusion

model when approximating a continuous time diffusion process using the

Euler approximation method?

The following part will explain the motivation behind each research question in

order.

The motivation of combining regime shifts with continuous time stochastic volatil-

ity models originally comes from the plots of the first difference of daily S&P 500

and VIX from 1990 to 2012. They tend to exhibit periods of high and low volatil-

ity, which is a stylized phenomenon called volatility clustering in the financial time

series. Most periods of high volatility clustering can be associated with some signif-

icant historic events. Regarding S&P 500 and VIX data, there seems to be at least

two regimes, namely, a high regime and a low regime. Furthermore, since Hamil-

ton (1989)’s work, a substantial number of econometric literature have shown the

evidence of regime shifts existing in financial series data and regime-switching mod-

els outperforming regular single regime models. For example, Hamilton and Sunmel
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(1994) propose the regime-switching ARCH models, Fornari and Mele (1996) develop

the regime-switching GARCH models, Calvet and Fisher (2004) introduce discrete-

time regime-switching stochastic volatility models, Choi (2009) suggests the regime-

switching univariate diffusion models. However, there still remains a big gap to com-

bine regime shifts with multivariate continuous time diffusion models. To fill this gap,

we propose regime-switching Heston, GARCH, and CEV continuous time stochastic

volatility models. What is more, our models are distinguished from other recently

proposed regime-switching stochastic volatility models (Mitra (2010), Durham and

Park (2013), Papanicolaou and Sircar (2013)) by allowing all parameters of the drift

and the volatility components to vary depending on the state of the economy.

Only a few of literature combine regime shifts with multivariate continuous time

stochastic volatility models because of the substantial diffi culties coming from esti-

mation of multivariate stochastic volatility models. The biggest challenge is that the

transition probability density of a diffusion process is hardly ever known in closed

form so that the standard maximum likelihood estimation cannot be conducted.

Many different methods have been proposed to approximate the transition proba-

bility densities. Examples are numerical solution of the Kolmogorov partial differ-

ential equation (Lo (1988)), Monte Carlo simulation (Pedersen (1995)), binomial or

other trees (Jensen and Poulsen (2002)), and the Euler approximation (Kleppe, Yu,

and Skaug (2010)). However, neither of these methods produces a closed form den-

sity function. To solve this issue, Aït-Sahalia (2002) and Aït-Sahalia (2008) propose

a specific closed-form approximation approach for the univariate and multivariate

continuous time diffusion models, respectively. Furthermore, his work has been ex-

tended to univariate time homogeneous diffusion models driven by Lėvy processes

(Schaumburg (2001)), to univariate time inhomogeneous diffusion models(Egorov, Li,

and Xu (2003)), to regime-switching time homogeneous univariate diffusion models

for short term interest rates (Choi (2009)), to multivariate time homogeneous jump

diffusion models (Yu (2007)), to multivariate time inhomogeneous diffusion models

(Choi (2013)), to a Bayesian setting (Stramer, Bognar, and Schneider (2010)) and to

damped diffusion (Li (2010)). Jensen and Poulsen (2002) compare most commonly

used techniques, including Hermite expansion, Euler approximation, simulation-based

methods, binomial approximations and numerical solution of Kolmogorov partial dif-

ferential equations, and find that Aït-Sahalia (2002)’s method is the best in terms of
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accuracy and speed trade-off. Because of the outstanding performance of Aït-Sahalia

(2008)’s method to obtain approximate transition probability density function of the

stochastic volatility models of our interest, we carry out the maximum likelihood es-

timation for regime-switching continuous time stochastic volatility models by using

Hamilton algorithm (Hamilton (1989)).

Although several methods have been proposed to approximate the transition prob-

ability densities, the Euler approximation is still the simplest and most commonly

used approaches in the literature (Kristensen (2010), Song (2011), Chen and Hong

(2011), Zhao (2011), Koo and Linton (2012) and Chen and Song (2013)). Theoret-

ically, the accuracy of the Euler approximation depends on the time discretization

step ∆. To be more precise, as ∆ goes to 0, the Euler approximation is expected to

be closer to the true diffusion process. In a simulation, researchers set different time

discretization step ∆ for the Euler approximation in order to achieve two main ob-

jectives. First, when the objective is to simulate a diffusion process or test statistical

estimators, a good pathwise approximation is required. For example, Christensen,

Kinnebrock, and Podolskij (2010) first generate a complete high-frequency record of

N (N denoting the number of seconds in 6.5 hours) equidistant observations of the

effi cient price by using the Euler approximation with ∆ = 1/23400. Second, when

the objective is to compute moments, probabilities and other functions of the diffu-

sion process, a good endpoint approximation is required. For example, Song (2011)

uses the Euler approximation to generate data from univariate and multivariate con-

tinuous time diffusion models by setting ∆ = 1/(252 × 1500) for daily frequency,

∆ = 1/(12× 1500) for monthly frequency, ∆ = 1/(4× 1500) for quarterly frequency

and ∆ = 1/(1 × 1500) for yearly frequency respectively, and then uses these data

to analyse the impact of the numerical integral approximation. Chen and Hong

(2011) set ∆ = 1/(12× 120) at monthly frequency to examine the sizes of specifica-

tion tests for some multivariate continuous time diffusion models. Kristensen (2010)

chooses ∆ = 1/ (252× 10) at daily frequency for the evaluation of the likelihood.

Zhao (2011) approximates the conditional log-likelihood by using ∆ = 1/252. Koo

and Linton (2012) set ∆ = 1/101 to investigate the robustness of estimators un-

der locally stationary diffusion processes. Chen and Song (2013) use subintervals of

∆ = 1/(52 × 5) for weekly frequency to approximate Lévesque integral. Aït-Sahalia

and Kimmel (2007) and Choi (2013) generate data at daily frequency by setting
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∆ = 1/ (252× 30) to carry out MLE for continuous time diffusion models. To our

best knowledge, so far, there has been no literature to study whether these above

time intervals are effective enough for the Euler scheme to provide accurate approx-

imation. Theoretically, the smaller the discretization interval is, the more accurate

the Euler approximation is expected to be. However, even when the discretization

interval is too small, the accuracy of the Euler approximation can get worse because

of the roundoff error (Peter and Platen (1992)) and random number generator bias

(Komori, Saito, and Mitsui (1994)). The random number generator bias primarily

results from lack of mutual independence in the samples from a random number gen-

erator when ∆ is too small. Therefore, Chapter 4 intends to provide some guidelines

on the choice of the discretization interval when approximating diffusion processes

using the Euler approximation method.

This thesis is organized as follows.

In Chapter 2, based on the work of Aït-Sahalia (2008) and Choi (2009), we conduct

the maximum likelihood estimation with closed-form likelihood expansions for regime-

switching continuous time stochastic volatility models. To begin with, we review the

reducible and irreducible methods of Aït-Sahalia (2008). Since our regime-switching

continuous time stochastic volatility models proposed in Chapter 3 not satisfy the

definition of reducible diffusions in Aït-Sahalia (2008), we resort to the irreducible

method to find an approximate log-transition density of the process in each regime.

Then, we use Hamilton algorithm (Hamilton (1989)) to compute the likelihood of

the regime-switching continuous time stochastic volatility models and to conduct the

maximum likelihood estimation. Furthermore, we successfully apply this methodol-

ogy to estimate the regime-switching stochastic volatility models, which are proposed

to describe the behaviour of S&P 500 and VIX in Chapter 3.

In Chapter 3, we combine the regime shift with three stochastic volatility mod-

els, the Heston model, the GARCH model and the CEV model. According to the

number of regimes, the initial probability and the transition probability matrix speci-

fications, we estimate four models for each case. For Heston model, we compare H-R1

(single-regime), H-R2-1 (two regimes, time-constant transition matrix, unconditional

probability for the probability of the initial state), H-R2-2 (two regimes, time-constant

transition matrix, additional parameter for the probability of the initial state) and
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H-R2TVTP (two regimes, time-varying transition matrix with a logistic function, ad-

ditional parameter for the probability of the initial state). For the GARCHmodel and

the CEV model, We estimate G-R1, G-R2-1, G-R2-2, G-R2TVTP and C-R1, C-R2-1,

C-R2-2, C-R2TVTP, separately. All parameters in these models are allowed to vary

depending on the state of the economy. The maximum likelihood estimation, which is

developed in Chapter 2, is applied to estimate these regime-switching models. Using

S&P 500 and VIX data for the stock price and volatility proxy, respectively, we report

estimates for each model, as well as AIC and BIC to compare different models. An-

other metric we employed to compare the performance of different regime-switching

models is called Regime Classification Measure (RCM). It is first proposed by Ang

and Bekaert (2002) and then applied by Choi (2009). According to the inferred prob-

abilities of staying in a particular regime, the closer the RCM value is to 0, the better

the regime classification of a model is. We also use LR statistic to compare regime-

switching continuous time diffusion models with single regime models. Furthermore,

we investigate the regime-switching probabilities of the regime-switching models with

time varying transition matrix and additional parameter for the probability of initial

state. We also analyse the corresponding approximate conditional transition density

functions with their 95% confidence intervals in order to find the evidence of regime

shift. Our estimation results show four main findings. First, the regime-switching

models are significantly different from the single regime models. Second, there are

strong evidences for the existence of the high and low volatility regimes, for the time

varying transition probability of the regime variable, and for high persistence of the

high regime. Third, the time varying transition probability mainly depends on the

stock market index S&P 500 rather than its volatility. Fourth, the regime-switching

CEV model with time varying transition matrix and additional parameter for the

probability of initial state performs better than other regime-switching models.

Chapter 4 provides some guidelines on the choice of the discretization interval

when approximating diffusion processes using the Euler approximation method. We

use the solution of a diffusion process when it is available and usable as a benchmark.

The Milstein approximation is also adopted to compare the accuracy of the Euler

approximation. Depending on the problem of interest, different criteria are used to

measure the accuracy of approximation. The percentage error and strong convergence

can be examined when a good approximation of sample path of a diffusion model is
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required. The weak convergence is preferred for the cases where approximation of

moments of the process matters. On one hand, we analyses the effective time dis-

cretization step ∆ for univariate stochastic diffusion models, including Black-Scholes

model, Vasicek model, CIR model, Inverse of Feller’s Square Root model, Linear Drift

CEV model and Nonlinear Mean Reversion model. On the other hand, we move to

multivariate stochastic diffusion models, such as Heston, GARCH, CEV, Stein, Scott,

Hull-White, Hagan and SABR process. For the univariate diffusion continuous time

models, our numerical tests suggest an appropriate time interval should be set for

each model in order to satisfy different error requirements when the objective is to

simulate a diffusion process or test statistical estimators. When the objective is to

compute moments, probabilities or other functions of the diffusion process, we suggest

considering the turning point of the corresponding weak convergence and choosing

∆ that does not exceed this turning point. Considering the bivariate continuous

time diffusion models, we report guidelines for both of state variables. When a good

approximation of sample path of a diffusion model is required, ∆ could be set accord-

ing to the state variable of interest. However, for the cases where approximation of

moments of the process matters, our Monte Carlo simulation results recommend to

consider the volatility state variable in the first place.

Chapter 5 concludes this thesis with a discussion of the results as well as outlining

future research directions.
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CHAPTER 2

Maximum Likelihood Estimation for Regime-Switching

Continuous Time Stochastic Volatility Models

2.1. Introduction

To estimate continuous time diffusion models, researchers have proposed a vari-

ety of econoometric methods. These methods include simulation method of Duffi e

and Singleton (1993), maximum likelihood estimation (MLE) from Pearson and Sun

(1994) and Durham and Gallant (2002), generalized method of moment (GMM) by

Hansen and Scheinkman (1995), nonparametric method of Aït-Sahalia (1996a) and

Aït-Sahalia (1996b), effi cient method of moment (EMM) by Gallant and Tauchen

(1998) and Bayesian method from Elerian, Chib, and Shephard (2001). The maximum

likelihood estimation (MLE) method has not been used much because the transition

density function, hence the log-likelihood function, is not known for most multivari-

ate diffusions. Several methods have been proposed to approximate the transition

probability densities. Examples are the Kolmogorov partial differential equation (Lo

(1988)), Monte Carlo Simulation (Pedersen (1995)), binomial or other trees (Jensen

and Poulsen (2002)), and the Euler approximations (Kleppe, Yu, and Skaug (2010)).

However, neither of these methods produces a closed form density function. To solve

this issue, Aït-Sahalia (2002) and Aït-Sahalia (2008) proposed a specific closed-form

approximation approach for the univariate and multivariate continuous time stochas-

tic volatility models, respectively. Then this approximation has been successfully

applied by Choi (2009) for univariate models and Aït-Sahalia and Kimmel (2007)

for multivariate models. Furthermore, his work has been extended to univariate

time homogeneous diffusion models driven by Lėvy processes (Schaumburg (2001)),

to univariate time inhomogeneous diffusion models (Egorov, Li, and Xu (2003)), to

regime-switching time homogeneous univariate diffusion models for short term in-

terest rates (Choi (2009)), to multivariate time homogeneous jump diffusion models

(Yu (2007)), to multivariate time inhomogeneous diffusion models (Choi (2013)), to a

Bayesian setting (Stramer, Bognar, and Schneider (2010)) and to damped diffusion (Li
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(2010)). Jensen and Poulsen (2002) compare most commonly used techniques, includ-

ing Hermite expansion, Euler approximations, simulation-based methods, binomial

approximations and numerical solution of Kolmogorov partial differential equations,

and find that Aït-Sahalia (2002)’s method is the best in terms of accuracy and speed

trade-off. Because of the outstanding performance of Aït-Sahalia (2002)’s method for

univariate continuous time models, we try to adopt Aït-Sahalia (2008)’s method for

multivariate continuous time diffusion models.

Since our regime-switching continuous time stochastic volatility models proposed

in Chapter 3 dissatisfy the conception of reducible diffusions in Aït-Sahalia (2008), we

resort to the irreducible method to find an approximate log-transition density for each

regime. Then, gaining enlightenment from Choi (2009), we use Hamilton algorithm

(Hamilton (1989)) to obtain the likelihood function of the entire regime-switching

continuous time stochastic volatility models and maximize the likelihood function to

conduct the maximum likelihood estimation.

This chapter is organized as follows. Section 2 reviews Aït-Sahalia (2008)’s closed-

form likelihood expansions in terms of reducible and irreducible cases for continuous

time diffusion models. Section 3 develops the closed form maximum likelihood es-

timation for regime-switching continuous time stochastic volatility models by using

Hamilton algorithm (Hamilton (1989)).

2.2. Closed-form Likelihood Expansions

In each regime, the dynamics of the state vector Xt follow a stochastic differential

equation. Using the Bayes’Rule, the joint probability density function of the data(
xn∆, x(n−1)∆, · · · , x∆, x0

)
can be written as

p
(
xn∆, x(n−1)∆, · · · , x∆, x0; θ

)
= p

(
xn∆|x(n−1)∆, · · · , x∆, x0; θ

)
× p

(
x(n−1)∆|x(n−2)∆, · · · , x∆, x0; θ

)
· · · × p (x2∆|x∆, x0; θ)× p (x∆|x0; θ)× p (x0; θ) .

The sample conditional log-likelihood is represented as

(2.1) ln (θ) ≡ ln(p (x0; θ)) +

n∑
i=1

ln
[
p
(
xi∆|I(i−1)∆; θ

)]
.
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Ignoring the asymptotically irrelevant density of the initial observation x0, equation

2.1 is represented as

(2.2) ln (θ) ≡
n∑
i=1

ln
[
p
(
xi∆|I(i−1)∆; θ

)]
,

where It = {Xs|s ≤ t} is the information set consisting of data {t = i∆|i = 0, 1, · · · , n}.
If the transition density function of a diffusion process is available, conditional like-

lihood functions p
(
xi∆|I(i−1)∆; θ

)
for all i = 0, 1, 2, · · · , n can be calculated by using

the Hamilton algorithm (Hamilton (1989)) shown in Section 2.3. However, in prac-

tice, the transition density function, hence the log-likelihood function, is not known

in closed form for most multivariate diffusions. Therefore, we resort to method of

Aït-Sahalia (2008) to find an approximate log-transition density.

2.2.1. Reducible Method

If a multivariate diffusion is reducible, the log-likelihood function can be found by

using reducible method that includes Hermite expansion and Kolmogorov method.

However, if it is not reducible (irreducible), we have to use the irreducible method.

In this section, we are going to discuss Aït-Sahalia (2008)’s work by introducing the

concept of reducibility for diffusions first.

Definition 1. The diffusion process Xt

dXt = µ (Xt; θ) dt+ σ (Xt; θ) dWt

is said to be reducible to unit diffusion (or reducible, in short) if and only if there

exists a one-to-one transformation of the diffusion process Xt into a diffusion process

Yt whose dispersion matrix σY is the identity matrix. That is, there exists an invertible

function γ (x; θ), infinitely differentiable in x on SX such that Yt ≡ γ (Xt; θ) satisfies

the stochastic differential equation

dYt = µY (Yt; θ) dt+ dWt

on the domain SY .
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By applying the Itô lemma, the drift function of the i-th component of Yt is

µYi (y; θ) =
m∑
p=1

µp
(
γinv (y; θ) ; θ

) ∂γi (y; θ)

∂xp
|x=γinv(y;θ)

+
1

2

m∑
p=1

m∑
q=1

m∑
r=1

σpr
(
γinv (y; θ) ; θ

)
σqr
(
γinv (y; θ) ; θ

) ∂2γi (y; θ)

∂xp∂xq
|x=γinv(y;θ)

and

∇γ (x; θ) = σ−1 (x; θ)

where ∇γ (x; θ) represents the Jacobian matrix of γ (x; θ) = [γ1 (x; θ) , · · · , γm (x; θ)]′

with respect to x ∈ Rm such that ∇γ (x; θ) = [∂γi (x; θ) /∂xj]i=1,··· ,m;j=1,··· ,m. We

can tell whether a diffusion process is reducible or not by checking the conditions for

σ (x; θ) given below.

Proposition 2. (Necessary and suffi cient condition for reducibility) The diffusion

process Xt is reducible if and only if

∂σ−1
ij (x; θ)

∂xk
=
∂σ−1

ik (x; θ)

∂xj

for each x in St and triplet {i, j, k} ⊂ {1, 2, · · · ,m} such that k > j. Here ∂σ−1
ij (x; θ)

is the (i, j) element of the inverse matrix of σ (x; θ).

If a multivariate diffusion process is reducible, an approximate transition density

can be obtained by using the Hermite expansion. The Hermite polynomials for the

case of multivariate variables are

Hh (z) =
(−1)|h|

φ (z)

∂|h|φ (z)

∂zh1
1 · · · ∂zhmm

,

where |h| =
∑m

i=1 hi and φ (z) is the pdf of an m-dimensional standard multivari-

ate normal distribution with mean 0 and covariance identity matrix. The Hermite

polynomials are orthogonal in the following sense∫
Rm

Hh (z)Hk (z)φ (z) dz =

{
h1! · · ·hm! if h = k

0 otherwise
.

The J-th order Hermite series expansion, p(J)
Y for a multivariate time homogeneous

unit diffusion process Yt is of the form

p
(J)
Y (∆, y|y0; θ) = ∆−m/2φ

(
y − y0√

∆

) ∑
h∈Nm:|h|≤J

ηh (∆, y0; θ)Hh

(
y − y0√

∆

)
.
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Using the orthogonality of the Hermite polynomials,

(2.3) ηh (∆, y0) =
1

h1! · · ·hm!
E

[
Hh

(
y − y0√

∆

)
|Yt0 = y0

]
.

If the coeffi cient of equation 2.3 is approximated up to K-th order by using the

infinitesimal generator AY corresponding to the diffusion process Yt, i.e,

AY ◦ f (∆, y, y0) =

m∑
i=1

µYi (y; θ)
∂f (∆, y, y0)

∂yi
+

1

2

m∑
i=1

m∑
j=1

∂2f (∆, y, y0)

∂yi∂yj
.

Then, we get

p
(J,K)
Y (∆, y|y0; θ)(2.4)

= ∆−m/2φ

(
y − y0√

∆

)

×

 ∑
h∈Nm:|h|≤J

1

h1! · · ·hm!

[
K∑
i=0

∆i

i!
AiY ◦Hh

(
y − y0√

∆

)
|y=y0

]
Hh

(
y − y0√

∆

) .

We can send J to ∞ and rearrange the terms of equation 2.4 in ascending orders

of ∆ to acquire an alternative expansion p(K)
Y = p

(∞,K)
Y such that

p
(K)
Y (∆, y|y0; θ)

= ∆−m/2φ

(
y − y0√

∆

)

× exp

[
m∑
i=0

(yi − y0i)

∫ 1

0

µYi (y0 + u (y − y0) ; θ) du

]
K∑
k=0

c
(k)
Y (∆, y|y0; θ)

∆k

k!
.

Taking logarithm of it and Taylor-expanding it in ∆ around zero, we get the

approximate log-transition density of Yt in the following theorem, which is proposed

by Aït-Sahalia (2008), as a result of applying the Kolmogorov-equation method.

Theorem 3. The K-th order log-transition density expansion of a time-homogeneous

multivariate unit diffusion process Yt is

(2.5) l
(K)
Y (∆, y|y0; θ) = −m

2
ln (2π∆) +

C
(−1)
Y (∆, y|y0; θ)

∆
+

K∑
k=0

c
(k)
Y (∆, y|y0; θ)

∆k

k!

with

C
(−1)
Y (∆, y|y0; θ) = −1

2

m∑
i=0

(yi − y0i)
2
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C
(0)
Y (∆, y|y0; θ) =

m∑
i=0

(yi − y0i)

∫ 1

0

µYi (y0 + u (y − y0) ; θ) du

and for k ≥ 1

C
(0)
Y (∆, y|y0; θ) = k

∫ 1

0

G
(k)
Y (∆, y0 + u (y − y0) |y0; θ)uk−1du,

where

G
(1)
Y (∆, y|y0; θ) = −

m∑
i=0

∂µYi (y; θ)

∂yi
−

m∑
i=0

µYi (y; θ)
∂C

(0)
Y (∆, y|y0; θ)

∂yi

+
1

2

m∑
i=0

∂2C
(0)
Y (∆, y|y0; θ)

∂y2
i

+

[
∂C

(0)
Y (∆, y|y0; θ)

∂yi

]2


and for k ≥ 2

G
(k)
Y (∆, y|y0; θ) =

1

2

m∑
i=0

∂2C
(k−1)
Y (∆, y|y0; θ)

∂y2
i

−
m∑
i=0

µYi (y; θ)
∂C

(k−1)
Y (∆, y|y0; θ)

∂yi

+
1

2

m∑
i=0

k−1∑
h=0

(
k − 1

h

)
∂C

(h)
Y (∆, y|y0; θ)

∂yi

∂C
(k−1−h)
Y (∆, y|y0; θ)

∂yi
.

The transition density pY (∆, y|y0; θ) satisfies the Kolmogorov forward and backward

equations, respectively,

∂pY (∆, y|y0; θ)

∂∆
= −

m∑
i=0

∂
{
µYi (y; θ) pY (∆, y|y0; θ)

}
∂yi

+
1

2

m∑
i=0

∂2pY (∆, y|y0; θ)

∂y2
i

and

∂pY (∆, y|y0; θ)

∂∆
=

m∑
i=0

µYi (y; θ)
∂pY (∆, y|y0; θ)

∂y0i

+
1

2

m∑
i=0

∂2pY (∆, y|y0; θ)

∂y2
0i

.

If we plug the log-likelihood expansion 2.5 into the Kolmogorov forward equation for

IY (∆, y|y0; θ):

∂IY (∆, y|y0; θ)

∂∆
= −

m∑
i=0

∂µYi (y; θ)

∂yi
−

m∑
i=0

µYi (y; θ)
∂IY (∆, y|y0; θ)

∂yi
(2.6)

+
1

2

m∑
i=0

∂2IY (∆, y|y0; θ)

∂y2
i

+
1

2

m∑
i=0

[
∂IY (∆, y|y0; θ)

∂yi

]2

,

and equate the coeffi cients of ∆k, k ≥ −2 on both sides of equation 2.6 then we can

get the PDEs for C(k)
Y (t, y|t0, y0), k ≥ −1 by solving the equations given in the above
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theorem. The Kolmogorov backward equation for IY (∆, y|y0; θ) is

∂IY (∆, y|y0; θ)

∂∆
=

m∑
i=0

µYi (y; θ)
∂IY (∆, y|y0; θ)

∂y0i

(2.7)

+
1

2

m∑
i=0

∂2IY (∆, y|y0; θ)

∂y2
0i

+
1

2

m∑
i=0

[
∂IY (∆, y|y0; θ)

∂y0i

]2

.

In this way, the log-density, IY (∆, y|y0; θ) of the original process Xt can be re-

trieved from IY (∆, y|y0; θ) by the change of variable as

IY (∆, y|y0; θ) = ln (Det [∇γ (x; θ)]) + IY (∆, γ (x; θ) |γ (x0; θ) ; θ)

= −Dv (x; θ) + IY (∆, γ (x; θ) |γ (x0; θ) ; θ) ,

where Dv (x; θ) ≡ 1
2

ln (Det [v (x; θ)]), because Det [∇γ (x; θ)] = Det [σ−1 (x; θ)] =

Det [v (x; θ)]−1/2 with v (x; θ) = σ (x; θ)σ (x; θ)T . Replacing IY with I
(K)
Y found above

and define I(K)
X as

I
(K)
Y (∆, y|y0; θ) = −Dv (x; θ) + IY (∆, γ (x; θ) |γ (x0; θ) ; θ)

= −Dv (x; θ)− m

2
ln (2π∆)

+
C

(−1)
Y (∆, γ (x; θ) |γ (x0; θ) ; θ)

∆

+
K∑
k=0

C
(k)
Y (∆, γ (x; θ) |γ (x0; θ) ; θ)

∆k

k!
.

By construction, I(K)
X solves the Kolmogorov equations 2.6 and 2.7 for Xt at the

same order as I(K)
Y .

However, in fact, most multivariate time-inhomogeneous diffusion is irreducible. If

Xt is irreducible, none of Hermite-expansion and Kolmogorov-equation methods can

be adopted since we cannot transform it into a unit diffusion process. As a result, we

have to resort to the irreducible method.

2.2.2. Irreducible Method

The main idea of finding approximate log-transition density of irreducible diffusions

is to postulate the form of the log-likelihood expansion of Xt as the one found from
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the reducible case:

l
(K)
X (∆, x|x0; θ) = −m

2
ln (2π∆)−Dv (x; θ)(2.8)

+
C

(−1)
X (∆, x|x0; θ)

∆

+

K∑
k=0

C
(k)
X (∆, x|x0; θ)

∆k

k!
,

where k ≥ −1, Dv (x; θ) = 1
2

ln (det [v (x; θ)]) and v (x; θ) = σ (x)σ′ (x).

The Kolmogorov forward and backward equations for lX (∆, x|x0; θ) are, respec-

tively,

∂lX (∆, x|x0; θ)

∂∆
= −

m∑
i=1

∂µi (x; θ)

∂xi
+

1

2

m∑
i=1

m∑
j=1

∂2vij (x; θ)

∂xi∂xj
(2.9)

−
m∑
i=1

µi (t, x)
∂lX (∆, x|x0; θ)

∂xi

+
m∑
i=1

m∑
j=1

∂vij (x; θ)

∂xi

∂lX (∆, x|x0; θ)

∂xj

+
1

2

m∑
i=1

m∑
j=1

vij (x; θ)
∂2lX (∆, x|x0; θ)

∂xi∂xj

+
1

2

m∑
i=1

m∑
j=1

∂lX (∆, x|x0; θ)

∂xi
vij (x; θ)

∂lX (∆, x|x0; θ)

∂xj

and

∂lX (∆, x|x0; θ)

∂∆
= −

m∑
i=1

µi (x; θ)
∂lX (∆, x|x0; θ)

∂x0i

(2.10)

+
1

2

m∑
i=1

m∑
j=1

vij (x; θ)
∂2lX (∆, x|x0; θ)

∂x0i∂x0j

+
1

2

m∑
i=1

m∑
j=1

∂lX (∆, x|x0; θ)

∂x0i

vij (x; θ)
∂lX (∆, x|x0; θ)

∂x0j

.

Replacing lX with l
(K)
X in the Kolmogorov equations 2.9 and 2.10 for the log-transition

density of Xt and matching the terms with the same orders of ∆ yields partial dif-

ferential equations of the coeffi cients
∑K

k=0 C
(k)
X (∆, x|x0; θ), k ≥ −1. By equating

the terms of order ∆−2 in 2.9, the equation that determines the coeffi cient C(−1)
X is
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obtained as

C
(−1)
X (∆, x|x0; θ) = −1

2

(
∂C

(−1)
X (∆, x|x0; θ)

∂x

)T

v (x; θ)

(
∂C

(−1)
X (∆, x|x0; θ)

∂x

)
.

However, it is still a challenge to get an explicit solution of this equation (Varadhan

(1967)). As a result, we could not get the coeffi cients of the expansion 2.8. In

order to get the coeffi cients C(k)
X , we can Taylor-expand each coeffi cient around x0

up to jk-th order. In this way, the same approximation error of Op

(
∆K+1

)
can be

achieved for each coeffi cient. Let jk-th order Taylor expansion of C
(k)
X (∆, x|x0; θ) be

C
(k,jk)
X (∆, x|x0; θ), which is in the form of

C
(k,jk)
X (∆, x|x0; θ) =

∑
i∈Ik

β
(k)
i (x0) (x1 − x01)i1 (x2 − x02)i2 · · · (xm − x0m)im .

Given the original term C
(j−1,−1)
X (∆, x|x0; θ), the next term C

(j0,0)
X (∆, x|x0; θ)

could be calculated explicitly. Once C(j−1,−1)
X (∆, x|x0; θ) and C(j0,0)

X (∆, x|x0; θ) are

given, the next term C
(j1,1)
X (∆, x|x0; θ) could be determined, and so on. To be more

precise, the coeffi cients have to found recursively from low order term to high order

term one by one in C(j−1,−1)
X (∆, x|x0; θ). The order jk [in (x− x0)] corresponding to

a given order k (in ∆t) could be decided as follows. To begin with,∣∣∣C(K)
X (∆, x|x0; θ) ∆k − C(k,jk)

X (∆, x|x0; θ) ∆k
∣∣∣ = Op

(
‖X∆ −X0‖jk ∆k

)
= Op

(
∆jk/2+k

)
,

because X∆ −X0 = Op

(
∆1/2

)
. In consequence, setting

jk = 2 (K − k + 1)

will provide an approximation error Op

(
∆K+1

)
. For example, if K = 2, j−1 = 8,

j0 = 6, j1 = 4, j2 = 2, j3 = 0. In order to state the final result pertaining to the

closed-form solutions C(k,jk)
X (∆, x|x0; θ), we need to solve a system of linear equations

f
(k−1)
X (∆, x|x0; θ) = 0,
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where k = −1, 0, ..., K,

f
(−2)
X (∆, x|x0; θ) = −2C

(−1)
X (∆, x|x0; θ)

−
m∑
i=1

m∑
j=1

vij (x; θ)
∂C

(−1)
X (∆, x|x0; θ)

∂xi

∂C
(−1)
X (∆, x|x0; θ)

∂xj
,

f
(−1)
X (∆, x|x0; θ) = −

m∑
i=1

m∑
j=1

vij (x; θ)
∂C

(−1)
X (∆, x|x0; θ)

∂xi

∂C
(0)
X (∆, x|x0; θ)

∂xj

−G(0)
X (∆, x|x0; θ) ,

and for k ≥ 1,

f
(k−1)
X (∆, x|x0; θ) = C

(k)
X (∆, x|x0; θ)

−1

k

m∑
i=1

m∑
j=1

vij (x; θ)
∂C

(−1)
X (∆, x|x0; θ)

∂xi

∂C
(k)
X (∆, x|x0; θ)

∂xj

−G(K)
X (∆, x|x0; θ) .

G
(k)
X (∆, x|x0; θ) is for k = 0 and 1 respectively

G
(0)
X (∆, x|x0; θ) = G

(0,1)
X (∆, x|x0; θ) +G

(0,3)
X (∆, x|x0; θ) ,

where

G
(0,1)
X (∆, x|x0; θ) = −

m∑
i=1

µi (x; θ)
∂C

(−1)
X (∆, x|x0; θ)

∂xi

+
m∑
i=1

m∑
j=1

∂vij (x; θ)

∂xi

∂C
(−1)
X (∆, x|x0; θ)

∂xj

−
m∑
i=1

m∑
j=1

vij (x; θ)
∂C

(−1)
X (∆, x|x0; θ)

∂xi

∂Dv (x; θ)

∂xj

+
1

2

m∑
i=1

m∑
j=1

vij (x; θ)
∂2C

(−1)
X (∆, x|x0; θ)

∂xi∂xj

and

G
(0,3)
X (∆, x|x0; θ) =

m

2
,

and

G
(1)
X (∆, x|x0; θ) = G

(1,1)
X (∆, x|x0; θ) +G

(1,2)
X (∆, x|x0; θ) +G

(1,3)
X (∆, x|x0; θ) ,
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where

G
(1,1)
X (∆, x|x0; θ) = −

m∑
i=1

µi (x; θ)
∂C

(0)
X (∆, x|x0; θ)

∂xi

+
m∑
i=1

m∑
j=1

∂vij (x; θ)

∂xi

∂C
(0)
X (∆, x|x0; θ)

∂xj

−
m∑
i=1

m∑
j=1

vij (x; θ)
∂C

(0)
X (∆, x|x0; θ)

∂xi

∂Dv (x; θ)

∂xj

+
1

2

m∑
i=1

m∑
j=1

vij (x; θ)
∂2C

(0)
X (∆, x|x0; θ)

∂xi∂xj
,

G
(1,2)
X (∆, x|x0; θ) =

1

2

m∑
i=1

m∑
j=1

vij (x; θ)
∂C

(0)
X (∆, x|x0; θ)

∂xi

∂C
(0)
X (∆, x|x0; θ)

∂xj
,

G
(1,3)
X (∆, x|x0; θ) = −

m∑
i=1

∂µi (x; θ)

∂xi
+

1

2

m∑
i=1

m∑
j=1

∂2vij (x; θ)

∂xi∂xj

+
m∑
i=1

µi (x; θ)
∂Dv (x; θ)

∂xi

−
m∑
i=1

m∑
j=1

∂vij (x; θ)

∂xi

∂Dv (x; θ)

∂xj

−1

2

m∑
i=1

m∑
j=1

vij (x; θ)

[
∂2Dv (x; θ)

∂xi∂xj
− ∂Dv (x; θ)

∂xi

∂Dv (x; θ)

∂xj

]
.

When k ≥ 2,

G
(k)
X (∆, x|x0; θ) = G

(k,1)
X (∆, x|x0; θ) +G

(k,2)
X (∆, x|x0; θ) ,

where

G
(k,1)
X (∆, x|x0; θ) = −

m∑
i=1

µi (x; θ)
∂C

(k−1)
X (∆, x|x0; θ)

∂xi

+

m∑
i=1

m∑
j=1

∂vij (x; θ)

∂xi

∂C
(k−1)
X (∆, x|x0; θ)

∂xj

−
m∑
i=1

m∑
j=1

vij (x; θ)
∂C

(k−1)
X (∆, x|x0, θ)

∂xi

∂Dv (x; θ)

∂xj

+
1

2

m∑
i=1

m∑
j=1

vij (x; θ)
∂2C

(k−1)
X (∆, x|x0; θ)

∂xi∂xj
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and

G
(k,2)
X (∆, x|x0; θ) =

m∑
i=1

m∑
j=1

vij (x; θ)
∂C

(0)
X (∆, x|x0; θ)

∂xi

∂C
(k−1)
X (∆, x|x0; θ)

∂xj

+
1

2

m∑
i=1

m∑
j=1

vij (x; θ)

×
[
k−2∑
h=1

(
k − 1

h

)
∂C

(h)
X (∆, x|x0; θ)

∂xi

∂C
(k−1−h)
X (∆, x|x0; θ)

∂xj

]
.

Replacing C(k)
X (∆, x|x0; θ) with C(k,jk)

X (∆, x|x0; θ) in 2.9, we get

l̃
(K)
X (∆, x|x0; θ)

= −m
2

ln (2π∆)−Dv (x; θ) +
C

(j−1,−1)
X (∆, x|x0; θ)

∆
+

K∑
k=0

C
(jk,k)
X (∆, x|x0; θ)

∆k

k!
.

Therefore, C(−1)
X could be determined by solving the equation f (−2)

x = 0. Given

C
(−1)
X , G(0)

X becomes known and then C(0)
X could be obtained by solving the equation

f
(−1)
x = 0. Given C

(0)
X , G

(1)
X becomes known and then C

(1)
X could be obtained by

solving the equation f (0)
x = 0, and so on.

2.3. Hamilton Algorithm

As mentioned at the beginning of Section 2, given the approximate transition den-

sity function, conditional likelihood functions p
(
xi∆|I(i−1)∆; θ

)
for all i = 0, 1, 2, · · · , n

can be calculated using the algorithm developed by Hamilton (1989). Given a two

state, {L,H}, a new state variable R∗t is defined as follows:

R∗t = 1 if Rt−∆ = L and Rt = L

R∗t = 2 if Rt−∆ = L and Rt = H

R∗t = 3 if Rt−∆ = H and Rt = L

R∗t = 4 if Rt−∆ = H and Rt = H

where ∆ denotes a time period. The state R∗t = 1 (R∗t = 4) describes the process

keeps staying in the regime L (H) at time t − ∆ and t, while the state R∗t = 2

(R∗t = 3) describes the process leaves regime L (H) and enters regime H (L) at time

t. Therefore, R∗t follows a continuous time Markov chain with four states and the
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corresponding generator matrix is

P ∗ =


pLL 0 pLL 0

pLH 0 pLH 0

0 pHL 0 pHL

0 pHH 0 pHH

 .

At time t+ ∆, the input of the algorithm are ζ̂t+∆|t and ηt+∆,

ζ̂t+∆|t =


P
(
R∗t+∆ = 1|It; θ

)
P
(
R∗t+∆ = 2|It; θ

)
P
(
R∗t+∆ = 3|It; θ

)
P
(
R∗t+∆ = 4|It; θ

)


and

ηt+∆|t =


p
(
xt+∆|R∗t+∆ = 1, It; θ

)
p
(
xt+∆|R∗t+∆ = 2, It; θ

)
p
(
xt+∆|R∗t+∆ = 3, It; θ

)
p
(
xt+∆|R∗t+∆ = 4, It; θ

)

 ,

where It is the information set which covers data up to time t so that It = {xτ |τ ≤ t}.
Then the joint likelihood of Xt+∆ and R∗t+∆ is the results of ζ̂t+∆|t � ηt+∆, and the

transition density function can be calculated as

p (xt+∆|It; θ) =
4∑
j=1

p
(
xt+∆, R

∗
t+∆ = j|It; θ

)
(2.11)

=

4∑
j=1

P
(
R∗t+∆ = j|It; θ

)
p
(
xt+∆|R∗t+∆ = j, It; θ

)
.

After it, ζ̂t+∆|t+∆, the optimal inference about R
∗
t+∆, is computed by

ζ̂t+∆|t+∆ =
ζ̂t+∆|t � ηt+∆

p (xt+∆|It; θ)
=


P
(
R∗t+∆ = 1|It+∆; θ

)
P
(
R∗t+∆ = 2|It+∆; θ

)
P
(
R∗t+∆ = 3|It+∆; θ

)
P
(
R∗t+∆ = 4|It+∆; θ

)

 .

Then ζ̂t+2∆|t+∆, which is the input of the next time period, is updated by premul-

tiplying the transition matrix P ∗ by ζ̂t+∆|t+∆. Assuming P (R1 = L) = p, the initial
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state probabilities of R∗t are

(π1, π2, π3, π4) = (pLL · p, pLH · p, pHL · (1− p) , pHH · (1− p)) .

Based on these starting values, equation 2.11, the conditional density function of

each time period can be calculated by iterating the above procedure. Then the ML

estimates can be attained by maximizing the log-likelihood function ln (θ). However,

the estimation results cannot identify exactly which state the process was in at each

time point. Only the probability of staying in each regime can be inferred based on

the observations of the stock market index S&P 500. By using the information set up

to time t, we can get P (R∗t = i|It; θ), the inferred probability of R∗t being R. Since
we are more interested in the state of Rt rather than R∗t , we calculate the filtered

probability as

P (Rt = L|It; θ) = P (R∗t = 1|It; θ) + P (R∗t = 3|It; θ)

and

P (Rt = H|It; θ) = P (R∗t = 2|It; θ) + P (R∗t = 4|It; θ) ,

where P (R∗t = i|It; θ) is the i-th input of ζ̂t+∆|t+∆. Based on the whole information

set, we also calculate the smoothed probability of the economy being in each state at

time t as

P (Rt = L|IT ; θ) = P (R∗t = 1|IT ; θ) + P (R∗t = 3|IT ; θ)

and

P (Rt = H|IT ; θ) = P (R∗t = 2|IT ; θ) + P (R∗t = 4|IT ; θ) ,

where T = n∆ is the last time point of the data. Although the transition probability

varies with asset prices, the above recursive procedure does not change. Therefore,

we only need to replace the elements of P ∗ with the corresponding time dependent

probabilities.
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CHAPTER 3

Continuous Time Stochastic Volatility Models with Regime

Shift

3.1. Introduction

Modelling and estimating the volatility of financial assets is one of the central

questions in modern econometric research. The two main widely used methods are the

univariate GARCH family of models and stochastic volatility models. Compared with

discrete time models, continuous time models are closer to the stochastic behaviour of

financial data. This is because, although financial data are available as discrete time

observations, the economy does not cease to exist in between observations (Phillips

(1988)). Actually, economic activities take place without a moment’s pause and

financial decision makers can make and change their dynamic trading strategies every

second.

In early work, Black and Scholes (1973) propose that the stock market index S&P

500 follows a geometric Brownian motion process. The main drawback of this model

is that the return process has constant volatility. In practice, instantaneous relative

volatilities of the asset price are time-varying across time and strikes. Furthermore,

since Mandelbrot (1963), there are many literatures show the asset returns have

heavy-tailed character. In order to solve this problem, some two-factor stochastic

volatility models are proposed and proved outperforming than Black-Scholes Model,

such asWiggins (1987), Hull andWhite (1987), Stein and Stein (1991), Heston (1993),

Duffi e, Pan, and Singleton (2000) and Jones (2003). These models allow not only the

stock market index S&P 500 and its volatility follow stochastic processes, but also

incorporate the correlation between log-returns and changes in variance. This is the

main reason that this chapter chooses to use the continuous time stochastic volatility

models to describe the behaviour of the stock market S&P 500 and its volatility.

Since Hamilton (1989), a substantial number of econometric literatures show the

evidence of regime shift existing in financial series data and regime-switching models

outperforming regular single regime models. In terms of discrete time models, for
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example, Hamilton and Sunmel (1994) propose the regime-switching ARCH models,

Fornari and Mele (1996) develop the regime-switching GARCH models. Relative to

discrete time stochastic volatility models, Calvet and Fisher (2004) introduce discrete-

time regime-switching stochastic volatility models. With respect to the univariate

continuous time models, Choi (2009) proposes the regime-switching univariate diffu-

sion models. However, there are scarcely any literatures combining regime shifts with

multivariate continuous time stochastic volatility models because of the substantial

diffi culties coming from the estimating of multivariate stochastic volatility models.

On one hand, the transition density of the state vector is hardly ever known

in closed form so that the standard maximum likelihood estimation cannot be con-

ducted. On the other hand, the additional state variables which determine the level

of volatility are usually unobserved in practise. Kleppe, Yu, and Skaug (2010) con-

sider the Euler approximations for the transition probability density functions and

employ a modified effi cient importance sampling (EIS) algorithm, which is developed

by Richard and Zhang (2007), to integrate out a latent volatility process. Compared

to the Euler approximation, Aït-Sahalia and Kimmel (2007) and Aït-Sahalia (2008)

provide an improved closed-form approximation for the true joint transition density

and propose an adjusted Black-Scholes proxy. Following their work, Choi (2013) finds

closed-form likelihood expansions for multivariate time-inhomogeneous diffusions and

conducts Monte Carlo to produce all state variables. In this chapter, we apply the

method, which is developed in Chapter 2, to estimate continuous time stochastic

volatility models with regime shifts.

This chapter is organized as follows. Section 2 motivates the econometric speci-

fications by plotting two series of financial data. Section 3 introduces three families

of continuous time stochastic volatility models with regime shift. Section 4 summa-

rizes and discusses the results, including parameter estimates, filtered and smoothed

probabilities, approximate conditional transition density functions for each regime,

respectively. Then conclusion follows.

3.2. Data and Motivation

Daily Standard & Poor’s 500 (S&P 500) and the Chicago Board Options Exchange

(CBOE) Volatility Index (VIX), from January 2, 1990 to June 12, 2012, are down-

loaded from DataStream for the estimation. The VIX is calculated as the square root
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of the risk neutral expectation of the S&P 500 variance for a 30 days term initiated

today. The descriptive statistics of S&P 500 and VIX series are shown in Table 3.1.

Table 3.1. Summary Statistics of S & P 500 and VIX

S&P 500 VIX

Observations 5856 5856
Minimum 295.460 9.310
Maximum 1565.150 80.860
Mean 954.314 20.518
Std. Dev 370.450 8.188
Skewness -0.365 1.944
Kurtosis 1.737 9.763

Plots of the two time series data and the first difference of them illustrate that S&P

500 and VIX behave quite differently in different time periods. They tend to exhibit

periods of high and low volatility, which is a stylized phenomenon called volatility

clustering in financial time series. Most periods of high volatility clustering can be

associated with some significant historic events. With respect to the variance of S&P

500 and/or VIX, there seems to be at least two regimes. This characteristic of the

two time series data motivates us to combine regime-switching with continuous time

stochastic volatility models.

The data set covers the period of 1990 to 2012 during which a number of sig-

nificant events caused strong changes in the behaviours of S&P 500 and VIX. The

Gulf War started from 2 August 1990 and last to 28 February 1991. The Union of

Soviet Socialist Republics offi cially ceased to exist on December 31, 1991. The British

Conservative government withdrawing the pound from the European Exchange Rate

Mechanism caused 1992 Black Wednesday, which led to estimated $800 million trad-

ing losses in August and September. The 1994 Northridge earthquake in the Los

Angeles area caused an estimated $20 billion in damage, making it one of the costli-

est natural disasters in U.S. history. At the end of 1995, the severe budget crisis forced

the federal government to shut down for several weeks. Then the Asian financial cri-

sis started in Thailand in July 1997 and then triggered the 1998 Russian financial

crisis. The 1998 collapse of long-term capital management leads to an agreement

among 14 financial institutions for a $3.6 billion recapitalization under the supervi-

sion of Federal Reserve. During the period of 1997 to 2000, in industrialized nations,

the stock prices of Internet companies shoot up and then the dot-com bubble finally
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Figure 3.1. Daily Observations and Changes of S&P 500

burst because of an inflation report in April of 2000. September 11 attacks in 2001

had immediate and far-ranging economic effects. After the October 2001 invasion

in Afghanistan, the Iraq War was launched on March 19, 2003. The 2004 Atlantic

hurricane season impacted Florida, Charley, Frances, Ivan and Jeanne, and produced

over $50 billion in damage. What’s even worse, two powerful hurricanes, Hurricane

Katrina and Hurricane Rita hit the Gulf Coast region in August and September 2005.

The Chinese Correction plunge of February 27, 2007 caused the Dow Jones Industrial

Average dropped by 3.29%, which is the biggest one-day slide since the September

11. The subprime mortgage crisis started in late 2006. It triggered a global financial

crisis through 2007 and 2008 and then rapidly evolved into a global financial crisis.

On September 15, 2008 Lehman Brothers filed for bankruptcy protection. In the late

of 2009, a Dubai debt standstill caused a sharp drop in global stock markets. On April

27, 2010, Standard & Poor’s downgrades Greece’s sovereign credit rating, triggering

another decline in global stock markets and furthering the European sovereign-debt

crisis. The 2010 Flash Crash led the Dow Jones Industrial Average drop nearly 1000
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Figure 3.2. Daily Observations and Changes of VIX

points, which is the worst intra-day point loss in history. Due to the fears of contagion

of the European sovereign debt crisis to Spain and Italy and downgrading of the US’s

credit rating, stock prices dropped sharply in August 2011 in stock exchanges across

the United States, the Middle East, Europe and Asia. After the August 2011 stock

markets fall, severe volatility of stock market indexes is continuing until now.

3.3. Continuous Time Stochastic Volatility Models with Regime Shift

In a stochastic volatility model, the stock market index S&P 500 is a function

of a vector of state variables Xt that follows an m-dimensional multivariate diffusion

process,

dXt = µP (Xt; θ) dt+ σ (Xt; θ) dW
P
t

where state variables Xt and the drift functions µP (Xt; θ) are m×1 vectors, σ (Xt; θ)

is an m×m volatility matrix, and W P
t is an m× 1 vector of independent Brownian

motions under the objective probability measure P . Both µP (Xt; θ) and σ (Xt; θ)

depend on Xt and they are known up to a parameter vector θ ∈ Θ, which is a
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compact subset of Rp. To avoid loss of generality, any correlation structures between

the state variables can be modelled by using the off-diagonal terms in the volatility

matrix σ (Xt; θ) , which could be asymmetric. In our model, state variables Xt is a

2 × 1 vector, including St and Yt representing the stock market index S&P 500 and

its variance respectively.

Followed Harrison and Kreps (1979) and Harrison and Pliska (1981), the physical

measure P can be re-stated in terms of the risk-neural measure denoted by Q,

dXt = µQ (Xt; θ) dt+ σ (Xt; θ) dW
Q
t ,

where µQ (Xt; θ) is an m-dimensional function of Xt and W
Q
t is an m × 1 vector of

independent Brownian motions under Q.

Our models combine regime switching with different stochastic volatility models

under the objective probability measure P , in which the dynamics of the stock market

index S&P 500 and its volatility are assumed to follow a bivariate continuous time

regime-shifting Markov process:

(3.1) dXt = µP (Xt, Rt; θ) dt+ σ (Xt, Rt; θ) dW
P
t .

Under the equivalent martingale measure Q, equation 3.1 is rewritten as

dXt = µQ (Xt, Rt; θ) dt+ σ (Xt, Rt; θ) dW
Q
t ,

where the regime index Rt follows a two-state continuous time Markov chain. Strictly

speaking, the future state depends on the previous one state. Motivated by the

behaviour of S&P 500 and VIX in Figures 3.1 and 3.2, low (L) and high (H) volatility

regimes are assumed to identify two different economic situations. Therefore, the

stock market index S&P 500 and its volatility can evolve in an L regime or an H

regime at any given point. However, the true state of the economy has to be inferred

all the times because it cannot be observed directly.

The two-regime specification allows each parameter has two different estimates

depending on the two different economic states. Therefore, the two-regime framework

can help explain some significant properties of asset prices. First, a two-regime model

performs better than a single-regime model when explaining volatility clustering. The

strong persistence of the high volatility regime and the distinct long-run average price

variances of different regimes are able to capture high volatility clustering. Second,
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a stochastic volatility model with two regimes can help analyse leverage effect better

in different volatility situations. Third, the high variance regime inferred by our

regime-switching models can identify most important incidents in financial history.

Given a two state, {L,H}, we assume the shifts are controlled by the two state
continuous time Markov chain with the generator matrix

Λ =

 λLL λHL

λLH λHH

 =

 −λLH λHL

λLH −λHL

 ,

where λij is the transition rate representing the rate of transitioning from the state

i to the state j as time goes to zero and πij > 0 for i 6= j. We assume, during each

time period ∆, regime switching can occur at most once and at most one regime shift

can occur every day. The corresponding transition matrix P (t) can be obtained by

solving Kolmogorov backwards equations or Kolmogorov forwards equations.

P (t) =

 PLL (t) PHL (t)

PLH (t) PHH (t)


=

1

λLH + λHL

 λHL + λLHe
−(λLH+λHL)t λHL

(
1− e−(λLH+λHL)t

)
λLH

(
1− e−(λLH+λHL)t

)
λLH + λHLe

−(LH+πHL)t

 ,

in which the intensity λij and the time period t affect the transition probabilities

together. Additionally, the unconditional probabilities of the above Markov being in

the regime L and H are

(λL, λH) =
(

λHL
λLH+λHL

, λLH
λLH+λHL

)
,

respectively at any time. When estimating our model, we assume the regime index

Rt follows a discrete time Markov chain of order 2. The transition matrix P can be

written as

P =

 pLL pHL

pLH pHH

 ,

where pxy is the transition probability that the chain enters state y after leaving state

x and pxy = P (Rt = x|Rt−1 = y) , x, y = L,H. With respect to pLL and pHH , we

restate the stationary distribution of Markov chain as

(πL, πH) =
(

1−pHH
2−pLL−pHH ,

1−pLL
2−pLL−pHH

)
.
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In order to make the generator matrix vary with the state variables st and Yt, we

model the transition probabilities

pLL = P (Rt = L|Rt−∆ = L) = F (cL + dLst−∆ + eLYt−∆)

pLH = P (Rt = H|Rt−∆ = L) = 1− F (cL + dLst−∆ + eLYt−∆)

pHH = P (Rt = H|Rt−∆ = H) = F (cH + dHst−∆ + eHYt−∆)

pHL = P (Rt = L|Rt−∆ = H) = 1− F (cH + dHst−∆ + eHYt−∆) ,

where ∆ denotes a time period. Following previous literatures, F (x) could be the cu-

mulative Normal distribution function, Φ (x) (Gray (1996)) or the logistic function,

exp (x) / [1 + exp (x)] (Diebold, Lee, and Weinbach (1994) and Dai, Singleton, and

Yang (2007)), because both of them always yield nonnegative real numbers results,

which are between 0 and 1. When dL = dH = 0 and eL = eH = 0, the transition

probabilities become constant and the time-varying transition matrix is reduced to

the time-constant transition matrix. If di > 0 (di < 0) , the probability of the regime

index keeping in the same state in the next time period has a positive (negative)

relationship with the stock market index S&P 500. If ei > 0 (ei < 0) , the probability

of the regime index keeping in the same state in the next period has a positive (neg-

ative) relationship with the volatility of the stock market index S&P 500. Since Choi

(2009) compared the two different transition probability functions when estimating

two-regime diffusion models of the short-term interest rate and showed there is a

negligible difference, we choose to use the logistic function.

When estimating our model, two methods are considered to set the initial state

probability. One is to treat the unconditional probability of the original state,

P (s0 = L) as an additional parameter p. Another is setting the original state prob-

ability equal the unconditional probability
(

1−pHH
2−pLL−pHH ,

1−pLL
2−pLL−pHH

)
.

We combine the regime shift with three stochastic volatility models, including the

Heston model, the GARCH model and the CEV model. According to the number of

regimes, the initial probability and the transition probability matrix specifications,

we will estimate four models for each group. For Heston model, I will compare H-R1

(single-regime), H-R2-1 (two regimes, time-constant transition matrix, unconditional

probability for the probability of the initial state), H-R2-2 (two regimes, time-constant

transition matrix, additional parameter for the probability of the initial state) and
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H-R2TVTP(two regimes, time-varying transition matrix with a logistic function, ad-

ditional parameter for the probability of the initial state). For the GARCH model

and the CEV model, We will estimate G-R1, G-R2-1, G-R2-2, G-R2TVTP and C-R1,

C-R2-1, C-R2-2, C-R2TVTP, separately.

3.3.1. Heston Stochastic Volatility Model with regime shift

The Heston model, named after Heston (1993), is a commonly used stochastic volatil-

ity model. Under the equivalent martingale measure Q, the asset price St and its

volatility Yt follow the dynamics

(3.2) dXt = d

[
St
Yt

]
=

[
(r − d)St
κ′ (γ′ − Yt)

]
dt+

 √(1− ρ2)YtSt ρ
√
YtSt

0 σ
√
Yt

 d[WQ
1 (t)

WQ
2 (t)

]
,

where dWQ
1 (t), dWQ

2 (t) are Wiener processes with correlation ρdt, r is risk free

interest rate, d is dividend yield of the stock, γ′ is the long run average price variance,

κ′ is the rate at which Yt reverts to γ′, σ is the volatility of volatility. Because

Yt follows the square root process, it’s lower bound is zero. To avoid reaching the

boundary value, the Feller condition 2κ′γ′ ≥ σ2 should be satisfied.

With respect to the logarithmic asset price st = lnSt, the dynamics 3.2 are then

rewritten as

dXt = d

[
st
Yt

]
=

[
r − d− 1

2
Yt

κ′ (γ′ − Yt)

]
dt+

 √(1− ρ2)Yt ρ
√
Yt

0 σ
√
Yt

 d[WQ
1 (t)

WQ
2 (t)

]
by Itô lemma.

The market price of risk is
[
λ1

√
(1− ρ2)Yt, λ2

√
Yt

]′
. Under the objective measure

P , the joint dynamics of st and Yt is

dXt = d

[
st
Yt

]
=

[
a+ bYt
κ (γ − Yt)

]
dt+

 √(1− ρ2)Yt ρ
√
Yt

0 σ
√
Yt

 d[W P
1 (t)

W P
2 (t)

]
,

where a = r − d, b = λ1 (1− ρ2) + λ2ρ− 1
2
, κ = κ′ − λ2σ, γ =

(
k+λ2σ
κ

)
γ′.

Since we treated the volatility as observed when estimating, we cannot identify

the market price of risk of the stochastic volatility variable λ2. As Aït-Sahalia and

Kimmel (2007) did, we assume λ2 = 0 for all of the specifications. Therefore, the

parameter b is reduced to λ (1− ρ2)− 1
2
and λ is used instead of λ1. Our two-regime

Heston model assumes that both the dynamics of logarithmic S&P 500 ,st, and its
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volatility, Yt, follow continuous time regime-switching Markov processes

dXt = d

[
st
Yt

]
=

[
aRt + bRtYt

κRt
(
γRt − Yt

)]dt+

 √(1− ρ2
Rt

)
Yt ρRt

√
Yt

0 σRt
√
Yt

 d[W P
1 (t)

W P
2 (t)

]
,

where the regime index Rt follows a two states continuous time first order Markov

chain.

3.3.2. GARCH Stochastic Volatility Model with regime shift

Under the risk-neutral measure Q, the stock market index S&P 500, St, and its

volatility Yt follow the dynamics

(3.3) dXt = d

[
St
Yt

]
=

[
(r − d)St
κ′ (γ′ − Yt)

]
dt+

 √(1− ρ2)YtSt ρ
√
YtSt

0 σYt

 d[WQ
1 (t)

WQ
2 (t)

]
,

where the parameters obey the conditions κ′γ′ ≥ 0. dWQ
1 (t), dWQ

2 (t) are Wiener

processes with correlation ρdt. We could see the difference between the Heston and

GARCH model is the volatility term of Yt. In terms of st = lnSt, the joint dynamics

3.3 of st and Yt is

dXt = d

[
st
Yt

]
=

[
r − d− 1

2
Yt

κ′ (γ′ − Yt)

]
dt+

 √(1− ρ2)Yt ρ
√
Yt

0 σYt

 d[WQ
1 (t)

WQ
2 (t)

]
by Itô lemma.

Since the same reason as mentioned in the Heston model, the market price of risk

is reduced to
[
λ1

√
(1− ρ2)Yt, 0

]′
. The dynamics of the state variables under the

measure P are

dXt = d

[
st
Yt

]
=

[
a+ bYt
κ (γ − Yt)

]
dt+

 √(1− ρ2)Yt ρ
√
Yt

0 σYt

 d[W P
1 (t)

W P
2 (t)

]
,

where a = r − d, b = λ (1− ρ2)− 1
2
, κ = κ′, γ = γ′.

The logarithmic S&P 500 st and its volatility Yt is modelled as

dXt = d

[
st
Yt

]
=

[
aRt + bRtYt

κRt
(
γRt − Yt

)]dt+

 √(1− ρ2
Rt

)
Yt ρRt

√
Yt

0 σRtYt

 d[W P
1 (t)

W P
2 (t)

]
,

where the regime Rt follows a continuous time first order Markov chain with two

states.
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3.3.3. CEV Stochastic Volatility Model with regime shift

Jones (2003) proposed a more general model, which nests the Heston model (β = 1/2)

and the GARCH model (β = 1). Under the risk-neutral measure Q, the stock market

index S&P 500 St and its volatility Yt follow the dynamics

(3.4) dXt = d

[
St
Yt

]
=

[
(r − d)St
κ′ (γ′ − Yt)

]
dt+

 √(1− ρ2)YtSt ρ
√
YtSt

0 σY β
t

 d[WQ
1 (t)

WQ
2 (t)

]
,

where 1/2 ≤ β ≤ 1. In terms of the logarithmic stock price, the process 3.4 is

rewritten as

dXt = d

[
St
Yt

]
=

[
r − d− 1

2
Yt

κ′ (γ′ − Yt)

]
dt+

 √(1− ρ2)Yt ρ
√
Yt

0 σY β
t

 d[WQ
1 (t)

WQ
2 (t)

]
by Itô lemma.

Because of Λ =
[
λ1

√
(1− ρ2)Yt, 0

]′
, P -measure dynamics of the state variables

are then

dXt = d

[
st
Yt

]
=

[
a+ bYt
κ (γ − Yt)

]
dt+

 √(1− ρ2)Yt ρ
√
Yt

0 σY β
t

 d[W P
1 (t)

W P
2 (t)

]
,

where a = r − d, b = λ (1− ρ2)− 1
2
, κ = κ′, γ = γ′.

Our regime-switching model is

dXt = d

[
st
Yt

]
=

[
aRt + bRtYt

κRt
(
γRt − Yt

)]dt+

 √(1− ρ2
Rt

)
Yt ρRt

√
Yt

0 σRtY
βRt
t

 d[W P
1 (t)

W P
2 (t)

]
,

where the regime Rt follows a continuous time first order markov chain with two

states.

3.4. Estimation Results

The transition density of the state vector is hardly ever known in closed form so

that the standard maximum likelihood estimation cannot be conducted. To estimate

the continuous time stochastic volatility models with regime shifts, we apply the

maximum likelihood estimation method, which is developed in Chapter 2.

In our three different families of stochastic volatility models, there are just two

elements in the state vector Xt. The first element St representing daily Standard &

Poor’s 500 Index (S&P 500) can be directly observed, however, the state variable Yt
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Table 3.2. Summary Statistics of S&P 500, VIX, ln(S&P 500) and IV

S&P 500 VIX ln(S&P 500) IV

Observations 5856 5856 5856 5856
Minimum 295.460 9.310 5.689 0.003
Maximum 1565.150 80.860 7.356 0.725
Mean 954.314 20.518 6.763 0.048
Std. Dev 370.450 8.188 0.474 0.055
Skewness -0.365 1.944 -0.745 4.627
Kurtosis 1.737 9.763 2.083 36.633

which determines the level of volatility is unobserved. As mentioned in Aït-Sahalia

and Kimmel (2007), two different methods can be applied to deal with this problem

in estimation. One method is to employ a filtering technique (Bates (2006)), the

alternative one is to assume an option price Ct is observed, then the time series

of Yt can be extracted from Ct. Since the former method cannot fully identify all

of the parameters under the equivalent martingale measure Q, we choose the latter

approach and use the Chicago Board Options Exchange Volatility Index (VIX) as Ct.

In order to infer the value of Yt from Ct, there are three approaches can be applied.

One approach is to compute the value of Yt from a function of the stock price St

and an option price Ct. The second method is proposed by Ledoit, Santa-Clara, and

Yan (1998), in which the Black-Scholes implied volatility of an at-the-money short-

maturity option is treated as a proxy for the instantaneous volatility state variable St.

Motivated by Hull and White (1987), Aït-Sahalia and Kimmel (2007) proposed an

adjusted Black-Scholes proxy, which can avoid the significant bias caused by using the

simple unadjusted Black-Scholes proxy in the estimation of the elasticity of volatility

parameter. Therefore, we choose to employ the modified Black-Scholes proxy for the

state variable Yt.

If the Q-measure drift of Yt is of the form a+ bYt, then the adjusted proxy, IVt, is

(3.5) IVt =
b · τ · Y imp

t + a · τ
exp (b · τ)− 1

− a

b
,

where Y imp
t is the implied volatility of the short-maturity at-the-money option and τ

is time to maturity of the option.

We first estimate parameters of the following univariate CEVmodel for (V IXt/100)2

dXt = κ (γ −Xt) dt+ σXβ
t dWt
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to get a = κγ and b = −κ.
Because the true log-likelihood function of the CEVmodel is unknown, the approx-

imate log-likelihood function was obtained using the irreducible method to conduct

maximum likelihood estimation. We use the daily S&P 500 and VIX downloaded

from DataStream between January 2, 1990 and June 12, 2012 and get the estimation

results

dYt = 2.61∗∗ (0.054∗∗ − Yt) dt+ 1.28∗∗X0.84∗∗

t dWt

(0.726) (0.010) (0.011) (0.002)

with standard errors in parentheses.

We use (V IXt/100)2 for Y imp
t and estimates of a and b in equation 3.5 to compute

the adjusted volatility such that

IVt = −0.0064 + 1.1182 (V IXt/100)2 .

In Table 3.2, we give the descriptive statistics of S&P 500, VIX, logarithmic S&P

500 and IV series from January 2,1990 to June 12, 2012.

In Table 3.3, we summarize the ML estimation results for the four different Heston

stochastic volatility models. The first column shows estimation outcomes for the

single-regime model H-R1. The second and third columns report the estimation

results for two regime-switching models with time invariant transition matrix. The

difference between them is the approach we use to deal with the probability of the

original state. We keep the unconditional probability at the value of 0.5 for the

H-R2-1 model, but set an additional parameter to estimate for the model H-R2-2.

The last column presents ML estimation outcomes for the regime-switching model

with varying transition matrix and an additional parameter for the probability of

the original state. The asterisk by the parameter estimate implies that, at the 5%

significance level, it is different from zero.

In the single regime model H-R1, besides the market price of risk λ and the rate

of return rd, the rest estimates are statistically significant. The long run average

volatility γ1/2 is estimated to be approximately 21.45% per year with a rate of mean

reversion coeffi cient κ of 6.817. The correlation coeffi cient ρ between the innovations

to the stock price and stochastic volatility is strongly negative, −0.799. The variance

of volatility σ is close to 0.726.
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Figure 3.3. Regime-Switching Probabilities of the Model H-R2TVTP

Comparing three different regime-switching models, we find that the rate of mean

reversion of Yt is higher in Regime H, κH > κL. The long-run average value of Yt is

bigger in Regime H, γH > γL. The correlation coeffi cient ρ between the innovations

to stock price and stochastic volatility is stronger in Regime H, ρH > ρL. The variance

of Yt is more volatile in Regime H, σH > σL. rdL, rdH , λL and λH are statistically

insignificant. Regime H is very persistent pHH ≈ 0.900 but Regime L is not so

persistent pLL ≈ 0.099. In the model of H-R2TVTP, the variable st appears to

be much more important in explaining the time varying transition probabilities of

it.Because dL < 0 (dH > 0), pLL (pHH) decreases (increases) as st increases. Both c

and e are statistically insignificant.

.

Analysing the log-likelihood values from the four different models, it illustrates

that the single regime model H-R1 reports the smallest value 42231.867 while the
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Figure 3.4. Regime-Switching Probabilities of the Model H-R2TVTP
with S&P 500 and its First Difference

model H-R2TVTP owns the biggest one 43293.294. The models of H-R2-1 and H-R2-

2 display the same log-likelihood value with very similar ML estimates. There seems

to be not much difference between using unconditional probability and employing a

new parameter for the original state. However, there is strong evidence of existence

of high and low volatility regimes for the time varying transition probability of the

regime variable.

Since the parameters related to the second regime of the process are unidentified

under the null hypothesis of single regime, traditional test statistics cannot be used to

test whether there is one regime or not. Take the model of H-R2-1 for example, given

P (s1 = L) = 1, if the null hypothesis is pLL = 1, then λH , κH , γH , ρH , σH , rdH , and

pHH cannot be identified under the null of no regime switching. In this case, standard

asymptotic distribution theory cannot be applied so that standard likelihood ratio

tests and Wald tests cannot be conducted. Although some literatures (Davis (1987),

Hansen (1992), Hansen (1996) and Cho andWhite (2007)) try to address this problem,

testing for multiple regimes is still particularly challenging. Therefore, we resort to
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Figure 3.5. Regime-Switching Probabilities of the Model H-R2TVTP
with VIX and its First Difference

calculate Akaike Information Criterion (AIC) and Bayesian Information Criterion

(BIC) to compare different specifications. Although the difference is very narrow,

the H-R2TVTP model reports the smallest AIC and BIC values. Another metric we

employed to compare the performance of different regime-switching models is called

Regime Classification Measure (RCM). It is first proposed by Ang and Bekaert (2002)

and then applied by Choi (2009) for R regime case as

RCM (R) = 100RR 1

n

n∑
t=1

(
R∏
i=1

pi,t

)
,

where pi,t = P (st = i|IT ), R = 2, 100RR is used to normalize the statistic to be

between 0 and 100. A model that does a good (bad) job of distinguishing between

regimes will make an inference about st being in a regime close to 1 or 0 (1/R).

Therefore, according to the inferred probabilities of staying in a particular regime,

the closer the RCM value is to 0, the better the regime classification of a model is.

It can be seen from Table 3.3, the H-R2-1 and H-R2-2 models display very similar
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RCM, but there is a great improvement in the model H-R2TVTP. In the term of RCM

values, it also shows strong evidence for the existence of varying transition matrix.

In order to analyse the probability of being in state H, we draw the time series

of filtered probabilities and smoothed probabilities over the sample for the model H-

R2TVTP in Figure 3.3. To make it more clearly, we plot the time series of smoothed

probabilities with S&P 500, VIX and their first difference separately in Figures 3.4

and 3.5.

These illustrations display that the H-R2TVTP model identifies most high volatil-

ity periods, which can be connected with some significant events in U.S. history and

financial history since 1990. The beginning high volatility regime corresponds to the

Gulf War, which began from 2 August 1990 and lasted to 28 February 1991. The next

state of H reflects the Black Wednesday in 1992. The high volatility regime around

1994 matches the 1994 Northridge earthquake in the Los Angeles area, caused an es-

timated $20 billion in damage, making it one of the costliest natural disasters in U.S.

history. The following H state throughout 1996 is linked to the severe budget crisis,

which forced the federal government to shut down for several weeks at the end of 1995.

The 1998-2000 high volatility regime is related to the Asian financial crisis, started

in Thailand in July 1997 and then triggered the 1998 Russian financial crisis. It is

also coincident with the 1998 collapse of long-term capital management, leading to an

agreement among 14 financial institutions for a $3.6 billion recapitalization under the

supervision of the Federal Reserve. Furthermore, the dot-com bubble covered roughly

the period of 1995 to 2000, and finally burst because of an inflation report in April of

2000. The next three successive years of H state is caused by the September 11, 2001

terrorist attacks and the October 2001 invasion in Afghanistan. After that, the Iraq

War was lanched on March 19, 2003. The 2004 high volatility regime is linked to the

2004 Atlantic hurricane season, which impacted Florida, Charley, Frances, Ivan and

Jeanne, and produced over $50 billion in damage. What’s even worse, in August and

September 2005, two powerful hurricanes, Hurricane Katrina and Hurricane Rita hit

the Gulf Coast region. The last long H state is associated with the result of a succes-

sion of financial events. The Chinese Correction plunge of February 27, 2007 caused

the Dow Jones Industrial Average dropped by 3.29%, which is the biggest one-day

slide since the September 11. The subprime mortgage crisis, which has its roots in

the closing years of the 20th century, became apparent between 2007 and 2008, and
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then rapidly evolved into a global financial crisis. On September 15, 2008 Lehman

Brothers filed for bankruptcy protection. The European sovereign-debt crisis started

late 2009, followed by the 2010 Flash Crash and the August 2011 stock markets fall

across the world, furthering severe volatility of stock market indexes until now.

Using the ML estimates given in Table 3.3, Figure 3.6 plot the approximate

conditional transition density functions of the stochastic differential equations given

x0 = [s0, Y0]′ = [6.500, 0.045]′ for the models of H-R1 and H-R2TVTP, respectively.

Since the corresponding graphs of the model H-R2-1 and H-R2-2 are very similar to

those of the H-R2TVTP model, we omit them and compare only the model H-R1 and

H-R2TVTP. At around the given asset price s0 = 6.500 and its volatility Y0 = 0.045,

the conditional density function of regime L for the model H-R2TVTP is topped out

with the peak of 4925.969 while that of regime H is flattened out with the top of

2316.343. Compared with those of the H-R2TVTP model, the conditional density

function of the H-R1 modal is centred on a height of 2071.961. We also calculate

the 95% confidence interval by delta method for each case and find that the 3D 95%

confidence interval surfs form an upper layer and a lower layer just around the density

functions.

To make it more clear, we split the 3D shapes into two pieces and take the cross

sections at Y0 = 0.045. Then Figure 3.7 plot conditional transition density functions

and their 95% confidence bands for the model H-R1 and H-R2TVTP separately. The

different approximate conditional transition density functions show strong evidences

for the existence of high and low volatility regimes and for the time varying transition

probability of the regime variable.

Table 3.4 reports the ML estimation results for the family of GARCH stochastic

volatility models. The first column shows ML estimation outcomes for the single-

regime model, G-R1. The rest three columns display the three different two-regime

models G-R2-1 (two regimes, time invariant transition matrix, unconditional proba-

bility for the probability of initial state), G-R2-2 (two regimes, time invariant transi-

tion matrix, additional parameter for the probability of initial state) and G-R2TVP

(two regimes, time varying transition matrix with logistic function,additional para-

meter for the probability of initial state) respectively. The asterisk by the parameter

estimate implies that, at the 5% significance level, it is different from zero.
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Figure 3.6. Conditional Transition Density Functions for the Model H-
R1 and H-R2TVTP

In the term of the single regime model G-R1, the long term value of the volatility

γ1/2 is approximately 17.89% per year, which is smaller than that in the H-R1 model.

The speed of mean reversion coeffi cient κ is estimated to be 2.859, much smaller

than 6.817 in the H-R1 model. The leverage effect ρ is −0.799 with the variance of
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Figure 3.7. Conditional Transition Density Functions and 95% Condi-
dence Bands for the Model H-R1 and H-R2TVTP

volatility 2.319. However, the market price of risk λ and the rate of return rd are

statistically insignificant.

To analyse the three different two-regime models, we find very similar conclusions

as the class of Heston stochastic volatility models. κH > κL , γH > γL, ρH > ρL,

σH > σL, rdL, rdH , λL and λH are still not statistically significant. . Although κL is

not significant, in fact, the p-value is 0.051, which is a bit bigger than 0.05. H State

is very persistent while L state is not so steady. In the model of G-R2TVTP, time

varying transition probabilities of it are mainly affected by the variable st, other than

the constant term and Yt. When dL < 0 (dH > 0), pLL (pHH) and st have a negative

(positive) relationship. The ML estimates c and e are not significant.

Comparing four log-likelihood values, the single regime model G-R1 reports the

smallest value 42061.618. What we should pay attention to is that, in the Heston

stochastic volatility model, the parameters have to satisfy the Feller condition 2κγ ≥
σ2, which is much more restricted than the condition κγ ≥ 0 in the G-R1 model.

With Feller condition, κ, γ and σ can’t vary so much as they do in the GARCH

stochastic volatility model. We can find that in the G-R1 model, Feller condition is

violated by 2 × 2.859 × 0.032 < 2.3192. Like the model of H-R2-1 and H-R2-2, the

model of G-R2-1 and G-R2-2 also report very closed log-likelihood values and similar
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ML estimation outcomes. The log-likelihood value of G-R2TVTP is 43274.182 that

is much bigger than the log-likelihood value of single regime model G-R1.
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Figure 3.8. Regime-Switching Probabilities of the Model G-R2TVTP

AIC and BIC are employed to compare the single regime model with three dif-

ferent two-regime models. The G-R1 model reports the biggest AIC −14.363 and

BIC −14.356 while the G-R2TVTP model shows the smallest AIC −14.772 and BIC

−14.751. The models G-R2-1 and G-R2-2 display the similar AIC and BIC values.

In the term of RCM, we can find strong advantage of the two regimes model with

time varying transition matrix.

The filtered probabilities and smoothed probabilities of staying in H state over

the sample for the model of G-R2TVTP are displayed in Figure 3.8. Then Figures

3.9 and 3.10 plot the time series of smoothed probabilities with S&P 500, VIX and

their first difference separately. Although the smoothed probabilities of G-R2TVTP

are not so smooth as that of the model H-R2TVTP, it still identifies the main

high volatility periods of 1990-1991, 1994-1995, 1998-2000, 2008-2010 and 2010-2012.

Using the ML estimates provided in Table 3.4, Figure 3.12 plots the approximate

conditional transition density functions of the stochastic differential equations given

x0 = [s0, Y0]′ = [6.500, 0.045]′ for the model of G-R1 and G-R2TVTP, respectively.
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Figure 3.9. Regime-Switching Probabilities of the Model G-R2TVTP
with S&P 500 and its First Difference

At around the point x0, the conditional density function of regime L for the model

H-R2TVTP has a peak of 1318.050 while that of regime H is with the top of 641.312

and the model G-R1 is centred on a height of 716.815.

In order to show 95% confidence bands, Figure 3.11 plot the cross sections at

Y0 = 0.045. These 95% confidence interval surfs are much closed to the conditional

density function for each pecification.

In Table 3.5, we display the estimation results for the model of C-R1, C-R2-1,

C-R2-2 and C-R2TVTP respectively. The instantaneous standard deviation of S&P

500 γ1/2 in the model C-R1 is 23.45% per year. The rate of mean reversion coeffi cient

κ is estimated to be 6.049 with the correlation coeffi cient ρ = −0.809. The variance of

volatility σ is close to 0.994, which is between 0.726 from the model G-R1 and 2.319

from the model H-R1. Of particular interest for the CEV model is the exponent β,

which is estimated at 0.54, above the Heston value of 0.5 but below the GARCH value

of 1. The market price of risk λ and the rate of return rd are statistically insignificant.
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Figure 3.10. Regime-Switching Probabilities of the Model G-R2TVTP
with VIX and its First Difference

Figure 3.11. Conditional Transition Density Functions and 95% Con-
didence Bands for the Model G-R1 and G-R2TVTP
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Figure 3.12. Conditional Transition Density Functions for the Model
G-R1 and G-R2TVTP

Comparing three different regime-switching models, we find similar results as the

Heston and GARCH stochastic volatility models. κH > κL , γH > γL, ρH > ρL,

σH > σL, however, the exponent βH < βL. λL and rdL are statistically significant at

the 5% level, but λH and rdH are still insignificant.
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Figure 3.13. Regime-Switching Probabilities of the Model C-R2TVTP

Considering the log-likelihood values from the four different models, the sin-

gle regime model C-R1 exhibits the smallest value 42397.267, which is bigger than

42061.618 from the model G-R1 and 42061.618 of the model H-R1. The main rea-

son is still Feller condition 2κγ ≥ σ2. The models C-R2-1 and C-R2-2 show log-

likelihood values of 43096.667 and 43197.402, respectively. The largest log-likelihood

value 43734.808 belongs to C-R2TVTP with time varying transition matrix.When we

move from the single regime model C-R1 to C-R2-1, C-R2-2 and C-R2TVTP, the AIC

values decreases gradually from −14.477 to −14.929 and BIC declines from −14.469

to −14.905.The models of C-R2-1 and C-R2-2 report RCM 34.583 and 33.113 while

the C-R2TVTP model shows RCM 7.781 that is much smaller than the previous two

models. It is definitely a strong evidence for the existence of two regimes with varying

transition matrix.

To analyse the probability of staying in state H, we draw the time series of filtered

probabilities and smoothed probabilities over the sample for the model C-R2TVTP

in 3.13.
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Figure 3.14. Regime-Switching Probabilities of the Model C-R2TVTP
with S&P 500 and its First Difference

Then Figures 3.14 and 3.15 plot the time series of smoothed probabilities with

S&P 500, VIX and their first difference separately.

The smoothed probabilities are very smooth and therefore we can figure out most

high volatility periods more clearly than the models of H-R2TVTP and G-R2TVTP.

The 1990-1991 high regime state connects with the Gulf War, the 1992 period reflects

the Black Wednesday, the high volatility regime around 1994 is linked to he 1994

Northridge earthquake in the Los Angeles area. The successive 1996-2003 H state is

associated with the budget crisis in U.S., Asian financial crisis, Russian financial crisis,

long-term capital management collapse, the dot-com bubble, September 11, 2001

terrorist attacks, as well as the October 2001 invasion in Afghanistan and 2003 Iraq

War. The 2004 and 2005 high volatility regime is coincident with the 2004 Atlantic

hurricane season and 2005 Hurricane Katrina and Hurricane Rita, respectively. The H

state regime around 2007 matches the Chinese Correction plunge. The final long high

volatility period of 2008-2012 is associated with the subprime mortgage crisis, Lehman
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Figure 3.15. Regime-Switching Probabilities of the Model C-R2TVTP
with VIX and its First Difference

Brothers Bankruptcy protection, the European sovereign-debt crisis, the 2010 Flash

Crash and the August 2011 stock markets fall, which is still going on until now.

Using the ML estimates provided in Table 3.5, given x0 = [s0, Y0]′ = [6.500, 0.045]′,

the approximate conditional transition density functions of the stochastic differential

equations for the C-R1 and C-R2TVTP models are plotted respectively in Figure

3.16. At around x0 point, the conditional density function of regime L for the model

C-R2TVTP peaks at the height of 2122.339, that of regime H is flattened out with the

top of 1280.951 and the model C-R1 is centred on a height of 1658.754. Compared to

the H-R2TVTP and G-R2TVTP models, the conditional transition density functions

of the model C-R2TVTP for the two regimes are more close to each other as well

as that of the single regime model.The cross sections at Y0 = 0.045 of conditional

transition density functions and their 95% confidence bands for the C-R1 model and

the C-R2TVTP model are showed in Figure 3.17.
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Figure 3.16. Conditional Transition Density Functions for the Model
C-R1 and C-R2TVTP

In order to compare three families of continuous time stochastic volatility mod-

els, we calculate likelihood ratio statistics for the nested models as Aït-Sahalia and

Kimmel (2007) do. The H-R1 and G-R1 models are rejected in favour of the model

C-R1 by reporting LRT statistic of 330.800 and 671.298, respectively. This result
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Figure 3.17. Conditional Transition Density Functions and 95% Con-
didence Bands for the Model C-R1 and C-R2TVTP

is cohering with Aït-Sahalia and Kimmel (2007). The LRT statistic for the model

H-R1-1 against the model C-R1-1 is 5.282 and the corresponding p-value is 0.071.

Hence, the H-R1-1 model can’t be rejected. However, the statistic for the model G-

R1-1 is 279.168 and cannot reject the hypothesis of the model C-R1-1. Considering

the H-R1-2 and the G-R1-2 models, the LRT statistics against the C-R1-2 model are

206.752 and 266.926 respectively. So the C-R1-2 model is rejected. Moving to the

regime-switching models with time varying transition matrix, the H-R2TVTP and G-

R2TVTP models are rejected in favour of the model C-R2TVTP by reporting LRT

statistic of 833.028 and 921.251, respectively. To conclude, the CEV model outper-

forms the Heston and GARCH models not only for the single regime models but also

for the two-regime models.

3.5. Conclusions

We combine the regime shift with three stochastic volatility models, including the

Heston model, the GARCH model and the CEV model. According to the number of

regimes, the initial probability and the transition probability matrix specifications,

we estimate four models for each group. For Heston model, we compare H-R1 (single-

regime), H-R2-1 (two regimes, time-constant transition matrix, unconditional prob-

ability for the probability of the initial state), H-R2-2 (two regimes, time-constant

transition matrix, additional parameter for the probability of the initial state) and
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H-R2TVTP (two regimes, time-varying transition matrix with a logistic function, ad-

ditional parameter for the probability of the initial state). For the GARCHmodel and

the CEV model, We estimate G-R1, G-R2-1, G-R2-2, G-R2TVTP and C-R1, C-R2-

1, C-R2-2, C-R2TVTP, separately. What’s more, all parameters in these models are

allowed to vary depending on the state of the economy. The maximum likelihood es-

timation, which is developed in Chapter 2, is applied to estimate these models. Using

S&P 500 and VIX data for the stock price and volatility proxy, respectively, we report

estimators for each model, as well as AIC, BIC, RCM, LR statistics to compare dif-

ferent models. Furthermore, we investigate the regime-switching probabilities of the

regime-switcing models with time varying transition matrix and additional parameter

for the probability of initial state. We also analyse the corresponding approximate

conditional transition density functions with their 95% confidence intervals in order

to find the evidence of regime shift. Our estimation results show four main findings.

First, the regime-switching models are significantly different from the single regime

models. Second, there are strong evidences for the existence of the high and low

volatility regimes, for the time varying transition probability of the regime variable,

and for high persistence of the high regime. Third, the time varying transition prob-

ability mainly depends on the stock market index S&P 500 rather than its volatility.

Fourth, the regime-switching CEV model with time varying transition matrix and

additional parameter for the probability of initial state performs better than other

regime-switching models.
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CHAPTER 4

Accuracy of Euler Approximation for Continuous Time

Diffusion Models

4.1. Introduction

To estimate continuous time diffusion models, researchers have proposed a va-

riety of econometric methods. These methods include simulation method of Duffi e

and Singleton (1993), maximum likelihood estimation (MLE) from Pearson and Sun

(1994) and Durham and Gallant (2002), generalized method of moment (GMM) by

Hansen and Scheinkman (1995), nonparametric method of Aït-Sahalia (1996a) and

Aït-Sahalia (1996b), effi cient method of moment (EMM) by Gallant and Tauchen

(1998) and Bayesian method from Elerian, Chib, and Shephard (2001). The maxi-

mum likelihood estimation (MLE) method has not been used much because the tran-

sition density functions are unknown in closed form for most continuous time diffusion

models. Since Sargan (1974), several methods have been proposed to approximate

the transition probability densities. These include the Kolmogorov partial differen-

tial equation of Lo (1988), Monte Carlo simulation from Pedersen (1995), binomial

or other trees by Jensen and Poulsen (2002) and approximate closed form likelihood

expansions of time homogeneous univariate of Aït-Sahalia (2002) and multivariate

models of Aït-Sahalia (2008).

However, to approximate a diffusion process, the Euler approximation is still

the simplest and most commonly used approaches in recent literatures (Christensen,

Kinnebrock, and Podolskij (2010), Kristensen (2010), Song (2011), Chen and Hong

(2011), Zhao (2011), Koo and Linton (2012) and Chen and Song (2013)). Theoret-

ically, the accuracy of the Euler approximation depends on the time discretization

step ∆. To be more precise, as ∆ goes to 0, the Euler approximation is expected to

be closer to the true diffusion process.

In a practical simulation, researchers set different time discretization step ∆ for

the Euler approximation in order to achieve two main objectives. First, when the
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objective is to simulate a diffusion process or test statistical estimators, a good path-

wise approximation is required. For example, Christensen, Kinnebrock, and Podolskij

(2010) first generate a complete high-frequency record of N (N denoting the number

of seconds in 6.5 hours) equidistant observations of the effi cient price by using the

Euler approximation with ∆ = 1/23400. Second, when the objective is to compute

moments, probabilities and other functions of the diffusion process, a good endpoint

approximation is required. For example, Song (2011) uses the Euler approximation

to generate data from univariate and multivariate continuous time diffusion models

by setting ∆ = 1/(252 × 1500) for daily frequency, ∆ = 1/(12 × 1500) for monthly

frequency, ∆ = 1/(4× 1500) for quarterly frequency and ∆ = 1/(1× 1500) for yearly

frequency respectively, and then uses these data to analyse the impact of the nu-

merical integral approximation. Chen and Hong (2011) set ∆ = 1/(12 × 120) at

monthly frequency to examine the sizes of specification tests under multivariate con-

tinuous time diffusion models. Kristensen (2010) chooses ∆ = 1/ (252× 10) at daily

frequency for the evaluation of the likelihood. Zhao (2011) approximates the condi-

tional log-likelihood by using ∆ = 1/252. Koo and Linton (2012) set ∆ = 1/101 to

investigate the robustness of estimators under locally stationary diffusion processes.

Chen and Song (2013) use subintervals of ∆ = 1/(52 × 5) for weekly frequency to

approximate Lévesque integral. Aït-Sahalia and Kimmel (2007) and Choi (2013)

generate data at daily frequency by setting ∆ = 1/ (252× 30) to carry out MLE for

continuous time diffusion models. To our best knowledge, so far, there has been no

literature to study whether these above time intervals are effective enough for the

Euler scheme to provide accurate approximation. Theoretically, the smaller the dis-

cretization interval is, the more accurate the Euler approximation is expected to be.

However, even when the discretization interval is too small, the accuracy of the Euler

approximation can get worse because of the roundoff error (Peter and Platen (1992))

and random number generator bias (Komori, Saito, and Mitsui (1994)). The random

number bias primarily results from lack of mutual independence in the samples from

a random number generator when ∆ is quite small.

The purpose of this chapter is to provide a guideline of effective time steps ∆ for

the Euler approximation to different diffusion processes over a finite interval [0, T ]. In

order to find out an effective time step∆, the quality of a discrete time approximation
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is usually judged according to two basic criterions, including convergence (or consis-

tency) and stability (Peter and Platen (1992)). Convergence concerns the accuracy

of an Euler approximation over a finite interval [0, T ] for small time discretization

steps ∆, while stability investigates the quality of an approximation in a long term,

T →∞. There have been some literatures studying the stability of different discrete
time approximations (Saito and Mitsui (1996), Higham (2000a), Higham (2000b),

Higham (2001) and Buckwar and Sickenberger (2011)). Since the purpose of this

chapter is to find out a small enough time discretization step ∆ over a finite interval

[0, T ], our numerical tests examine convergence rather than stability.

According to the objective of a practical simulation, two criterions could be ap-

plied to assess the convergence of an Euler approximation. When the objective is to

simulate a diffusion process or test statistical estimators, a good pathwise approx-

imation is required. To measure how good a pathwise approximation is, the first

step of our numerical tests is to exam the Euler approximation by calculating the

percentage errors at the end of time interval [0, T ] for different time step ∆. How-

ever, with only a few exceptions, the true diffusion process are unknown for many

diffusion processes. Without the true diffusion process, a relatively more accurate

diffusion process is needed to be a benchmark for judging the accuracy of the Euler

approximation. The benchmark we choose is the Milstein approximation, which is a

second-order approximation proposed by Milstein (1975). Comparing with the Euler

approximation, the Milstein approximation is a combination of a normal distribution

and a chi square distribution. This could be one reason why researchers prefer to use

the Euler approximation. Based on the benchmark, the second step of our numeri-

cal tests is to calculate the absolute error by generating 100 paths for different time

step ∆ and then illustrate the strong convergence. When the objective is to compute

moments, probabilities and other functions of the diffusion process, a good endpoint

approximation is required. Following previous literatures (Peter and Platen (1992)

and Higham (2001)), the last step of our numerical tests is to calculate the mean

errors by generating 100 paths for different time step ∆ and then display the weak

convergence. In fact, we generated 100, 1000, 10000 and 100000 paths in order to

compare the corresponding results. Then we found these results are very similar. This

is the reason why we generate 100 paths to analyse both of the strong convergence

and weak convergence. All the numerical tests about univariate diffusion models are
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done in MATLAB R2011b on a computer with 32-bit operating system and all the

numerical tests about multivariate diffusion models are done in MATLAB R2011b on

a computer with 64-bit operating system. On one hand, our numerical tests suggest

an appropriate time interval should be set in order to satisfy different error require-

ments for the case of simulating a diffusion process or testing statistical estimators.

On the other hand, the turning point should be considered when computing moments,

probabilities or other functions of the diffusion process.

Section 2 reviews the Euler and Milstein approximations and introduces the crite-

rions to investigate the accuracy of the Euler approximation. Section 3 analyses the

effective time discretization step ∆ for univariate stochastic diffusion models, includ-

ing Black-Schole-Merton model, Vasicek model, CIR model, Inverse of Feller’s Square

Root model, Linear Drift CEV model and Nonlinear Mean Reversion model. Section

4 moves to multivariate stochastic diffusion models, such as Heston, GARCH, CEV,

Stein, Scott, Hull-White, Hagan and SABR process. Section 5 concludes this chapter.

4.2. Euler and Milstein Approximations

Given an diffusion process {Xt, 0 ≤ t ≤ T} solution of the stochastic differential
equation

dXt = µ (t,Xt) dt+ σ (t,Xt) dWt

with initial deterministic value Xt0 = X0 and the discretization ΠN = ΠN ([0, T ]) of

the interval [0, T ], 0 = t0 < t1 < · · · < tN = T , the Euler approximation of X is a

continuous stochastic process Y satisfying the iterative scheme

Yi+1 = Yi + µ (ti, Yi) (ti+1 − ti) + σ (ti, Yi) (Wi+1 −Wi)

= Yi + µ ·∆t+ σ ·∆Wi

for i = 0, 1, . . . , N − 1, with Y0 = X0, ∆t = ti+1− ti and ∆Wi = Wi+1−Wi. In order

to increase the accuracy of the approximation, Milstein (1975) proposed the Milstein

approximation, which adds the second-order term by using Itô lemma. Denoting by

σx (t, x) the partial derivative of σ (t, x) with respect to x, the Milstein approximation

becomes

Zi+1 = Zi + µ (ti, Zi) (ti+1 − ti) + σ (ti, Zi) (Wi+1 −Wi)(4.1)

+
1

2
σ (ti, Zi)σx (ti, Zi)

[
(Wi+1 −Wi)

2 − (ti+1 − ti)
]
,
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where i = 0, 1, . . . , N − 1, with Z0 = X0. We could simplify 4.1 as

Zi+1 = Zi + µ ·∆t+ σ ·∆Wi +
1

2
σσx

[
(∆Wi)

2 −∆t
]
,

where ∆t = ti+1 − ti and ∆Wi = Wi+1 −Wi.

For a N -dimensional stochastic differential equation

(4.2) dXt = M (t,Xt) dt+ Σ (t,Xt) dWt,

whereM (t,Xt) is a n×1 vector, Σ (t,Xt) is a n×n matrix andW is a n-dimensional

uncorrelated Brownian motion. The m-th component of the multidimensional Euler

scheme for equation 4.2 is

yi+1 = yi +M (ti, Yi) (ti+1 − ti) + Σ (ti, Yi) (Wi+1 −Wi)

for i = 0, 1, . . . , N − 1, with Y0 = X0. The m-th component of the multidimensional

Milstein scheme is

zi+1 = zi +Mm ·∆t+
M∑
j=1

Σij ·∆Wj +
M∑
j=1

M∑
k=1

M∑
l=1

Σjk

(
∂xjΣml

)
I(k,l),

wherein all of the coeffi cient functions Mm and Σmj, etc., are to be evaluated with

Zt. The double Itô integral I(k,l) is defined as

(4.3) I(k,l) =

t+∆t∫
s=t

s∫
u=t

dWk (u) dWl (s) .

For k = l, the double integrals 4.3 simplifies to

I(k,k) =
1

2

(
∆W 2

k −∆t
)
.

For k 6= l, Abe (2004) presents five methods to simulate the double integrals

I(1,2) =

tn+1∫
tn

s1∫
tn

dW1,s2dW2,s1

I(2,1) =

tn+1∫
tn

s1∫
tn

dW2,s2dW1,s1

for the 2D Milstein approximation, and shows the Real Variance formulae is the best

approximation of the double integral among the five methods. Therefore, we applies
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the Real Variance formulae to calculate I(1,2) and I(2,1).

I(2,1) =
1

2

(
I(1,2) + I(2,1)

)
− 1

2

(
I(1,2) − I(2,1)

)
=

1

2
(dW1dW2)− 1

2
(Lèvy Area)

=
1

2
dtZ1Z2 −

1

2

(√
dt2

3
Z1Z2 +

√
dt2r2

3
Z2Z3

)
and

I(1,2) = dtZ1Z2 − I(2,1),

where r2 = Z2
1 + Z2

2 , Z1 and Z2 are the original random numbers of the Brownian

motion and Z3 is a random number from the standard normal distribution.

To find out an effective time discretization step ∆, the quality of a time dis-

crete approximation is usually judged according to two basic standards, including

convergence (or consistency) and stability (Peter and Platen (1992)). Convergence

concerns the accuracy of an approximation over a finite interval [0, T ] for small time

discretization steps ∆, while stability investigates the quality of an approximation in

a long term, t→∞. There have been some literatures studying the stability of differ-
ent discrete time approximations (Saito and Mitsui (1996), Higham (2000a), Higham

(2000b), Higham (2001) and Buckwar and Sickenberger (2011)). Since the purpose

of this chapter is to find out a small enough time step ∆ over a finite interval [0, T ],

the numerical tests examine convergence rather than stability.

According to the objective of a practical simulation, two criteria could be applied

to assess the convergence of an Euler or Milstein approximation. When the objective

is to simulate a diffusion process or test statistical estimators, a good pathwise ap-

proximation is required. To measure how good the pathwise approximation is, this

chapter examines the absolute error criterion, which is defined as

ε = E (|XT − Y (T )|) ,

the expectation of the absolute value of the difference between the diffusion process

X and the approximation Y at the end of time interval [0, T ]. The approximation Y

with a time step ∆ converges strongly to X at time T if

lim
∆→0

E
(∣∣XT − Y ∆ (T )

∣∣) = 0.
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The approximation Y is said to converge strongly with order γ, if there exists a

constant C subject to

E (|XT − Y (T )|) ≤ C∆γ

for any fixed ∆ ∈ (0, T ). In a practical simulation, literatures (Kristensen (2010),

Song (2011), Chen and Hong (2011), Zhao (2011), Koo and Linton (2012) and Chen

and Song (2013)) usually generate a discretized Brownian path and then get an Euler

or a Milstein scheme to approximate a specific diffusion process rather than to gen-

erate many schemes and then take average of them to approximate such diffusion

process. For this reason, the first step of our numerical tests is to exam an Euler ap-

proximation and a Milstein approximation separately by calculating the percentage

error

PE = |Y (T )−XT | /XT × 100%

at the end of time interval [0, T ] for different time step ∆, if the true diffusion process

or a reference solution could be generated. Then moving to the next step, the absolute

error could be computed by generating 100 different Euler or Milstein approximation

for different time step ∆ and then the strong convergence could be illustrated.

Besides simulating a good pathwise approximation, another important objective

is to compute moments, probabilities and other functions of the diffusion process. In

this case, the approximation of the first moment of a particular diffusion process X

is investigated by considering the mean error

µ = |E (Y (T ))− E (XT )|

at a finite terminal time T . The approximation Y with a time step ∆ converges

weakly to X at time T if

lim
∆→0

∣∣E (g (XT ))− E
(
g
(
Y ∆ (T )

))∣∣ = 0.

The functions g are continuously differentiable and have polynomial growth. To

simplify our calculation, this chapter assumes g(X) = X as Higham (2001) did. In a

practical simulation, the mean error equals to the absolute error when a single Euler

or Milstein approximation is generated. The approximation Y is said to converge

strongly with order γ, if there exists a constant C subject to

|E (Y (T ))− E (XT )| ≤ C∆γ
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for any fixed ∆ ∈ (0, T ). Our numerical tests calculate the mean error of 100 different

Euler or Milstein approximation for different time step ∆ and plot them to display

the weak convergence. All the numerical tests about univariate diffusion models are

done in MATLAB R2011b on a computer with 32-bit Operating System and all the

numerical tests about multivariate diffusion models are done in MATLAB R2011b on

a computer with 64-bit Operating System.

4.3. Univariate Stochastic Volatility Models

4.3.1. The Black-Scholes-Merton(BSM) or Geometric Brownian Motion

Model

This process is introduced by Black and Scholes (1973) and Merton (1973) to model

asset prices. It is the solution to the stochastic differential equation

dXt = θ1Xtdt+ θ2XtdWt

with initial deterministic value X0 = x0 and θ2 > 0. Wt is a standard Brownian

motion. The parameters θ1 and θ2 are constants, representing the interest rate and

the volatility of risky activities respectively. The explicit solution (Lacus (2008)) to

this equation is

Xt = X0e
(θ1− 1

2
θ2
2)t+θ2Wt .

The Euler approximation of the process X is a continuous stochastic process Y sat-

isfying the iteration

Yt+1 = Yt + θ1Yt ·∆t+ θ2Yt ·∆Wt

with initial value Y0 = X0 for t = 0, 1, . . . N − 1. The Milstein approximation of X is

a continuous stochastic process Z satisfying the iterative scheme

Zt+1 = Zt + θ1Zt ·∆t+ θ2Zt ·∆Wt +
1

2
θ2

2Zt
(
∆W 2

t −∆t
)

with original deterministic value Z0 = X0 for t = 0, 1, . . . , N − 1.

A BSM model with θ1 = 1, θ2 = 1/2 and X0 = 1 is taken as an example for the

following numerical tests. A Brownian bridge from 0 to 1 is used as Wt. To check

whether the Euler andMilstein schemes could provide a good pathwise approximation,

we plot the Euler approximation Y and the Milstein approximation Z with the explicit

solution X for different time intervals ∆.
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Figure 4.1. The Euler andMilstein Approximations against the Explicit
Solution to the BSM Model

Panel A of Figure 4.1 shows that the Euler approximation approaches the explicit

solution more closely than the Milstein approximation when ∆ = 1/23. Panel B and

Panel C display that the Euler and Milstein schemes are crossing and overlapping

each other around the true solution when ∆ = 1/25 and ∆ = 1/28. The other panels

exhibit the two approximations almost completely copy the true solution when ∆

decreases to 1/210, 1/212 and 1/215. Moving from Panel A to Panel F, it shows

that the Euler and Milstein approximations for a finer time discretization would be

closer to the explicit solution. To be more precise, we display maximum absolute
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error between the explict solution and its approximations in Table 4.1 for different

discretization steps ∆ separately.

Table 4.1. Maximum Absolute Error between the Exact Solution and
Approximations to the BSM Model

∆ Euler Milstein ∆ Euler Milstein

1/21 0.8950 1.0006 1/211 0.0213 0.0017
1/22 0.3946 0.6167 1/212 0.0336 0.0009
1/23 0.2509 0.3455 1/213 0.0020 0.0004
1/24 0.0354 0.1858 1/214 0.0097 0.0002
1/25 0.0524 0.0951 1/215 0.0045 0.0001
1/26 0.0222 0.0550 1/216 0.0037 0.0001
1/27 0.0196 0.0292 1/217 0.0014 0.0000
1/28 0.0205 0.0148 1/218 0.0011 0.0000
1/29 0.0398 0.0074 1/219 0.0004 0.0000
1/210 0.0126 0.0035 1/220 0.0004 0.0000

In Table 4.1, maximum absolute error of the Euler approximation varies for differ-

ent ∆, whereas maximum absolute error of the Milstein approximation keeps decreas-

ing as∆ decreases. Compared with the Milstein approximation, the Euler approxima-

tion reports smaller maximum absolute error when ∆ ≥ 1/27. However, the Milstein

approximation shows smaller maximum absolute error than the Euler approximation

when ∆ < 1/27.

With respect to the endpoint, Tables 4.2 and 4.3 examine the absolute errors and

percentage errors between the explicit solution and its approximations for different

∆. It seems that the Euler scheme has smaller absolute errors when ∆ ≥ 1/28 while

the Milstein scheme has smaller absolute errors when ∆ decreases to 1/29 and even

smaller. This could be another point of view to explain why previous literatures

prefer to use the Euler scheme rather than the Milstein scheme to approximate the

true diffusion process when ∆ is simply set at data collected frequency, such as daily

(∆ = 1/252), weekly (∆ = 1/52), monthly (∆ = 1/12), quarterly (∆ = 1/4), and

yearly (∆ = 1).

Figure 4.2 illustrates the endpoint values of the two approximations with the ex-

plicit solution for different step sizes ∆. To put it another way, it displays the speed

of convergence of the Euler and Milstein schemes to the true value as a function of

the discretization step ∆ = 1/N . Undoubtedly, the Milstein approximation converges
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Table 4.2. Absolute Error between the Exact Solution and Approxima-
tions for the BSM Model at the Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.8950 1.0006 1/211 0.0209 0.0014
1/22 0.3946 0.6167 1/212 0.0330 0.0008
1/23 0.2031 0.3448 1/213 0.0190 0.0003
1/24 0.0129 0.1845 1/214 0.0094 0.0002
1/25 0.0096 0.0944 1/215 0.0041 0.0001
1/26 0.0086 0.0473 1/216 0.0035 0.0000
1/27 0.0186 0.0254 1/217 0.0010 0.0000
1/28 0.0122 0.0129 1/218 0.0010 0.0000
1/29 0.0395 0.0064 1/219 0.0001 0.0000
1/210 0.0126 0.0029 1/220 0.0001 0.0000

to the true value at a higher speed than the Euler approximation does. This out-

come is very similar to Lacus (2008)’s result. It seems that the Euler approximation

reaches the true value at ∆ = 1/215 and the Milstein approximation realizes the true

value when ∆ = 1/210. Table 4.3 shows the percentage error could be controlled

below 1.00% when ∆ ≤ 1/24 for the Euler approximation and ∆ ≤ 1/27 for the Mil-

stein approximation. In comparison, the percentage error could be controlled below

0.10% when ∆ ≤ 1/216 for the Euler approximation and ∆ ≤ 1/210 for the Milstein

approximation. Actually, starting from ∆ = 1/216, the percentage errors of the Mil-

stein scheme reaches 0.00%, which means the Milstein scheme could be used as a

benchmark instead of the true diffusion process.

Table 4.3. Percentage Errors of the Euler and Milstein Approximations
to the BSM Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 22.629% 25.299% 1/211 0.528% 0.035%

1/22 9.977% 15.593% 1/212 0.834% 0.020%

1/23 5.135% 8.718% 1/213 0.480% 0.008%

1/24 0.326% 4.665% 1/214 0.238% 0.005%

1/25 0.243% 2.387% 1/215 0.104% 0.003%

1/26 0.217% 1.196% 1/216 0.088% 0.000%

1/27 0.470% 0.642% 1/217 0.025% 0.000%

1/28 0.308% 0.326% 1/218 0.025% 0.000%

1/29 0.999% 0.162% 1/219 0.003% 0.000%

1/210 0.316% 0.073% 1/220 0.003% 0.000%
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Figure 4.2. Convergence Speed of the Euler and Milstein Approxima-
tions for the BSM Model at Endpoint

To get the strong convergence of the Euler and Milstein approximations, we

generate 100 different discretized Brownian paths over [0, 1]. For each path, the

Euler and Milstein approximations are applied for 20 different stepsizes ∆ = 1/2N ,

N = 1, 2, . . . , 20. Figure 4.3 depicts the strong convergence of the Euler and Milstein

approximations for different time steps. The first right point of each approximation is

the mean absolute different value for ∆ = 1/2, the second right point is for ∆ = 1/22,

the third right point is for ∆ = 1/23 etc. The Euler approximation has strong order

of convergence γ = 0.550, which is close to its theoretical strong order of convergence

γ = 0.5 (Peter and Platen (1992)). Compared with the Euler approximation, the

Milstein approximation has a greater strong order of convergence γ = 0.973, which

is very similar to its theoretical strong order of convergence γ = 1 (Peter and Platen

(1992)). Figure 4.3 confirms that the Milstein approximation converges to the true

values faster than the Euler approximation. In other words, the Milstein approxima-

tion could be employed as a benchmark process for the Euler approximation as ∆

goes to 0.
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Figure 4.3. Strong Convergence of the Euler and Milstein Approxima-
tions to the BSM Model

Figure 4.4. Weak Convergence of the Euler and Milstein Approxima-
tions to the BSM Model
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In terms of weak convergence, we simulate 100 discretized Brownian paths over

[0, 1] and use 20 different discretization time steps∆ = 1/2N , N = 1, 2, . . . , 20 for each

path. Figure 4.4 displays that the Euler and Milstein approximations are crossing

and overlapping each other. From the first right point where ∆ = 1/2 to the ninth

right point where ∆ = 1/29, the error of the means for the two approximations

keep declining. Furthermore, the slope of the two approximations are close to their

theoretical weak order of convergence γ = 1 (Peter and Platen (1992)). However,

starting from the tenth point where ∆ = 1/210, the error of the means for each

approximation starts to increase and keeps varying around 0.035 when ∆ gets more

smaller. What is even worse, the weak order of convergence decreases to γ = 0.250,

which is a quite large deviation from their theoretical value γ = 1. In fact, Komori,

Saito, and Mitsui (1994) find that, besides roundoff error, this large deviation of

weak convergence rate exists in a broader class of SDEs because of random number

bias. This bias primarily results from lack of mutual independence in the samples

from a random number generator when ∆ is quite small. To solve this problem, a

very time-consuming "sieving" process proposed by Komori, Saito, and Mitsui (1994)

should be carried out at every single time step. Therefore, the presence of weak

convergence is a strong evidence to prove that finer discretization time step does not

always upgrade the Euler and Milstein approximations. Based on above analysis, for

the Black-Scholes-Merton Model, our numerical tests suggest that ∆ = 1/29 is the

turning point for the Euler and Milstein approximations. It seems that, in terms of

weak convergence, the accuracy of the Euler and Milstein approximations couldn’t

be improved, even be lower after the turning point.

To sum up, if a good pathwise approximation is required, the accuracy of the

Euler approximation seems to be improved as ∆ goes to 0. However, if a good

approximation of moments is needed, ∆ = 1/29 is probably a nice option for the

Euler approximation.

4.3.2. Vasicek Model

Vasicek model is proposed by vasicek (1977) to specify that the instantaneous interest

rate follows the Ornstein-Uhlenbeck process

dXt = θ (µ−Xt) dt+ σdWt,
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where initial deterministic value X0 = x0 and σ > 0. Wt is a Brownian motion. µ

represents the long-run equilibrium value of the process, θ stands for the speed of

reversion and σ acts as the volatility. The explicit solution (Lacus (2008)) to this

equation is

Xt = µ+ (X0 − µ) e−θt + σ

∫ t

0

e−θ(t−µ)dWu.

The Euler approximation of the process X is a continuous stochastic process Y

satisfying the iteration

Yt+1 = Yt + θ (µ− Yt) ·∆t+ σ ·∆Wt

with initial value Y0 = X0 for t = 0, 1, . . . N − 1. The Milstein approximation of X is

a continuous stochastic process Z satisfying the iterative scheme

Zt+1 = Zt + θ (µ− Zt) ·∆t+ σ ·∆Wt +
1

2
σ · 0 ·

(
∆W 2

t −∆t
)

= Zt + θ (µ− Zt) ·∆t+ σ ·∆Wt

with original deterministic value Z0 = X0 for t = 0, 1, . . . N − 1. Because the partial

derivative of σ with respect to x is equal to 0, the Milstein approximation reduces

to the Euler approximation. We take a Vasicek model with θ = 0.258, µ = 0.0717,

σ = 0.02213 and X0 = 0.03 as an example. These values are taken from Aït-Sahalia

(1999). A Brownian bridge from 0 to 1 is used as Wt.

Although Itô integral could be approximated to get the true solution for different

time intervals ∆, it is still a big challenge to interpret the absolute error between

the explicit solution and its approximations. This is because Itô integral depends on

which point in each of the small time intervals is used to compute the value of the

function. Different time intervals lead to quite different results. When we measure

the difference between the Euler (Milstein) approximation and the true solution for

different stepsizes, it will be very hard to judge whether this difference results from

the approximation method or the error from Itô integral. In the light of Figure 4.2,

the Euler and Milstein approximations to the BSM model converges to the exact

solution when ∆ goes to 0. Accordingly, our numerical tests resort to Figure 4.5 of

the convergence speed at the endpoint. It shows, from ∆ = 1/29, the Euler (Milstein)

approximation converges to a stable value of 0.058634, which could be used as a

reference solution. In Table 4.4, the Euler (Milstein) approximation of the endpoint
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Figure 4.5. Convergence Speed of the Euler (Milstein) Approximation
for the Vasicek Model at Endpoint

with the percentage errors are calculated. When the time stepsize ∆ is set at 1/23,

the percentage error of the Euler (Milstein) approximation could be below 1.00%.

When the time stepsize ∆ is set at 1/27, the percentage error of the Euler (Milstein)

approximation could be below 0.10%.

Table 4.4. Euler (Milstein) Approximation and Percentage Errors to
the Vasicek Model at Endpoint

∆ Euler (Milstein) PE ∆ Euler (Milstein) PE

1/21 0.061049 4.119% 1/211 0.058636 0.003%

1/22 0.060001 2.331% 1/212 0.058635 0.002%

1/23 0.059036 0.686% 1/213 0.058634 0.000%

1/24 0.058787 0.261% 1/214 0.058634 0.000%

1/25 0.058743 0.186% 1/215 0.058634 0.000%

1/26 0.058706 0.123% 1/216 0.058634 0.000%

1/27 0.058668 0.058% 1/217 0.058634 0.000%

1/28 0.058643 0.015% 1/218 0.058634 0.000%

1/29 0.058641 0.012% 1/219 0.058634 0.000%

1/210 0.058638 0.007% 1/220 0.058634 0.000%
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Figure 4.6. Strong Convergence of the Euler (Milstein) Approximation
to the Vasicek Model

Figure 4.7. Weak Convergence of the Euler (Milstein) Approximation
to the Vasicek Model
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To get the strong and weak convergence of the Euler (Milstein) approximation,

we generate 100 different discretized Brownian paths over [0, 1]. For each path, the

Euler and Milstein approximations are calculated for 20 different stepsizes ∆ = 1/2N ,

N = 1, 2, . . . , 20. Figures 4.6 and 4.7 display the strong and weak convergence of

the Euler (Milstein) approximation, respectively. Although the weak convergence

is not so smoothed as the strong convergence, its value of 1.009 is still very close

to its theoretical value γ = 1. The main reason seems that the random number

bias is relieved because the volatility term σdWt does not contains the state variable

Xt. Overall, for the Vasicek model, there is no turning point for strong and weak

convergence. The Euler approximation to the Vasicek process could be upgraded by

shrinking ∆.

4.3.3. CIR Model

The CIR process (Cox, Ingersoll, and Ross (1985)) is the solution to the stochastic

differential equation

dXt = θ (µ−Xt) dt+ σ
√
XtdWt,

where initial deterministic value X0 = x0 and σ > 0. Wt is a Brownian motion. The

stochastic differential equation has the explicit solution

Xt = (X0 − µ) e−θt + σe−θt
∫ t

0

eθς
√
XςdWς .

The Euler approximation of the process X is a continuous stochastic process Y sat-

isfying the iteration

Yt+1 = Yt + θ (µ− Yt) ·∆t+ σ
√
Yt ·∆Wt

with initial value Y0 = X0 for t = 0, 1, . . . N − 1.The Milstein approximation of X is

a continuous stochastic process Z satisfying the iterative scheme

Zt+1 = Zt + θ (µ− Zt) ·∆t+ σ
√
Zt ·∆Wt +

1

4
σ2 ·

(
∆W 2

t −∆t
)

with original deterministic value Z0 = X0 for t = 0, 1, . . . N−1. Using the parameters

of Aït-Sahalia (1999), we set θ = 0.145, µ = 0.0732, σ = 0.06521 and X0 = 0.03.

A Brownian bridge from 0 to 1 is used as Wt. Since the explicit solution contains

Itô integral, we could not get a stable solution for different discretization time steps
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∆ = 1/2N , N = 1, 2, . . . , 20. Figure 4.8 directly draws the Euler and Milstein ap-

proximations at the endpoint. It implies that the Euler approximation converges to a

stable value at ∆ = 1/216 while the Milstein approximation reaches to the same value

when ∆ = 1/29. Then Tables 4.5 and 4.6 report endpoint approximated values and

their percentage errors separately. The percentage error of the Euler and Milstein

approximations could be easily controlled less than 1.00% when ∆ ≤ 1/22. However,

the percentage error decreases to 0.10% when ∆ ≤ 1/211 for the Euler approximation

and ∆ ≤ 1/23 for the Milstein approximation.

Table 4.5. Euler and Milstein Approximations to the CIR Model at
Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.047549 0.047036 1/211 0.046480 0.046493
1/22 0.046727 0.046849 1/212 0.046473 0.046493
1/23 0.046322 0.046507 1/213 0.046465 0.046493
1/24 0.046300 0.046537 1/214 0.046481 0.046493
1/25 0.046479 0.046500 1/215 0.046487 0.046493
1/26 0.046385 0.046493 1/216 0.046488 0.046493
1/27 0.046374 0.046500 1/217 0.046489 0.046493
1/28 0.046421 0.046492 1/218 0.046489 0.046493
1/29 0.046374 0.046492 1/219 0.046492 0.046493
1/210 0.046443 0.046493 1/220 0.046493 0.046493

Table 4.6. Percentage Errors of Euler and Milstein Approximations to
the CIR Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 2.271% 1.168% 1/211 0.028% 0.000%

1/22 0.050% 0.766% 1/212 0.043% 0.000%

1/23 0.368% 0.030% 1/213 0.060% 0.000%

1/24 0.415% 0.095% 1/214 0.026% 0.000%

1/25 0.030% 0.015% 1/215 0.013% 0.000%

1/26 0.232% 0.000% 1/216 0.011% 0.000%

1/27 0.256% 0.015% 1/217 0.009% 0.000%

1/28 0.155% 0.002% 1/218 0.009% 0.000%

1/29 0.256% 0.002% 1/219 0.002% 0.000%

1/210 0.108% 0.000% 1/220 0.000% 0.000%
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Figure 4.8. Convergence Speed of the Euler and Milstein Approxima-
tions to the CIR Model at Endpoint

Figure 4.9. Strong Convergence of the Euler and Milstein Approxima-
tions to the CIR Model
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To get the strong and weak convergence of the Euler and Milstein approximations,

100 different discretized Brownian paths over [0, 1] are generated. For each path,

the Euler and Milstein approximations are applied for 20 different stepsizes ∆ =

1/2N , N = 1, 2, . . . , 20. The strong and weak convergence of the Euler and Milstein

approximations are analysed in Figures 4.9 and 4.10. Similar to the BSM Model and

the Vasicek Model, the Euler andMilstein approximations converges with strong order

of 0.5 and 1, respectively. Considering the weak convergence, it implies ∆ = 1/211 is

a turning point for the Euler scheme Therefore, if a good approximation of moments

is needed, ∆ = 1/211 is probably an effective option for the Euler approximation to

the CIR model.

Figure 4.10. Weak Convergence of the Euler and Milstein Approxima-
tions to the CIR Model

4.3.4. Inverse of Feller’s Square Root (IFSR) Model

This specification of the interest rate process is defined by Ahn and Gao (1999) as

dXt = Xt

(
κ−

(
σ2 − κα

)
Xt

)
dt+ σX

3/2
t dWt
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with unknown explicit solution. The Euler scheme of the process X is a continuous

stochastic process Y satisfying the iterative scheme.

Yt+1 = Yt + Yt
(
κ−

(
σ2 − κα

)
Yt
)
·∆t+ σY

3/2
t ·∆Wt

with original deterministic value Y0 = X0 for t = 0, 1, . . . N −1. The Milstein approx-

imation of the process X is a continuous stochastic process Z satisfying the iteration

Zt+1 = Zt + Zt
(
κ−

(
σ2 − κα

)
Zt
)
·∆t+ σZ

3/2
t ·∆Wt +

3

4
σ2Z2

t

(
∆W 2

t −∆t
)

with initial value Z0 = X0 for t = 0, 1, . . . N − 1. We take an IFSR model with

κ = 0.177, σ = 0.8059, α = 15.019 and X0 = 0.03 as an example. These values

are taken from Aït-Sahalia (1999). A Brownian bridge from 0 to 1 is used as Wt.

With respect to the endpoint, Figure 4.11 displays the convergence speed of the two

approximations. It implies the Euler approximation reaches the reference solution

at ∆ = 1/215 and the Milstein approximation comes to the reference solution at

∆ = 1/210. The percentage error could be controlled smaller than 0.10% by setting

∆ ≤ 1/23 for the Euler approximation and ∆ ≤ 1/24 for the Milstein approximation,

based on the data reported by Tables 4.7 and 4.8.

Table 4.7. Euler and Milstein Approximations to the IFSR Model at
Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.042800 0.042507 1/211 0.044044 0.044091
1/22 0.043606 0.043251 1/212 0.044066 0.044092
1/23 0.043797 0.043644 1/213 0.044073 0.044092
1/24 0.044116 0.043857 1/214 0.044080 0.044092
1/25 0.043911 0.043974 1/215 0.044085 0.044093
1/26 0.044099 0.044033 1/216 0.044086 0.044093
1/27 0.044074 0.044061 1/217 0.044089 0.044093
1/28 0.044142 0.044077 1/218 0.044092 0.044093
1/29 0.044086 0.044086 1/219 0.044094 0.044093
1/210 0.044051 0.044089 1/220 0.044093 0.044093

To get the strong and weak convergence of the Euler (Milstein) approximation,

100 different discretized Brownian paths over [0, 1] are generated. For each path, the

Euler and Milstein approximations are calculated for 20 different stepsizes ∆ = 1/2N ,

N = 1, 2, . . . , 20. The Euler and Milstein approximations converges with strong order

of 0.5 and 1, respectively in Figure 4.12. In comparison, the weak convergence of
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Table 4.8. Percentage Errors of Euler and Milstein Approximations to
the IFSR Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.293% 0.360% 1/211 0.011% 0.000%

1/22 0.110% 0.191% 1/212 0.006% 0.000%

1/23 0.067% 0.102% 1/213 0.005% 0.000%

1/24 0.005% 0.054% 1/214 0.003% 0.000%

1/25 0.041% 0.027% 1/215 0.002% 0.000%

1/26 0.001% 0.014% 1/216 0.002% 0.000%

1/27 0.004% 0.007% 1/217 0.001% 0.000%

1/28 0.011% 0.004% 1/218 0.000% 0.000%

1/29 0.002% 0.002% 1/219 0.000% 0.000%

1/210 0.010% 0.001% 1/220 0.000% 0.000%

the Euler and Milstein schemes are not stick to their theoretical values in Figure

4.13. From the first right point where ∆ = 1/2 to the twelfth right point where ∆ =

1/212, the error of the means for the Euler approximation keep declining. However,

starting from the thirteenth point where ∆ = 1/213, the error of the means increases

dramatically. As a consequence, our numerical tests suggest ∆ = 1/212 seems to be

an effective time discretization steps for the Euler schemes.

Figure 4.11. Convergence Speed of the Euler and Milstein Approxima-
tions to the IFSR Model at Endpoint
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Figure 4.12. Strong Convergence of the Euler and Milstein Approxima-
tions to the IFSR Model

Figure 4.13. Weak Convergence of the Euler and Milstein Approxima-
tions to the IFSR Model
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4.3.5. Linear Drift CEV (LDCEV) Model

This process is introduced by Chan, Karolyi, Longstaff, and Sanders (1992) to model

the short term interest rate. It is the solution to the stochastic differential equation

dXt = κ (α−Xt) dt+ σXρ
t dWt

with initial deterministic value X0 = x0. The process X is positive when α > 0,

κ > 0, ρ > 1/2. Wt is a Brownian motion. The Euler approximation of the process

X is a continuous stochastic process Y satisfying the iteration

Yt+1 = Yt + κ (α−Xt) ·∆t+ σY ρ
t ·∆Wt

with initial value Y0 = X0 for t = 0, 1, . . . N − 1. The Milstein approximation of X is

a continuous stochastic process Z satisfying the iterative scheme

Zt+1 = Zt + κ (α− Zt) ·∆t+ σZρ
t ·∆Wt +

1

2
σ2ρZ2ρ−1

t

(
∆W 2

t −∆t
)

with original deterministic value Z0 = X0 for t = 0, 1, . . . N−1. Using the parameters

of Aït-Sahalia (1999), we set κ = 0.0972, α = 0.0808, σ = 0.7224, ρ = 1.46 and

X0 = 0.03. A Brownian bridge from 0 to 1 is used as Wt. Figure 4.14 plots the Euler

and Milstein approximations at the endpoint. Tables 4.9 and 4.10 report the endpoint

values and percentage errors. The Euler and Milstein approximations overlaps at

∆ = 1/27 and then converge to a stable value at ∆ = 1/214. Both of the percentage

errors are below 0.10% when ∆ ≤ 1/28.

Table 4.9. Euler and Milstein Approximations to LDCEV Model at
Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.039063 0.038739 1/211 0.039032 0.039032
1/22 0.039286 0.039106 1/212 0.039046 0.039046
1/23 0.039323 0.039238 1/213 0.039042 0.039042
1/24 0.039182 0.039142 1/214 0.039027 0.039027
1/25 0.039071 0.039079 1/215 0.039027 0.039027
1/26 0.039056 0.039045 1/216 0.039026 0.039026
1/27 0.039108 0.039102 1/217 0.039026 0.039026
1/28 0.039039 0.039038 1/218 0.039028 0.039028
1/29 0.039059 0.039058 1/219 0.039027 0.039027
1/210 0.039055 0.039055 1/220 0.039027 0.039027
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Figure 4.14. Convergence Speed of the Euler and Milstein Approxima-
tions to the LDCEV Model at Endpoint

Figure 4.15. Strong Convergence of the Euler and Milstein Approxima-
tions to the LDCEV Model
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Table 4.10. Percentage Errors of Euler and Milstein Approximations to
LDCEV Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.092% 0.738% 1/211 0.013% 0.013%

1/22 0.664% 0.202% 1/212 0.049% 0.049%

1/23 0.758% 0.541% 1/213 0.038% 0.038%

1/24 0.397% 0.295% 1/214 0.000% 0.000%

1/25 0.113% 0.133% 1/215 0.000% 0.000%

1/26 0.074% 0.046% 1/216 0.003% 0.003%

1/27 0.208% 0.192% 1/217 0.003% 0.003%

1/28 0.031% 0.028% 1/218 0.003% 0.003%

1/29 0.082% 0.079% 1/219 0.000% 0.000%

1/210 0.072% 0.072% 1/220 0.000% 0.000%

Figure 4.16. Weak Convergence of the Euler and Milstein Approxima-
tions to the LDCEV Model

To get the strong and weak convergence of the Euler and Milstein approximations,

100 different discretized Brownian paths over [0, 1] are generated. For each path,

the Euler and Milstein approximations are applied for 20 different stepsizes ∆ =

1/2N , N = 1, 2, . . . , 20. The strong and weak convergece of the Euler and Milstein

approximationes are analysed in Figures 4.15 and 4.16. Similar to previous models,
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the Euler and Milstein approximationes converges with strong order of 0.5 and 1,

respectively. Considering the weak convergence, it implies ∆ = 1/214 is the turning

point for the Euler scheme and∆ = 1/210 is the turning point for the Milstein scheme.

4.3.6. Nonlinear Mean Reversion (NMR) Model

Table 4.11. Euler and Milstein Approximations to the NMR Model at
Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.039802 0.039559 1/211 0.038502 0.038491
1/22 0.038881 0.038694 1/212 0.038489 0.038492
1/23 0.038843 0.038677 1/213 0.038484 0.038491
1/24 0.038475 0.038586 1/214 0.038484 0.038491
1/25 0.038466 0.038534 1/215 0.038490 0.038491
1/26 0.038456 0.038509 1/216 0.038493 0.038491
1/27 0.038552 0.038496 1/217 0.038493 0.038491
1/28 0.038541 0.038490 1/218 0.038494 0.038491
1/29 0.038531 0.038491 1/219 0.038491 0.038491
1/210 0.038500 0.038490 1/220 0.038491 0.038491

Table 4.12. Percentage Errors of Euler and Milstein Approximations to
NMR Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 3.406% 2.775% 1/211 0.029% 0.000%

1/22 1.013% 0.527% 1/212 0.005% 0.003%

1/23 0.914% 0.483% 1/213 0.018% 0.000%

1/24 0.042% 0.247% 1/214 0.018% 0.000%

1/25 0.065% 0.112% 1/215 0.003% 0.000%

1/26 0.091% 0.047% 1/216 0.005% 0.000%

1/27 0.158% 0.013% 1/217 0.005% 0.000%

1/28 0.130% 0.003% 1/218 0.008% 0.000%

1/29 0.104% 0.000% 1/219 0.000% 0.000%

1/210 0.023% 0.003% 1/220 0.000% 0.000%

In order to produce different mean reversion when interest rate values in different

part of the domain, the NMR model is proposed by Aït-Sahalia (1996b) to specify

that the spot interest rate follows

dXt =
(
α−1X

−1
t + α0 + α1Xt + α2X

2
t

)
dt+ σXρ

t dWt,
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where initial deterministic value X0 = x0. The Euler approximation of the process X

is a continuous stochastic process Y satisfying the iteration

Yt+1 = Yt +
(
α−1Y

−1
t + α0 + α1Yt + α2Y

2
t

)
·∆t+ σY ρ

t ·∆Wt

with initial value Y0 = X0 for t = 0, 1, . . . N − 1. The Milstein approximation of X is

a continuous stochastic process Z satisfying the iterative scheme

Zt+1 = Zt+
(
α−1Z

−1
t + α0 + α1Zt + α2Z

2
t

)
·∆t+σZρ

t ·∆Wt+
1

2
σ2ρZ2ρ−1

t

(
∆W 2

t −∆t
)

with original deterministic value Z0 = X0 for t = 0, 1, . . . N − 1. We take an NMR

model with α−1 = 0.00107, α0 = −0.0517, α1 = 0.877, α2 = −4.604, σ = 0.8047,

ρ = 3/2 and X0 = 0.03 as an example. These values are taken from Aït-Sahalia

(1999). A Brownian bridge from 0 to 1 is used as Wt. With respect to the endpoint,

Figure 4.17 displays the convergence speed of the two approximations. It implies the

Euler approximation reaches the reference solution at ∆ = 1/215 and the Milstein

approximation comes to the reference solution at ∆ = 1/28. According to Tables 4.11

and 4.12, the percentage error could be controlled under 0.10% by setting ∆ ≤ 1/210

for the Euler approximation.

To get the strong and weak convergence of the Euler and Milstein approximations,

100 different discretized Brownian paths over [0, 1] are generated. For each path, the

Euler and Milstein approximations are calculated for 20 different stepsizes ∆ = 1/2N ,

N = 1, 2, . . . , 20. The Euler and Milstein approximations converge respectively with

strong order of 0.5 and 1 in Figure 4.18. In terms of the weak convergence, Figure

4.19 shows the error of the means for the Euler approximation keep declining until

the turning point ∆ = 1/213 while the Milstein approximation stops declining from

∆ = 1/216.
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Figure 4.17. Convergence Speed of the Euler and Milstein Approxima-
tions to the NMR Model at Endpoint

Figure 4.18. Strong Convergence of the Euler and Milstein Approxima-
tions to the NMR Model
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Figure 4.19. Weak Convergence of the Euler and Milstein Approxima-
tions to the NMR Model

4.4. Multivariate Stochastic Volatility Models

4.4.1. Heston Model

The Heston model, named after Heston (1993), is a commonly used stochastic volatil-

ity model. Under the objective measure P , the joint dynamics of St and Vt is

d

[
St
Vt

]
=

[
µ+ bVt
κ (γ − Vt)

]
dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σ
√
Vt

 d[W1(t)

W2(t)

]
,

whereW1 (t) andW2 (t) are two uncorrelated standard Brownian motions. The Euler

approximations of S and V are continuous stochastic processes X and U satisfying

the iterative schemes

Xt+1 = Xt + (µ+ bUt) ·∆t+
√

(1− ρ2)Ut ·∆W1 (t) + ρ
√
Ut ·∆W2 (t)

Ut+1 = Ut + k (γ − Ut) ·∆t+ σ
√
Ut ·∆W2 (t)

with initial value X0 = S0, U0 = V0 for t = 0, 1, . . . N − 1. Since the volatility process

V is not influenced directly by the dynamics for S, the Milstein approximation for

V is given by the standard one-dimensional formula. Then the fact that Σ21 = 0
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and ∂x1Σ (x) = 0 simplifies the calculation of the Milstein term for V as a stochastic

process Z,

Zt+1 = Zt + k (γ − Zt) ·∆t+ σ
√
Zt ·∆W2 (t) +

1

4
σ2
[
(∆W2 (t))2 −∆t

]
.

Consequently, the Milstein approximation for X is a continuous stochastic process

Y satisfying the iterative schemes

Yt+1 = Yt + (µ+ bZt) ·∆t+
√

(1− ρ2)Zt ·∆W1 (t) + ρ
√
Zt∆W2 (t)

+
1

2
σ
√

1− ρ2I(2,1) +
1

2
σρI(2,2)

with initial value Y0 = S0, Z0 = V0 for t = 0, 1, . . . N − 1. Using the parameters of

Aït-Sahalia and Kimmel (2007), we set κ = 5.07, γ = 0.0457, µ = 0.0002, ρ = −0.767,

σ = 0.48, b = 1.106 with initial values X0 = 6.5, V0 = 0.045. Two Brownian bridges

from 0 to 1 are used as W1 (t) and W2 (t) separately.

Figure 4.20. Convergence Speed of the Euler and Milstein Approxima-
tions to the Heston Model at Endpoint
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Figure 4.20 plots the Euler and Milstein approximations to the state variables S

and V at the endpoint. The Euler and Milstein approximations to the state variable

V seems to overlap at ∆ = 1/211, while the Euler and Milstein approximations to

the state variable S crosses at ∆ = 1/27 and then appears to converge to a stable

value at ∆ = 1/214. The Milstein approximated values to state variable S and V at

the time interval ∆ ≤ 1/220 still could be considered as the benchmark for the Euler

approximations. Then Tables 4.13, 4.14, 4.15, and 4.16 report the endpoint values

with percentage errors for the state variable S and V separately. The percentage

errors of the Euler approximation to the state variable S could be easily controlled

under 0.10% when ∆ ≤ 1/25. In comparison, the percentage error of the Euler

approximation to the state variable V could be controlled below 1.00% only when

∆ ≤ 1/211 and below 0.10% when ∆ ≤ 1/219. Hence it seems that the state variable

V is much harder to control than state variable S. Then our numerical tests focus on

the state variable V rather than S.

Table 4.13. Euler and Milstein Approximations to S of the Heston
Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 6.588023 6.619029 1/211 6.623445 6.629996
1/22 6.620444 6.655676 1/212 6.624835 6.627112
1/23 6.622374 6.690201 1/213 6.622975 6.626153
1/24 6.605708 6.637825 1/214 6.625161 6.622605
1/25 6.626960 6.650608 1/215 6.624526 6.621842
1/26 6.626891 6.601293 1/216 6.623693 6.621480
1/27 6.622450 6.601614 1/217 6.622851 6.621252
1/28 6.623689 6.616302 1/218 6.622599 6.621525
1/29 6.616881 6.619136 1/219 6.622221 6.621864
1/210 6.618738 6.635436 1/220 6.621962 6.621908
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Table 4.14. Percentage Errors of the Euler and Milstein Approxima-
tions to S of the Heston Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.512% 0.738% 1/211 0.023% 0.013%

1/22 0.022% 0.202% 1/212 0.044% 0.049%

1/23 0.007% 0.541% 1/213 0.016% 0.038%

1/24 0.245% 0.295% 1/214 0.049% 0.000%

1/25 0.076% 0.133% 1/215 0.040% 0.000%

1/26 0.075% 0.046% 1/216 0.027% 0.003%

1/27 0.008% 0.192% 1/217 0.014% 0.003%

1/28 0.027% 0.028% 1/218 0.010% 0.003%

1/29 0.076% 0.079% 1/219 0.005% 0.000%

1/210 0.048% 0.072% 1/220 0.001% 0.000%

Table 4.15. Euler and Milstein Approximations to V of the Heston
Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.043626 0.033309 1/211 0.046021 0.045558
1/22 0.072311 0.056541 1/212 0.045914 0.045572
1/23 0.046425 0.038409 1/213 0.045652 0.045578
1/24 0.051314 0.047392 1/214 0.045404 0.045579
1/25 0.048815 0.044718 1/215 0.045564 0.045582
1/26 0.048271 0.045927 1/216 0.045468 0.045581
1/27 0.046018 0.045213 1/217 0.045507 0.045581
1/28 0.046562 0.045300 1/218 0.045512 0.045582
1/29 0.046900 0.045609 1/219 0.045540 0.045581
1/210 0.047082 0.045594 1/220 0.045558 0.045581

Figure 4.21. Strong Convergence of the Euler and Milstein Approxima-
tions to the Heston Model
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Table 4.16. Percentage Errors of the Euler and Milstein Approxima-
tions to V of the Heston Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 4.290% 26.924% 1/211 0.966% 0.051%

1/22 58.643% 24.045% 1/212 0.729% 0.020%

1/23 1.851% 15.736% 1/213 0.154% 0.007%

1/24 12.576% 3.973% 1/214 0.390% 0.005%

1/25 7.093% 1.895% 1/215 0.039% 0.002%

1/26 5.901% 0.759% 1/216 0.248% 0.001%

1/27 0.958% 0.809% 1/217 0.163% 0.000%

1/28 2.151% 0.616% 1/218 0.152% 0.001%

1/29 2.893% 0.062% 1/219 0.091% 0.000%

1/210 3.292% 0.028% 1/220 0.050% 0.000%

Figure 4.22. Weak Convergence of the Euler and Milstein Approxima-
tions to the Heston Model

Figures 4.21 and 4.22 investigate the strong and weak convergence of the Euler

and Milstein approximations by generating 100 different discretized Brownian paths

over [0, 1]. In the following models, including the GARCH, CEV, Stein, Scott, Hull-

White, Hagan and SABR process, we also generate 100 paths to analyse the strong

and weak convergence of the Euler and Milstein approximations. From Figure 4.21,

we could see the mean absolute different values keep declining although the strong

convergence of the state variable S and V are not equal to their theoretical values.

However, based on the weak convergence, ∆ = 1/211 seems to be the turning point

of the Euler approximation to the state variable V . To conclude, ∆ = 1/211 could
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be an effective time step for the Heston model by considering both of the pathwise

approximation and moments approximation requirements.

4.4.2. GARCH Model

In the GARCH stochastic volatility model, the joint dynamics of St and Yt is defined

as

d

[
St
Vt

]
=

[
µ+ bVt
κ (γ − Vt)

]
dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σVt

 d[W P
1 (t)

W P
2 (t)

]
under the objective measure P , whereW1 (t) andW2 (t) are two uncorrelated standard

Brownian motions. The Euler approximations of S and V are continuous stochastic

processes X and U satisfying the iterative schemes

Xt+1 = Xt + (µ+ bUt) ·∆t+
√

(1− ρ2)Ut ·∆W1 (t) + ρ
√
Ut∆W2 (t)

Ut+1 = Ut + k (γ − Ut) ·∆t+ σUt ·∆W2 (t)

with initial valueX0 = S0, U0 = V0 for t = 0, 1, . . . N−1. The Milstein approximations

of S and V are in the form of

Yt+1 = Yt + (µ+ bZt) ·∆t+
√

(1− ρ2)Zt ·∆W1 (t) + ρ
√
Zt∆W2 (t)

+
1

2
σ
√

(1− ρ2)ZtI(2,1) +
1

2
σρ
√
ZtI(2,2)

Zt+1 = Zt + k (γ − Zt) ·∆t+ σZt ·∆W2 (t) +
1

2
σ2Zt

[
(∆W2 (t))2 −∆t

]
with initial value Y0 = S0, Z0 = V0 for t = 0, 1, . . . N − 1. Using the parameters of

Aït-Sahalia and Kimmel (2007), we set κ = 1.62, γ = 0.074, µ = 0.0002, ρ = −0.754,

σ = 2.204, b = 0.5356 with initial values X0 = 6.5, V0 = 0.045. Two Brownian

bridges from 0 to 1 are used as W1 (t) and W2 (t) separately. Panel A of Figure 4.23

displays that the Euler and Milstein approximations to the state variables S at the

endpoint coincide when ∆ = 1/29. Similarly, the Euler and Milstein approximations

to the state variables V overlaps at ∆ = 1/29 in Panel B of Figure 4.23. Tables

4.17, 4.18, 4.19 and 4.20 report the endpoint values with percentage errors for the

state variable S and V separately. The percentage errors of the Euler approximations

to the state variable S fluctuate with different time interval ∆ and then could be

controlled under 1.00% until ∆ = 1/213. On the contrary, the percentage error of

the Euler approximations to the state variable V seems very diffi cult to manage even
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with a much finer ∆, such as 1/218. The key to examine the accuracy of the Euler

approximation to the GARCH model still depends on the variable V .

Figure 4.23. Convergence Speed of Euler and Milstein Approximations
to the GARCH Model at Endpoint

Table 4.17. Euler and Milstein Approximations to S of the GARCH
Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 6.358827 6.745628 1/211 6.603617 6.600676
1/22 6.381579 6.615489 1/212 6.662975 6.657750
1/23 6.690366 6.627843 1/213 6.612067 6.609285
1/24 7.019722 6.678406 1/214 6.622412 6.614624
1/25 6.737023 6.761393 1/215 6.615832 6.613851
1/26 6.710716 6.664585 1/216 6.603039 6.603400
1/27 6.701118 6.672786 1/217 6.598838 6.600938
1/28 6.652367 6.617784 1/218 6.592789 6.595184
1/29 6.709254 6.705222 1/219 6.591800 6.594109
1/210 6.664480 6.666364 1/220 6.586996 6.586554
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Table 4.18. Percentage Errors of the Euler and Milstein Approxima-
tions to S of the GARCH Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 3.457% 2.415% 1/211 0.259% 0.214%

1/22 3.112% 0.439% 1/212 1.160% 1.081%

1/23 1.576% 0.627% 1/213 0.387% 0.345%

1/24 6.577% 1.395% 1/214 0.544% 0.426%

1/25 2.284% 2.654% 1/215 0.445% 0.414%

1/26 1.885% 1.185% 1/216 0.250% 0.256%

1/27 1.739% 1.309% 1/217 0.186% 0.218%

1/28 0.999% 0.474% 1/218 0.095% 0.131%

1/29 1.863% 1.802% 1/219 0.080% 0.115%

1/210 1.183% 1.212% 1/220 0.007% 0.000%

Table 4.19. Euler and Milstein Approximations to V of the GARCH
Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.119116 0.641979 1/211 0.109113 0.103050
1/22 0.902997 0.394653 1/212 0.097299 0.098670
1/23 0.152487 0.192744 1/213 0.097572 0.095362
1/24 0.185309 0.067453 1/214 0.069757 0.068635
1/25 0.126186 0.069022 1/215 0.072404 0.078131
1/26 0.088246 0.049968 1/216 0.065336 0.066824
1/27 0.153296 0.165749 1/217 0.066440 0.060608
1/28 0.137912 0.139083 1/218 0.070234 0.069961
1/29 0.069735 0.049900 1/219 0.073030 0.073572
1/210 0.086056 0.090139 1/220 0.074920 0.075070

Figure 4.24. Strong Convergence of the Euler and Milstein Approxima-
tions to the GARCH Model



93

Table 4.20. Percentage Errors of the Euler and Milstein Approxima-
tions to V of the GARCH Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 58.674% 755.175% 1/211 45.349% 37.272%

1/22 1102.876% 425.715% 1/212 29.611% 31.438%

1/23 103.127% 156.753% 1/213 29.748% 27.031%

1/24 146.849% 10.146% 1/214 7.078% 8.572%

1/25 68.092% 8.056% 1/215 3.551% 4.078%

1/26 17.552% 33.438% 1/216 12.967% 10.985%

1/27 104.204% 120.793% 1/217 11.496% 19.264%

1/28 83.712% 85.271% 1/218 6.442% 6.806%

1/29 7.106% 33.529% 1/219 2.717% 0.020%

1/210 14.635% 20.074% 1/220 0.199% 0.000%

Figure 4.25. Weak Convergence of the Euler and Milstein Approxima-
tions to the GARCH Model

The strong convergence of the Euler and Milstein approximations are shown is

Figure 4.24 and the weak convergence is displayed in Figure 4.25. Similar to the

Heston model, the strong convergence performs quite well with some small volatilities

from ∆ = 1/21 to ∆ = 1/220. In terms of the weak convergence, ∆ = 1/213 seems to

be the turning point of the Euler approximation to the state variable V . Overall, if

a good pathwise approximation is required, it’s better to set ∆ as small as possible.

While, if a good approximation of moments is needed, ∆ = 1/213 is probably a

relatively good choice for the Euler approximation.
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4.4.3. CEV Model

Under the objective measure P , the CEV model is in the form of

d

[
St
Vt

]
=

[
µ+ bVt
κ (γ − Vt)

]
dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σV β
t

 d[W P
1 (t)

W P
2 (t)

]
,

whereW1 (t) andW2 (t) are two uncorrelated standard Brownian motions. The Euler

approximations of S and V are continuous stochastic processes X and U satisfying

the iterative schemes

Xt+1 = Xt + (µ+ bUt) ·∆t+
√

(1− ρ2)Ut ·∆W1 (t) + ρ
√
Ut∆W2 (t)

Ut+1 = Ut + k (γ − Ut) ·∆t+ σUβ
t ·∆W2 (t)

with initial valueX0 = S0, U0 = V0 for t = 0, 1, . . . N−1. The Milstein approximations

of S and V are continuous stochastic processes Y and Z satisfying the iterative

schemes

Yt+1 = Yt + (µ+ bZt) ·∆t+
√

(1− ρ2)Zt ·∆W1 (t) + ρ
√
Zt∆W2 (t)

+βσ
√

(1− ρ2)Z
β− 1

2
t I(2,1) + βσρZ

β− 1
2

t I(2,2)

Zt+1 = Zt + k (γ − Zt) ·∆t+ σZβ
t ·∆W2 (t) +

1

2
βσ2Z2β−1

t

[
(∆W2 (t))2 −∆t

]
with initial value Y0 = S0, Z0 = V0 for t = 0, 1, . . . N − 1. Using the parameters

of Aït-Sahalia and Kimmel (2007), we set κ = 4.1031, γ = 0.0451, µ = 0.0002,

ρ = −0.760, σ = 0.8583, b = 1.1474 with initial values X0 = 6.5, V0 = 0.045.

Two Brownian bridges from 0 to 1 are used as W1 (t) and W2 (t) separately. Figure

4.26 plots the Euler and Milstein approximations to the state variables S and V at

the endpoint. The Euler and Milstein approximations to the state variable V seems

to overlap at ∆ = 1/214, while the Euler and Milstein approximations to the state

variable S appears to converge to a stable value at ∆ = 1/211. Tables 4.21, 4.22,

4.23 and 4.24 report the endpoint values with percentage errors for the state variable

S and V separately. The percentage errors of the Euler approximations to the state

variable S could be controlled under 0.10% when ∆ ≤ 1/210 and under 0.01% when

∆ ≤ 1/218, whereas the percentage error of the Euler approximations to the state

variable V could be controlled below 1.00% when ∆ ≤ 1/213 and below 0.10% when

∆ ≤ 1/220. The key to examine the accuracy of the Euler approximation to the CEV
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model does not only depend on the state variable V but also depend on the variable

S.

Figure 4.26. Convergence Speed of the Euler and Milstein Approxima-
tions to the CEV Model at Endpoint

Table 4.21. Euler and Milstein Approximations to S of the CEV Model
at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 6.573591 6.610135 1/211 6.618049 6.625998
1/22 6.621955 6.627164 1/212 6.619145 6.622116
1/23 6.618450 6.694917 1/213 6.617617 6.621000
1/24 6.612742 6.633994 1/214 6.619256 6.616181
1/25 6.632596 6.648246 1/215 6.618511 6.615546
1/26 6.606149 6.580954 1/216 6.617783 6.615172
1/27 6.611966 6.587901 1/217 6.617035 6.615143
1/28 6.614067 6.607018 1/218 6.616855 6.615518
1/29 6.609126 6.613624 1/219 6.616497 6.616021
1/210 6.612020 6.633781 1/220 6.616289 6.616168
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Table 4.22. Percentage Errors of the Euler and Milstein Approxima-
tions to S of the CEV Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.644% 0.091% 1/211 0.028% 0.149%

1/22 0.087% 0.166% 1/212 0.045% 0.090%

1/23 0.034% 1.190% 1/213 0.022% 0.073%

1/24 0.052% 0.269% 1/214 0.047% 0.000%

1/25 0.248% 0.485% 1/215 0.035% 0.010%

1/26 0.151% 0.532% 1/216 0.024% 0.015%

1/27 0.064% 0.427% 1/217 0.013% 0.015%

1/28 0.032% 0.138% 1/218 0.010% 0.010%

1/29 0.106% 0.038% 1/219 0.005% 0.002%

1/210 0.063% 0.266% 1/220 0.002% 0.000%

Table 4.23. Euler and Milstein Approximations to V of the CEV Model
at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.022157 0.003924 1/211 0.038465 0.037813
1/22 0.064295 0.045518 1/212 0.038312 0.037834
1/23 0.044484 0.030846 1/213 0.037888 0.037845
1/24 0.043486 0.038398 1/214 0.037592 0.037846
1/25 0.042191 0.036550 1/215 0.037847 0.037848
1/26 0.041837 0.037844 1/216 0.037708 0.037847
1/27 0.038289 0.037552 1/217 0.037759 0.037847
1/28 0.039479 0.037487 1/218 0.037759 0.037847
1/29 0.039758 0.037874 1/219 0.037789 0.037847
1/210 0.040025 0.037857 1/220 0.037812 0.037847

Figure 4.27. Strong Convergence of the Euler and Milstein Approxima-
tions to the CEV Model
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Table 4.24. Percentage Errors of the Euler and Milstein Approxima-
tions to V of the CEV Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 41.456% 89.633% 1/211 1.633% 0.090%

1/22 69.883% 20.269% 1/212 1.229% 0.034%

1/23 17.538% 18.499% 1/213 0.108% 0.005%

1/24 15.694% 1.456% 1/214 0.672% 0.004%

1/25 11.478% 3.426% 1/215 0.000% 0.003%

1/26 10.543% 0.006% 1/216 0.367% 0.000%

1/27 1.169% 0.780% 1/217 0.233% 0.000%

1/28 4.312% 0.950% 1/218 0.231% 0.001%

1/29 5.048% 0.071% 1/219 0.153% 0.000%

1/210 5.756% 0.027% 1/220 0.092% 0.000%

Figure 4.28. Weak Convergence of the Euler and Milstein Approxima-
tions to the CEV Model

Figures 4.27 and 4.28 illustrate the strong and weak convergence of the Euler and

Milstein approximation. From Figure 4.27, we could see the mean absolute different

values keep declining although the strong convergence of the state variable S and V

are not equal to their theoretical values. However, based on the weak convergence,

there seems no turning points for the Euler approximation to the state variable V .

Moving to the state variable S, the turning point of the Euler approximation appears

at ∆ = 1/216. To conclude, ∆ = 1/216 could be an effective time step for the CEV

model by considering the moments approximation requirement.
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4.4.4. Hull-White (HW) Model

The HW stochastic volatility model, proposed by Hull and White (1987), is defined

as

d

[
St
Vt

]
=

[
µµ − 1

2
Vt

νµVt

]
dt+

 √(1− ρ2)Vt ρ
√
Vt

0 σVt

 d[W P
1 (t)

W P
2 (t)

]
under the objective measure P , whereW1 (t) andW2 (t) are two uncorrelated standard

Brownian motions.

The Euler approximations of S and V are continuous stochastic processes X and

U satisfying the iterative schemes

Xt+1 = Xt +

(
µµ −

1

2
Ut

)
·∆t+

√
(1− ρ2)Ut ·∆W1 (t) + ρ

√
Ut∆W2 (t)

Ut+1 = Ut + vµUt ·∆t+ σUt ·∆W2 (t)

with initial value X0 = S0, U0 = V0 for t = 0, 1, . . . N − 1.

The Milstein approximation of S and V are in the form of

Yt+1 = Yt +

(
µµ −

1

2
Zt

)
·∆t+

√
(1− ρ2)Zt ·∆W1 (t) + ρ

√
Zt∆W2 (t)

+σ
√

(1− ρ2)ZtI(2,1) + σρ
√
ZtI(2,2)

Zt+1 = Zt + µvZt ·∆t+ σZt ·∆W2 (t) +
1

2
σ2Zt

[
(∆W2 (t))2 −∆t

]
with initial value Y0 = S0, Z0 = V0 for t = 0, 1, . . . N − 1.

Using the parameters of Hull and White (1987), we set µµ = 0, vµ = 0, ρ = −0.5,

σ = 1 with initial values X0 = 1, V0 = 0.5. Two Brownian bridges from 0 to 1 are

used as W1 (t) and W2 (t) separately.

Panel A of Figure 4.29 displays that the Euler and Milstein approximations to the

state variables S at the endpoint coincide when ∆ = 1/212. Similarly, the Euler and

Milstein approximations to the state variables V overlaps at ∆ = 1/213 in Panel B of

Figure 4.29.

Tables 4.25, 4.26, 4.27 and 4.28 report the endpoint values with percentage er-

rors for the state variable S and V separately. The percentage errors of the Euler

approximations to the state variable S could be easily controlled under 0.10% even

when ∆ ≤ 1/27. In comparison, the percentage error of the Euler approximations to

the state variable V could be controlled below 1.00% only when ∆ ≤ 1/213. For this

reason, the volatility variable V is probably the key of our numerical tests.
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Figure 4.29. Convergence Speed of the Euler and Milstein Approxima-
tions to the HW Model at Endpoint

Table 4.25. Euler and Milstein Approximations to S of the HW Model
at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 6.539388 6.483894 1/211 6.509479 6.511973
1/22 6.503988 6.504705 1/212 6.510221 6.510707
1/23 6.517041 6.542775 1/213 6.509567 6.511215
1/24 6.514346 6.515121 1/214 6.510167 6.509433
1/25 6.511866 6.514692 1/215 6.510072 6.509074
1/26 6.516269 6.492866 1/216 6.509821 6.509172
1/27 6.511361 6.499614 1/217 6.509568 6.508955
1/28 6.510735 6.504708 1/218 6.509496 6.509118
1/29 6.508178 6.506863 1/219 6.509409 6.509264
1/210 6.508671 6.515461 1/220 6.509324 6.509336
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Table 4.26. Percentage Errors of the Euler and Milstein Approxima-
tions to S of the HW Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.462% 0.391% 1/211 0.002% 0.040%

1/22 0.082% 0.071% 1/212 0.014% 0.021%

1/23 0.118% 0.514% 1/213 0.004% 0.029%

1/24 0.077% 0.089% 1/214 0.013% 0.001%

1/25 0.039% 0.082% 1/215 0.011% 0.004%

1/26 0.106% 0.253% 1/216 0.007% 0.003%

1/27 0.031% 0.149% 1/217 0.004% 0.006%

1/28 0.021% 0.071% 1/218 0.002% 0.003%

1/29 0.018% 0.038% 1/219 0.001% 0.001%

1/210 0.010% 0.094% 1/220 0.001% 0.000%

Table 4.27. Euler and Milstein Approximations to V of the HW Model
at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.022157 0.006867 1/211 0.038465 0.010269
1/22 0.064295 0.005563 1/212 0.038312 0.010159
1/23 0.044484 0.009654 1/213 0.037888 0.010135
1/24 0.043486 0.009041 1/214 0.037592 0.010000
1/25 0.042191 0.010038 1/215 0.037847 0.009993
1/26 0.041837 0.008613 1/216 0.037708 0.009983
1/27 0.038289 0.009325 1/217 0.037759 0.009998
1/28 0.039479 0.009874 1/218 0.037759 0.010015
1/29 0.039758 0.010120 1/219 0.037789 0.010031
1/210 0.040025 0.010307 1/220 0.037812 0.010038

Figure 4.30. Strong Convergence of the Euler and Milstein Approxima-
tions to the HW Model
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Table 4.28. Percentage Errors of the Euler and Milstein Approxima-
tions to V of the HW Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 31.610% 30.457% 1/211 2.270% 0.019%

1/22 44.597% 5.348% 1/212 1.174% 0.016%

1/23 3.855% 4.462% 1/213 0.934% 0.004%

1/24 9.960% 1.843% 1/214 0.412% 0.001%

1/25 0.029% 0.594% 1/215 0.480% 0.001%

1/26 14.216% 0.909% 1/216 0.579% 0.001%

1/27 7.132% 0.415% 1/217 0.429% 0.000%

1/28 1.664% 0.204% 1/218 0.257% 0.000%

1/29 0.785% 0.034% 1/219 0.100% 0.000%

1/210 2.674% 0.035% 1/220 0.026% 0.000%

Figure 4.31. Weak Convergence of the Euler and Milstein Approxima-
tions to the HW Model

The strong convergence of the Euler and Milstein approximations are shown is

Figure 4.30 and the weak convergence is displayed in Figure 4.31. The strong conver-

gence keeps smooth from ∆ = 1/21 to ∆ = 1/220. In terms of the weak convergence,

∆ = 1/215 seems to be the turning point of the Euler approximation to the state

variable V . Overall, if a good pathwise approximation is required, it’s better to set ∆

as small as possible. While, if a good approximation of moments is needed, ∆ = 1/215

is probably a relatively good selection for the Euler approximation.
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4.4.5. Hagan Model

Hagan, Kumar, and Lesniewski (2002) introduced the Hagan model, in which in-

stantaneous volatility is a martingale but its variance grows unbounded. This model

could be reduced to the HW model when µv = α2 and σ = 2α. Under the objective

measure P , the joint dynamics of St and Vt is

d

[
St
Vt

]
=

[
µ− 1

2
V 2
t

0

]
dt+

 √(1− ρ2)Vt ρVt

0 αVt

 d[W P
1 (t)

W P
2 (t)

]
,

where W1 (t) and W2 (t) are two uncorrelated standard Brownian motions.

The Euler approximations of S and V are continuous stochastic processes X and

U satisfying the iterative schemes

Xt+1 = Xt +

(
µ− 1

2
U2
t

)
·∆t+

√
(1− ρ2)Ut ·∆W1 (t) + ρUt∆W2 (t)

Ut+1 = Ut + αUt ·∆W2 (t)

with initial value X0 = S0, U0 = V0 for t = 0, 1, . . . N − 1.

The Milstein approximation of S and V are in the form of

Yt+1 = Yt +

(
µ− 1

2
Z2
t

)
·∆t+

√
(1− ρ2)Zt ·∆W1 (t) + ρZt∆W2 (t)

+σ
√

(1− ρ2)ZtI(2,1) + σρZtI(2,2)

Zt+1 = Zt + σZt ·∆W2 (t) +
1

2
σ2Zt

[
(∆W2 (t))2 −∆t

]
with initial value Y0 = S0, Z0 = V0 for t = 0, 1, . . . N − 1. We set µ = 1, ρ = −0.8,

α = 0.5, with initial values X0 = 6.5, V0 = 0.045. Two Brownian bridges from 0 to 1

are used as W1 (t) and W2 (t) separately.

Figure 4.32 illustrates that both of the Euler and Milstein approximations to the

state variables S and V seem to converge to a stable value at ∆ = 1/214. Tables 4.29,

4.30, 4.31 and 4.32 report the endpoint values with percentage errors for the state

variable S and V separately. The percentage errors of the Euler approximations to the

state variable S could be easily controlled around 0.01% even for big ∆. However,

the percentage error of the Euler approximations to the state variable V could be

controlled below 1.00% when ∆ ≤ 1/28. The key to examine the accuracy of the

Euler approximation to the Hagan model is mainly determined by the state variable

V .
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Figure 4.32. Convergence Speed of the Euler and Milstein Approxima-
tions to the Hagan Model at Endpoint

Table 4.29. Euler and Milstein Approximations to S of the Hagan
Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 7.520494 7.518883 1/211 7.520207 7.520672
1/22 7.518730 7.517824 1/212 7.520348 7.520526
1/23 7.520409 7.523382 1/213 7.520252 7.520493
1/24 7.520981 7.520454 1/214 7.520390 7.520291
1/25 7.520191 7.520834 1/215 7.520369 7.520240
1/26 7.521874 7.518475 1/216 7.520334 7.520216
1/27 7.520824 7.519103 1/217 7.520292 7.520196
1/28 7.520497 7.519879 1/218 7.520277 7.520218
1/29 7.520042 7.520055 1/219 7.520259 7.520236
1/210 7.520054 7.520896 1/220 7.520243 7.520241



104

Table 4.30. Percentage Errors of the Euler and Milstein Approxima-
tions to S of the Hagan Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.003% 0.018% 1/211 0.000% 0.006%

1/22 0.020% 0.032% 1/212 0.001% 0.004%

1/23 0.002% 0.042% 1/213 0.000% 0.003%

1/24 0.010% 0.003% 1/214 0.002% 0.001%

1/25 0.001% 0.008% 1/215 0.002% 0.000%

1/26 0.022% 0.023% 1/216 0.001% 0.000%

1/27 0.008% 0.015% 1/217 0.001% 0.001%

1/28 0.003% 0.005% 1/218 0.000% 0.000%

1/29 0.003% 0.002% 1/219 0.000% 0.000%

1/210 0.002% 0.009% 1/220 0.001% 0.000%

Table 4.31. Euler and Milstein Approximations to V of the Hagan
Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.024217 0.023425 1/211 0.024224 0.024086
1/22 0.023065 0.023974 1/212 0.024158 0.024086
1/23 0.024422 0.023980 1/213 0.024143 0.024087
1/24 0.023769 0.024045 1/214 0.024062 0.024087
1/25 0.024245 0.024074 1/215 0.024058 0.024087
1/26 0.023241 0.024057 1/216 0.024052 0.024087
1/27 0.023673 0.024074 1/217 0.024061 0.024087
1/28 0.023999 0.024081 1/218 0.024071 0.024087
1/29 0.024148 0.024088 1/219 0.024081 0.024087
1/210 0.024253 0.024088 1/220 0.024085 0.024087

Figure 4.33. Strong Convergence of the Euler and Milstein Approxima-
tions to the Hagan Model
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Table 4.32. Percentage Errors of the Euler and Milstein Approxima-
tions to V of the Hagan Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.540% 2.748% 1/211 0.571% 0.002%

1/22 4.242% 0.467% 1/212 0.295% 0.002%

1/23 1.390% 0.441% 1/213 0.235% 0.000%

1/24 1.321% 0.173% 1/214 0.101% 0.000%

1/25 0.658% 0.051% 1/215 0.120% 0.000%

1/26 3.513% 0.125% 1/216 0.145% 0.000%

1/27 1.717% 0.053% 1/217 0.107% 0.000%

1/28 0.365% 0.025% 1/218 0.064% 0.000%

1/29 0.256% 0.004% 1/219 0.025% 0.000%

1/210 0.690% 0.004% 1/220 0.006% 0.000%

Figure 4.34. Weak Convergence of the Euler and Milstein Approxima-
tions to the Hagan Model

Figures 4.33 and 4.34 investigate the strong and weak convergence of the Euler

and Milstein approximation. Figure 4.33 shows the mean absolute different values

keep declining and the strong convergence of the state variable S and V are very

close to their theoretical values. However, based on the weak convergence, ∆ = 1/214

seems to be the turning point of the Euler approximation to the state variable V . To

sum up, ∆ = 1/214 could be an effective time step for the Hagan model by considering

moments approximation requirements.
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4.4.6. SABR Volatility Model

The name SABR stands for "stochastic alpha, beta, rho" referring to the parameters

of the model. It original introduced by Hagan, Kumar, and Lesniewski (2002) and

is widely used by practitioners in the interest rate derivative markets. In the SABR

stochastic volatility model, the joint dynamics of St and Yt is defined as

d

[
St
Vt

]
=

[
1
2
V 2
t S

2β−2
t

0

]
dt+

 √(1− ρ2)VtS
β−1
t ρVtS

β−1
t

0 αVt

 d[W P
1 (t)

W P
2 (t)

]

under the objective measure P , whereW1 (t) andW2 (t) are two uncorrelated standard

Brownian motions. The Euler approximations of S and V are continuous stochastic

processes X and U satisfying the iterative schemes

Xt+1 = Xt +

(
1

2
U2
t X

2β−2
t

)
·∆t+

√
(1− ρ2)UtX

β−1
t ·∆W1 (t) + ρUtX

β−1
t ∆W2 (t)

Ut+1 = Ut + αUt ·∆W2 (t)

with initial valueX0 = S0, U0 = V0 for t = 0, 1, . . . N−1. The Milstein approximations

of S and V are in the form of

Yt+1 = Yt +

(
−1

2
Z2
t Y

2β−2
t

)
·∆t+

√
1− ρ2ZtY

β−1
t ·∆W1 (t) + ρZtY

β−1
t ∆W2 (t)

+
[
(β − 1)

(
1− ρ2

)
Z2
t Y

2β−3
t + ρ

√
1− ρ2ZtY

2β−2
t

]
·
[
(∆W1 (t))2 −∆t

]
+
[
ρ2 (β − 1)Z2

t Y
2β−3
t + αρZtY

β−1
t

]
·
[
(∆W2 (t))2 −∆t

]
+
[(

1− ρ2
)
Z2
t (β − 1)Y 2β−3

t + α
√

1− ρ2ZtY
β−1
t

]
I(2,1)

+ρ
√

1− ρ2 (β − 1)Z2
t Y

2β−3
t I(1,2)

Zt+1 = Zt + αZt ·∆W2 (t) +
1

2
α2Zt

[
(∆W2 (t))2 −∆t

]
with initial value Y0 = S0, Z0 = V0 for t = 0, 1, . . . N − 1. We set ρ = −0.415,

α = 0.514, β = 0.5 with initial values X0 = 6.5, V0 = 0.045. Two Brownian bridges

from 0 to 1 are used as W1 (t) and W2 (t) separately. Panel A of Figure 4.35 displays

that the Euler and Milstein approximations to the state variables S at the endpoint

coincide when∆ = 1/214. On the other hand, in Panel B of Figure 4.35, the Euler and

Milstein approximations to the state variables V overlaps at ∆ = 1/28 and converges

to a stable value at ∆ = 1/214. Tables 4.33, 4.34, 4.35 and 4.36 report the endpoint

values with percentage errors for the state variable S and V separately.
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Figure 4.35. Convergence Speed of the Euler and Milstein Approxima-
tions to the SABR Model at Endpoint

Table 4.33. Euler andMilstein Approximations to S of the SABRModel
at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 6.499724 6.497063 1/211 6.499342 6.499431
1/22 6.497770 6.498237 1/212 6.499385 6.499426
1/23 6.499638 6.500417 1/213 6.499319 6.499371
1/24 6.499530 6.499773 1/214 6.499351 6.499323
1/25 6.499358 6.499864 1/215 6.499334 6.499321
1/26 6.499716 6.499340 1/216 6.499310 6.499311
1/27 6.499361 6.499268 1/217 6.499290 6.499290
1/28 6.499374 6.499287 1/218 6.499288 6.499278
1/29 6.499194 6.499227 1/219 6.499283 6.499280
1/210 6.499268 6.499510 1/220 6.499276 6.499277
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Table 4.34. Percentage Errors of the Euler and Milstein Approxima-
tions to S of the SABR Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.007% 0.034% 1/211 0.001% 0.002%

1/22 0.023% 0.016% 1/212 0.002% 0.002%

1/23 0.005% 0.018% 1/213 0.000% 0.001%

1/24 0.004% 0.008% 1/214 0.001% 0.001%

1/25 0.001% 0.009% 1/215 0.001% 0.001%

1/26 0.007% 0.001% 1/216 0.001% 0.001%

1/27 0.001% 0.000% 1/217 0.000% 0.000%

1/28 0.001% 0.000% 1/218 0.000% 0.000%

1/29 0.001% 0.000% 1/219 0.000% 0.000%

1/210 0.000% 0.004% 1/220 0.000% 0.000%

Table 4.35. Euler and Milstein Approximations to V of the SABR
Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.023684 0.022075 1/211 0.023726 0.023735
1/22 0.022492 0.022166 1/212 0.023657 0.023658
1/23 0.023919 0.023526 1/213 0.022364 0.023643
1/24 0.023248 0.023169 1/214 0.023559 0.023559
1/25 0.023744 0.023656 1/215 0.023554 0.023554
1/26 0.022708 0.022670 1/216 0.023548 0.023548
1/27 0.023156 0.023132 1/217 0.023557 0.023557
1/28 0.023493 0.023481 1/218 0.023568 0.023568
1/29 0.023647 0.023643 1/219 0.023578 0.023578
1/210 0.023756 0.023754 1/220 0.023582 0.023582

Figure 4.36. Strong Convergence of the Euler and Milstein Approxima-
tions to the SABR Model
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Table 4.36. Percentage Errors of the Euler and Milstein Approxima-
tions to V of the SABR Model at Endpoint

∆ Euler Milstein ∆ Euler Milstein

1/21 0.432% 6.392% 1/211 0.610% 0.604%

1/22 4.625% 6.004% 1/212 0.318% 0.319%

1/23 1.426% 0.240% 1/213 0.255% 0.257%

1/24 1.417% 1.752% 1/214 0.100% 0.101%

1/25 0.686% 0.314% 1/215 0.120% 0.120%

1/26 3.706% 3.868% 1/216 0.146% 0.146%

1/27 1.810% 1.911% 1/217 0.107% 0.107%

1/28 0.380% 0.432% 1/218 0.061% 0.061%

1/29 0.276% 0.260% 1/219 0.020% 0.020%

1/210 0.735% 0.727% 1/220 0.000% 0.000%

Figure 4.37. Weak Convergence of the Euler and Milstein Approxima-
tions to the SABR Model

The percentage errors of the Euler approximations to the state variable S could

be easily controlled under 0.10%, even 0.01% for big time steps ∆. On the contrary,

the percentage errors of the Euler approximations to the state variable V fluctuate

with different time interval ∆ and could be controlled under 1.00% until ∆ = 1/28.

Undoubtedly, the key to examine the accuracy of the Euler approximation to the

SABR model mainly depends on the variable V .

Figures 4.36 and 4.37 illustrate the strong and weak convergence of the Euler and

Milstein approximation. Figure 4.36 displays that the order of the strong convergence

of the state variable S and V are very close to their theoretical values. However, based

on the weak convergence, ∆ = 1/213 seems to be the turning point for the Euler
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approximation to the state variable V . To conclude, ∆ = 1/212 could be an effective

time step for the SABR model if a good approximation of moments is needed.

4.4.7. Stein Model

The Stein Model in proposed by Stein and Stein (1991) and Schöbel and Zhu (1999),

in which the joint dynamics of St and Yt is in the form of

d

[
St
Vt

]
=

[
µ− 1

2
V 2
t

κ(θ − Vt)

]
dt+

 √(1− ρ2)Vt ρVt

0 σ

 d[W P
1 (t)

W P
2 (t)

]

under the objective measure P , whereW1 (t) andW2 (t) are two uncorrelated standard

Brownian motions. The Euler approximations of S and V are continuous stochastic

processes X and U satisfying the iterative schemes

Xt+1 = Xt +

(
µ− 1

2
U2
t

)
·∆t+

√
(1− ρ2)Ut ·∆W1 (t) + ρUt∆W2 (t)

Ut+1 = Ut + k (θ − Ut) ·∆t+ σ ·∆W2 (t)

with initial value X0 = S0, U0 = V0 for t = 0, 1, . . . N − 1. Because the partial

derivative of σ with respect to x is equal to 0, the Milstein approximation reduces

to the Euler approximation. We take a Stein model with ρ = −0.8, µ = 0.25,

κ = 3.5, θ = 0.25, σ = 0.40 with initial values X0 = 6.5, V0 = 0.045 as an example.

Two Brownian bridges from 0 to 1 are used as W1 (t) and W2 (t) separately. In the

light of above multivariate models, the Euler and Milstein approximations to the

state variables S and V coverge to a stable value when ∆ goes to 0. Therefore, our

numerical tests resort to Figure 4.38 of the convergence speed at the endpoint. Panel

B shows, from ∆ = 1/27, the Euler (Milstein) approximation to the state variable

V reaches a stable value of 0.269129, which could be used as a reference solution of

V . In Panel A, the Euler (Milstein) approximation to the state variable S goes to

a stable value of 6.837018, which could be used as a benchmark of S. Then Tables

4.37 and 4.38 report the Euler (Milstein) approximations to the state variables S and

V with their percentage errors at the endpoint. When the time stepsize ∆ is set at

1/23, the percentage error of the Euler (Milstein) approximation to S could be below

1.00%. In comparision, the percentage error of the Euler (Milstein) approximation to

V could be controlled under 1.00% when the time stepsize ∆ is set at smaller than
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1/27. Because of this, the key to examine the accuracy of the Euler approximation

to the Stein model still depends on the variable V .

Figure 4.38. Convergence Speed of Euler (Milstein) Approximation to
the Stein Model at Endpoint

Table 4.37. Euler (Milstein) Approximation and Percentage Errors for
S of the Stein Model at Endpoint

∆ Euler (Milstein) PE ∆ Euler (Milstein) PE

1/21 6.734333 1.502% 1/211 6.841704 0.069%

1/22 6.760353 1.121% 1/212 6.842354 0.078%

1/23 6.785546 0.753% 1/213 6.837188 0.002%

1/24 6.835201 0.027% 1/214 6.841598 0.067%

1/25 6.808187 0.422% 1/215 6.840925 0.057%

1/26 6.876405 0.576% 1/216 6.839561 0.037%

1/27 6.839542 0.037% 1/217 6.837952 0.014%

1/28 6.836660 0.005% 1/218 6.837610 0.009%

1/29 6.829615 0.108% 1/219 6.837431 0.006%

1/210 6.831336 0.083% 1/220 6.837018 0.000%
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Table 4.38. Euler (Milstein) Approximation and Percentage Errors for
V of the Stein Model at Endpoint

∆ Euler (Milstein) PE ∆ Euler (Milstein) PE

1/21 0.303152 12.642% 1/211 0.268674 0.169%

1/22 0.361950 34.489% 1/212 0.268541 0.219%

1/23 0.265782 1.244% 1/213 0.268970 0.059%

1/24 0.287744 6.917% 1/214 0.268974 0.058%

1/25 0.275001 2.182% 1/215 0.268846 0.105%

1/26 0.274070 1.836% 1/216 0.268853 0.103%

1/27 0.269179 0.018% 1/217 0.269256 0.047%

1/28 0.269226 0.036% 1/218 0.269182 0.019%

1/29 0.269615 0.180% 1/219 0.269138 0.003%

1/210 0.269011 0.044% 1/220 0.269129 0.000%

Figure 4.39. Strong Convergence of the Euler (Milstein) Approximation
to the Stein Model

Figure 4.40. Weak Convergence of the Euler (Milstein) Approximation
to the Stein Model
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The strong convergence of the Euler (Milstein) approximations to the state vari-

ables S and V are shown is Figure 4.39 and the weak convergence are displayed

in Figure 4.40. The strong convergence of the state variable V keeps smooth from

∆ = 1/21 to ∆ = 1/220, while the strong convergence of the state variable S departs

slightly from its theoretical value from ∆ = 1/29. In terms of the weak convergence,

there seems no turning point for the Euler (Milstein) approximations to the state

variables V . Even so, moving to the state variables V , the turning point appears at

∆ = 1/211. To sum up, if a good pathwise approximation is required, the accuracy of

the Euler (Milstein) approximation seems to be improved as ∆ goes to 0. However,

if a good approximation of moments is needed, ∆ = 1/211 is probably a nice option

for the Euler (Milstein) approximation.

4.4.8. Scott Model

The Scott Model, proposed by Scott (1987) assumes the the joint dynamics of St and

Yt is in the form of

d

[
St
Vt

]
=

[
µ− 1

2
e2Vt

κ(θ − Vt)

]
dt+

 √(1− ρ2)eVt ρeVt

0 σ

 d[W P
1 (t)

W P
2 (t)

]

under the objective measure P , whereW1 (t) andW2 (t) are two uncorrelated standard

Brownian motions. The Euler approximations of S and V are continuous stochastic

processes X and U satisfying the iterative schemes

Xt+1 = Xt +

(
µ− 1

2
e2Ut

)
·∆t+

√
(1− ρ2)eUt ·∆W1 (t) + ρeUt∆W2 (t)

Ut+1 = Ut + k (θ − Ut) ·∆t+ σ ·∆W2 (t)

with initial value X0 = S0, U0 = V0 for t = 0, 1, . . . N − 1. Because the partial

derivative of σ with respect to x is equal to 0, the Milstein approximation reduces

to the Euler approximation. We take a Scott model with ρ = −0.8, µ = 6, κ = 0.5,

θ = 0.25, σ = 0.05 with initial values X0 = 6.5, V0 = 0.045 as an example. Two

Brownian bridges from 0 to 1 are used as W1 (t) and W2 (t) separately. Similar to the

Stein model, our numerical tests resort to Figure 4.41 of the convergence speed at the

endpoint to find the benchmarks for the Euler (Milstein) approximations to the state

variable S and V . Panel B shows, from ∆ = 1/28, the Euler (Milstein) approximation

to the state variable V reaches a stable value of 0.094310, which could be used as a
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reference solution of V . In Panel A, the Euler (Milstein) approximation to the state

variable S goes to a stable value of 12.157735, which could be used as a benchmark

of S. Then Tables 4.39 and 4.40 report the Euler (Milstein) approximations to the

state variables S and V with their percentage errors at the endpoint. The percentage

error of the Euler (Milstein) approximation to S could be easily below 0.10%. In

comparision, the percentage error of the Euler (Milstein) approximation to V could

be controlled under 0.10% when the time stepsize ∆ is set at smaller than 1/28.

Because of this, the key to examine the accuracy of the Euler approximation to the

Scott model depends on the variable V as well.

Figure 4.41. Convergence Speed of the Euler (Milstein) Approximation
to the Scott Model at Endpoint
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Table 4.39. Euler (Milstein) Approximation and Percentage Errors for
S of the Scott Model at Endpoint

∆ Euler (Milstein) PE ∆ Euler (Milstein) PE

1/21 12.148770 0.074% 1/211 12.157938 0.002%

1/22 12.147759 0.082% 1/212 12.158262 0.004%

1/23 12.155987 0.014% 1/213 12.157837 0.001%

1/24 12.159303 0.013% 1/214 12.158325 0.005%

1/25 12.155264 0.020% 1/215 12.158192 0.004%

1/26 12.163418 0.047% 1/216 12.158049 0.003%

1/27 12.159739 0.016% 1/217 12.157896 0.001%

1/28 12.158620 0.007% 1/218 12.157849 0.001%

1/29 12.157107 0.005% 1/219 12.157791 0.000%

1/210 12.157241 0.004% 1/220 12.157735 0.000%

Table 4.40. Euler (Milstein) Approximation and Percentage Errors for
V of the Scott Model at Endpoint

∆ Euler (Milstein) PE ∆ Euler (Milstein) PE

1/21 0.094839 0.561% 1/211 0.094318 0.008%

1/22 0.096526 2.350% 1/212 0.094312 0.002%

1/23 0.094862 0.586% 1/213 0.094311 0.001%

1/24 0.095247 0.994% 1/214 0.094310 0.000%

1/25 0.094839 0.561% 1/215 0.094310 0.000%

1/26 0.094578 0.285% 1/216 0.094310 0.000%

1/27 0.094414 0.110% 1/217 0.094310 0.000%

1/28 0.094361 0.054% 1/218 0.094310 0.000%

1/29 0.094341 0.033% 1/219 0.094310 0.000%

1/210 0.094327 0.018% 1/220 0.094310 0.000%

Figure 4.42. Strong Convergence of the Euler (Milstein) Approximation
to the Scott Model
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Figure 4.43. Weak Convergence of the Euler (Milstein) Approximation
to the Scott Model

The strong convergence of the Euler (Milstein) approximations to the state vari-

ables S and V are shown is Figure 4.42 and the weak convergence is displayed in

Figure 4.43. The strong convergence of the state variable V and S show their theo-

retical value. In terms of the weak convergence, obviously, there are no turning points

for the Euler (Milstein) approximations to the state variables S and V . Therefore,

the time step size ∆ is probably set as small as possible by considering either the

pathwise approximation or the moments approximation requirement.

4.5. Conclusions

This chapter compares the accuracy of the Euler approximation to a variety of

univariate and multivariate diffusion processes for different time intervals by checking

different criteria. The percentage error and strong convergence are examined when

a good approximation of sample path of a diffusion model is required. The weak

convergence is preferred for the cases where approximation of moments of the process

matters. Besides these, our Monte Carlo simulations investigate convergence speed

of the end point for different time intervals as well. Tables 4.41 and 4.42 provide

guidelines for univariate and multivariate diffusion models, respectively.

Normally, when the objective is to simulate a diffusion process or test statistical

estimators, our numerical tests suggest an appropriate time interval should be set

in order to satisfy different error requirements. Taking the first row of Table 4.41

as an example, the time step ∆ could be set at 1/24 at the longest for the Euler

approximation to the BSM model to meet the error requirement of less than 1.00%.
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Table 4.41. Guidelines on the Choice of the Discretization Interval for
Univariate Diffusion Models

PE≤ 1.00% PE≤ 0.10% PE≤ 0.01% Turning Point

BSM 1/24 1/216 1/219 1/29

Vasicek 1/23 1/27 1/210 −
CIR 1/22 1/211 1/217 1/211

IFSR − 1/23 1/212 1/212

LDCEV − 1/28 1/214 1/214

NMR 1/23 1/210 1/215 1/213

Table 4.42. Guidelines on the Choice of the Discretization Interval for
Multivariate Diffusion Models

PE≤ 1.00% PE≤ 0.10% PE≤ 0.01% Turning Point

Heston S − 1/25 1/218 1/214

V 1/211 1/219 − 1/211

GARCH S 1/213 1/218 1/220 1/214

V 1/220 − − 1/213

CEV S − 1/210 1/218 1/216

V 1/213 1/220 − 1/219

HW S − 1/27 1/216 1/27

V 1/213 1/219 − 1/215

Hagan S − − 1/27 1/28

V 1/28 1/218 1/220 1/214

SABR S − − 1/23 1/212

V 1/28 1/218 1/220 1/213

Stein S 1/23 1/210 1/218 1/211

V 1/27 1/217 1/219 −
Scott S − − 1/28 −

V 1/23 1/28 1/211 −

∆ is suggested to be set no bigger than 1/216 to satisfy the error requirement of less

than 0.10%, and ∆ is better to set less than 1/219 to satisfy the error requirement of

no more than 0.01%. The turning point column provides an effective time step ∆ for

the Euler approximation to each diffusion process to compute moments, probabilities

or other functions of the diffusion process. When ∆ is smaller than its corresponding

turning point, the error of the means keeps varying around some value and even

increases sometimes.

Since the state variables of multivariate diffusion processes behave in different

pattern, we report guidelines for both of them. When a good approximation of
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sample path of a diffusion model is required, ∆ could be set according to which state

variable is interested of. However, for the cases where approximation of moments of

the process matters, our Monte Carlo simulation results recommend to consider the

state variable V in the first place.
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CHAPTER 5

Conclusions

This thesis makes three main contributions to the field of continuous time diffusion

models.

First, we combine the regime shift with three stochastic volatility models, in-

cluding the Heston model, the GARCH model and the CEV model. According to the

number of regimes, the initial probability and the transition probability matrix specifi-

cations, we estimate four models for each group. For Heston model, we compare H-R1

(single-regime), H-R2-1 (two regimes, time-constant transition matrix, unconditional

probability for the probability of the initial state), H-R2-2 (two regimes, time-constant

transition matrix, additional parameter for the probability of the initial state) and

H-R2TVTP (two regimes, time-varying transition matrix with a logistic function, ad-

ditional parameter for the probability of the initial state). For the GARCH model

and the CEV model, We estimate G-R1, G-R2-1, G-R2-2, G-R2TVTP and C-R1, C-

R2-1, C-R2-2, C-R2TVTP, separately. What’s more, all parameters in these models

are allowed to vary depending on the state of the economy. The maximum likelihood

estimation, which is developed in Chapter 2, is applied to estimate these models.

Using S&P 500 and VIX data for the stock price and volatility proxy, respectively,

we report estimates for each model, as well as AIC, BIC, RCM, LR statistics to com-

pare different models. Furthermore, we investigate the regime-switching probabilities

of the regime-switching models with time varying transition matrix and additional

parameter for the probability of initial state. We also analyse the corresponding ap-

proximate conditional transition density functions with their 95% confidence intervals

in order to find the evidence of regime shift. Our estimation results show four main

findings. First, the regime-switching models are significantly different from the sin-

gle regime models. Second, there are strong evidences for the existence of the high

and low volatility regimes, for the time varying transition probability of the regime

variable, and for high persistence of the high regime. Third, the time varying tran-

sition probability mainly depends on the stock market index S&P 500 rather than

its volatility. Fourth, the regime-switching CEV model with time varying transition
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matrix and additional parameter for the probability of initial state performs better

than the other regime-switching models.

Second, we first develop maximum likelihood estimation with closed-form likeli-

hood expansions for multivariate regime-switching continuous time diffusion models.

Furthermore, we apply it successfully to estimate our regime-switching stochastic

volatility models.

Third, we provide guidelines for the choice of discretization interval when approx-

imating a continuous time diffusion process using the Euler approximation method.

On one hand, we analyses the effective time discretization step ∆ for univariate sto-

chastic diffusion models, including Black-Scholes-Merton model, Vasicek model, CIR

model, Inverse of Feller’s Square Root model, Linear Drift CEV model and Nonlinear

Mean Reversion model. On the other hand, we move to multivariate stochastic dif-

fusion models, such as Heston, GARCH, CEV, Stein, Scott, Hull-White, Hagan and

SABR process. Regarding univariate diffusion continuous time models, our numeri-

cal tests suggest an appropriate time interval should be set for each model in order

to satisfy different error requirements when the objective is to simulate a diffusion

process or test statistical estimators. When the objective is to compute moments,

probabilities or other functions of the diffusion process, we suggest considering the

turning point of the corresponding weak convergence and control ∆ does not exceed

this turning point. Considering the bivariate continuous time diffusion models, we

report guidelines for both of state variables. When a good approximation of sam-

ple path of a diffusion model is required, ∆ could be set according to which state

variable is interested of. However, for the cases where approximation of moments of

the process matters, our Monte Carlo simulation results recommend to consider the

volatility state variable in the first place.

In the future study, we intend to extend our work in four directions.

First, we intend to add jumps or more regimes in these models in order to propose

a more general stochastic volatility model to describe the behaviour of S&P 500 and

VIX. For example, the stock market index S&P 500 could be modelled as a function

of a vector of state variables Xt that follows a bivariate diffusion process,

dXt = µP (Xt; θ) dt+ σ (Xt; θ) dW
P
t + JPt dN

P
t ,
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where the pure jump process NP has stochastic intensity λ (Xt; θ) and jump size 1.

The state variables Xt and the drift functions µP (Xt; θ) are 2× 1 vectors, σ (Xt; θ) is

an 2×2 volatility matrix, andW P
t is an 2×1 vector of independent Brownian motions

under the objective probability measure P . Both µP (Xt; θ) and σ (Xt; θ) depend on

Xt and they are known up to a parameter vector θ ∈ Θ, which is a compact subset

of Rp. Additionally, our regime-switching stochastic volatility models could be used

for option pricing, according to the suggestions we got during our presentations.

Second, using the experience of Chapter 2 for reference, we could develop max-

imum likelihood estimation with closed-form likelihood expansions for continuous

time stochastic volatility models with jumps. As Aït-Sahalia and Kimmel (2007)

mentioned, the expression will be in the form of

p
(J)
X (∆, x|x0; θ) = exp

(
−m

2
ln (2π∆)−Dv (x; θ) +

c
(−1)
X (x|x0; θ)

∆

)

×
J∑
k=0

c
(k)
X (x|x0; θ)

∆k

k!
+

J∑
k=1

d
(k)
X (x|x0; θ)

∆k

k!
,

where d(k)
x are the new terms needed to capture the presence of the jumps in the

transition probability density function. Then we could follow the same procedure

in Chapter 2 to conduct this estimation methodology to estimate regime-switching

stochastic volatility models with jumps.

Third, our regime-switching stochastic volatility models or other stochastic volatil-

ity models could be extended to the time inhomogeneous case. To estimate these

models, we intend to apply Choi (2013)’s method, which is an extension of Aït-

Sahalia (2008). Choi (2013) finds the irreducible method does not work like the

time homogeneous case, because the recursive way of getting the coeffi cients C(jk,k)
X

breaks down. However, he shows that those indeterminate terms are cancelled out in

Ĩ
(K)
X (t, x|t0, x0; θ) even if they cannot be found from the PDEs of C(−1)

X (t, x|t0, x0; θ)

and C(0)
X (t, x|t0, x0; θ).

Fourth, more continuous time diffusion models need to be investigated in Chapter

4. We intend to consider some high-dimensional continuous time diffusion models,
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such as the stochastic skew model,

dSt = µStdt+ σeγt(
St
H
−1)StdW

(s)
t

d lnσt = kσ (lnσ∞ − lnσt) + ασdW
σ
t

dγt = κγ (γ∞ − γ) dt+ αγdW
γ
t ,

whereE[dW σ
t dW

γ
t ] = E[dW σ

t dW
S
t ] = E[dW γ

t dW
S
t ] = 0. In addition, as we mentioned

in Chapter 4, convergence concerns the accuracy of an Euler approximation over a

finite interval [0, T ] for small time discretization steps ∆, while stability investigates

the quality of an approximation in a long term, T → ∞. We intend to analyse the
stability of the Euler approximation to different continuous time diffusion models as

well.
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