The University of Adelaide

Essays on Continuous Time Diffusion Models

A DISSERTATION

SUBMITTED TO THE GRADUATE CENTRE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Economics

By

Di Yuan

November 2013

ii

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution in my name and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

iii

Signature of Author

ABSTRACT

Essays on Continuous Time Diffusion Models

Di Yuan

During the past few decades, continuous time diffusion models have become an integral part of financial economics. Especially, in certain core areas in finance, such as interest rate, asset pricing, option pricing, portfolio selection and volatility modelling, continuous time diffusion models have proved to be a very attractive way to conduct research and gain economic intuition. This thesis makes three main contributions to the field of continuous time diffusion models.

First, we propose regime-switching Heston, GARCH, and CEV stochastic volatility models where all parameters are allowed to vary depending on the state of the economy. Then we apply these models to describe the dynamics of S&P 500 and VIX. We find strong evidence of regime shifts for all models. The CEV model is statistically preferred to other two nested models in explaining dynamics of data.

Second, because the true transition density functions of regime-switching stochastic volatility models are unknown, the standard maximum likelihood estimation cannot be conducted. We first conduct the maximum likelihood estimation with closedform likelihood expansions for regime-switching continuous time stochastic volatility models.

Third, to approximate a continuous time diffusion process, researchers often use the Euler approximation in the literature. Theoretically, the smaller the discretization interval is, the more accurate the Euler approximation is expected to be. However, even when the discretization interval is too small, the accuracy of the Euler approximation can get worse because of the roundoff error and random number generator bias. A variety of univariate and multivariate diffusion models from the literature are considered. We use the solution of a diffusion process when it is available and usable as a benchmark. The Milstein approximation is also adopted to compare the accuracy of the Euler approximation. Depending on the problem of interest, different criteria are used to measure accuracy of approximation. The percentage error and strong convergence can be examined when a good approximation of sample path of a diffusion model is required. The weak convergence is preferred for the cases where approximation of moments of the process matters. In our Monte Carlo simulation studies of diverse diffusion models, we measure accuracy of the Euler approximation not only by using those criteria but also by looking at end point of the approximation. The simulation results show that an appropriate discretization interval must be picked for different diffusion models when applying the Euler approximation.

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to a number of people, who have provided me with useful assistance and support during my PhD study.

First and foremost, I want to thank my principle supervisor Dr Seungmoon Choi. It has been an honour to be his first PhD student. He provided unreserved support during my PhD study and generously paved the way for my development as a research economist.

I would like to thank my co-supervisor Professor Jiti Gao for his kind assistance and support on academic and various other issues. I also wish to thank Associate Professor Ralph Bayer, who helped me book a computer lab to run simulations. I also thank Dr Nicholas Sim for his helpful suggestions when he attended my presentation. Special thanks go to Professor Christopher Findlay, Dr Mandar Oak, Dr Jacob Wong, Dr Tatyana Chesnokova and Mrs Anne Arnold for their assistance with administrative issues on various occasions.

I would like to thank all my friends for all the emotional support, camaraderie, entertainment, and caring they provided.

I wish to thank my brother Wang Yuan, who has been my best friend all my life and thank him for all his advice and support.

This thesis is dedicated to my mother Li Liu, who has provided me with absolute and unconditional support and encouragement throughout my PhD study. Without her, this thesis would not have been completed.

Table of Contents

Declara	ation	iii
ABSTI	RACT	iv
Acknow	vledgements	vi
List of	Tables	viii
List of	Figures	xii
Chapte	r 1. Introduction	1
Chapte	r 2. Maximum Likelihood Estimation for Regime-Switching Continuou	s
	Time Stochastic Volatility Models	7
2.1.	Introduction	7
2.2.	Closed-form Likelihood Expansions	8
2.3.	Hamilton Algorithm	18
Chapte	r 3. Continuous Time Stochastic Volatility Models with Regime Shift	21
3.1.	Introduction	21
3.2.	Data and Motivation	22
3.3.	Continuous Time Stochastic Volatility Models with Regime Shift	25
3.4.	Estimation Results	31
3.5.	Conclusions	53
Chapte	r 4. Accuracy of Euler Approximation for Continuous Time Diffusion	
	Models	55
4.1.	Introduction	55
4.2.	Euler and Milstein Approximations	58
4.3.	Univariate Stochastic Volatility Models	62
4.4.	Multivariate Stochastic Volatility Models	85
4.5.	Conclusions	116

Chapter 5.	Conclusions	119
References		123

List of Tables

3.1	Summary Statistics of S & P 500 and VIX	23
3.2	Summary Statistics of S&P 500, VIX, $\ln(S\&P 500)$ and IV	32
3.3	Maximum Likelihood Estimation Results of Main Heston	
	Models(01/02/1990-06/12/2012)	34
3.4	Maximum Likelihood Estimation Results of Main GARCH	
	Models(01/02/1990-06/12/2012)	43
3.5	Maximum Likelihood Estimation Results of Main CEV	
	Models(01/02/1990-06/12/2012)	48
4.1	Maximum Absolute Error between the Exact Solution and	
	Approximations to the BSM Model	64
4.2	Absolute Error between the Exact Solution and Approximations for	
	the BSM Model at the Endpoint	65
4.3	Percentage Errors of the Euler and Milstein Approximations to the	
	BSM Model at Endpoint	65
4.4	Euler (Milstein) Approximation and Percentage Errors to the	
	Vasicek Model at Endpoint	70
4.5	Euler and Milstein Approximations to the CIR Model at Endpoint	73
4.6	Percentage Errors of Euler and Milstein Approximations to the CIR	
	Model at Endpoint	73
4.7	Euler and Milstein Approximations to the IFSR Model at Endpoint	76
4.8	Percentage Errors of Euler and Milstein Approximations to the	
	IFSR Model at Endpoint	77
4.9	Euler and Milstein Approximations to LDCEV Model at Endpoint	79
4.10	Percentage Errors of Euler and Milstein Approximations to LDCEV	
	Model at Endpoint	81

4.11	Euler and Milstein Approximations to the NMR Model at Endpoint	82
4.12	Percentage Errors of Euler and Milstein Approximations to NMR	
	Model at Endpoint	82
4.13	Euler and Milstein Approximations to S of the Heston Model at	
	Endpoint	87
4.14	Percentage Errors of the Euler and Milstein Approximations to S of	•
	the Heston Model at Endpoint	88
4.15	Euler and Milstein Approximations to V of the Heston Model at	
	Endpoint	88
4.16	Percentage Errors of the Euler and Milstein Approximations to V	
	of the Heston Model at Endpoint	89
4.17	Euler and Milstein Approximations to S of the GARCH Model at	
	Endpoint	91
4.18	Percentage Errors of the Euler and Milstein Approximations to S of	•
	the GARCH Model at Endpoint	92
4.19	Euler and Milstein Approximations to V of the GARCH Model at	
	Endpoint	92
4.20	Percentage Errors of the Euler and Milstein Approximations to V	
	of the GARCH Model at Endpoint	93
4.21	Euler and Milstein Approximations to S of the CEV Model at	
	Endpoint	95
4.22	Percentage Errors of the Euler and Milstein Approximations to S of	
	the CEV Model at Endpoint	96
4.23	Euler and Milstein Approximations to V of the CEV Model at	
	Endpoint	96
4.24	Percentage Errors of the Euler and Milstein Approximations to V	
	of the CEV Model at Endpoint	97
4.25	Euler and Milstein Approximations to S of the HW Model at	
	Endpoint	99
4.26	Percentage Errors of the Euler and Milstein Approximations to S of	
	the HW Model at Endpoint	100

4.27	Euler and Milstein Approximations to V of the HW Model at Endpoint	100
4.28	Percentage Errors of the Euler and Milstein Approximations to V of the HW Model at Endpoint	101
4.29	Euler and Milstein Approximations to S of the Hagan Model at Endpoint	103
4.30	Percentage Errors of the Euler and Milstein Approximations to S of the Hagan Model at Endpoint	f 104
4.31	Euler and Milstein Approximations to V of the Hagan Model at Endpoint	104
4.32	Percentage Errors of the Euler and Milstein Approximations to V of the Hagan Model at Endpoint	105
4.33	Euler and Milstein Approximations to S of the SABR Model at Endpoint	107
4.34	Percentage Errors of the Euler and Milstein Approximations to S of the SABR Model at Endpoint	f 108
4.35	Euler and Milstein Approximations to V of the SABR Model at Endpoint	108
4.36	Percentage Errors of the Euler and Milstein Approximations to V of the SABR Model at Endpoint	109
4.37	Euler (Milstein) Approximation and Percentage Errors for S of the Stein Model at Endpoint	111
4.38	Euler (Milstein) Approximation and Percentage Errors for V of the Stein Model at Endpoint	112
4.39	Euler (Milstein) Approximation and Percentage Errors for S of the Scott Model at Endpoint	115
4.40	Euler (Milstein) Approximation and Percentage Errors for V of the Scott Model at Endpoint	115
4.41	Guidelines on the Choice of the Discretization Interval for Univariate Diffusion Models	

xii

List of Figures

3.1	Daily Observations and Changes of S&P 500 $$	24
3.2	Daily Observations and Changes of VIX	25
3.3	Regime-Switching Probabilities of the Model H-R2TVTP	35
3.4	Regime-Switching Probabilities of the Model H-R2TVTP with S&P 500 and its First Difference	36
3.5	Regime-Switching Probabilities of the Model H-R2TVTP with VIX and its First Difference	37
3.6	Conditional Transition Density Functions for the Model H-R1 and H-R2TVTP	40
3.7	Conditional Transition Density Functions and 95% Condidence Bands for the Model H-R1 and H-R2TVTP	41
3.8	Regime-Switching Probabilities of the Model G-R2TVTP	44
3.9	Regime-Switching Probabilities of the Model G-R2TVTP with S&P 500 and its First Difference	45
3.10	Regime-Switching Probabilities of the Model G-R2TVTP with VIX and its First Difference	46
3.11	Conditional Transition Density Functions and 95% Condidence Bands for the Model G-R1 and G-R2TVTP	46
3.12	Conditional Transition Density Functions for the Model G-R1 and G-R2TVTP	47
3.13	Regime-Switching Probabilities of the Model C-R2TVTP	49
3.14	Regime-Switching Probabilities of the Model C-R2TVTP with S&P 500 and its First Difference	50
3.15	Regime-Switching Probabilities of the Model C-R2TVTP with VIX and its First Difference	51

3.16	Conditional Transition Density Functions for the Model C-R1 and C-R2TVTP	52
3.17	Conditional Transition Density Functions and 95% Condidence Bands for the Model C-R1 and C-R2TVTP	53
4.1	The Euler and Milstein Approximations against the Explicit Solution to the BSM Model	63
4.2	Convergence Speed of the Euler and Milstein Approximations for the BSM Model at Endpoint	66
4.3	Strong Convergence of the Euler and Milstein Approximations to the BSM Model	67
4.4	Weak Convergence of the Euler and Milstein Approximations to the BSM Model	67
4.5	Convergence Speed of the Euler (Milstein) Approximation for the Vasicek Model at Endpoint	70
4.6	Strong Convergence of the Euler (Milstein) Approximation to the Vasicek Model	71
4.7	Weak Convergence of the Euler (Milstein) Approximation to the Vasicek Model	71
4.8	Convergence Speed of the Euler and Milstein Approximations to the CIR Model at Endpoint	74
4.9	Strong Convergence of the Euler and Milstein Approximations to the CIR Model	74
4.10	Weak Convergence of the Euler and Milstein Approximations to the CIR Model	75
4.11	Convergence Speed of the Euler and Milstein Approximations to the IFSR Model at Endpoint	77
4.12	Strong Convergence of the Euler and Milstein Approximations to the IFSR Model	78
4.13	Weak Convergence of the Euler and Milstein Approximations to the IFSR Model	78

4.14	Convergence Speed of the Euler and Milstein Approximations to the LDCEV Model at Endpoint	80
4.15	Strong Convergence of the Euler and Milstein Approximations to the LDCEV Model	80
4.16	Weak Convergence of the Euler and Milstein Approximations to the LDCEV Model	81
4.17	Convergence Speed of the Euler and Milstein Approximations to the NMR Model at Endpoint	84
4.18	Strong Convergence of the Euler and Milstein Approximations to the NMR Model	84
4.19	Weak Convergence of the Euler and Milstein Approximations to the NMR Model	85
4.20	Convergence Speed of the Euler and Milstein Approximations to the Heston Model at Endpoint	86
4.21	Strong Convergence of the Euler and Milstein Approximations to the Heston Model	88
4.22	Weak Convergence of the Euler and Milstein Approximations to the Heston Model	89
4.23	Convergence Speed of Euler and Milstein Approximations to the GARCH Model at Endpoint	91
4.24	Strong Convergence of the Euler and Milstein Approximations to the GARCH Model	92
4.25	Weak Convergence of the Euler and Milstein Approximations to the GARCH Model	93
4.26	Convergence Speed of the Euler and Milstein Approximations to the CEV Model at Endpoint	95
4.27	Strong Convergence of the Euler and Milstein Approximations to the CEV Model	96
4.28	Weak Convergence of the Euler and Milstein Approximations to the CEV Model	97

4.29	Convergence Speed of the Euler and Milstein Approximations to	
	the HW Model at Endpoint	99
4.30	Strong Convergence of the Euler and Milstein Approximations to)
	the HW Model	100
4.31	Weak Convergence of the Euler and Milstein Approximations to t	he
	HW Model	101
4.32	Convergence Speed of the Euler and Milstein Approximations to	
	the Hagan Model at Endpoint	103
4.33	Strong Convergence of the Euler and Milstein Approximations to)
	the Hagan Model	104
4.34	Weak Convergence of the Euler and Milstein Approximations to t	he
	Hagan Model	105
4.35	Convergence Speed of the Euler and Milstein Approximations to	
	the SABR Model at Endpoint	107
4.36	Strong Convergence of the Euler and Milstein Approximations to)
	the SABR Model	108
4.37	Weak Convergence of the Euler and Milstein Approximations to t	he
	SABR Model	109
4.38	Convergence Speed of Euler (Milstein) Approximation to the Stei	in
	Model at Endpoint	111
4.39	Strong Convergence of the Euler (Milstein) Approximation to the	9
	Stein Model	112
4.40	Weak Convergence of the Euler (Milstein) Approximation to the	
	Stein Model	112
4.41	Convergence Speed of the Euler (Milstein) Approximation to the	
	Scott Model at Endpoint	114
4.42	Strong Convergence of the Euler (Milstein) Approximation to the	Э
	Scott Model	115
4.43	Weak Convergence of the Euler (Milstein) Approximation to the	
	Scott Model	116