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Abstract

There is a vast literature on Markov chains where point estimates of transition and

initial probabilities are used to calculate various performance measures. However,

using these point estimates does not account for the associated uncertainty in

estimate. If these point estimates are used, then the best outcome possible would

be an approximate solution. Hence, it would be beneficial if there was a way

to allow for some uncertainty in the parameters and to carry this through the

calculations.

One method of incorporating variation is to place bounds on the parameters and

use these intervals rather than a single point estimate. By considering the intervals

that contain point estimates, it is possible to control the amount of variation

allowed. When these intervals are used in calculations, the results obtained are

also intervals containing the true solution. Hence, allowing for an approximation

of the result as well as a margin of error to be obtained.

One of the objectives of this thesis is to develop and investigate different methods

of calculating intervals for various performance measures (for example, mean hit-

ting times and expected total costs) for Markov chains when intervals are given

for the parameters instead of point estimates. We develop a numerical method for

obtaining intervals for the performance measures for general unstructured interval

Markov chains through the use of optimisation techniques. During this develop-

ment, we found a connection between interval Markov chains and Markov decision
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processes and exploited it to obtain a form for our solution. Further, we also consid-

ered structured interval Markov chains, such as interval birth and death processes,

and obtained analytic results for the classes of processes considered.

Following from the idea of structured Markov chains, we considered the Markovian

SIR (susceptible-infectious-recovered) epidemic model and looked to extend the

concepts developed for the unstructured interval Markov chains. Two important

performance measures, namely the mean final epidemic size and mean epidemic

duration, were of interest to us and we were able to prove analytic results for

the mean final epidemic size. For the mean epidemic duration, we modified the

numerical method for general unstructured interval Markov chains to calculate

bounds on this performance measure.

The other objective of this thesis was to investigate if it was possible to use interval

analysis as an alternative to sensitivity analysis. We explored this in the context

of the SIR model, where the true value of the parameters of the model may not

be known. Hence, if one were to be careful when using point estimates, one would

consider using sensitivity analysis which explores the parameter space around the

chosen estimates. We considered a distribution on the parameter estimates and

used the methods developed in the early chapters of the thesis, to calculate intervals

for performance measures. Using these intervals, we developed a method to obtain

an approximate cumulative distribution function of the performance measure. This

approximate cumulative distribution function was found to very closely resemble

the cumulative distribution function obtained from extensive simulations.
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Chapter 1

Introduction

It is common in many applications to only know a best estimate of the parameters

of a model. Hence, when we use these estimates in our models, there will inherently

exist some error or uncertainty in the output. If we want to be careful when using

estimates of parameters, then sensitivity analysis is a technique commonly used

to account for the lack of exact knowledge of the parameter values. The idea of

sensitivity analysis to explore the parameter space around the chosen parameter

values which may involve a fair bit of computation. Instead, we look to account for

the uncertainty in the parameters by placing bounds, or intervals, around the best

estimates. Thus, one of the objectives of this project is to investigate if performing

computation with intervals allows us to avoid the need for sensitivity analysis as we

have already taken into account the uncertainty in the parameters through the use

of intervals. The other main objective of this project is to develop the necessary

techniques to obtain interval calculations of the performance measures of interest

when provided with intervals around the parameters of our model.

Since Markov chains allow us to model processes which evolve randomly over time

and are used in many areas, the overall underlying theme of this thesis is the

incorporation of intervals in Markov chains and the development of methods to

1
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obtain bounds on performance measures such as the expected total cost or mean

hitting time. Throughout the exploration and development of these concepts,

we investigate the relationships between these models, optimisation problems and

Markov decision processes. Furthermore, we exploit these relationships to obtain

analytic results for our problem of obtaining bounds on the performance measures

of interest.

In the next chapter, we provide background material on Markov chains, inter-

vals and other concepts required in later chapters and also discuss previous work

published in this area. We begin the discussion of our work in Chapters 3 and 4

where we focus on unstructured discrete-time and continuous-time interval Markov

chains and consider calculating a corresponding interval of expected total costs.

We explore useful theoretical properties as well as develop a complete numerical

method for obtaining the interval of expected total costs.

Birth and death chains are commonly used in many applications. Hence, in Chap-

ter 5, we consider incorporating intervals into these structured Markov chains

and exploring ways to obtain results for the interval of expected total costs. The

first type of birth and death chain follows from the discrete-time interval Markov

chains in Chapter 3 as the rows of the transition probability matrix are indepen-

dent. Then, we shift our attention away from the row independence of transi-

tion probability matrices to consider discrete-time constant parameter birth and

death processes where the rows of the transition probability matrix are dependent.

Hence, these processes no longer directly relate to the processes in Chapters 3 and

4.

The concept of row dependence in the transition probability matrix is explored

further in Chapter 6. This chapter considers a specific application of our work on

interval continuous-time Markov chains and extends it to allow for row dependence

in epidemic models. One of the aims of this project is to determine if it is possi-

ble to use interval analysis to investigate model sensitivity, this is also discussed
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in Chapter 6. In Chapter 7, we discuss possible extensions of the work in this

thesis.





Chapter 2

Background

In the previous chapter, we gave a brief introduction to Markov chains and intervals

as well as providing reasons why we are interested in combining these two concepts.

Here, we provide a more in-depth explanation of Markov chains, intervals and

other background material necessary for easy reading of further chapters. We also

present the previous work in this area and establish the notation used throughout

this thesis.

2.1 Markov chains

Markov chains are an interesting type of mathematical model as they allow us

to model processes which evolve randomly over time. Unlike some models of

random processes, Markov chains are tractable and thus, they have been used

in a wide variety of areas. These include the modelling of biological processes,

telecommunication networks, traffic systems and the list goes on [16]. Hence, it is

of no doubt that Markov chains are of great interest to us and here, we consider

such processes evolving in either discrete time or continuous time.

5



6 2.1. Markov chains

2.1.1 Discrete-time Markov chains

Let S be a subset of the non-negative integers, Z+ = {0, 1, . . .}. A discrete-time

random process can be thought of as a set of random variables Xm ∈ S at time

points m ∈ Z+. We often describe Xm as the state of the process. Then, a

discrete-time Markov chain is a discrete-time random process where the next state

of the process depends only on the current state of the process and not on any

past history. This describes the Markov property and is the key to tractability.

Note that a sample path of a discrete-time Markov chain is an observed sequence

of outcomes representing the state visited by the process at each time step.

The Markov property is stated more formally as

P (Xm+1 = j|X0 = x0, X1 = x1, . . . , Xm = i) = P (Xm+1 = j|Xm = i),

for i, j, xk ∈ S and k = 0, 1, . . . ,m− 1.

Due to the Markov property, we are able to focus our attention on

P (Xm+1 = j|Xm = i) and note that in general it depends on m. However, this

need not be the case and leads to the definition of time-homogeneous discrete-time

Markov chains. The idea of time homogeneity is that the probability of moving

from state i to state j in a single time step only depends on the states i and j and

not on the actual time m. So this means that for a time-homogeneous discrete-

time Markov chain, the probability of moving from state i to state j in a single

time step is given by,

Pij = P (Xm+1 = j|Xm = i) = P (X1 = j|X0 = i), for all i, j ∈ S and m ∈ Z+.

These probabilities Pij are known as the one-step transition probabilities and to-

gether, they form a one-step transition probability matrix P . Note that the matrix

P is a stochastic matrix which means that the rows of the matrix P sum to 1.

This one-step transition probability matrix easily extends to m steps through the



Chapter 2. Background 7

Chapman-Kolmogorov equations [20] which are given by,

P
(m+`)
ij =

∑
k∈S

P
(m)
ik P

(`)
kj , for all m, ` ≥ 0 and i, j ∈ S,

where P
(m)
ij = P (Xm = j|X0 = i) is the probability of moving from state i to state

j in m steps. These equations can be written in matrix form as follows,

P (m+`) = P (m) P (`),

where P (m) is the m-step transition probability matrix.

Hence, by induction, we have that the probability of moving from state i to state

j in m steps, P
(m)
ij = P (Xm = j|X0 = i), is given by (Pm)ij. This gives us an

easy way of calculating the probability of being in state j after a certain number

of time steps m, given that the process started in state i, for all i, j ∈ S.

This also allows us to classify the states of a Markov chain. To do this, we present

the following definitions which arise from Norris [16].

Definition 2.1.1. For i, j ∈ S, if for some m ≥ 0 we have P
(m)
ij > 0, then we say

that i leads to j and denote this by i→ j.

Definition 2.1.2. States i and j communicate if i→ j and j → i and we denote

this by i↔ j.

Furthermore, we note that communication is an equivalence relation since:

• i↔ i,

• i↔ j ⇒ j ↔ i,

• i↔ j, j ↔ k ⇒ k ↔ i.

Hence, ↔ partitions the state space S into communicating classes, which contain

states that are able to communicate with each other, but not with states outside

of the communicating class. That is, if the process leaves the communicating

class a and goes to another communicating class b, then there is no path from the

communicating class b back to the original communicating class a.
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Definition 2.1.3. A Markov chain is irreducible if the entire state space S is a

single communicating class.

That is, a Markov chain is irreducible if every state in the state space S is able to

communicate with each other.

We can pursue this idea further by considering closed classes.

Definition 2.1.4. A class C ⊆ S is closed if for any i ∈ C and i → j, implies

that j ∈ C.

This means that once the process enters any state in the closed class, the process

cannot escape from this closed class.

Hence, we can define an absorbing state as follows.

Definition 2.1.5. A state i is absorbing if {i} is a closed class.

This means that once the process enters state i it can never leave, and we say that

the process is absorbed into state i.

A state i of a Markov chain can be further classified as either recurrent, which

means that the process returns to state i with probability 1, or transient, which

means the process returns to state i with probability less than 1. We note that

transience/recurrence is a solidarity property, in the sense that all states in a

communicating class are either transient or recurrent, together.

Now that we have established the required definitions for a discrete-time Markov

chain, let us consider a discrete-time Markov chain, Xm, with n + 1 states,

S = {0, 1, . . . , n} with state 0 an absorbing state. Note that this discrete-time

Markov chain will be used for the remainder of this section. Since we have an

absorbing state, it would be useful to determine the probability that the process

is absorbed into the absorbing state 0, given that the process starts in state i, for

i ∈ S. The presentation below follows from Norris [16].
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Probability of absorption into state 0

Let the random variable N : Ω → {0, 1, 2, . . .} ∪ {∞} describe the hitting time,

which is the number of steps required to reach state 0. That is,

N(ω) = inf{m ≥ 0 : Xm(ω) = 0}.

Note here that we use infimum instead of minimum because for realisations, ω, of

the discrete-time Markov chain, such a value of m may not exist. Thus, for this

case, we define the infimum of the empty set to be ∞.

Now, let ai be the probability the process is ever absorbed into state 0, conditional

on starting in state i ∈ S. That is,

ai = P (N <∞|X0 = i), for i ∈ S.

The following theorem gives us a way of calculating the absorption probability ai,

for all i ∈ S.

Theorem 2.1.1 (Theorem 1.3.2. of Norris [16]). The vector of absorption prob-

abilities (ai : i ∈ S) is the minimal non-negative solution to the system of linear

equations

ai =


1, for i = 0,∑
j∈S

Pijaj, for i 6= 0.
(2.1.1)

(Minimality means that if x = (xi : i ∈ S) is another solution with xi ≥ 0 for all

i, then xi ≥ ai for all i.)

Let us define the following,

• Ps is the sub-matrix of the transition probability matrix P containing the

transition probabilities Pij for i, j = 1, . . . , n,

• P0 is the column vector containing the probabilities Pi0 for i = 1, . . . , n, and
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• a is the column vector containing the absorption probabilities aj for

j = 1, . . . , n.

Hence, we can write equation (2.1.1) in vector/matrix form as

a =
[
P0 Ps

]1

a


= Ps a + P0.

Here, we take a cautious approach to solving for a.

a = Ps a + P0

= Ps (Ps a + P0) + P0, by self substitution,

= P 2
s a + Ps P0 + P0

...

= P `
s a +

`−1∑
m=0

Pm
s P0, for some positive integer `.

Let `→∞ and choose the minimal non-negative solution, so that

a =
∞∑

m=0

Pm
s P0.

We will often write this as a = (I − Ps)
−1 P0, since if Ps is finite-dimensional and

has spectral radius less than 1, then we know that
∞∑

m=0

Pm
s = (I − Ps)

−1, where I

is the identity matrix of the same size as Ps.

Mean hitting time

A common performance measure for discrete-time Markov chains is the mean hit-

ting time. Recall that we let N be the random variable describing the number of

steps required to reach state 0. Let νi = E [N |X0 = i] be the expected number of

steps needed to reach state 0, conditional on starting in state i, which is the mean

hitting time from state i.
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As with the absorption probabilities, we have the following theorem which allows

us to calculate νi for i ∈ S.

Theorem 2.1.2 (Theorem 1.3.5. of Norris [16]). The vector of mean hitting times

(νi : i ∈ S) is the minimal non-negative solution to the system of linear equations

νi =


0, for i = 0,∑
j 6=0

Pijνj + 1, for i 6= 0.
(2.1.2)

As before, minimal non-negative means if there is another solution to the system

of linear equations with xi ≥ 0, then xi ≥ νi for i ∈ S.

Let us define the following,

• 1 is the column vector of size n× 1 containing ones, and

• ν is the column vector containing the mean hitting times νj for j = 1, . . . , n.

Hence, we can write equation (2.1.2) in vector/matrix form as

ν = Ps ν + 1.

Following the same approach as for a, we have

ν = Ps ν + 1

= Ps (Ps ν + 1) + 1, by self substitution,

= P 2
s ν + Ps 1 + 1

...

= P `
s ν +

`−1∑
m=0

Pm
s 1, for some positive integer `.

Let `→∞ and choose the minimal non-negative solution, so that

ν =
∞∑

m=0

Pm
s 1.
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As before, we will often write this as ν = (I − Ps)
−1 1, since if Ps is finite-

dimensional and has spectral radius less than 1, then we know that
∞∑

m=0

Pm
s = (I − Ps)

−1, where I is the identity matrix of the same size as Ps.

Expected total costs

Now, let us extend this idea further. Instead of calculating the mean hitting times,

let us calculate the expected total costs instead. We define the following, let

• cj ∈ R be the cost per visit to state j, for j ∈ S,

• K be the random variable describing the total cost incurred before the pro-

cess is absorbed into state 0, and

• χi = E [K|X0 = i] be the expected total cost incurred before the process is

absorbed into state 0, conditional on starting in state i ∈ S.

The calculation of expected total costs is a generalisation of the mean hitting

times whereby the latter corresponds to cj = 1 for j = 1, . . . , n. Therefore, we

replace the vector of ones, 1, with a vector of costs, c. Hence, we can calculate

the expected total costs vector χ using,

χ =
∞∑

m=0

Pm
s c.

Note χ = (I − Ps)
−1 c, if Ps is finite-dimensional and has spectral radius less than

1.

2.1.2 Continuous-time Markov chains

A continuous-time Markov chain is similar in nature to a discrete-time Markov

chain, except it evolves at all t ≥ 0 rather than at integer time points m = 0, 1, . . ..

Let S be a subset of the non-negative integers, Z+ = {0, 1, . . .}. A continuous-time
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random process can be thought of as a set of random variables X(t) ∈ S, for all

time t ≥ 0. Then a continuous-time Markov chain is a continuous-time random

process satisfying the Markov property. Recall from Section 2.1.1 that the Markov

property states that the probability that the process moves to a given state does

not depend on the previous states visited by the process but only on the current

state of the process. This is stated more formally in continuous time as

P (X(t+ s) = j|X(s) = i,X(u) = k, u < s) = P (X(t+ s) = j|X(s) = i),

for i, j, k ∈ S and s, t ≥ 0.

Hence, the sample behaviour of a continuous-time Markov chain is that after some

random time t the process jumps to another state. This time t is known as the

holding time and once this time ends, the process instantaneously jumps to another

state j of the system with some probability that we shall present later.

As with discrete-time Markov chains, we will only consider time-homogeneous

continuous-time Markov chains. For a time-homogeneous continuous-time Markov

chain, the probability of being in state j at time t+ s, given the chain was in state

i at time s is given by,

Pij(t) = P (X(t+ s) = j|X(s) = i), for i, j ∈ S and s, t ≥ 0,

and this probability is independent of the actual time s. If we consider Pij(t) for

all i, j ∈ S, these probabilities form the matrix, P (t).

Here, we note that all definitions which allow for the classification of the states in

a discrete-time Markov chain, as specified in Section 2.1.1, carry over analogously

for continuous-time Markov chains.

Knowing P (t), for all t ≥ 0, is analogous to knowing Pm, for all m, in the discrete

time case. In the latter case, it was sufficient to record P , from which Pm can be

constructed. So is there a compact form which is analogous to P in the discrete
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time case? For continuous-time Markov chains, the generator matrix Q plays this

role.

Generator matrix Q

The definition and properties of Q follow from Ross [20] and Norris [16] respec-

tively.

The generator matrix Q = (qij : i, j ∈ S) is a matrix defined by

Q = lim
h→0+

P (h)− I
h

,

where I is the identity matrix of the same size as P (h). Hence Q has the following

properties,

• 0 ≤ −qii, for all i ∈ S,

• qij ≥ 0, for all i ∈ S and j 6= i, and

•
∑
j∈S

qij = 0, for all i ∈ S.

This Q matrix is used to specify the rates of a continuous-time Markov chain,

where qij, for j 6= i, is the rate of moving from state i to state j. Let us consider

a finite state continuous-time Markov chain, X(t), with a generator matrix Q and

n + 1 states, S = {0, 1, . . . , n} where state 0 is an absorbing state. It is common

to let qi = −qii =
∑
j 6=i

qij, which is the rate of leaving state i. Since S is finite, we

know that qi also finite for all states i ∈ S.

Recall that the holding time is the random time t the process spends in a state

before moving to another state. To make this idea more concrete, we define the

holding time for state i, ti, to be the random time the process spends in state i
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which has an exponential distribution with mean

E[ti] =


1

qi
, if qi > 0,

∞, if qi = 0.

Recall that we have previously used the Chapman-Kolmogorov equations for

discrete-time Markov chains in Section 2.1.1. A similar version of the Chapman-

Kolmogorov equations apply in continuous time.

Theorem 2.1.3 (Lemma 6.3 of Ross [20]). For all s ≥ 0, t ≥ 0,

Pij(t+ s) =
∑
k∈S

Pik(t)Pkj(s).

The Chapman-Kolmogorov equations are useful as they help us derive the Kol-

mogorov Forward and Backward differential equations, which are given in matrix

form as

dP (t)

dt
= P (t)Q, (forward)

dP (t)

dt
= QP (t), (backward).

Thus, when we are given the transition rates Q, we can solve either of the above dif-

ferential equations to determine the transition probability matrix P (t), where

P (t) = eQt,

when S is finite, as assumed herein.

As before with discrete-time Markov chains, we are interested in the probability

of absorption into state 0, the mean hitting times and the expected total cost of

continuous-time Markov chains. In Chapter 3, instead of working with these con-

cepts in continuous time, we choose to exploit our work on discrete-time Markov

chains in the early parts of the chapter. To do so, we utilise the concept of uniformi-

sation as a way of converting a continuous-time Markov chain to a discrete-time

Markov chain without any loss of information.
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Uniformisation

Let us first present some definitions and explanations, both arising from Ross [20],

which discuss how uniformisation allows us to convert a continuous-time Markov

chain to a discrete-time Markov chain without losing any information.

Definition 2.1.6 (Uniformisable). A continuous-time Markov chain, X(t), is uni-

formisable if

sup
j

(qj) <∞.

Consider a uniformisable continuous-time Markov chain, X(t), with generator ma-

trix Q.

Definition 2.1.7 (Uniformisation constant). The uniformisation constant is any

u ≥ q = sup
i

(qi) .

Note here that since S is finite, we have qi <∞ for all i ∈ S and so u ≥ q = max
i

(qi)

for all i ∈ S.

Any such u allows us to define an associated discrete-time Markov chain of the

continuous-time Markov chain, X(t).

Definition 2.1.8 (Associated discrete-time Markov chain). Let Xu
m be the associ-

ated discrete-time Markov chain of the continuous-time Markov chain, X(t), with

transition probability matrix Pu, given by

Pu = I +
1

u
Q,

for any u ≥ q.

So how does this transformation work and allow the associated discrete-time

Markov chain to retain all the information from the continuous-time Markov chain?

We know that Pij(t) completely describes the dynamics of the continuous-time

Markov chain and is defined to be the probability of being in state j at time t+ s,
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given the chain was in state i at time s. Unlike P
(m)
ij for discrete-time Markov

chains, which are the m-step transition probabilities, in the continuous time set-

ting, we do not know how many transitions have occurred in the time interval t.

The process might have been through any number of transitions in the time inter-

val and we can model the number of transitions within the time interval t using a

Poisson process with rate u. However, recall that u ≥ q = max
i

(qi) and qi is rate

of leaving state i. This means that by using u, the rate of leaving each state i has

actually increased. So how does this transformation work? We introduce fictitious

transitions into the system which allow the process to remain in state i. We know

that the probability of moving from state i to state j, for all j ∈ S and j 6= i, is

given by
qij
u

. Hence, in the transformation which gives us Pu, the actual transitions

(leaving state i) occur with probability
qi
u

and the fictitious transitions (leaving

and then immediately returning to state i) occur with probability
(

1− qi
u

)
.

Recall that P (t) = eQt and if we apply the transformation Pu = I +
1

u
Q, then we

have

P (t) = eQt

= eu(Pu−I)t, since Pu = I +
1

u
Q,

= e−utePuut

= e−ut
∞∑

m=0

(Puut)
m

m!

=
∞∑

m=0

(Pu)m e−ut
(ut)m

m!
.

This last expression can be interpreted as follows. Consider the (i, j)th element of

P (t) which is given by,

Pij(t) =
∞∑

m=0

(Pu)mij e
−ut (ut)

m

m!
, t ≥ 0,

where (Pu)mij is the probability of moving from state i to state j in m steps in

the associated discrete-time Markov chain and e−ut
(ut)m

m!
describes the probability
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of having m events in a Poisson process with rate u over an interval of length t.

Since we do not know how many transitions might occur in the time interval t, we

sum over all possible values of m. Thus, we have not lost any information when

converting from a continuous-time Markov chain to the associated discrete-time

Markov chain.

Now recall that, as in the discrete time case, we are interested in the probability

of absorption into state 0, the mean hitting times and the expected total costs

of continuous-time Markov chains. Since we are dealing with these performance

measures in discrete-time through the use of uniformisation, we simply state the

relevant theorems and definitions continuous-time Markov chains which arise from

Norris [16]. Note that for the remainder of this section, we consider a uniformisable

continuous-time Markov chain, X(t), with generator matrix Q and n + 1 states,

S = {0, 1, . . . , n} where state 0 is an absorbing state, unless otherwise stated.

Definition 2.1.9 (Hitting time). The hitting time of state 0 is the random variable

T defined by

T (ω) = inf{t ≥ 0 : X(t, ω) = 0}

with the usual convention that the infimum of the empty set is ∞.

Thus, we have that the probability of absorption into state 0, conditional on start-

ing in state i ∈ S, is given by,

ai = P (T <∞|X(0) = i), for i ∈ S.

The following theorem gives us a way to calculate ai for i ∈ S.

Theorem 2.1.4 (Theorem 3.3.1. of Norris [16]). The vector of absorption prob-

abilities (ai : i ∈ S) is the minimal non-negative solution to the system of linear

equations 
ai = 1, for i = 0,∑
j∈S

qijaj = 0, for i 6= 0.
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Recall that we are interested is the mean hitting time. Let τi = E [T |X(0) = i]

be the expected time to hit state 0, conditional on starting in state i, which is

the mean hitting time from state i in the continuous time setting. The following

theorem allows us to obtain values for τi.

Theorem 2.1.5 (Theorem 3.3.3. of Norris [16]). Assume that qi > 0 for all i 6= 0.

The vector of mean hitting times (τi : i ∈ S) is the minimal non-negative solution

to the system of linear equations
τi = 0, for i = 0,∑
j∈S

qijτj = −1, for i 6= 0.

Another performance measure of interest to us is the expected total cost. Let

• cj be the cost per unit time of being in state j, for j ∈ S,

• K be the random variable describing the total cost incurred before the pro-

cess is absorbed into state 0, and

• χi = E[K|X(0) = i] be the expected total cost incurred before the process

is absorbed into state 0, conditional on starting in state i ∈ S.

The following theorem gives us a way to calculate the vector of expected total

costs.

Theorem 2.1.6. The vector of expected total costs is the minimal non-negative

solution to the system of linear equations
χi = 0, for i = 0,∑
j∈S

qijχj = −ci, for i 6= 0.

Note that this theorem is based on Theorem 4.2.4. of Norris [16] where we consider

uniformisable continuous-time Markov chains of the form specified earlier for this

section.
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As will be required later in this thesis (Chapter 6), we note that the expected total

cost χi, for i 6= 0, can be written in matrix form, since χ0 = 0, as

Qsχ = −c,

where

• Qs is the sub-matrix of the generator matrix Q containing the rates qij for

i, j = 1, . . . , n,

• c is the column vector containing the costs cj for j = 1, . . . , n, and

• χ is the column vector containing the expected total costs χj for j = 1, . . . , n.

Hence, the expected total costs vector χ is easily obtained by

χ = −Q−1
s c,

provided Qs is finite-dimensional and has spectral radius less than zero.

Since the mean hitting times is the expected total cost where c is a vector of ones,

the mean hitting times vector τ is easily obtained by

τ = −Q−1
s 1,

again provided Qs is finite-dimensional and has spectral radius less than zero.

Now that we have considered the background required for Markov chains, let us

discuss the background for the other major concept, intervals and interval arith-

metic.

2.2 Intervals

There are many situations where we round off answers or give approximate solu-

tions to equations that we solve. Should we accept these approximate solutions
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or would it be better if we could provide bounds in which the exact solution lies?

If we can provide bounds on the solution, then we can be certain that we have

captured the true solution up to a stated precision. There are also situations when

an experiment is performed and the experimental values may only be known to

a certain degree of accuracy. If we use these experimental results in further cal-

culations, we would only be able to obtain approximate answers. However, if we

could bound the true value and use these bounds in our calculation, we can then

be certain that the true solution lies within its bounds. Using this method, not

only are we able to give an approximation to the true solution, but we can also

specify the margin of error for the approximation.

Based on this idea of bounding, it is of interest to consider the use of intervals.

Interval analysis [14] allows us to analyse and perform calculations on intervals

which contain the true solution. There are a variety of intervals that exist in

mathematics but we focus primarily on closed intervals. Hence, whenever we

mention intervals, we mean closed intervals. We present the following definitions

and examples in this Section 2.2 which arise from Moore et al. [14].

An interval [a, b] can be represented in set notation as follows,

[a, b] = {x ∈ R : a ≤ x ≤ b}.

Following the notation used in [14], an interval and its endpoints are denoted by

capital letters. So the interval X is represented as X = [X,X], where X is the

lower bound and X is the upper bound of the interval.

One of the things we can do with intervals is to perform basic arithmetic op-

erations on intervals such as addition, subtraction, multiplication and division.

Since interval representation is interchangeable with set notation representation,

all arithmetic operations on the intervals X and Y can be represented in set no-

tation as

X � Y = {x� y : x ∈ X , y ∈ Y },
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where � represents the arithmetic operator and we assume for division that

0 /∈ Y .

Although this specifies the set we are interested in, it is not a convenient way of

obtaining an interval. An easier method of performing arithmetic operations is to

use the endpoints of the intervals X and Y . We detail these methods below.

• Addition

X + Y =
[
X + Y ,X + Y

]
,

• Subtraction

X − Y =
[
X − Y ,X − Y

]
,

• Multiplication

X · Y = [minS,maxS] , where S =
{
X Y ,XY ,XY ,X Y

}
,

• Division

X/Y = X · (1/Y ), where 1/Y = {y : 1/y ∈ Y \{0}} =
[
1/Y , 1/Y

]
.

We can also extend intervals to vectors and matrices. An interval vector is a vector

whose elements are intervals. For example, the 1×2 interval vector X is expressed

as follows

X = (X1, X2) =
([
X1, X1

]
,
[
X2, X2

])
.

Similarly, an interval matrix A is a matrix whose elements are intervals and can

be expressed, for example, as

A =

A11 A12

A21 A22


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where Aij =
[
Aij, Aij

]
for i, j = 1, 2.

An interesting phenomenon that occurs in interval analysis is interval dependency

which affects the bounds of the interval we are calculating. Consider the following

example.

We define X2 = {x2 : x ∈ X} which can be expressed in interval notation as

X2 =



[
X2, X

2
]
, 0 ≤ X ≤ X,[

X
2
, X2

]
, X ≤ X ≤ 0,[

0,max
{
X2, X

2
}]

, X < 0 < X.

In normal arithmetic, we know that x2 = x·x. However, when dealing with interval

arithmetic, due to interval dependency, X2 6= X ·X.

For example, consider X = [−1, 1]. This gives

X2 = [−1, 1]2 = [0, 1] whilst X ·X = [−1, 1] · [−1, 1] = [−1, 1].

Here, we note that X2 ⊆ X ·X. The reason for this is due to the fact that when we

calculate the interval X ·X, we are able to choose two different x values from the

interval, but when we calculate X2, we use a single value of x from the interval.

This is clearly illustrated in set notation, since

X2 = {x2 : x ∈ X} whilst X ·X = {x1 · x2 : x1 ∈ X, x2 ∈ X}.

Hence, care must be taken when dealing with intervals.

Interval arithmetic is not restricted to the basic arithmetic operations, instead,

functions of intervals can also be considered. We have already encountered an

example of this when considering X2. It would be ideal if we could obtain exact

bounds for any interval function. That is, we would like to be able to compute the

set of function values when we vary x over its interval X. If we have a function
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f of a single variable x, then the set obtained when we apply the formula f(x) to

x ∈ X, for some interval X, is given by

f(X) = {f(x) : x ∈ X}.

This is known as the image set.

Two interesting and key ideas when dealing with interval functions are interval

extension and united extension. The following definitions have been adapted from

Moore et al. [14] to make explicit interval notation.

Definition 2.2.1. F is an interval extension of f on X, if for all degenerate

interval arguments [x, x] ⊆ X, F agrees with f :

F ([x, x]) = [f(x), f(x)] , for x ∈ X.

Definition 2.2.2. If we have an interval extension of f , obtained by applying

the formula directly using intervals, which yields the desired set image, then this

extension is termed the united extension of f . That is, if F (X) is an interval

extension of f(x) and F (X) = f(X), then F (X) is the united extension of f .

For example, if we consider the following functions

f(x) = x(1− x) and g(x) = 1
4
−
(
x− 1

2

)2
, x ∈ [0, 1].

As the x values range between 0 and 1, the values of f(x) and g(x) range from 0

to 1
4
. Hence, we have

f([0, 1]) = g([0, 1]) = [0, 1
4
].

Now if we form interval extensions of f and g, we obtain

F (X) = X · (1−X), X =
[
X,X

]
,

and

G(X) = 1
4
−
(
X − 1

2

)2
, X =

[
X,X

]
.
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Thus, giving us F ([0, 1]) = [0, 1] and G([0, 1]) =
[
0, 1

4

]
. Both are interval exten-

sions of their respective functions, but F (X) 6= f(X) whilst G(X) = g(X) = f(X).

So we have found the united extension of the function g. We also know that f is

equivalent to g in ordinary arithmetic. Hence, we have found the united extension

of f as well.

This is just one of many cases where applying the formula directly to intervals

does not result in the desired set image. Another thing of note, as shown in the

example above, is that there are many cases where although two expressions may

be equivalent in ordinary arithmetic, when we extend to intervals, these expressions

may no longer be equivalent. Thus, re-emphasising the need to be careful when

dealing with intervals. Hence, we define minimal intervals to be intervals which

contain the true solution and have the smallest width.

Interval arithmetic and analysis is not restricted to analytic calculations by hand.

There are software packages that implement interval arithmetic. One such package

is INTLAB [21] which is used within the MATLAB environment. Like other avail-

able packages, INTLAB rounds the answer outwardly before displaying results.

This means that the final displayed answer (given to a fixed number of decimal

places) will contain the true solution.

This gives us a basic understanding of interval analysis and we use the above

concepts and ideas as we progress.

2.3 Incorporating intervals into Markov chains

In Sections 2.1 and 2.2, we discussed the important ideas of intervals and Markov

chains separately. Now, we look to combine intervals with Markov chains. We

focus on discrete-time Markov chains and note that the incorporation of intervals

follows in a similar way for continuous-time Markov chains.
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Consider a discrete-time Markov chain, Xm, with n + 1 states, S = {0, 1, . . . , n}

with state 0 an absorbing state. Recall that for a general discrete-time Markov

chain, the transition probability of moving from state i to state j in a single time

step is given by P (Xm+1 = j|Xm = i) and depends on the time step m. These

probabilities form the transition probability matrix mP . To incorporate intervals

into a discrete-time Markov chain, we can specify an interval of probabilities for

the transition probability matrix, mP . These discrete-time Markov chains are now

known as discrete-time interval Markov chains and they have an interval transition

probability matrix denoted by mP which is represented as follows,

mP =



[
mP 00,mP 00

] [
mP 01,mP 01

]
· · ·

[
mP 0n,mP 0n

]
[
mP 10,mP 10

] [
mP 11,mP 11

]
· · ·

[
mP 1n,mP 1n

]
...

...
. . .

...[
mP n0,mP n0

] [
mP n1,mP n1

]
· · ·

[
mP nn,mP nn

]


.

This appears to be a simple replacement of point estimates with intervals in the

transition probability matrix. However, there exist some intricacies in this replace-

ment as we are dealing with Markov chains. Thus, there are a number of ways

we can incorporate intervals into the transition probability matrix. The choice

we make depends on the idea of preserving the assumption of time homogeneity

which can be blurred when we deal with interval probabilities.

Recall from Section 2.1 that a time-homogenous Markov chain has the following

property

Pij = P (Xm+1 = j|Xm = i) = P (X1 = j|X0 = i), for all i, j ∈ S and m ∈ Z+.

This tells us that the probability of moving from state i to state j in a single time

step only depends on the states i and j and not on the actual time m. Hence, the

one-step transition probability matrix, P , is constant over time.
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This is where there lies some ambiguity when incorporating intervals to Markov

chains and because of this, we have created our own terminology to describe time

homogeneity and interval probabilities. We decided on the following terminology

for interval transition probability matrices where we make a distinction between a

time-homogeneous Markov chain and a time-homogeneous interval matrix.

Time-homogeneous interval matrix: The same interval matrix is used at each

time step. This is a simple extension of a time-homogeneous Markov chain

to the intervals where we replace point estimates with intervals. Under this

class, we have two subclasses.

One-sample (Time-homogeneous Markov chain): The same value ini-

tially chosen from the interval matrix is used at each time step. This is

a direct correspondence with a time-homogeneous Markov chain where

the one-step transition probability matrix is constant over time.

Re-sampled (Time-inhomogeneous Markov chain): A different value

from the interval matrix can be chosen at each time step. This is differ-

ent from the standard time-homogenous Markov chain as the one-step

transition probability matrix is not constant over time, but the intervals

that contain the values are constant over time.

Time-inhomogeneous interval matrix: A different interval matrix is used at

each time step. This is an extension of a time-inhomogeneous Markov chain

and was explored by Hartfiel [8] and Hartfiel and Seneta [9]. The model

considered is known as Markov set-chains.

If time homogeneity is a property of the underlying stochastic system, then we

would like to preserve this property. The idea of holding the intervals in a tran-

sition probability matrix constant but allowing for variation in the choice of the

elements within the intervals was explored by Škulj [23, 22]. Although this up-

holds the idea of time homogeneity for interval matrices, it does not have a di-
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rect link with the time-homogeneous Markov chain that is widely described in

the literature of Markov chains. Instead, we are more interested in the one-sample

time-homogeneous interval matrix, or time-homogeneous Markov chain, which was

explored by Kozine and Utkin [12], Campos et al. [3], Crossman et al. [5, 6] and

Blanc and den Hertog [2].

2.4 Literature review

In this section, we explain what other researchers have managed to accomplish

through their use of intervals when dealing with Markov chains. As mentioned

previously, we are interested in the one-sample time-homogeneous interval matrix.

Hence, in the following, we focus on the works of Kozine and Utkin [12], Campos

et al. [3], Crossman et al. [5, 6] and Blanc and den Hertog [2].

Both Kozine and Utkin [12] and Campos et al. [3] looked at calculating the proba-

bility of a Markov chain being in state i = 1, . . . , n at time step k = 1, 2, . . . which

can be calculated as follows,

xk = Pxk−1,

where xk is a vector of probabilities of being in states i = 1, . . . , n at time step

k and P is the transition probability matrix. Under normal circumstances, we

have

xk = Pxk−1

= P2xk−2

...

= Pkx0.

However, when dealing with intervals, the above formulations may not be equiva-

lent. Recall in Section 2.2, we saw that X2 6= X · X. Thus, the same care must

be taken here as P2 may not be equal to P× P.
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Kozine and Utkin [12] developed a method of calculating xk at each time step by

using xk−1 and this method returned the upper and lower bounds for these proba-

bilities. Although some papers [23, 22, 5] state that Kozine and Utkin [12] consider

a time-homogeneous Markov chain (i.e. with a one-sample time-homogeneous in-

terval matrix), this is not entirely true when their method is used to calculate

the upper and lower bounds of the interval. In the original formulation of their

problem, they allow for some variation in the interval transition probability matrix.

That is, instead of choosing the same value of Pij at each time step, they allow this

value to change within the intervals, which remain constant. The confusion arises

when we compare their original formulation of the problem and the revised formu-

lation used to calculate the upper and lower bounds for the probabilities. In the

revised formulation, they use the same upper and lower bounds of the interval tran-

sitional probability matrix. Hence, making it seem like they are just taking a single

sample and using the same Pij in all their calculations. However, the problem lies

with the idea we discussed in Section 2.2 where X2 6= X ·X for intervals. By using

xk−1 to calculate xk, it brings in the idea of re-sampling as instead of calculating

xk = Pxk−1 = P2xk−2, the calculation performed is xk = Pxk−1 = P×Pxk−2.

Since they are actually re-sampling from the intervals, as the number of time steps

increases they will obtain wider intervals for the probabilities of being state i, than

necessary. This was shown and stated in the paper by Campos et al. [3]. Since the

Kozine and Utkin [12] method produces exact intervals after a single time step,

we can use it to calculate bounds on the probabilities xk when we have Pk−1 and

x0. It is this idea that was explored by Campos et al. [3] to reduce the width of

the intervals at the second time step. They modified the Kozine and Utkin [12]

method by developing an algorithm to calculate P2 and then used it to calculate

x2 = P2x0. By combining their algorithm and the method by Kozine and Utkin

[12], they were able to obtain exact bounds on the probabilities x2. Campos et al.

[3] note that the general problem of calculating exact intervals for 3-step transition



30 2.4. Literature review

probabilities using the algorithm they have developed is NP-hard. However, they

hold out hope that a sub-problem may not be NP-hard.

Crossman et al. [5] considered the long term behaviour and quasi-stationary be-

haviour in the framework of a time-homogeneous birth-death processes. They dis-

cuss the idea of time-homogeneity carefully and explicitly state that they consider

constant transition probabilities and constant bounds on the transition probabili-

ties. Hence, this corresponds to our definition of a one-sample time-homogeneous

interval matrix. This is of interest to us as they consider the birth and death pro-

cesses, which we consider in Chapter 5, where the rows of the transition probability

matrix are independent. The other paper by Crossman et al. [6] also considers the

quasi-stationary behaviour for the one-sample time-homogeneous interval matrix

as well as the re-sampled time-homogeneous interval matrix. However, as these

papers consider the quasi-stationary distribution only, we do not go into further

detail of their work.

Blanc and den Hertog [2] considered the same problem as the one of interest to

us in a discussion paper in 2008. They incorporated uncertainty in the transition

probabilities by considering lower and upper bounds on the transition probabili-

ties, as we have done, in so-called box uncertainty, but also study another form of

uncertainty, ellipsoidal uncertainty. Since we are more interested in the first type

of uncertainty, we analyse their work in that area in more detail. Blanc and den

Hertog proceeded to investigate a method to obtain intervals on the following per-

formance measures for Markov chains: limiting distributions, mean sojourn times

in transient states, absorption probabilities for absorbing states and probabilities

of being in states after m steps. As will be discussed in Chapter 3, we are inter-

ested in the mean hitting times and the expected total costs of Markov chains.

Hence, we examine Blanc and den Hertog’s work in greater detail in Section 3.2

after presenting our problem of interest.
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2.5 Markov decision processes

A Markov decision process (MDP) is a way to model decision making processes

where we want to optimise a pre-defined objective in a stochastic environment. It

will be useful for us in Section 3.5 where we represent our interval calculation as

a Markov decision process problem.

2.5.1 Terminology

Here, we define the necessary terms used to describe a Markov decision process,

including decision times, states, actions, rewards and transition probabilities. We

present the following definitions which arise from Puterman [18].

Definition 2.5.1. Decision times are time points at which a decision is made.

We will only consider discrete time points and let T denote a set of discrete time

points. That is, let T = {0, 1, 2, . . . , N} where N can be finite or infinite which

corresponds to a finite-horizon or infinite-horizon problem, respectively.

Definition 2.5.2. The state space of the system contains the states the process

occupies at each time step. Let s denote a particular state of the system and let S

denote the set of states. Note it is assumed that S does not vary with time. Hence,

the set of states, S, remains the same at every time point.

Definition 2.5.3. Actions are what the decision maker can choose to do at each

decision time. For each state s ∈ S and time step t ∈ T , the decision maker

chooses an action a from the set of allowable actions, As, for that particular state.

Note that As does not vary with time.

There are two possible ways to choose an action from the action set. We can

either choose actions randomly or deterministically. By choosing actions deter-

ministically, this means that an action is chosen with probability 1. On the other

hand, if an action is chosen randomly, this means that an action a is chosen with

some non-trivial probability. Thus, it is not guaranteed that the same action will
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be chosen when the same state is visited at a later time step.

Definition 2.5.4. Given that an action a ∈ As is chosen in state s at time step

t, the decision maker receives some reward denoted by rt(s, a). This is some real-

valued function which can be positive if some reward is earned or negative if some

cost is incurred by the decision maker. The value of the reward is dependent on

the current state s, the action a chosen from the set of actions and the time step

t.

Definition 2.5.5. Transition probabilities describe the probability of moving from

one state to another. Let Pt(j|s, a) be the probability of moving to state j ∈ S in

the next time step given action a has been chosen and the process is currently in

state s at time step t. It is usually assumed that∑
j∈S

Pt(j|s, a) = 1.

The reason a Markov decision process is stated to be “Markovian” is because

the rewards and transition probabilities depend only on the current state and

the chosen action, not on any past history of the process. In addition to the

above terms, there are two other important concepts which are important for

MDPs.

Definition 2.5.6. A decision rule describes how an action is selected in each state

at a specified time point. Depending on how actions are chosen and how the past

history of the process is incorporated into decision rules, they can be determinis-

tic or randomised as well as Markovian or history dependent. As was discussed

earlier, actions can be chosen deterministically or randomly. This corresponds to

a deterministic decision rule or a randomised decision rule respectively. Further-

more, a decision rule can be history dependent or Markovian depending on the

amount of past information incorporated when the action is chosen. If no history

is required and the choice of action only depends on the current state of the system,

then the decision rule is said to be Markovian. On the other hand, if the choice of

action depends on the previous states of the process and/or previous actions, then
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the decision rule is said to be history dependent.

Definition 2.5.7. A policy is a sequence of decision rules and specifies the decision

rule to be used at all time points. Furthermore, a policy can also be stationary

or non-stationary. A stationary policy means that the choice of decision rule is

independent of time. Hence, the same decision rule is chosen at each time step.

On the other hand, a non-stationary policy is one where the choice of decision rule

depends on either the time or the past history.

These concepts are of great importance and will be referred to in Section 3.5.

2.6 Optimisation essentials

We present the following concepts and definitions which follow from Chong and

Zak [4].

An optimisation problem involves finding an optimal value of a given function on

a constrained or unconstrained region. Here, we will only consider constrained

optimisation problems of the form

min f(x)

subject to

hi(x) = 0, for i = 1, . . . , p,

gj(x) ≤ 0, for j = 1, . . . ,m, (2.6.3)

where x ∈ Rn, f : Rn → R, hi : Rn → R, gj : Rn → R and p ≤ n. Here, we have

stated the minimisation problem but note that the maximisation problem is the

same as minimising −f(x).

After solving the above optimisation problem, we obtain an optimal solution of

the objective function f . There are two types of optimal solutions, local and

global.
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Definition 2.6.1 (Local minimum/maximum). x∗ is a local minimum of the

constrained region if for some ε > 0, f(x∗) ≤ f(x) for all feasible x such that

||x − x∗|| < ε. Similarly, x∗ is a local maximum of the constrained region if for

some ε > 0, f(x∗) ≥ f(x) for all feasible x such that ||x− x∗|| < ε.

This definition basically tells us that within some region of the entire constrained

space, x∗ is an optimal solution on that region. To obtain strict local optima,

replace the inequalities with strict inequalities.

Definition 2.6.2 (Global minimum/maximum). x∗ is a global minimum of the

constrained region if f(x∗) ≤ f(x) for all x in the entire constrained region and

x∗ is a global maximum of the constrained region if f(x∗) ≥ f(x) for all x in the

entire constrained region.

This tells us that x∗ is the optimal solution on the entire constrained region.

Note that the global optimum may not be unique as we have not imposed strict

inequalities. Hence, to ensure that a unique global optimum has been obtained,

we replace the inequalities in Definition 2.6.2 with strict inequalities.

A useful property of the functions f , hi and gj is convexity which simplifies the

method used to solve the optimisation problem. First, we define a convex set.

Definition 2.6.3 (Convex set). A set C ⊆ Rn is convex if for all x,y ∈ C and

for all α ∈ [0, 1],

x + α (y − x) ∈ C.

This means that for a set C to be convex, any line joining two points in C must

lie within C.

Definition 2.6.4 (Convex function). A function f defined on a convex set C ⊆ Rn

is convex if

f (x + α (y − x)) ≤ f (x) + α (f (y)− f (x)) ,

for all x,y ∈ C and α ∈ [0, 1].
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This may not be the easiest and most practical way to check if a function is convex.

Instead, Theorem 2.6.1 might provide an easier way to check for convexity. Before

we present the theorem, we require some definitions.

Definition 2.6.5 (Positive semidefinite). A real, symmetric matrix A is positive

semidefinite if and only if zTAz ≥ 0 for all z.

Other equivalent ways of testing if a real, symmetric matrix A is positive semidef-

inite are:

• A is positive semidefinite if and only if all eigenvalues of A are non-negative,

• A is positive semidefinite if and only if all principal minors are greater than

or equal to 0, where principal minors are k × k subdeterminants formed by

successively removing a row and its associated column.

Now, let us consider the first and second partial derivatives of the function f . The

gradient of f consists of the (first) partial derivatives of f and is given by the

column vector

∇f(x) =



∂f

∂x1

∂f

∂x2

...

∂f

∂xn


.

The Hessian of f is a square matrix containing the second partial derivatives of f

and is represented as follows

Hf(x) =



∂2f

∂x2
1

∂2f

∂x1∂x2

· · · ∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f

∂x2
2

· · · ∂2f

∂x2∂xn
...

...
. . .

...

∂2f

∂xn∂x1

∂2f

∂xn∂x2

· · · ∂2f

∂x2
n


.
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Note that the Hessian is symmetric if the second partial derivatives of f are con-

tinuous.

Now we state a method to check for convexity of the function f using the Hessian

matrix, Hf .

Theorem 2.6.1. Provided the second partial derivatives of f exist (that is, Hf

exists), f is convex on the convex set C if and only if Hf(x) is positive semidefinite

on C (that is, if and only if zTHf(x)z ≥ 0 for all x ∈ C and for all z).

After solving the optimisation problem and obtaining a solution to the objective

function, how do we know that this solution is optimal? First and second-order

optimality conditions allow us to determine if a point in the feasible region is

optimal. Before we state these conditions, let us define some terms needed for

the optimality conditions. The presentation below follows from Chong and Zak

[4].

Definition 2.6.6 (Active). I(x) = {j : gj(x) = 0} is the set of active constraints.

Definition 2.6.7 (Regular point). Let x∗ satisfy hi(x
∗) = 0, for i = 1, . . . , p,

gj(x
∗) ≤ 0, for j = 1, . . . ,m, and let I(x∗) be the set of active constraints at x∗.

Then x∗ is a regular point if the set of vectors
{
∇hi(x∗), for all

i = 1, . . . , p and ∇gj(x∗), j ∈ I(x∗)
}

are linearly independent.

The following theorem gives us the first-order necessary condition for a point x∗

to be a local minimiser of f .

Theorem 2.6.2 (Karush-Kuhn-Tucker (KKT) Theorem). Let f , hi, for all

i = 1, . . . , p and gj, for all j = 1, . . . ,m, be sufficiently differentiable (that is,

∇f , ∇hi, for all i = 1, . . . , p and ∇gj, for all j = 1, . . . ,m exist). Let x∗ be a

regular point and a local minimiser of f(x) such that hi(x) = 0, for all i = 1, . . . , p

and gj(x) ≤ 0, for all j = 1, . . . ,m. Then, there exists µi ∈ R, for all i = 1, . . . , p

and λj ∈ R, for all j = 1, . . . ,m such that:

1. ∇f(x∗) +

p∑
i=1

µi∇hi(x∗) +
m∑
j=1

λj∇gj(x∗) = 0,
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2. λigi(x
∗) = 0, for all i = 1, . . . ,m, and

3. λi ≥ 0 for all i = 1, . . .m.

A definition required for the second-order conditions is the Lagrangian function.

Definition 2.6.8 (Lagrangian function). The Lagrangian function is given by

l(x,µ,λ) = f(x) +

p∑
i=1

µihi(x) +
m∑
j=1

λjgj(x).

Then, we let L(x,µ,λ) be the Hessian matrix of l(x,µ,λ) with respect to x:

L(x,µ,λ) = Hf(x) +

p∑
i=1

µiHhi(x) +
m∑
j=1

λjHgj(x),

whereHf(x) is the Hessian matrix of f at x and similarly forHhi(x) andHgj(x).

In the theorem for the second-order sufficient conditions, we use the following

set:

T (x∗,λ) =
{

y : ∇hi(x∗)Ty = 0, for all i = 1, . . . , p

and ∇gj(x∗)Ty = 0, j ∈ Ĩ(x∗,λ)
}
,

where Ĩ(x∗,λ) = {i : gi(x
∗) = 0, λi > 0}.

Now that we have defined all terms required, we state the second-order sufficient

conditions for a point x∗ to be a strict local minimiser of f .

Theorem 2.6.3 (Second-Order Sufficient Conditions). Suppose that f , hi, for all

i = 1, . . . , p and gj, for all j = 1, . . . ,m, are sufficiently differentiable (that is,

Hf , Hhi, for all i = 1, . . . , p and Hgj, for all j = 1, . . . ,m exist) and there exists

a feasible point x∗ ∈ Rn and µi ∈ R, for all i = 1, . . . , p and λj ∈ R, for all

j = 1, . . . ,m such that:

1. ∇f(x∗) +

p∑
i=1

µi∇hi(x∗) +
m∑
j=1

λj∇gj(x∗) = 0,

2. λigi(x
∗) = 0, for all i = 1, . . . ,m,
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3. λi ≥ 0 for all i = 1, . . .m, and

4. For all y ∈ T (x∗,λ),y 6= 0, we have yTL(x∗,µ,λ)y > 0.

Then, x∗ is a strict local minimiser of f subject to hi(x) = 0, for all i = 1, . . . , p

and gj(x) ≤ 0, j = 1, . . . ,m.

This concludes the background chapter which states definitions, notation and other

material required in later chapters. Throughout all chapters, we will endeavour

to re-state or refer the reader back to any useful background material to allow for

easier reading. In the next chapter, we focus on developing theoretical properties

for calculating the interval of expected total costs for discrete-time and continuous-

time interval Markov chains.



Chapter 3

Markov chains: Analytic

investigation

Markov chains are used in a wide variety of areas to model processes which evolve

randomly over time. The tractable nature of Markov chains is a reason for their

attractiveness as it allows various performance measures to be easily obtained. In

Chapter 2, we discussed the common practice of using point estimates of transition

probabilities in the transition probability matrix and also introduced the idea of

using intervals to allow us to take into account uncertainty in the estimates of

the transition probabilities. The combination of intervals and Markov chains are

known as interval Markov chains.

In this chapter, we first consider discrete-time interval Markov chains and seek

to obtain intervals for the expected total costs. To do so, we explore theoretical

properties which simplify our problem and investigate if an analytic solution exists.

After exploring theoretical properties for discrete-time interval Markov chains, we

turn our attention to continuous-time interval Markov chains and consider the use

of uniformisation (Section 2.1.2) to exploit the theoretical properties developed for

discrete-time interval Markov chains and the transformations required to obtain

39
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the desired performance measures.

3.1 Description of problem

Consider a discrete-time interval Markov chain (Xm,m ∈ Z+) with n + 1 states,

S = {0, 1, . . . , n}, where state 0 is an absorbing state. Assume Xm has an interval

transition probability matrix,

P =


[1, 1] [0, 0] · · · [0, 0][

P 10, P 10

]
... Ps[

P n0, P n0

]



=



[1, 1] [0, 0] · · · · · · · · · [0, 0][
P 10, P 10

] [
P 11, P 11

]
· · · · · · · · ·

[
P 1n, P 1n

]
...

...
. . .

...
...

...[
P i0, P i0

] [
P i1, P i1

]
· · ·

[
P ij, P ij

]
· · ·

[
P in, P in

]
...

...
. . .

...
...

...[
P n0, P n0

] [
P n1, P n1

]
· · · · · · · · ·

[
P nn, P nn

]


where

0 ≤ P ij ≤ 1, for all i = 1, . . . , n and j = 0, . . . , n, (3.1.1)

0 ≤ P ij ≤ 1, for all i = 1, . . . , n and j = 0, . . . , n, (3.1.2)

P ij ≤ P ij, for all i = 1, . . . , n and j = 0, . . . , n, (3.1.3)

and there exists a realisation

Pij ∈
[
P ij, P ij

]
, for all i = 1, . . . , n and j = 0, . . . , n, (3.1.4)

such that

n∑
j=0

Pij = 1, for all i = 1, . . . , n. (3.1.5)
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The above conditions ensure that:

• the end-points of the intervals are valid probabilities (3.1.1 - 3.1.2);

• the lower bound of the intervals are not bigger than the upper bounds (3.1.3);

and,

• there exists probabilities within the intervals that sum to 1 for each row of

the matrix (3.1.4 - 3.1.5).

That is, these conditions ensure that there exists a valid stochastic matrix with

its elements contained within the specified intervals. We now seek to evaluate the

interval expected total cost of a discrete-time interval Markov chain.

Recall that χi is defined to be the expected total cost incurred before the process

is absorbed into state 0, conditional on starting in state i. We can calculate it

using,

χ = (I − Ps)
−1 c,

where I is the identity matrix of the same size as Ps, c is a vector of costs per

visit and Ps is the sub-matrix of the transition probability matrix P . However,

recall that there are requirements on Ps to ensure that (I − Ps)
−1 is well defined.

A sufficient condition is that Ps is finite-dimensional and has a spectral radius less

than 1. The matrix Ps is finite-dimensional since our state space, S, is finite.

For Ps to have a spectral radius of 1, there must exist an absorbing state or

absorbing sub-class, under Ps, in {1, 2, . . . , n}. Equivalently, this means that the

probability of absorption to state 0 is not equal to 1 for some state j ∈ S, since

there is a chance that the process might be absorbed into the absorbing state or

absorbing sub-class, under Ps, in {1, 2, . . . , n} as opposed to being absorbed into

state 0. To ensure that Ps has a spectral radius less than 1 and hence (I − Ps)
−1 to

be well defined, we require the probability of absorption to state 0 from all states

j ∈ S to equal 1.
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Let us define the interval expected total cost to be

[
χ,χ

]
= (I − Ps)

−1 c, (3.1.6)

where χ and χ represent the lower and upper bound on the expected total costs

respectively and Ps is the sub-matrix of the interval matrix P. As before with

the non-interval case, we have the same problem that (I − Ps)
−1 may not be well

defined. Unlike the non-interval case where there is a single Ps matrix to work

with, for the interval version, Ps represents a range of possible Ps matrices. To

ensure that every possible Ps has a spectral radius less than 1, stringent constraints

are needed on P, for example, P ij > 0 for all i, j = 1, . . . , n. However, this greatly

reduces the range of problems we can consider. We could also consider imposing

other constraints on the problem which are less restrictive but these may be too

difficult to handle both analytically and numerically.

Hence, we consider problems with an interval matrix P such that there exists a

realisation P ∈ P with sub-matrix Ps that has a spectral radius less than 1. This

means that there exists a matrix P ∈ P such that (I − Ps)
−1 is well defined and

also allows us to obtain a solution for χ. Thus, as long as this property holds,

we have a well-defined problem which ensures that we are able to find the interval

expected total cost for the discrete-time interval Markov chain.

3.2 Possible methods to obtain interval expected

total costs

There are a number of methods which could be used to calculate the interval

expected total cost for a given discrete-time interval Markov chain. However,

recall that we want to calculate minimal intervals, which are intervals of smallest

width containing the true solution.
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A possible method for calculating the interval expected total cost is to solve the in-

terval system of linear equations corresponding to (3.1.6) using INTLAB (Section

2.2). However, the methods used by INTLAB are iterative. This causes prob-

lems with imposing the required constraints on the interval transition probability

matrix, P, as well as preserving the same choice of Pij at each time step. Recall

that we need to preserve the choice of Pij at each time step to retain the idea of a

time-homogeneous discrete-time Markov chain as well as ensuring intervals are as

tight as possible (due to the difference between X ·X and X2). The other impor-

tant condition required is to ensure that each realisation of the interval transition

probability matrix has a row sum of 1. However, we are unable to ensure that

this condition is satisfied when using interval arithmetic and INTLAB to solve the

problem. Hence, using INTLAB to calculate the interval expected total cost does

not satisfy our requirements and so another method has to be developed.

We decided to solve for the interval expected total cost using optimisation tech-

niques. That is, we seek to minimise and maximise the expected total cost for each

state of our interval Markov chain. Note that this is the classical method of finding

the expected total cost without intervals. This then gives us the lower and upper

bounds on the expected total cost. Thus, for n states, this means solving a total

of 2n optimisation problems, each of which are described in Section 3.2.1.

First, recall that we briefly discussed the work of Blanc and den Hertog in Section

2.4. Here, we examine their method in greater detail for obtaining the mean

sojourn times in transient states as this is directly related to our problem, which

is to obtain the expected total costs for a discrete-time interval Markov chain.

The following presentation goes through the method developed by Blanc and den

Hertog and hence follows closely the presentation of the authors [2].
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Consider a transition probability matrix with the following form,

P =

I O

R Q

 ,

where Q is a matrix containing the transition probabilities of moving from one

transient state to another, R is a matrix containing the transition probabilities

of moving from a transient state to an absorbing state, O is a matrix of zeros as

this represents the probabilities of leaving an absorbing state and I is the identity

matrix representing the probabilities of remaining in absorbing states. Since row

sums of a transition probability matrix must sum to 1, Q1 +R1 = 1.

The problem we are interested in is Blanc and den Hertog’s calculation of the

mean sojourn time from some state k in the set of transient states, given there

is some initial distribution q0 over the set of transient states. Since they are

interested in obtaining intervals on the mean sojourn times, optimisation problems

are considered to minimise and maximise the mean sojourn time given a set of

constraints. The optimisation problem of interest is of the form

min
(Q,R)∈U

{
qT

0 (I −Q)−1 c|Q1 +R1 = 1
}
,

where U is an interval uncertainty region defined by,

Q ≤ Q ≤ Q and R ≤ R ≤ R.

Since we require Q1 + R1 = 1, this implies that the upper and lower bounds on

Q and R should also satisfy the following condition,

Q1 +R1 ≤ Q1 +R1 ≤ Q1 +R1.

Furthermore, it is noted that since the matrix R is not of interest itself, the above

constraint can be reduced to 1−R1 ≤ Q1 ≤ 1−R1.

The novelty of Blanc and den Hertog’s method is the idea of introducing new

variables to transform the above non-linear optimisation problem into a linear op-
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timisation problem. The benefit of this transformation is that linear programs are

typically easier and quicker to solve than non-linear optimisation problems.

The non-linearity of the problem appears in (I −Q)−1 which forms part of the ob-

jective function. Thus, to remove this, the vector vT = qT
0 (I −Q)−1 is introduced

to transform the optimisation problem into the form,

min
v,Q

{
vTc|vT (I −Q) = qT

0 , Q ≤ Q ≤ Q, 1−R1 ≤ Q1 ≤ 1−R1
}
.

Next, a new matrix Ξ with elements,

ξij = vi(Iij − qij), for i, j ∈ T ,

where T represents the set of transient states, can be introduced to transform

the non-linear constraints vT (I −Q) = qT
0 to linear constraints of the form

1TΞ = qT
0 .

Furthermore, imposing this transformation on the original variables does not

change the linearity of the row sums. The new constraints on the row sums are

given by,

vi
∑
`∈A

ri` ≤
∑
j∈T

ξij ≤ vi
∑
`∈A

ri` , i ∈ T ,

where A represents the set of absorbing states.

Hence, the full linear program can be written as,

min
v,Ξ

{
vTc

∣∣∣∣∣1TΞ = qT
0 , vi(Iij − qij) ≤ ξij ≤ vi(Iij − qij), i, j ∈ T ,

vi
∑
`∈A

ri` ≤
∑
j∈T

ξij ≤ vi
∑
`∈A

ri`, i ∈ T

}
.

For the above linear problem, there are N2 + N decision variables, N equality

constraints and 2 × (N2 + N) inequality constraints, where N is the number of

transient states for the Markov chain. Note that a constraint of the form a ≤ x ≤ b
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is considered to be 2 separate inequality constraints, a ≤ x and x ≤ b. Hence,

resulting in 2×(N2+N) inequality constraints as opposed to the N2+N inequality

constraints reported by [2].

Unfortunately, we found this unpublished discussion paper by Blanc and den Her-

tog [2] just as this thesis was being completed. Thus, we were unable to fully

utilise this method. Throughout the duration of this project, we have explored

the theoretical properties (Chapter 3) and developed our own numerical method

(Chapter 4) for the original non-linear optimisation problem, which is discussed

in more detail in Section 3.2.1. Therefore, we have only provided a numerical

comparison of Blanc and den Hertog’s method with the method we developed in

Section 4.10.

3.2.1 Optimisation problems

Since we seek to minimise and maximise the expected total cost for each state, the

objective function we are interested in is given as follows for each state

k = 1, . . . , n,

χk =
[
(I − Ps)

−1 c
]
k
,

where

Ps =



P11 · · · · · · · · · P1n

...
. . .

...
...

...

Pi1 · · · Pij · · · Pin

...
...

...
. . .

...

Pn1 · · · · · · · · · Pnn


,

is a realisation of the interval Ps matrix and Pij are the decision variables for this

problem.
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Thus, this is the function we seek to minimise and maximise subject to the follow-

ing constraints,

1− P i0 ≤
n∑

j=1

Pij ≤ 1− P i0, for i = 1, . . . , n,

P ij ≤ Pij ≤ P ij, for i, j = 1, . . . , n.

We note that these conditions follow from (3.1.1 - 3.1.5) as we combine the follow-

ing equations,

n∑
j=0

Pij = 1, for i = 1, . . . , n,

P i0 ≤Pi0 ≤ P i0, for all i = 1, . . . , n,

to remove the redundancy in the original constraints.

Here, we state the minimisation problem formally and note that the maximisation

problem follows by maximising instead of minimising the objective function.

For each state k = 1, . . . , n, we want to solve the following problem to obtain the

lower bounds on the expected total costs.

minχk =
[
(I − Ps)

−1 c
]
k
,

subject to

1− P i0 ≤
n∑

j=1

Pij ≤ 1− P i0, for i = 1, . . . , n,

P ij ≤ Pij ≤ P ij, for i, j = 1, . . . , n.

Recall that two important and useful properties commonly used in optimisation

problems are the gradient and the Hessian. Here, we investigate analytic expres-

sions for the gradient and Hessian of χk.
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Gradient

The following theorem provides us with a method to calculate the gradient of the

objective function for each state k of the Markov chain, for k = 1, . . . , n. First,

we introduce an ordering of the variables. As the gradient is an n2 × 1 vector

where each element is found by differentiating the objective function with respect

to an element in Ps, we need some way to order the variables. That is, we need

an ordering to represent an n× n matrix using an n2 × 1 vector. The ordering we

use is to consider stacking the rows of the Ps matrix alongside each other, which

is the lexicographic ordering. Thus, the n2 × 1 vector is represented by,

[
(1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (2, n), (3, 1), . . . , (n− 1, n), (n, 1), . . . , (n, n)

]T
,

where (i, j) represents the ijth element of the Ps matrix.

Theorem 3.2.1. For each state k = 1, . . . , n, the gradient of χk is an n2×1 vector

and is given by

∇χk =

[
∂ χk

∂Pij

]
i,j=1,...,n

=
[[

(I − Ps)
−1]

ki

[
(I − Ps)

−1 c
]
j

]
i,j=1,...,n

,

ordered as above. That is, the gradient is of the form:

∇χk =



[
(I − Ps)

−1]
k1

[
(I − Ps)

−1 c
]

1
...[

(I − Ps)
−1]

k1

[
(I − Ps)

−1 c
]
n

...[
(I − Ps)

−1]
kn

[
(I − Ps)

−1 c
]

1
...[

(I − Ps)
−1]

kn

[
(I − Ps)

−1 c
]
n


.

Proof. To prove the above theorem, we need the following properties of matrix
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differentiation [17]:

∂ (X−1)kl
∂Xij

= −
(
X−1

)
ki

(
X−1

)
jl
, for all i, j, k and l, (3.2.7)

∂(XY) = (∂X)Y + X(∂Y). (3.2.8)

For our case, let X = (I − Ps) and so we can re-write the objective function as

χk =
[
X−1c

]
k
, for k = 1, . . . , n.

Therefore,

∂ (X−1)kl
∂Pij

=
∂ (X−1)kl
∂Xij

dXij

dPij

, for all i, j, k and l. (3.2.9)

Furthermore, note that

dXij

dPij

=
d (I − Ps)ij

dPij

= −1. (3.2.10)

Thus, for each state k = 1, . . . , n and for i, j = 1, . . . , n, we have[
∇χk

]
(i,j)

=
∂ χk

∂Pij

=
∂ (X−1c)k
∂Pij

=

{(
∂X−1

∂Pij

)
c

}
k

+

{
X−1

(
∂c

∂Pij

)}
k

, from (3.2.8)

=
n∑

`=1

c`
∂ (X−1)k`
∂Pij

+ 0, since
∂c

∂Pij

= 0

=
n∑

`=1

c`
∂ (X−1)k`
∂Xij

dXij

dPij

, from (3.2.9)

=
n∑

`=1

c`

{
−
(
X−1

)
ki

(
X−1

)
j`

}
(−1) , from (3.2.7) and (3.2.10)

=
n∑

`=1

c`
(
X−1

)
ki

(
X−1

)
j`

=
(
X−1

)
ki

n∑
`=1

c`
(
X−1

)
j`

=
(
X−1

)
ki

(
X−1c

)
j
.
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Thus, the gradient of χk is given by

∇χk =
[[

(I − Ps)
−1]

ki

[
(I − Ps)

−1 c
]
j

]
i,j=1,...,n

, for k = 1, . . . , n.

Hessian

The Hessian of the objective function, χk, can be calculated using the following

theorem.

Theorem 3.2.2. For each state k, the Hessian of the objective function, χk, is an

n2 × n2 matrix and is given by

H χk =

[
∂2 χk

∂P`m∂Pij

]
i,j=1,...,n and `,m=1,...,n

=
[[

(I − Ps)
−1]

k`

[
(I − Ps)

−1]
mi

[
(I − Ps)

−1 c
]
j

+
[
(I − Ps)

−1]
ki

[
(I − Ps)

−1]
j`

[
(I − Ps)

−1 c
]
m

]
i,j=1,...,n and `,m=1,...,n

,

where i and j are in lexicographic order for rows, and ` and m are in lexicographic

order for columns, which is the same ordering as used in the gradient.

Proof. As with the proof of the gradient, we require the same properties of matrix

differentiation to prove the analytic form of the Hessian.

Define X = (I − Ps) and we have for state k = 1, . . . , n,

χk =
[
X−1c

]
k

and ∇χk =
[(

X−1
)
ki

(
X−1c

)
j

]
i,j=1,...,n

.

Recall that the Hessian is the second derivative of the objective function. Hence

to obtain the Hessian, we can either differentiate the objective function twice or

differentiate the gradient once to give us the following. For each state k = 1, . . . , n
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and for i, j = 1, . . . , n, we have[
H χk

]
(i,j),(`,m)

=
∂2 χk

∂P`m∂Pij

=
∂

∂P`m

∂ χk

∂Pij

=
∂

∂P`m

∂ (X−1c)k
∂Pij

=
∂

∂P`m

{(
X−1

)
ki

(
X−1c

)
j

}
, from gradient ∇χk

=
∂

∂X`m

{(
X−1

)
ki

(
X−1c

)
j

} dX`m

dP`m

, from (3.2.9)

=

[(
∂ (X−1)ki
∂X`m

)(
X−1c

)
j

+
(
X−1

)
ki

(
∂ (X−1c)j
∂X`m

)]
(−1),

from (3.2.8) and (3.2.10)

= −

[(
∂ (X−1)ki
∂X`m

)(
X−1c

)
j

+
(
X−1

)
ki

(
∂

∂X`m

n∑
r=1

cr
(
X−1

)
jr

)]

= −

[(
∂ (X−1)ki
∂X`m

)(
X−1c

)
j

+
(
X−1

)
ki

n∑
r=1

cr
∂ (X−1)jr
∂X`m

]

= −

[{
−
(
X−1

)
k`

(
X−1

)
mi

} (
X−1c

)
j
+

(
X−1

)
ki

n∑
r=1

cr

{
−
(
X−1

)
j`

(
X−1

)
mr

}]
, from (3.2.7)

=
(
X−1

)
k`

(
X−1

)
mi

(
X−1c

)
j

+
(
X−1

)
ki

(
X−1

)
j`

n∑
r=1

cr
(
X−1

)
mr

=
(
X−1

)
k`

(
X−1

)
mi

(
X−1c

)
j

+
(
X−1

)
ki

(
X−1

)
j`

(
X−1c

)
m
.

Hence, by replacing X with (I − Ps), we get

H χk =
[[

(I − Ps)
−1]

k`

[
(I − Ps)

−1]
mi

[
(I − Ps)

−1 c
]
j

+
[
(I − Ps)

−1]
ki

[
(I − Ps)

−1]
j`

[
(I − Ps)

−1 c
]
m

]
i,j=1,...,n and `,m=1,...,n

.

Recall that we mentioned in Section 2.6, if our objective function is convex then

the method used to solve the optimisation problem is simplified. Also recall that
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for a function to be convex, we require the function to be defined on a convex

set. All constraints of the problem are either linear constraints or bounds on the

decision variables Pij. Since each constraint is a linear function of Pij and all linear

functions are convex, these constraints form a convex region. Thus, the objective

function is defined on a convex set. Now, we need to determine if the objective

function is convex.

Recall from Section 2.6, that a function is convex on a convex set if and only if the

Hessian of the function is positive semidefinite on the convex set. To check if the

Hessian is positive semidefinite, we can check that all eigenvalues of the Hessian

are non-negative. We will show, by counter-example, that not all eigenvalues are

non-negative.

Let us consider a discrete-time interval Markov chain with the following interval

transition probability matrix,

P =


[1, 1] [0, 0] [0, 0]

[0.1, 0.2] [0, 0.3] [0.4, 0.7]

[0.2, 0.3] [0.1, 0.4] [0.5, 0.6]

 .

We are interested in obtaining the interval expected total cost for state k = 1

with costs ci = 1. Thus, this problem reduces to obtaining the interval mean

hitting time for the discrete-time Markov chain. The optimisation problem we are

interested in solving is

χ1 =
[
(I − Ps)

−1 1
]

1
,

subject to

1− P i0 ≤
n∑

j=1

Pij ≤ 1− P i0, for i = 1, . . . , n,

P ij ≤ Pij ≤ P ij, for i, j = 1, . . . , n,

for the given interval transition probability matrix above.
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Let us consider a realisation Ps of the interval Ps matrix,

Ps =

0.1 0.7

0.1 0.6

 .
The Hessian matrix of the objective function χ1 is

Hχ1 =


14.4327 8.3644 25.2573 14.6377

8.3644 3.2802 27.7147 17.6309

25.2573 27.7174 44.2003 48.5055

14.6377 17.6309 48.5055 51.6626

 ,

which has eigenvalues: −13.3626, 0, 11.9202 and 115.0182. Since the first eigen-

value is negative, our objective function χ1 is not convex. Hence, we have a

counter-example for the convexity of the general objective function and can con-

clude that the objective function

χk =
[
(I − Ps)

−1 c
]
k
,

is not necessarily convex.

Since the objective function is non-convex, we now seek other useful analytic prop-

erties to simplify the problem and also investigate if there is a simple analytic

solution before considering possible numerical methods to solve the optimisation

problems.

3.3 Simplification of the optimisation problems

Recall that the only constraints in our optimisation problems are the linear in-

equality constraints,

1− P i0 ≤
n∑

j=1

Pij ≤ 1− P i0, for i = 1, . . . , n,
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and the bounds on the decision variables,

P ij ≤ Pij ≤ P ij, for i, j = 1, . . . , n.

Also recall that we were able to remove the redundancy in the original constraints

and reduce the number of decision variables for our problem by combining con-

straints. Now, we would like to investigate if it is possible to simplify the problem

further. We can simplify the problem by reducing the two linear inequality con-

straints to a single linear equality constraint for each row i = 1, . . . , n of the Ps

matrix. By doing this, we obtain slightly different constraints for the minimisation

and maximisation problems. Note that from now on we will consider non-negative

costs, unless otherwise stated. Without the non-negativity condition, the following

simplifications do not hold. Furthermore, we note that most practical applications

involve the use of non-negative costs and in particular, applications of interest

to us, such as the mean hitting time and final epidemic size (Chapter 6), have

non-negative costs.

Let us first consider the minimisation problem. The idea behind the reduction of

two linear inequality constraints to a single linear equality constraint is based on

minimising the expected total cost. By minimising the expected total cost, this

means we want to maximise the probability of direct absorption from any state,

that is, set Pi0 = P i0, as no further costs are incurred after absorption. Similarly

for the maximisation problem, we want to maximise the expected total cost. Thus,

we want to minimise the probability of direct absorption from any state, that is,

setting Pi0 = P i0, to continue incurring cost. This results in the following linear

equality constraints for the minimisation and maximisation problems.

For the minimisation problem, the linear equality constraint is given by,

n∑
j=1

Pij = 1− P i0, for i = 1, . . . , n,
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whilst for the maximisation problem, we have,

n∑
j=1

Pij = 1− P i0, for i = 1, . . . , n.

We now provide proofs for these simplifications.

3.3.1 Minimisation problem

First, consider the minimisation problem and we want to prove the following the-

orem.

Theorem 3.3.1. For the minimisation problem, the following constraint

n∑
j=1

Pij = 1− P i0, for Pij ∈
[
P ij, P ij

]
and i = 1, . . . , n,

must be satisfied at the minimum expected total cost, χk, for any state k = 1, . . . , n.

The above theorem tells us that the minimum expected total cost, χk, for any

state k = 1, . . . , n, is obtained when the optimal value for Pi0, denoted by P ∗i0, is

equal to P i0, for all i = 1, . . . , n.

Proof. Consider a realisation P ∈ P with sub-matrix Ps that has a spectral radius

less than 1 and P`0 < P `0 for some fixed ` ∈ {1, . . . , n}. We show that such a

realisation can only result in a (global) minimum expected total cost if there also

exists a realisation with the same expected total cost that has P`0 = P `0.

Consider the problem of minimising the expected total cost, χk, for a fixed state

k ∈ {1, . . . , n} and also fix the state ` ∈ {1, . . . , n}. A given realisation P ∈ P

must obey the following conditions,

1− P i0 ≤
n∑

j=1

Pij ≤ 1− P i0, for i = 1, . . . , n,

P ij ≤Pij ≤ P ij, for i, j = 1, . . . , n,
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where P`0 < P `0. Now define P (ε) and therefore Ps(ε), for all ε ∈ [0, ε], as follows:

P`0(ε) = P`0 + ε,

P`j(ε) = P`j − ε αj, for j = 1, . . . , n,

Pij(ε) = Pij, for i 6= `, j = 1, . . . , n,

where

• ε = P `0 − P`0 so that P `0 ≤ P`0(ε) ≤ P `0 for all ε ∈ [0, ε], and

• choose αj ≥ 0, for j = 1, . . . , n, such that
n∑

j=1

αj = 1 and P`j − εαj ≥ P `j.

We know that as we change the value of ε, not only are the probabilities P`j for

j = 0, 1, . . . , n affected, but the expected total costs, χm, for each state

m = 1, . . . , n may also change. Hence, we make the dependence explicit and

denote these by χm(ε), for m = 1, . . . , n.

Thus, the expected total costs equation is given by,

(I − Ps(ε))χ(ε) = c.

Recall we are interested in showing that the minimum χk(ε) occurs when P`0(ε) is

at its maximum value, that is, when ε = ε = P `0 − P`0. To show that this holds,

we consider the sign of
dχk(ε)

d ε
.

dχk(ε)

d ε
=

n∑
i=1

n∑
j=1

∂ χk(ε)

∂Pij(ε)

dPij(ε)

d ε
, by the chain rule,

=
n∑

j=1

∂ χk(ε)

∂P`j(ε)

dP`j(ε)

d ε
, since

dPij(ε)

d ε
= 0, for i 6= ` and j = 1, . . . , n,

=
n∑

j=1

∂ χk(ε)

∂P`j(ε)
(−αj) , since

dP`j(ε)

d ε
= −αj, for j = 1, . . . , n,

= −
n∑

j=1

αj

[
∇χk(ε)

]
(`,j)

,
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where
[
∇χk(ε)

]
(`,j)

=
∂ χk(ε)

∂P`j(ε)
and is the element of the gradient vector, ∇χk(ε),

corresponding to the (`, j)th element of the matrix Ps(ε), and[
∇χk(ε)

]
(`,j)

=
[
(I − Ps(ε))

−1]
k`

[
(I − Ps(ε))

−1 c
]
j
.

Hence for ∇χk(ε) to exist, (I − Ps(ε))
−1 must exist. Furthermore, we know that

(I − Ps(ε))
−1 =

∞∑
m=0

Pm
s (ε) and Ps(ε) is a matrix containing probabilities. This

means that Ps(ε) is a non-negative matrix and Pm
s (ε) is also a non-negative matrix

for all m. Thus, all entries in (I − Ps(ε))
−1 are non-negative. Since ∇χk(ε) is

composed of elements of (I − Ps(ε))
−1 and sums of non-negative costs multiplied

with elements of (I − Ps(ε))
−1, this means all elements of the gradient vector,

∇χk(ε), are non-negative.

Thus, we have that ∇χk(ε) ≥ 0 everywhere (I − Ps(ε))
−1 exists. This means

dχk(ε)

d ε
= −

n∑
j=1

αj

[
∇χk(ε)

]
(`,j)

≤ 0,

everywhere (I − Ps(ε))
−1 exists since αj ≥ 0 and

[
∇χk(ε)

]
(`,j)
≥ 0.

Let us first assume that (I − Ps(ε))
−1 exists for all ε ∈ [0, ε]. This means that

dχk(ε)

d ε
≤ 0 for all ε ∈ [0, ε]. Hence, without loss of generality, we can choose to

set ε = ε and hence P`0 = P `0 as a condition for the optimum.

However, what if (I − Ps(ε))
−1 does not exist for all ε ∈ [0, ε]? Recall from Section

3.1 that we consider problems with an interval matrix, P, where there exists a

realisation P ∈ P with sub-matrix Ps that has a spectral radius less than 1. Let

ρ(Ps) denote the spectral radius of the matrix Ps. By this choice of P , we have

that ρ(Ps(0)) < 1 and as ε increases, all the elements of Ps(ε) are non-increasing.

Now, Corollary 2.1.5 of Berman and Plemmons [1] states that if two matrices A

and B are such that 0 ≤ A ≤ B, then ρ(A) ≤ ρ(B), where matrix inequalities are

interpreted elementwise.
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Since Ps(ε) ≤ Ps(0) for all ε ∈ [0, ε], this tells us that ρ(Ps(ε)) ≤ ρ(Ps(0)). Thus,

we have that if ρ(Ps(0)) < 1, then ρ(Ps(ε)) < 1 for all ε ∈ [0, ε] and so (I − Ps(ε))
−1

exists for all ε ∈ [0, ε].

Therefore, we have shown that any realisation P ∈ P, with ρ(Ps) < 1 and P`0 < P `0

for some ` ∈ {1, . . . , n}, can result in a (global) minimum expected total cost only

if there exists another realisation with P`0 = P `0 that has the same expected total

cost.

3.3.2 Maximisation problem

Now, consider the maximisation problem and we want to prove the following the-

orem.

Theorem 3.3.2. For the maximisation problem, the following constraint

n∑
j=1

Pij = 1− P i0, for Pij ∈
[
P ij, P ij

]
and i = 1, . . . , n,

must hold at the maximum expected total cost, χk, for any state k = 1, . . . , n.

The above theorem tells us that the maximum expected total cost, χk, for any

state k = 1, . . . , n, is obtained when the optimal value for Pi0, denoted by P ∗i0, is

equal to P i0, for all i = 1, . . . , n.

Proof. We note that this proof follows in a similar manner to the minimisation

proof with a few differences.

Consider a realisation P ∈ P with sub-matrix Ps that has a spectral radius less

than 1 and P`0 > P `0 for some fixed ` ∈ {1, . . . , n}. We show that such a realisation

can only result in a (global) maximum expected total cost if there also exists a

realisation with the same expected total cost that has P`0 = P `0.

Consider the problem of maximising the expected total cost, χk, for a fixed state

k ∈ {1, . . . , n} and also fix the state ` ∈ {1, . . . , n}. A given realisation P ∈ P
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must obey the following conditions,

1− P i0 ≤
n∑

j=1

Pij ≤ 1− P i0, for i = 1, . . . , n,

P ij ≤Pij ≤ P ij, for i, j = 1, . . . , n,

where P`0 > P `0. Now define P (ε) and therefore Ps(ε), for all ε ∈ [0, ε], as follows:

P`0(ε) = P`0 − ε,

P`j(ε) = P`j + ε αj, for j = 1, . . . , n,

Pij(ε) = Pij, for i 6= `, j = 1, . . . , n,

where

• ε = P`0 − P `0 so that P `0 ≤ P`0 ≤ P `0 for all ε ∈ [0, ε], and

• choose αj ≥ 0, for j = 1, . . . , n, such that
n∑

j=1

αj = 1 and P`j + εαj ≤ P `j.

As before, we make the dependence of the expected total costs, χm for each state

m = 1, . . . , n, on ε explicit and denote these by χm(ε), for m = 1, . . . , n.

Thus, the expected total costs equation is given by,

(I − Ps(ε))χ(ε) = c.

Recall we are interested in showing that the maximum χk(ε) occurs when P`0(ε)

is at its minimum value, that is, when ε = ε = P`0−P `0. To show that this holds,

we consider the sign of
dχk(ε)

d ε
.

dχk(ε)

d ε
=

n∑
i=1

n∑
j=1

∂ χk(ε)

∂Pij(ε)

dPij(ε)

d ε
, by the chain rule,

=
n∑

j=1

∂ χk(ε)

∂P`j(ε)

dP`j(ε)

d ε
, since

dPij(ε)

d ε
= 0, for i 6= ` and j = 1, . . . , n,

=
n∑

j=1

∂ χk(ε)

∂P`j(ε)
(αj) , since

dP`j(ε)

d ε
= αj, for j = 1, . . . , n,

=
n∑

j=1

αj

[
∇χk(ε)

]
(`,j)

,
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where
[
∇χk(ε)

]
(`,j)

=
∂ χk(ε)

∂P`j(ε)
≥ 0 for all `, j = 1, . . . , n, as before, everywhere

(I − Ps(ε))
−1 exists. This means

dχk(ε)

d ε
=

n∑
j=1

αj [∇χk(ε)]`j

≥ 0,

everywhere (I − Ps(ε))
−1 exists since αj ≥ 0 and [∇χk(ε)]`j ≥ 0.

Let us first assume that (I − Ps(ε))
−1 exists for all ε ∈ [0, ε]. This tells us that

dχk(ε)

d ε
≥ 0 for all ε ∈ [0, ε]. Hence, without loss of generality, to maximise the

expected total cost we would choose to set ε = ε and hence P`0 = P `0 as a condition

for the optimum.

However, what if (I − Ps(ε))
−1 does not exist for all ε ∈ [0, ε]? Recall that we

consider problems with an interval matrix, P, where there exists a realisation

P ∈ P with sub-matrix Ps that has a spectral radius less than 1. Let ρ(Ps) denote

the spectral radius of the matrix Ps. By the choice of P , we have that ρ(Ps(0)) < 1

and as ε increases, all the elements of Ps(ε) are non-decreasing.

Hence, unlike the minimisation problem, here we have Ps(0) ≤ Ps(ε) for all

ε ∈ [0, ε], which tells us that ρ(Ps(0)) ≤ ρ(Ps(ε)). Although we know that

ρ(Ps(0)) < 1, we cannot be sure that ρ(Ps(ε)) < 1. Instead, we have two pos-

sibilities to consider, ρ(Ps(ε)) < 1 and ρ(Ps(ε)) = 1. Note that the maximum

value of ρ(Ps(ε)) is 1 because Ps is a sub-matrix of P , which is a stochastic ma-

trix, and we know that the spectral radius of a stochastic matrix can be at most

1 [1]. If ρ(Ps(ε)) < 1 for all ε ∈ [0, ε], this means that (I − Ps(ε))
−1 exists for all

ε ∈ [0, ε] which we have already considered.

However, if ρ(Ps(ε)) = 1 for some ε ∈ [0, ε], then (I − Ps(ε))
−1 will not exist. We

note that the only way for ρ(Ps(ε)) to equal 1 is if there is a recurrent class in

{1, . . . , n} under Ps(ε). Since we have assumed that ρ(Ps(0)) < 1, Ps(0) cannot

have a recurrent class in {1, . . . , n} under Ps(0). Also, as Ps(ε) is non-decreasing,
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the communication between states in Ps(ε) cannot be cut and so a recurrent class

in {1, . . . , n} under Ps(ε) cannot be formed for ε ∈ [0, ε). It is only possible to

form a recurrent class in {1, . . . , n} under Ps(ε) at ε = ε because P`0(ε) = P`0− ε,

so the only chance for P`0 = 0 is if ε = ε. This tells us that ρ(Ps(ε)) only can

equal 1 when ε = ε, in which case (I − Ps(ε))
−1 does not exist only at ε = ε.

However as ε → ε, we know that ρ(Ps(ε)) → 1 and so (I − Ps(ε))
−1 exists for

ε ∈ [0, ε). This means
dχk(ε)

d ε
≥ 0 for ε ∈ [0, ε), which tells us that as ε → ε,

χk(ε) increases. There are 2 possible situations, depending on the choice of k and

the communication structure of the Ps(ε) matrix. Either χk(ε) =∞, in which case

χk(ε) increases without bound and hence no maximum exists; or χk(ε) is finite.

Therefore, we have shown that any realisation P ∈ P, with ρ(Ps) < 1 and P`0 > P `0

for some ` ∈ {1, . . . , n}, can result in a finite (global) maximum expected total

cost only if there exists another realisation with P`0 = P `0 that results in the same

expected total cost. Further, if no (global) maximum exists, then the maximum

expected total cost with P`0 = P `0 will also be undefined.

Hence, we can now state both the minimisation and maximisation problems for-

mally as follows, for k = 1, . . . , n,

minχk =
[
(I − Ps)

−1 c
]
k
,

subject to

n∑
j=1

Pij = 1− P i0, for i = 1, . . . , n,

P ij ≤ Pij ≤ P ij, for i, j = 1, . . . , n,

and,

maxχk =
[
(I − Ps)

−1 c
]
k
,
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subject to

n∑
j=1

Pij = 1− P i0, for i = 1, . . . , n,

P ij ≤ Pij ≤ P ij, for i, j = 1, . . . , n.

Recall that we mentioned previously, if costs are not non-negative, then Theorems

3.3.1 and 3.3.2 do not hold. Hence, we are unable to set Pi0 = P i0 for the minimisa-

tion problem and Pi0 = P i0 for the maximisation problem. However, all theoretical

properties of the problem and any numerical method developed can be reworked

accordingly to solve problems without the non-negativity condition.

3.4 Development of an analytic solution for the

mean hitting times

Before we consider an analytic solution for general costs, let us first investigate if

it is possible to find an analytic solution for the simpler problem of mean hitting

times, where all costs are 1.

Recall that we have been able to simplify our problem by thinking about minimis-

ing and maximising the expected total cost physically. That is, we considered what

the process should be doing at each state to minimise and maximise the expected

total cost. Thus, we would like to investigate if it is possible to use the same logic

to determine a simple analytic solution to the mean hitting times problem. Here,

we consider the minimisation problem and note that the maximisation problem

follows in a similar manner. We first consider the simplest and smallest problem,

which is a three state discrete-time interval Markov chain.
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3.4.1 Analytic solution to a three state discrete-time in-

terval Markov chain

Consider the minimisation problems for a three state discrete-time interval Markov

chain with absorbing state 0. We seek to minimise the mean hitting times for state

1 and state 2, by solving the following minimisation problems,

min ν1 =
[
(I − Ps)

−1 1
]

1
,

subject to

Pi1+Pi2 = 1− P i0, for i = 1, 2,

P ij ≤ Pij ≤ P ij, for i, j = 1, 2,

and

min ν2 =
[
(I − Ps)

−1 1
]

2
,

subject to

Pi1+Pi2 = 1− P i0, for i = 1, 2,

P ij ≤ Pij ≤ P ij, for i, j = 1, 2.

We would like to be able to find an analytic solution to the above problems.

Recall the idea behind the simplification of the minimisation problem in Section

3.3 was to maximise the probability of direct absorption from any state as it

corresponds to minimising the mean hitting times. If we extend this intuition

further and assume, without loss of generality, that P 10 > P 20, then there is

a higher chance of direct absorption from state 1 than from state 2. Hence if

possible, we would prefer to be in state 1 as opposed to state 2 and so we want to

maximise P11 and P21 subject to the constraints,

P11 + P12 = 1− P 10,

P21 + P22 = 1− P 20.
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Then, we allocate the remaining probabilities to P12 and P22. We would like

to prove that this intuitive idea is the analytic solution to both minimisation

problems.

Let us assume, without loss of generality, that

P 10 ≥ P 20,

and note that

(I − Ps)
−1 =

∞∑
m=0

Pm
s .

Hence, minimising the objective function νk =
[
(I − Ps)

−1 1
]
k

is the same as

minimising the kth element of the vector ν =
∞∑

m=0

Pm
s

1

1

.

If we consider
∞∑

m=0

Pm
s

1

1

, we note that minimising this sum is quite challenging.

Instead, we seek to minimise the relevant terms of P 0
s

1

1

, P 1
s

1

1

, P 2
s

1

1

, etc.

If the argmin of each such sub-problem of Pm
s

1

1

 is the same, then the sum of

the minima is the minimum of the sum. This means that to minimise νk, it would

only involve minimising the kth element of each term of the sum
∞∑

m=0

Pm
s

1

1

 as

opposed to minimising the kth element of the entire sum.

Define, for all m ≥ 1,

f
(m)
1 = min

Ps

Ps

f (m−1)
1

f
(m−1)
2


1

and f
(m)
2 = min

Ps

Ps

f (m−1)
1

f
(m−1)
2


2

,

where f (0)
1

f
(0)
2

 =

1

1

 .
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The following lemma tells us that we can minimise both f
(m)
1 and f

(m)
2 simultane-

ously.

Lemma 3.4.1. f (m)
1

f
(m)
2

 = min
Ps

Ps

f (m−1)
1

f
(m−1)
2

 , for all m.

Proof. We know that

f
(m)
1 = min

Ps

Ps

f (m−1)
1

f
(m−1)
2


1

, f
(m)
2 = min

Ps

Ps

f (m−1)
1

f
(m−1)
2


2

and Ps =

P11 P12

P21 P22

 .
Hence, we have

f
(m)
1 = min

Ps

(
P11f

(m−1)
1 + P12f

(m−1)
2

)
,

f
(m)
2 = min

Ps

(
P21f

(m−1)
1 + P22f

(m−1)
2

)
.

Now, we see that f
(m)
1 only depends on row 1 of Ps and f

(m)
2 only depends on row

2 of Ps.

Therefore, f (m)
1

f
(m)
2

 = min
Ps

Ps

f (m−1)
1

f
(m−1)
2

 , for all m.

Another thing of interest is that we know there is at least as great a chance of

direct absorption from state 1 as state 2, since we have assumed without loss of

generality that P 10 ≥ P 20, and so it seems likely that f
(m)
1 ≤ f

(m)
2 for all m. This

gives us the following theorem which we shall prove by induction.

Theorem 3.4.2.

f
(m−1)
1 ≤ f

(m−1)
2 ⇒ f

(m)
1 ≤ f

(m)
2 , for all m.
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We require the following lemma to help us in the proof of the above theorem.

Lemma 3.4.3.

f
(m)
1 ≤ f

(m)
2 ⇐⇒ (P11 − P21)f

(m−1)
1 + (P12 − P22)f

(m−1)
2 ≤ 0.

Proof. We have

f
(m)
1 = P11f

(m−1)
1 + P12f

(m−1)
2 ,

f
(m)
2 = P21f

(m−1)
1 + P22f

(m−1)
2 .

Substitute these equations into f
(m)
1 ≤ f

(m)
2 to give

f
(m)
1 ≤ f

(m)
2 ⇐⇒ P11f

(m−1)
1 + P12f

(m−1)
2 ≤ P21f

(m−1)
1 + P22f

(m−1)
2

⇐⇒ (P11 − P21)f
(m−1)
1 + (P12 − P22)f

(m−1)
2 ≤ 0.

We now prove Theorem 3.4.2 by induction using Lemma 3.4.3 as it is an easier

expression to work with.

Proof. Consider m = 1. We know that f
(0)
1 = f

(0)
2 = 1, so f

(0)
1 ≤ f

(0)
2 and we want

to show that f
(1)
1 ≤ f

(1)
2 . From Lemma 3.4.3, we know that

f
(1)
1 ≤ f

(1)
2 ⇐⇒ (P11 − P21)f

(0)
1 + (P12 − P22)f

(0)
2 ≤ 0.

We also have f (1)
1

f
(1)
2

 = min
Ps

Ps

f (0)
1

f
(0)
2


= min

Ps

Ps

1

1

 .
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This means we want to minimise P11 +P12 and P21 +P22 subject to the constraints

on Ps.

Recall the following conditions for the minimisation problem,

P11 + P12 = 1− P 10,

P21 + P22 = 1− P 20,

and we have assumed

P 10 ≥ P 20

⇒ 1− P 10 ≤ 1− P 20

⇒ P11 + P12 ≤ P21 + P22

⇒ (P11 + P12)− (P21 + P22) ≤ 0.

Now consider

(P11 − P21)f
(0)
1 + (P12 − P22)f

(0)
2 = (P11 − P21)× 1 + (P12 − P22)× 1

= (P11 + P12)− (P21 + P22)

≤ 0,

which is the condition in Lemma 3.4.3 and so f
(1)
1 ≤ f

(1)
2 .

Now, assume f
(i)
1 ≤ f

(i)
2 and we want to prove f

(i+1)
1 ≤ f

(i+1)
2 . That is, by Lemma

3.4.3, we want to prove that (P11 − P21)f
(i)
1 + (P12 − P22)f

(i)
2 ≤ 0.

Recall that f (i+1)
1

f
(i+1)
2

 = min
Ps

Ps

f (i)
1

f
(i)
2

 .
From P 10 ≥ P 20 and above we have

(P11 − P21) + (P12 − P22) ≤ 0.

So we have the following possible cases:
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1. (P11 − P21) ≤ 0 and (P12 − P22) ≤ 0,

2. (P11 − P21) ≥ 0 and (P12 − P22) ≤ 0 with P11 − P21 ≤ −(P12 − P22),

3. (P11 − P21) ≤ 0 and (P12 − P22) ≥ 0 with P12 − P22 ≤ −(P11 − P21).

Case 1: (P11 − P21) ≤ 0 and (P12 − P22) ≤ 0.

We know that

(P11 − P21)f
(i)
1 + (P12 − P22)f

(i)
2 ≤ 0

because we are considering (P11 − P21) ≤ 0 and (P12 − P22) ≤ 0 and we also know

that f
(i)
1 ≥ 0 and f

(i)
2 ≥ 0. Thus, this case holds immediately.

Case 2: (P11 − P21) ≥ 0 and (P12 − P22) ≤ 0.

We know from the induction hypothesis that 0 ≤ f
(i)
1 ≤ f

(i)
2 . Hence, we have

(P11 − P21)f
(i)
1 + (P12 − P22)f

(i)
2 ≤ (P11 − P21)f

(i)
2 + (P12 − P22)f

(i)
2

= (P11 − P21 + P12 − P22)f
(i)
2

≤ 0,

since we know (P11 − P21 + P12 − P22) ≤ 0 and f
(i)
2 ≥ 0. So this case holds.

Case 3: (P11 − P21) ≤ 0 and (P12 − P22) ≥ 0.

Consider

(P11 − P21)f
(i)
1 + (P12 − P22)f

(i)
2 = (P11 − P21)

[
min
Ps

(
P11f

(i−1)
1 + P12f

(i−1)
2

)]
+ (P12 − P22)

[
min
Ps

(
P21f

(i−1)
1 + P22f

(i−1)
2

)]
≤ (P11 − P21)

[
P11f

(i−1)
1 + P12f

(i−1)
2

]
+ (P12 − P22)

[
P21f

(i−1)
1 + P22f

(i−1)
2

]
≤ (P11 − P21)

[
P11f

(i−1)
1 + P12f

(i−1)
1

]
+ (P12 − P22)

[
P21f

(i−1)
1 + P22f

(i−1)
2

]
since f

(i−1)
1 ≤ f

(i−1)
2 and (P11 − P21)P12 ≤ 0.
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Therefore,

(P11 − P21)f
(i)
1 + (P12 − P22)f

(i)
2 ≤ (P11 − P21)P11f

(i−1)
1 + P11P12f

(i−1)
1

− P21P22f
(i−1)
1 + P22(P12 − P22)f

(i−1)
2

= [P11(P11 − P21 + P12)− P21P22] f
(i−1)
1

+ P22(P12 − P22)f
(i−1)
2

≤ [P11P22 − P21P22] f
(i−1)
1 + P22(P12 − P22)f

(i−1)
2

since P11 + P12 ≤ P21 + P22 and f
(i−1)
1 ≥ 0.

So,

(P11 − P21)f
(i)
1 + (P12 − P22)f

(i)
2 ≤ P22(P11 − P21)f

(i−1)
1 + P22(P12 − P22)f

(i−1)
2

= P22

[
(P11 − P21)f

(i−1)
1 + (P12 − P22)f

(i−1)
2

]
≤ 0,

since P22 ≥ 0 and (P11 − P21)f
(i−1)
1 + (P12 − P22)f

(i−1)
2 ≤ 0 by the induction

hypothesis.

Thus, this case holds as well.

We have shown that for all possible cases

(P11 − P21)f
(i)
1 + (P12 − P22)f

(i)
2 ≤ 0,

which is equivalent to showing that

f
(i+1)
1 ≤ f

(i+1)
2 ,

by Lemma 3.4.3. Hence, this tells us that by assuming f
(i)
1 ≤ f

(i)
2 , we have shown

f
(i+1)
1 ≤ f

(i+1)
2 .

Therefore, we have proved by induction that

f
(m)
1 ≤ f

(m)
2 , for all m.
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Now let us consider the matrix P ∗s that achievesf (m)
1

f
(m)
2

 = min
Ps

Ps

f (m−1)
1

f
(m−1)
2


= min

P11f
(m−1)
1 + P12f

(m−1)
2

P21f
(m−1)
1 + P22f

(m−1)
2

 .

Since we have proved that f
(m−1)
1 ≤ f

(m−1)
2 , for us to minimise both f

(m)
1 and f

(m)
2

simultaneously, we would want to maximise P11 and P21 and place the remaining

probabilities into P12 and P22. Thus,

P ∗s =

P ∗11 1− P 10 − P ∗11

P ∗21 1− P 20 − P ∗21


where P ∗11 and P ∗21 are the largest possible values within their respective intervals

subject to constraints.

Note that this is independent of m. That is, the choice of P ∗s remains the same

for all possible values of m when we consider minimising both f
(m)
1 and f

(m)
2 for

all m.

Hence, we have that ν1

ν2

 = min
∞∑

m=0

Pm
s

1

1


=

∞∑
m=0

min

Pm
s

1

1


=

∞∑
m=0

(P ∗s )m

1

1


=

∞∑
m=0

f (m)
1

f
(m)
2

 .



Chapter 3. Markov chains: Analytic investigation 71

This gives us an analytic solution to the matrix P ∗s which results in the minimum

mean hitting times and we can simply useν1

ν2

 = (I − P ∗s )−1 1,

to obtain the minimum values for ν1 and ν2.

3.4.2 Counterexample for a four state discrete-time

interval Markov chain

Now, we would like to extend our method of finding the minimum mean hitting

times to a four state discrete-time interval Markov chain. Recall that to find the

minimum mean hitting time for each state, we want to

minν = (I − Ps)
−1 1,

subject to the following constraints

Pi1 + Pi2 + Pi3 = 1− P i0, for i = 1, 2, 3,

P ij ≤Pij ≤ P ij, for i, j = 1, 2, 3.

As in the case of a three state discrete-time interval Markov chain, we know it is

possible to calculate ν as follows,

ν =


ν1

ν2

ν3

 = (I − Ps)
−1


1

1

1

 =
∞∑

m=0

Pm
s


1

1

1

 .

As before, we minimise ν1, ν2 and ν3 separately. That is, we want to minimise

each element of Pm
s


1

1

1

 separately for all m.
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First, let us assume, without loss of generality, that

P 10 ≥ P 20 ≥ P 30.

Define, for all m ≥ 1,

f
(m)
1 = min

Ps

Ps


f

(m−1)
1

f
(m−1)
2

f
(m−1)
3




1

, f
(m)
2 = min

Ps

Ps


f

(m−1)
1

f
(m−1)
2

f
(m−1)
3




2

and f
(m)
3 = min

Ps

Ps


f

(m−1)
1

f
(m−1)
2

f
(m−1)
3




3

,

where 
f

(0)
1

f
(0)
2

f
(0)
3

 =


1

1

1

 .

Lemma 3.4.4. 
f

(m)
1

f
(m)
2

f
(m)
3

 = min
Ps

Ps


f

(m−1)
1

f
(m−1)
2

f
(m−1)
3


 , for all m.

Proof. This follows directly from the proof of Lemma 3.4.1.

Since we have assumed that P 10 ≥ P 20 ≥ P 30, there is a higher chance of direct

absorption from state 1 than states 2 and 3 and from state 2 than state 3. Hence,

it seems likely that f
(m)
1 ≤ f

(m)
2 ≤ f

(m)
3 for all m.
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However, for the four state discrete-time interval Markov chain, this property does

not hold for our conjectured optimum. Let us consider a four state discrete-time in-

terval Markov chain with the following interval transition probability matrix,

P =



[1, 1] [0, 0] [0, 0] [0, 0]

[0.3, 0.35] [0, 0.1] [0, 0] [0, 1]

[0.2, 0.3] [0, 1] [0, 1] [0, 1]

[0.1, 0.2] [0, 0] [0, 0.3] [0, 1]


.

For m = 1 and f (0) = [1, 1, 1]T , we have


f

(1)
1

f
(1)
2

f
(1)
3

 = min
Ps

Ps


f

(0)
1

f
(0)
2

f
(0)
3




= min
Ps

Ps


1

1

1


 .

So we would like to minimise the row sum of Ps subject to the constraints on

Ps.

Our method tells us to maximise P11, P21 and P31 followed by P12, P22 and P32

and finally P13, P23 and P33. By applying this method, we obtain the following

matrix

P (1)
s =


0.1 0 0.55

0.7 0 0

0 0.3 0.5

 .
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Thus, giving us

f (1) = P (1)
s f (0)

=


0.1 0 0.55

0.7 0 0

0 0.3 0.5




1

1

1



=


0.65

0.7

0.8

 .
Here, we have f

(1)
1 ≤ f

(1)
2 ≤ f

(1)
3 .

Now, consider m = 2 with f (1) = [0.65, 0.7, 0.8]T . Again, by minimising the row

sum of Ps subject to the constraints on Ps and following our method, we obtain

the matrix,

P (2)
s =


0.1 0 0.55

0.7 0 0

0 0.3 0.5

 .
Thus, giving us

f (2) = P (2)
s f (1)

=


0.1 0 0.55

0.7 0 0

0 0.3 0.5




0.65

0.7

0.8



=


0.505

0.455

0.610

 .
However, now we have f

(2)
1 ≥ f

(2)
2 .
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If we consider m = 3, minimise the row sum of Ps and use our method, we obtain

the matrix

P (3)
s =


0.1 0 0.55

0 0.7 0

0 0.3 0.5

 6= P (2)
s .

Hence, unlike the previous case, we find the minimum is not independent of the step

m, and so we are unable to bring the minimum into the sum, as Ps is dependent on

m. So the method of proof we used for the previous case is not going to work. By

using our numerical approach, we found that the optimum value of ν is obtained

when P
(3)
s is used which is not our conjectured choice of Ps = P

(2)
s . Thus, we have

a counter-example for the four state discrete-time interval Markov chain.

We have been able to develop an analytic method for calculating the tightest

possible intervals which contain the true solution to our problem for a three state

discrete-time interval Markov chain. However, when we include an extra state, we

find a counter-example which shows that our method fails to find the bounds for

mean hitting times. It appears that analytic results of performance measures we

consider cannot be obtained for general large interval Markov chains.

Hence, we now seek to identify analytic properties which may assist in determining

the optimal solution. One such useful property would be the form of the optimal

solution to the optimisation problems, which we now investigate using Markov

decision processes.

3.5 Markov decision processes

Recall that we have laid down the framework for Markov decision processes (MDPs)

in Section 2.5. In this section, we would like to represent our optimisation problem

as an MDP problem and as such, we require a mapping from one to the other.
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3.5.1 Mapping

Without loss of generality, we consider the maximisation problem and note that

equivalent theorems hold for the minimisation problem. To obtain upper bounds

on the expected total costs, we solve maximisation problems of the form,

maxχk =
[
(I − Ps)

−1 c
]
k
,

subject to

n∑
j=1

Pij = 1− P i0, for i = 1, . . . , n,

P ij ≤ Pij ≤ P ij, for i, j = 1, . . . , n.

Lemma 3.5.1. Our maximisation problem is a Markov decision process restricted

to only consider Markovian decision rules and stationary policies.

Proof. We know from the Section 2.5 that the following terms describe a Markov

decision process: decision times, states, actions, rewards and transition probabil-

ities. Hence, we need to be able to show how we can describe our maximisation

problem using these terms.

Recall that we are considering a discrete-time interval Markov chain with n + 1

states where state 0 is an absorbing state. This discrete-time interval Markov

chain is the underlying Markov chain of the maximisation problem. Hence, the

set of transient states of the discrete-time interval Markov chain correspond with

the rows of the Ps matrix in the maximisation problem and also coincide with the

set of states in the underlying discrete-time Markov chain in the MDP framework.

Since we have n transient states in the underlying discrete-time Markov chain of

the maximisation problem, this means we have a total of n states in our MDP

problem.

Consider the feasible region of the maximisation problem. We note that the con-

straints are row-based as they only involve row sums and bounds on the Ps matrix.
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That is, there is no interaction between the rows of the Ps matrix when we deal

with the constraints on the problem. Hence, in the following, we will make ex-

tensive use of the feasible region for each row and introduce the notation Fi to

describe the feasible region for row i, where i = 1, . . . , n. Since Fi describes the

feasible region for row i, it also represents the possible vectors for the ith row of

the Ps matrix.

We know that Fi has a finite number of vertices as there are two possible choices

for each decision variable, Pij, in row i, either the lower bound, P ij, or the upper

bound, P ij. Thus, for a row with n decision variables, there is an upper bound of

2n possible vertices.

Furthermore, since the only constraints on the problem are upper and lower bounds

as well as linear constraints, these form a convex hull. We know that a convex

hull is composed of a set of vertices as well as points within the hull which are a

convex combination of the vertices. Hence, Fi is composed of a set of vertices as

well as points which can be written as a convex combination of vertices.

Now, we choose to let each vertex in Fi correspond to an action of the MDP when

in state i. Thus, in the MDP framework, the feasible region Fi can be recovered by

taking convex combinations of actions as they correspond to convex combinations

of vertices.

Other terms needing to be mapped are decision times, rewards and transition

probabilities. Recall that we move from one state to another at each time step of

the underlying discrete-time Markov chain of our maximisation problem. Hence, a

time step in the underlying discrete-time Markov chain maps to a decision time in

the MDP problem as a decision is made at each time step to decide which state to

move into next. We note that we have an infinite-horizon Markov decision process

as we seek to maximise the expected total cost incurred before the process reaches

the absorbing state, conditional on starting in some other state. Hence, this does



78 3.5. Markov decision processes

not correspond to maximising our objective in the MDP problem up to a certain

time step. Instead, we allow the process to continue until absorption which means

that the time steps of our problem are infinite. As such, our problem is classified

as an infinite-horizon Markov decision process.

The rewards are ci for state i, regardless of the choice of action. Whenever a deci-

sion is made, the discrete-time Markov chain moves to some state i ∈ {0, 1, . . . , n}

and the total cost increases by ci (where c0 = 0) with each move to state i. Lastly,

we consider the transition probabilities. Recall that the transition probabilities

of an MDP problem describe the probability of moving from one state to another

given an action has been chosen. We have also previously defined each action in

state i for i = 1, . . . , n to be a vertex of the feasible region Fi. Thus, each action

a has an associated (possibly dishonest) probability distribution vector, P
(a)
i , with

elements Pij corresponding to the values at the vertex. This vector contains the

transition probabilities of moving from the current state i to all states of the un-

derlying discrete-time Markov chain given that action a has been chosen. When an

action a is chosen in state i, the corresponding probability distribution vector, P
(a)
i ,

is inserted into the matrix, Ps. Hence, when considering all states i = 1, . . . , n,

once an action has been chosen for each state, the probability distribution vectors,

P
(a)
i , for each state form the Ps matrix for the maximisation problem.

Finally, as our maximisation problem fundamentally involves a discrete-time

Markov chain, which state the process moves to next can only depend on the

current state of the process. Thus, we know that the decision rule must be Marko-

vian. We also know that due to the structure of our maximisation problem, we are

guaranteed to have a stationary policy as the optimal Ps matrix remains constant

over time since our problem is a one-sample time-homogeneous interval Markov

chain. This means that the choice of decision rule is independent of time which

describes a stationary policy. Hence, our maximisation problem is a Markov de-

cision process restricted to only consider Markovian decision rules and stationary
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policies.

We can now consider theorems for MDPs with stationary policies and Markovian

decision rules to help us prove that the form of the optimal solution is as described

in Theorem 3.5.2.

Theorem 3.5.2. There exists an optimal solution of the maximisation problem

where row i of the optimal matrix, P ∗s , represents a vertex of Fi for all i = 1, . . . , n.

Proof. By Lemma 3.5.1, we know that we are able to consider the maximisation

problem as a Markov decision process with Markovian decision rules and a sta-

tionary policy. Hence, to show that the optimal solution occurs at a vertex, we

need only show that there is no extra benefit to having randomised decision rules

as opposed to deterministic decision rules. The following proposition gives us this.

Proposition 3.5.3. For all v ∈ V ,

sup
d∈DMD

{rd + Pdv} = sup
d∈DMR

{rd + Pdv},

where

• V is the set of bounded real valued functions on S with componentwise partial

order and supremum norm. Since we only deal with finite S, for each v ∈ V ,

the supremum norm gives us the largest element in the vector v. Also, a

componentwise partial order means that for u ∈ V and v ∈ V , u ≥ v if

u(s) ≥ v(s) for all s ∈ S,

• DMD is the set of decision rules which are Markovian and deterministic,

• DMR is the set of decision rules which are Markovian and randomised,

• rd is the vector of rewards obtained for the choice of decision rule, d,

• Pd is the transition probability matrix corresponding to the decision rule d.
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Note that this proposition is based on Proposition 6.2.1. of Puterman [18] restricted

to the case without discounting, that is, when λ = 1 and depends on the following

assumptions.

Assumption 3.5.1 (Assumption 6.0.1. of Puterman [18]). Stationary rewards

and transition probabilities; r(s, a) and p(j|s, a) do not vary from one time step to

another.

Assumption 3.5.2 (Assumption 6.0.2. of Puterman [18]).

Bounded rewards; |r(s, a)| ≤M <∞ for all a ∈ As and s ∈ S.

Assumption 3.5.3 (Assumption 6.0.4. of Puterman [18]).

Discrete state space; S is finite or countable.

We know that these assumptions hold based on the construction of our maximisa-

tion problem.

From Section 6.2 in Puterman [18] and knowing that our action set, As, is finite

for all states s, we see that the following system of equations are the optimality

equations,

v(s) = max
a∈As

{
r(s, a) +

∑
j∈S

p(j|s, a)v(j)

}
, for all s ∈ S.

The above system of equations can be expressed in vector notation as,

v = max
d∈DMD

{rd + Pdv}.

They correspond with our maximisation problem as we calculate the expected

total costs using

χ = c + Psχ.

In equations, rd = c and Pd corresponds to the matrix Ps. When maximising, we

try to find the optimal Ps matrix which results in the largest value for χ. Thus, in
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the MDP language, we are trying to find the optimal decision rule which maximises

the expected total costs.

Proposition 3.5.3 compares Markovian deterministic rules with Markovian ran-

domised rules and tells us that there is nothing to be gained from having ran-

domised decision rules as opposed to deterministic decision rules. Thus, the opti-

mal solution to the optimisation problem is attained when we have decision rules

which are deterministic and Markovian.

Recall from Definitions 2.5.3 and 2.5.6 that a deterministic decision rule corre-

sponds to choosing actions deterministically which means that a single action is

chosen in each state with probability 1. Since each action in state i of the MDP

problem corresponds to a vertex in the feasible region Fi, for i = 1, . . . , n, this

means deterministic decision rules ensure that each row of the optimal matrix will

correspond to a vertex of Fi. Thus, we have shown that there exists an opti-

mal solution of the maximisation problem where row i of the optimal matrix, P ∗s ,

represents a vertex of Fi for all i = 1, . . . , n.

3.6 Continuous-time interval Markov chains

In this section, we consider continuous-time interval Markov chains and investigate

the use of uniformisation to exploit the theoretical properties obtained for discrete-

time interval Markov chains.

First, consider a standard, non-interval continuous-time Markov chain, X(t), with

a discrete state space S = {0, 1, . . . , n}, where state 0 is an absorbing state, and
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generator matrix,

Q =


0 0 · · · 0

q10 q11 · · · q1n

...
...

. . .
...

qn0 qn1 · · · qnn


where

• qij ≥ 0, for all i ∈ S and i 6= j, is the rate of moving from state i to state j,

• 0 ≤ qi <∞ for all i ∈ S where qi = −qii =
∑
j 6=i

qij is the total rate of leaving

state i, and

•
∑
j∈S

qij = 0 (row sum constraint).

As before with discrete-time Markov chains, where we accounted for the uncer-

tainty of the transition probabilities by using an interval transition probability

matrix, we do the same for continuous-time Markov chains.

Consider a continuous-time interval Markov chain, X(t), with n + 1 states,

S = {0, 1, . . . , n}, where state 0 is an absorbing state and interval generator ma-

trix,

Q =



[0, 0] [0, 0] · · · [0, 0][
q

10
, q10

] [
q

11
, q11

]
· · ·

[
q

1n
, q1n

]
...

...
. . .

...[
q
n0
, qn0

] [
q
n1
, qn1

]
· · ·

[
q
nn
, qnn

]


,

where

0 ≤ q
ij
≤ qij, for all i = 1, . . . , n and j 6= i,

−∞ < q
ii
≤ qii ≤ 0, for all i = 1, . . . , n, and∑

j∈S

qij = 0, for qij ∈
[
q
ij
, qij

]
and i = 1, . . . , n. (row sum constraint)
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To assist us with notation later, we also specify an interval on qi which is given

by
[
q
i
, qi

]
= −

[
q
ii
, qii

]
=

[∑
j 6=i

q
ij
,
∑
j 6=i

qij

]
. Like discrete-time interval Markov

chains, we are interested in obtaining an interval expected total cost for each state

of an interval continuous-time Markov chain.

Recall that χk is the expected total cost incurred before the process is absorbed

into state 0, conditional on starting in state k. From Section 2.1.2, we know that

the expected total cost vector, χ, composed of the elements χk, for k = 1, . . . , n,

can be calculated using

χ = −Q−1
s c,

where Qs is the sub-matrix of the generator matrix Q and c is the column vector

containing the cost per unit time of being in each state. However, to ensure that

Q−1
s is well defined, we only require Qs to have a spectral radius less than zero as

it is finite-dimensional. Since we have already dealt with this problem for discrete-

time Markov chains in Section 3.1, instead of evaluating the above expression

for continuous-time Markov chains, we borrow the theoretical properties obtained

previously by considering uniformisation. In the following, we consider applying

uniformisation to continuous-time interval Markov chains.

3.6.1 Uniformisation for continuous-time interval Markov

chains

Recall from Section 2.1.2 that uniformisation allows us to transform a continuous-

time Markov chain to a discrete-time Markov chain without losing any information

and we also discussed the transformation used to obtain a transition probability

matrix from a generator matrix. Here, we extend this transformation to interval

generator matrices and interval transition probability matrices as well as extending

definitions for uniformisation to continuous-time interval Markov chains.
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A continuous-time interval Markov chain, X(t), is uniformisable if

sup
i

(qi) <∞.

Then, assuming that we have a uniformisable continuous-time interval Markov

chain, X(t), with interval generator matrix, Q, the uniformisation constant is

any

u ≥ q = sup
i

(qi) .

Since S is finite, this means qi <∞ for all i = 1, . . . , n and so X(t) is uniformisable.

Hence, we have that u ≥ q = max
i

(qi). Then any such u allows us to define

the associated discrete-time interval Markov chain of the continuous-time interval

Markov chain, X(t).

Let Xu
m be the associated discrete-time interval Markov chain of the continuous-

time interval Markov chain, X(t), with interval transition probability matrix Pu,

given by

Pu = I +
1

u
Q,

for any u ≥ q.

Since we have required −∞ < q
ii
≤ qii ≤ 0 which means that 0 ≤ q

i
≤ qi < ∞

for all i = 1, . . . , n in our definition of a continuous-time interval Markov chain,

we know that the continuous-time interval Markov chains we are interested in are

uniformisable. Thus, we can obtain a uniformisation constant, u, and apply the

transformation Pu = I +
1

u
Q to give us an interval transition probability matrix

for the associated discrete-time interval Markov chain.

Hence, we now have a discrete-time interval Markov chain with interval transition
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probability matrix,

Pu =



[1, 1] [0, 0] · · · · · · · · · [0, 0][
P 10, P 10

] [
P 11, P 11

]
· · · · · · · · ·

[
P 1n, P 1n

]
...

...
. . .

...
...

...[
P i0, P i0

] [
P i1, P i1

]
· · ·

[
P ij, P ij

]
· · ·

[
P in, P in

]
...

...
. . .

...
...

...[
P n0, P n0

] [
P n1, P n1

]
· · · · · · · · ·

[
P nn, P nn

]


where [

P ij, P ij

]
=

[q
ij

u
,
qij
u

]
, for i = i, . . . , n and j 6= i,

[
P ii, P ii

]
=

[
1− qi

u
, 1−

q
i

u

]
, for i = i, . . . , n.

Since we have a discrete-time interval Markov chain of the same form as before

(Section 3.1), all theoretical properties we have developed now apply for this case

and the numerical method (Chapter 4) used to solve for the expected total cost,

χk, for each state k = 1, . . . , n, of the discrete-time interval Markov chain can

also be used here. However, this gives us the expected total cost for the associated

discrete-time interval Markov chain instead of the original continuous-time interval

Markov chain we are interested in. Thus, we need an appropriate transformation

to obtain results for the continuous-time interval Markov chain.

3.6.2 Transforming discrete-time expected total costs to

continuous-time

Let χk be the expected total cost incurred before the process is absorbed into state

0, conditional on starting in state k for the continuous-time interval Markov chain.

Then, let χu
k be the expected total cost incurred before the process is absorbed into

state 0, conditional on starting in state k for the associated discrete-time interval

Markov chain with uniformisation constant, u.
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Recall that we have applied uniformisation to transform the continuous-time inter-

val Markov chain to its associated discrete-time Markov chain. Then solved for the

expected total costs, χu
k , for states k = 1, . . . , n, for the associated discrete-time

Markov chain. The following theorem gives us the transformation of the expected

total costs for the associated discrete-time interval Markov chain, χu
k , to obtain

the expected total costs for the original continuous-time interval Markov chain,

χk.

Theorem 3.6.1. For k = 1, . . . , n, the expected total cost χk of a continuous-time

interval Markov chain with costs per unit time ci (for i = 1, . . . n) can be obtained

from the expected total cost χu
k of its associated discrete-time interval Markov chain

with costs per visit ci (for i = 1, . . . , n) by applying the following transformation,

χk =
χu
k

u
,

where u is the uniformisation constant.

Proof. Let X(t) be a continuous-time interval Markov chain and Xu
m be its asso-

ciated discrete-time interval Markov chain with uniformisation constant u.

For state k = 1, . . . , n, we define the following terms. Let

• Y` be the random variable describing the amount of time the continuous-

time interval Markov chain spent in the `th step, where Y` ∼ Exp(u) due to

uniformisation,

• Ai be the random variable describing the amount of time the continuous-time

interval Markov chain spends in state i before absorption,

• Ni is the random variable describing the number of visits to state i before

absorption. Note that a visit in this context includes transitions from state

i to itself, and

• Aij is the random variable describing the amount of time spent in state i on

the jth visit.
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Thus, the total cost incurred before the process is absorbed into state 0 for the

continuous-time interval Markov chain is given by

K =
n∑

i=1

ciAi.

Conditioning on the initial state k and taking expectation gives,

χk = E [K|X(0) = k]

= E

[
n∑

i=1

ciAi

∣∣∣∣∣X(0) = k

]
.

Now, let

Ai =

Ni∑
j=1

Aij.

Hence,

χk = E

[
n∑

i=1

ci

Ni∑
j=1

Aij

∣∣∣∣∣X(0) = k

]

=
n∑

i=1

E

[
ci

Ni∑
j=1

Aij

∣∣∣∣∣X(0) = k

]

=
n∑

i=1

ENi

[
E

[
ci

Ni∑
j=1

Aij

∣∣∣∣∣X(0) = k,Ni

]∣∣∣∣∣Xu
0 = k

]

=
n∑

i=1

ENi

[
ci

Ni∑
j=1

E [Aij|X(0) = k,Ni]

∣∣∣∣∣Xu
0 = k

]

=
n∑

i=1

ENi

[
ci

Ni∑
j=1

E [Y`]

∣∣∣∣∣Xu
0 = k

]

= E [Y`]
n∑

i=1

ENi
[ciNi|Xu

0 = k]

=
χu
k

u
,

since
n∑

i=1

ENi
[ciNi|Xu

0 = k] = χu
k and Y` ∼ Exp(u) for all ` which means E [Y`] = 1

u
.
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In this section, we have obtained the expected total cost for a continuous-time

interval Markov chain by considering uniformisation and the required transforma-

tion to obtain our desired results. Figure 3.6.1 provides a graphical representation

of the steps we use to obtain the expected total cost for a continuous-time interval

Markov chain using uniformisation.

Continuous-time

interval Markov chain

Discrete-time

interval Markov chain

Expected total cost χu
kExpected total cost χk

Uniformisation

Numerical method

Theorem 3.6.1

Figure 3.6.1: Graphical representation of steps used to obtain expected total cost

for a continuous-time interval Markov chain.

In Sections 3.3 and 3.4, we have been able to reduce the number of decision vari-

ables in our optimisation problems. Although we were not able to determine an

analytic solution for general interval Markov chains, the intuitive idea behind the

analytic solution for the three state interval Markov chain can be used as a starting

point for an iterative numerical optimisation routine. We explain in detail how

this idea is used in Chapter 4. Section 3.5 also provides us with a useful analytic

property which we exploit when finding and checking the solution of the optimi-

sation problem obtained using numerical techniques. Lastly, Section 3.6 explored

continuous-time interval Markov chains and obtained a method for calculating the

expected total cost using uniformisation and our discrete-time interval Markov

chain results.
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Numerical Method

Here, we describe the numerical method to solve the minimisation problem. Note

that a similar method is used to solve the maximisation problem and any dif-

ferences in the method of solving are explicitly considered in the relevant sec-

tions.

We know that an optimisation problem involves finding an optimal value of a given

function on a region which may or may not be constrained. Thus, a minimisation

problem involves finding a minimum value for a given objective function subject

to constraints (if they exist). Recall the minimisation problem we are interested

in solving is

minχk =
[
(I − Ps)

−1 c
]
k
,

subject to

n∑
j=1

Pij = 1− P i0, for i = 1, . . . , n,

P ij ≤ Pij ≤ P ij, for i, j = 1, . . . , n. (4.0.1)

Here, we have a non-linear objective function with linear constraints and bounds on

the decision variables. Hence, our problem fits into the framework of MATLAB’s

89
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fmincon function which solves minimisation problems of the form

min
x
f(x)

subject to

k(x) ≤ 0,

keq(x) = 0,

Ax ≤ b,

Aeqx = beq,

lb ≤ x ≤ ub,

where f(x) represents a linear or non-linear objective function, k(x) and keq(x)

are non-linear functions and Ax and Aeqx are linear functions.

However, before we can solve the minimisation problem using fmincon, some pre-

processing of the intervals for the problem is required.

4.1 Pre-processing

The idea behind the need to pre-process the intervals for the minimisation problem

is to ensure that the true solution is always contained within the intervals. An-

other reason for implementing pre-processing is to reduce the number of decision

variables, which shrinks the size of the feasible region and reduces the search space

for the optimisation algorithm; hence, making the problem easier to solve. The

rest of this section is dedicated to explaining the following concepts: degeneracy,

outward rounding and coherence, which form the basis for the pre-processing. We

will also discuss how these concepts are implemented for our problem. Note that

in this pre-processing section, we consider the full interval transition probability

matrix P.
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4.1.1 Degeneracy

Before we consider how degeneracy is dealt with in our problem, we have to un-

derstand what it means for an interval to be degenerate.

Definition 4.1.1. [14] An interval, X =
[
X,X

]
, is degenerate if X = X.

That is, a degenerate interval is an interval with zero width.

Thus, in taking degeneracy into account, we simplify our problem by removing

constant variables from the decision variables and hence make it easier to solve.

In the following, we detail the identification of degenerate intervals and leave the

discussion of the simplification of our problem to Section 4.3.5.

Since we are dealing with floating point numbers, we are limited by numerical

precision. This makes it unlikely for the lower and upper bounds of an interval

to be exactly equal. Hence, we relax the definition of a degenerate interval to

allow for numerical precision and define an interval X to be numerically degener-

ate if the width of the interval is within some acceptable tolerance of zero. For

our problem, we have specified this tolerance to be TolDegenerate. Thus, an

interval is numerically degenerate if
(
X −X

)
≤ TolDegenerate. The choice of

default value for TolDegenerate = 10−8 and will be discussed in greater detail in

Section 4.4. However, we note here that the default value chosen is significantly

greater than machine epsilon (2−52 ≈ 2 × 10−16) because optimisation routines

have trouble adequately exploring intervals which are too narrow. Now we provide

the full procedure used to identify degenerate intervals in our problem and detail

the method used to deal with them. We also consider the consequences of this in

our problem.

Procedure used to implement degeneracy:

• Identify degenerate intervals and set their bounds to be the midpoints of the
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intervals. That is,

newP ij = newP ij = PM
ij , where PM

ij =
P ij + P ij

2
.

• We need to ensure that any changes made to degenerate intervals still re-

sult in a valid interval matrix. That is, there still exist realisations of the

interval matrix with row sums within some tolerance of 1. We have de-

fined this tolerance to be TolEqual and choose the default value to be

TolEqual = 10−13. Note that reasons for this choice of default value will

be discussed in detail in Section 4.4.

• If we have a row of degenerate intervals, we must ensure that the sum of

these degenerate intervals is within TolEqual of 1. That is, we require

1− TolEqual ≤
∑
j

PM
ij ≤ 1 + TolEqual.

We note that shifting the upper and lower bounds of degenerate intervals to

their midpoints can result in two ways of violating this condition.

1. The row sum of degenerate intervals are too small to result in a row

sum within TolEqual of 1.

2. The row sum of degenerate intervals exceeds (1 + TolEqual).

Hence, we need to shift these degenerate intervals away from their midpoint

to allow their sum to be within TolEqual of 1. To do so, we allocate the

amount needed for the row sum to be within TolEqual of 1 proportion-

ally to all intervals with non-zero width. That is, we perform the following

modification to the degenerate intervals.

Let ∆ be the amount needed to bring the row sum to 1. Hence,

∆ =
∑
j

PM
ij − 1.
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Then, if |∆| > TolEqual, we allocate ∆, as follows, to bring the sum of

degenerate intervals to within TolEqual of 1.

newPij = PM
ij −∆×

P ij − P ij∑
j

(P ij − P ij)
, for j = 0, . . . , n.

This takes care of both cases 1 and 2 above: If ∆ > TolEqual, we need

to subtract the extra amount from each degenerate interval with non-zero

width; on the other hand, if ∆ < −TolEqual, we need to add the extra

amount to each degenerate interval with non-zero width. Since ∆ is negative

for the second case, we have the effect of adding the extra amount.

• If not all intervals in a row are degenerate, we need to ensure that for each

row, the lower bounds sum to a value less than or equal to 1 and the upper

bounds sum to a value greater than or equal to 1. Let D be the set of

degenerate intervals. Then, we require the following to hold,

∑
j /∈D

P ij +
∑
j∈D

PM
ij ≤ 1,

∑
j /∈D

P ij +
∑
j∈D

PM
ij ≥ 1.

Let us consider the condition on the upper bounds. If this condition is not

satisfied, we allocate the difference between the row sum and 1 proportion-

ally to each non-zero degenerate interval. This increases the value of each

degenerate interval by some amount which enables the row sum to be within

TolEqual of 1.

Let ∆ =

∣∣∣∣∣∣
∑
j /∈D

P ij +
∑
j∈D

PM
ij − 1

∣∣∣∣∣∣.
If ∆ > TolEqual, we allocate ∆ to the non-zero degenerate intervals using
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the following method to increase the row sum to at least 1.

newPij = PM
ij + ∆×

P ij − P ij∑
j

(P ij − P ij)
, for j ∈ D.

If the condition on the lower bounds is violated, we use the same method as

for the upper bounds with a few modifications. Here, we replace the upper

bounds in ∆ with lower bounds and we subtract from PM
ij for j ∈ D, to

decrease the row sum.

4.1.2 Outward rounding

Another important concept we need to consider is the idea of outward rounding.

Outward rounding is a procedure performed on intervals where the left endpoint

is moved to the left (on the number line) and the right endpoint is moved to

the right [14]. The idea behind performing outward rounding is to ensure that

intervals used in further calculations always contain the true solution. This is

necessary due to the representation of floating point numbers on a computer and

in MATLAB.

There are a variety of ways to represent a floating point number in MATLAB.

Since the default format used in MATLAB is the double precision format, this will

be the one of focus to us. The double precision format uses the IEEE 754 standard

for double precision. This means that any number stored in double precision in

MATLAB uses 64 bits where 1 bit is used for the sign of the number, 11 bits for

the exponent and 52 bits for the mantissa. Note that examples used to explain

floating point numbers and outward rounding will be expressed in hexadecimal.

That is, instead of writing out the full binary representation in base 2, we can use

a hexadecimal representation in base 16 which groups 4 bits into one hexadecimal
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digit. For example,

0111 = 7,

1011 = b,

where the expression on the left is in binary and on the right is hexadecimal.

Without loss of generality, we demonstrate the double precision format on the

number 1
10

which is represented in hexadecimal [13] as

1

10
= 3fb999999999999a.

Recall that a number is stored in double precision using 64 bits with the first bit

used for the sign, the next 11 bits used for the exponent and the remaining 52 bits

used for the mantissa. Hence, the hexadecimal representation can be split up into

the separate components as

sign and exponent︷︸︸︷
3fb

mantissa︷ ︸︸ ︷
999999999999a,

and the separation of the sign and exponent is given in binary as,

3fb =

sign︷︸︸︷
0

exponent︷ ︸︸ ︷
01111111011 .

First, consider the sign. Since the sign is represented by the first bit, this bit is 0

for positive numbers and 1 for negative numbers. For example,

1

10
= 3fb999999999999a whilst − 1

10
= bfb999999999999a.

The only difference between the two is the first bit in the first hexadecimal number

as 3 = 0011 and b = 1011.

Now, consider the exponent which is represented by the next 11 bits. A change

in the last bit of the exponent represents a doubling of the floating point number.
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For example,

1

20
= 3fa999999999999a,

1

10
= 3fb999999999999a,

1

5
= 3fc999999999999a.

In these examples, we see that the exponent has increased by 1 from 3fa to 3fb

then 3fc and with each increase, the floating point number is doubled.

Since the double precision format used by MATLAB uses 64 bits and 52 bits are

used for the mantissa, this means that the numbers represented are accurate up

to 2−52 ≈ 2.2× 10−16. For example, we know that 1
10

= 0.1. However, this cannot

be represented exactly using 64 bits. Instead, the number used is the nearest

representable number which in MATLAB is given by

1

10
= 3fb999999999999a (in hexadecimal)

= 0.10000000000000000555.

The default method used in IEEE 754 to round non-representable floating point

numbers is “Rounding to nearest, ties to even”. This means, as mentioned above,

that a floating point number is rounded to its nearest representable number. If a

floating point number lies exactly between two representable numbers, it is rounded

to the one with an even (i.e. 0) least significant bit. We revisit the example of 1
10

to show how this rounding works.

If we consider the hexadecimal representation of 1
10

, we have the following possible

representations,

3fb9999999999999 = 0.09999999999999999167,

3fb999999999999a = 0.10000000000000000555,

3fb999999999999b = 0.10000000000000001943,
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where the expression on the left is the hexadecimal representation and on the right

is the decimal representation. Since 3fb999999999999a = 0.10000000000000000555

is the closest representable number to 1
10

= 0.1, it is the number used in numerical

calculations.

Hence, if we wanted an interval with a lower bound of 0.1, we would not be able to

obtain such a lower bound without any modifications because once this number is

entered into MATLAB, it is rounded to a number larger than 0.1. This means the

interval specified in MATLAB would not contain 0.1 and we would never be able

to use a value as low as 0.1 in our calculations. Thus, we need to perform outward

rounding of the intervals to ensure that we always contain the true solution which

means ensuring that all input values are always attainable.

Recall that the idea of outward rounding is to round the lower bounds of intervals

to a representable machine number smaller than itself and round the upper bounds

to a machine number larger than itself. Thus, resulting in a slightly wider interval

that contains the previous bounds. The inbuilt MATLAB function eps(x) is a

useful function to perform this procedure as it returns the absolute value of the

distance between the number x and the next larger machine number of the same

precision [13]. Note that precision does not depend on the mantissa, but does

depend on the exponent. In fact, the absolute value of eps decreases with the

exponent, while the relative value remains constant, for example,

eps(0.25) = 2−54,

eps(0.5) = 2−53,

eps(1) = 2−52,

eps(2) = 2−51.

Let P
(0)
ij and P

(0)

ij represent the lower and upper bound of the (i, j)th entry of the

original transition probability matrix. We obtain the outwardly rounded bounds
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for the transition probabilities by applying the following,

[
P

(1)
ij , P

(1)

ij

]
=
[
P

(0)
ij − eps

(
P

(0)
ij

)
, P

(0)

ij + eps
(
P

(0)

ij

)]
,

for all i = 1, . . . , n and j = 0, . . . , n.

If we have a degenerate interval, we do not outward round the bounds since they

are meant to be equal. Thus, P
(1)
ij = P

(0)
ij and P

(1)

ij = P
(0)

ij . Also, as it is not

possible for probabilities to be less than 0 or greater than 1, we do not outward

round bounds which are 0 or 1. Here we note that 0 and 1 are perfectly represented

in double precision and so no outward rounding is required.

4.1.3 Coherence

The idea of coherence is that every element within the interval is attainable. Con-

sider a given interval matrix P. For every interval, it must be possible to fix any

value in that interval and still achieve realisations of the interval matrix with row

sums of 1. For example, let us consider the element Pij for states i = 1, . . . , n

and j = 0, . . . , n. Coherence implies that for every Pij ∈
[
P ij, P ij

]
, there exists

elements Pik ∈
[
P ik, P ik

]
where k 6= j, such that

n∑
j=0

Pij = 1 for i = 1, . . . , n

[3].

Since we do not know if our bounds are coherent, we modify them to ensure they

are coherent. Coherence tightens the bounds of the interval to ensure that every

element within the interval is attainable. Since degenerate intervals are the tight-

est possible intervals, applying coherence to these intervals will not change their

bounds. Let P
(1)
ij represent the (i, j)th entry of the outwardly-rounded transition

probability matrix and P
(2)
ij represent the coherent probabilities. Then, for all

non-degenerate intervals, the lower and upper bounds are shifted according to the
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following rules [12],

P
(2)
ij = min

max

P (1)
ij , 1−

n∑
k=0
k 6=j

P
(1)

ik

 , P
(1)

ij

 ,

P
(2)

ij = max

min

P (1)

ij , 1−
n∑

k=0
k 6=j

P
(1)
ik

 , P
(1)
ij

 ,

for all i = 1, . . . , n and j = 0, . . . , n.

The reason we take the minimum and maximum of the bounds is to ensure that

we do not exceed the previous bounds due to numerical errors from performing

floating point arithmetic. We know that coherence tightens the intervals and so

there is no reason for the intervals to be moved outside the previous bounds.

4.1.4 Pre-processing method

Now that we have discussed and explained the concepts involved in the pre-

processing stage, we need a method of pre-processing which combines these ideas of

degeneracy, outward rounding and coherence in a suitable manner to fulfil the aim

of pre-processing. That is, we want to develop a method which ensures that with

each modification, the true solution is still contained within the intervals.

Our pre-processing method:

• We first apply degeneracy to ensure that degenerate intervals are not out-

wardly rounded.

• Next, we apply outward rounding to ensure that the true solution is contained

within the intervals.

• Then, we apply coherence to tighten the intervals and ensure that row sums

of 1 are attainable for every element in the intervals.
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• Since coherence may have caused intervals to become degenerate, we apply

degeneracy again.

• Now we note that coherence and degeneracy affect one another as coherence

can cause intervals to become degenerate and degeneracy can have an impact

on the row sum equalling 1. Thus, coherence and degeneracy are applied

alternatively until no more intervals become degenerate.

With this, the pre-processing stage is complete and we can now move on to consider

the optimisation problems.

4.2 Separation of minimisation and maximisa-

tion problems

Since we have been able to pre-process the intervals for the full interval transition

probability matrix, we can now consider the optimisation problems we are inter-

ested in solving. Recall from Section 3.3, we have split our optimisation problem

into a minimisation and a maximisation problem as we proved that the optimal

value for Pi0 can always be at the upper or lower bound for the minimisation and

maximisation problem, respectively. Hence, we can set these Pi0 intervals to be

degenerate and remove them from the set of decision variables. However, there are

some consequences which need to be considered. By forcing these intervals to be

degenerate, we affect the row sums of the interval P matrix. Recall that degener-

acy has an impact on coherence and vice-versa. Hence, the coherence-degeneracy

loop used in the pre-processing method has to be applied again, separately, for

both the minimisation and maximisation problems. This loop continues until no

more changes are made to the intervals.
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4.3 MATLAB fmincon formulation

Now that we have pre-processed the intervals, we will use MATLAB’s fmincon

function to solve the minimisation problem. This function allows us to specify

an objective function, constraints on the decision variables and also bounds on

the decision variables which makes it very useful for our purposes. We note that

fmincon allows for user-specification of the optimisation algorithm. Depending

on this choice, it may also allow for further optional inputs, such as, specifying

the gradient of the objective function and the Hessian used in fmincon. Another

input required for fmincon is an initial point from which the algorithm starts its

search.

4.3.1 Choice of optimisation algorithm

There are four different algorithms to choose from in fmincon: interior-point,

trust-region-reflective, active-set and sqp. For our problem, we have cho-

sen to use fmincon’s sqp (sequential quadratic programming) algorithm to find

the minimum. One of the reasons for choosing the sqp algorithm is because we are

unable to satisfy the requirements for the trust-region-reflective algorithm.

This algorithm does not allow for the use of equality constraints and upper and

lower bounds on the variables [13]; both of which we have in our minimisation

problem. Hence, it is not appropriate for our problem.

A couple of advantages the sqp algorithm has over the active-set algorithm

are that sqp satisfies bounds at each iteration of the algorithm and it uses more

efficient linear algebra routines as compared to the active-set algorithm [13]. We

also note that since we have established Theorem 3.5.2 in Section 3.5, we know

that the optimal solution to the problem lies at a vertex of the feasible region.

Hence, if we chose the interior-point algorithm, some post-processing is needed

to ensure that we lie on the boundary of the parameter space as this algorithm
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ensures the optimal solution lies within the feasible region. On the other hand, the

sqp algorithm does not require any major post-processing of the solution. Both

methods have been implemented on a large variety of examples and their solutions

are consistent. Hence, we have chosen to use the sqp algorithm. Note that concepts

used in the interior-point algorithm are discussed where necessary.

sqp (sequential quadratic programming) algorithm [7, 13, 15]

Consider the general non-linear optimisation problem,

min
x
f(x)

subject to

hi(x) = 0, for i = 1, . . . , n,

gj(x) ≤ 0, for j = 1, . . . ,m,

where hi represents the equality constraints, gj represents inequality constraints

and the bounds on x are re-written in the form of inequality constraints.

The basic idea behind the sqp algorithm is to break down the non-linear optimi-

sation problem into a sequence of quadratic programming (QP) subproblems. The

QP subproblems are of the form

min
d∈Rn

1

2
dTHkd+∇f(xk)Td

subject to

∇hi(xk)Td+ hi(xk) = 0, i = 1, . . . , n,

∇gj(xk)Td+ gj(xk) ≤ 0, j = 1, . . . ,m,

where Hk is a positive-definite estimate of the Hessian of the Lagrangian, calcu-

lated using a quasi-Newton method. At each iteration of the algorithm, the QP

subproblem is solved using an active set strategy. This solution, dk, can then be
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used together with the step length parameter, αk, to calculate the next point,

xk+1 = xk + αkdk. The step length parameter αk is determined using a line

search method where αk is accepted when it results in a sufficient decrease in a

merit function. A merit function balances the desire of minimising the objective

function with the need to satisfy the constraints of the problem. This continues

iteratively until convergence is attained.

4.3.2 Gradient

MATLAB’s fmincon function allows us to specify the gradient of the objective

function. This enables us to obtain a more accurate value to machine precision for

the gradient, as opposed to an approximation obtained using a finite differencing

method, thus providing us with more confidence in our results. Recall that Theo-

rem 3.2.1 gives us an analytic expression for the gradient of the objective function

and we use this form to calculate the gradient and supply it to fmincon.

To ensure that our calculation of the gradient is correct, we can specify an ad-

ditional option in fmincon. This option allows us to check that the value of our

gradient is within 1e-06 (tolerance specified by MATLAB) of the gradient cal-

culated by MATLAB using the finite differencing method. If our gradient is not

within 1e-06, MATLAB stops computation and returns an error. Thus, it is a use-

ful check to ensure that we are using the correct gradient in fmincon. This option

was used throughout the testing phase to ensure that the gradient, as specified in

Theorem 3.2.1, matched the approximation from MATLAB.

4.3.3 Hessian

As before with the gradient, we would like to provide a Hessian to fmincon which

would enable us to obtain a more accurate result to machine precision. However,
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the sqp algorithm does not allow for a Hessian to be supplied to the fmincon

function. Instead, MATLAB uses a quasi-Newton positive-definite approximation

of the Hessian matrix when it iterates to find the optimal solution. It is noted

that the Hessian that fmincon uses can be quite inaccurate. However, we cannot

do any better when using this algorithm.

Since fmincon’s approximation of the Hessian may not be accurate at all times, it

would be beneficial to supply a Hessian into the function. One of the algorithms

which allows us to do so is the interior-point algorithm. This algorithm was

used in the testing phase to compare with results from the sqp algorithm and so

we provide a discussion of the Hessian used in fmincon and the derivation of the

Hessian used for the interior-point algorithm.

The Hessian used by the fmincon function in its algorithm to find the optimal

solution is the Hessian of the Lagrangian. The Lagrangian is given by

L = f +
∑
i

λiki +
∑
j

λjkeqj,

where f is the objective function, ki are the non-linear inequality constraints,

keqj are the non-linear equality constraints and λi are the Lagrange multipliers.

Thus, the Hessian of the Lagrangian is composed of the second derivatives of the

Lagrangian.

We would like to develop a method to analytically calculate the Hessian of the

Lagrangian. In the definition of the Lagrangian specified above, there were both

non-linear inequality and non-linear equality constraints. However in our problem,

we do not have any of these constraints and so the Lagrangian reduces to the

objective function. Thus, we are interested in obtaining an analytic expression

for the Hessian of the objective function. Recall that we have already proven

an analytic form of the Hessian of the objective function in Theorem 3.2.2. This

analytic form is provided to the fmincon function and used to give a more accurate

result to machine precision.
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4.3.4 Initial point

A required input to the fmincon function is an initial point which is used as a

starting point for the search for the optimal objective function value. Instead

of using a randomly chosen feasible initial point, we decided to use an initial

point that we intuitively expect to be, or at least to be very close to, the optimal

point.

Recall, the Ps matrix contains the probabilities of moving around the transient

states of the Markov chain and is given by

Ps =



P11 · · · · · · · · · P1n

...
. . .

...
...

...

Pi1 · · · Pij · · · Pin

...
...

...
. . .

...

Pn1 · · · · · · · · · Pnm


.

These probabilities, Pij, are the decision variables of the problem for which we

need to calculate initial values to input into fmincon. Hence, these are the initial

values we are seeking to determine by using the intuitive method described below

instead of randomly generating initial values.

Recall that we have a minimisation and a maximisation problem and so each prob-

lem has a different initial point which needs to be calculated. Let us first consider

the minimisation problem. Let Pmin
s denote the initial matrix for the minimisation

problem. The intuitive method used to calculate the values in Pmin
s is based on

a similar idea to the one used in Section 3.3 where we formed the minimisation

and maximisation problems. Since we are considering the minimisation problem,

we are looking to minimise the expected total costs. That is, we want the pro-

cess to enter the absorbing state as quickly as possible to avoid incurring extra

cost. Hence, we would like the process to move to states with a higher chance of

direct absorption into state 0. However, there is a trade-off between maximising
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the chance of direct absorption and minimising the cost incurred when the process

moves around the states.

Recall from Section 4.2, we forced the Pi0 interval to be degenerate. Hence, in the

following, we will use Pi0 instead of specifying the lower or upper bounds of the

interval as they are equal.

To account for the trade-off between maximising the chance of direct absorption,

Pi0, and minimising the cost incurred, ci, we sort the values
ci
Pi0

, for i = 1, . . . , n, in

ascending order. This is the ordering used to maximise the columns in Pmin
s . Note

that if Pi0 = 0 or both Pi0 = ci = 0, then we may encounter problems with the

ratio
ci
Pi0

when sorting. Hence, these states are placed at the end of the ordering

and so processed last.

Let

Omin =

[
ci
Pi0

, i = 1, . . . , n, sorted in ascending order

]
,

rmin =
[
corresponding states in the vector Omin

]
.

For example, if we had

c1 = 1.1, c2 = 2, c3 = 1.2,

P10 = 0.1, P20 = 0.25, P30 = 0.2,

then

Omin =

[
ci
Pi0

, i = 1, 2, 3, sorted in ascending order

]
=

[
1.2

0.2
,

2

0.25
,
1.1

0.1

]
= [6, 8, 11]

and

rmin =
[
corresponding states in the vector Omin

]
= [3, 2, 1] .
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These orderings are used to form the following initial matrix for the minimisation

problem,

Pmin
s =



Pmin
11 · · · · · · · · · Pmin

1n

...
. . .

...
...

...

Pmin
i1 · · · Pmin

ij · · · Pmin
in

...
...

...
. . .

...

Pmin
n1 · · · · · · · · · Pmin

nm


,

where

Pmin
ir(j) = min

{
P ir(j),max

(
P ir(j), 1− Pi0 −

j−1∑
k=1

Pmin
ir(k) −

n∑
k=j+1

P ir(k)

)}
,

for i, j = 1, . . . , n and r(j) is the jth element of the vector rmin.

A similar procedure is applied for maximisation problems where we seek to max-

imise the expected total costs. Let Pmax
s represent the initial matrix for the max-

imisation problem. Here, we want the process to avoid being absorbed for as long

as possible which means preferring that the process moves to states with a smaller

chance of direct absorption into state 0. However, like the minimisation problem,

there is a trade-off between minimising the chance of direct absorption and max-

imising the cost incurred when the process moves around the states. Thus, we sort

the values
ci
Pi0

, for i = 1, . . . , n in descending order. This is also the order in which

the columns of Pmax
s are maximised. Note that if Pi0 = 0 or both Pi0 = ci = 0,

then we may encounter problems with the ratio
ci
Pi0

when sorting. Hence, for these

states i, they are placed at the end of the ordering and so processed last.

In the same way as the minimisation problem, we let

Omax =

[
ci
Pi0

, i = 1, . . . , n, sorted in descending order

]
,

rmax = [corresponding states in the vector Omax] .
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These orderings dictate the formation of the following initial matrix for the max-

imisation problem,

Pmax
s =



Pmax
11 · · · · · · · · · Pmax

1n

...
. . .

...
...

...

Pmax
i1 · · · Pmax

ij · · · Pmax
in

...
...

...
. . .

...

Pmax
n1 · · · · · · · · · Pmax

nm


,

where

Pmax
ir(j) = min

{
P ir(j),max

(
P ir(j), 1− Pi0 −

j−1∑
k=1

Pmax
ir(k) −

n∑
k=j+1

P ir(k)

)}
,

for i, j = 1, . . . , n and r(j) is the jth element of the vector rmax.

Note that minimums and maximums are used to ensure that the initial probabilities

lie within their bounds. Furthermore for degenerate intervals, since the interval

has no width and both bounds are equal, the initial point is the same as the lower

and upper bounds.

An important consideration is that we need an initial point with a probability 1

of absorption into state 0. That is, starting in our chosen state k, there will be

some path from state k to state 0. This is important because fmincon requires

an initial point which has a finite objective function value. Since our objective

function is the expected total cost, the only way to have an infinite expected total

cost is if the probability of eventual absorption into state 0 is less than 1. We also

need to calculate a new initial point because we want to return a solution with a

probability of absorption equal to 1. If our initial point does not have a probability

1 of absorption into state 0, we are unable to start fmincon from that point and,

if possible, would not want to return such a solution.

Recall from Section 2.1.1 that the probability of absorption into state 0 is obtained
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by calculating

a =
∞∑

m=0

Pm
s P0,

where

• Ps is the sub-matrix of the transition probability matrix P containing the

transition probabilities Pij for i, j = 1, . . . , n,

• P0 is the column vector containing the probabilities Pi0 for i = 1, . . . , n, and

• a is the column vector containing the absorption probabilities aj for

j = 1, . . . , n.

Hence, before we use the initial point obtained via the above method, we first check

that the probability of absorption into state 0 is 1 for the state k we are interested

in. That is, we check if the kth element of the vector a is 1. If the probability is

not 1, we must find another initial point which satisfies this property.

However, we note that the interval transition probability matrix of interest may

not contain a realisation Ps with probability of absorption into state 0 equal to 1

from every state. Hence, we first perform a reachability analysis, which basically

investigates if the process is able to reach state 0 from any other state in the

system.

Let Q be a matrix containing 1s and 0s where Qij = 1 if P ij > 0 and Qij = 0 if

P ij = 0. Then, let the matrix R = I +Q+Q2 + . . .+Qn, where I is the identity

matrix of the same size as Q. Each element in the matrix R, Rij, contains the

total number of possible paths from state i to state j in 0, 1, 2, . . . , n steps. Note

that as we have a total of n states, taking n steps ensures that all non-looping

paths have been considered (as well as many looping paths).

Hence, for a path to exist from any state i, where i = 0, . . . , n, in the system to

state 0, we require that the first column of R is strictly positive. That is, there

exists at least one path from any state i = 0, . . . , n to the absorbing state 0. If
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there is no path from every state to state 0, the interval transition probability

matrix is rejected and we return an error to the user. On the other hand, if there

exists a path from every state to state 0, we calculate a new initial point in the

following way. For each row i of the Ps matrix,

1. Find the minimum non-zero interval width, denoted by min width.

2. Find all non-degenerate intervals with a lower bound of 0, and let z be the

number of such intervals.

3. Pre-allocate all such elements to be 1
z
×min width. Thus, we have a vector b

with bi = 1
z

for non-degenerate elements in the interval transition probability

matrix with a lower bound of 0 and bi = 0 for all other elements in the vector.

4. Subtract the sum of the vector b from the row sum, which has the effect of

removing the pre-allocated values from the row sum.

5. Then, using our previous method, we obtain a vector d containing the intu-

itive probabilities for the current row without the pre-allocation.

6. Finally, we add the pre-allocated values to the intuitive probabilities, that

is, sum vectors b and d to obtain the initial values for the current row i in

our initial matrix.

Using this modified method, we obtain an initial point with probability of absorp-

tion into state 0 equal to 1.

4.3.5 Removal of degenerate intervals from the problem

In the pre-processing stages, we identified degenerate intervals in the interval P

matrix and set their upper and lower bounds to be equal. Since degenerate intervals

have zero width, there is only one choice for the decision variables of these intervals.

Thus, there is no need to optimise these decision variables and they can be removed
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from the problem. This has the effect of shrinking the dimension of the search space

for the optimisation routine.

A consequence of removing decision variables corresponding to degenerate intervals

from the problem is that their respective constraints must be either removed from

the problem or recalculated. This is done to ensure that the constraints for the

remaining decision variables are still valid.

4.4 Tolerances

Since fmincon is an iterative method, there needs to be some way to determine

when to stop iterating, that is to determine when the optimal solution has been

found. This is where we introduce the idea of tolerances. Tolerances allow us to

specify the accuracy of our solution and determine when the fmincon function

should stop iterating. Here, we provide a brief explanation of some of the toler-

ances used in fmincon as well as discuss our choices of default values for these

tolerances. Before we discuss the tolerances used in fmincon, we first consider

the two tolerances which we have defined previously in Section 4.1.1 as well as a

tolerance we use to check for active constraints (Section 2.6).

4.4.1 TolDegenerate

Recall in Section 4.1.1, we have previously defined TolDegenerate to be the tol-

erance on degenerate intervals. That is, an interval X =
[
X,X

]
is numerically

degenerate if
(
X −X

)
≤ TolDegenerate. Since we know that optimisation rou-

tines fail if the interval is too narrow, we have chosen a default value which is

much greater than machine epsilon. Recall from Section 4.3.5 that we remove

degenerate intervals from the problem. Thus, any interval with width less than

TolDegenerate is deemed to be numerically degenerate and removed from the
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problem. This means these decision variables are fixed and we do not need to use

fmincon to obtain their optimal values. Hence, we have chosen to set the default

value for TolDegenerate = 10−8.

4.4.2 TolEqual

In Section 4.1.1, we also defined TolEqual to be the tolerance on how close a

numerically calculated value lies to its true value. For example, TolEqual was

used to check that the row sums of degenerate intervals in the P matrix was

within TolEqual of 1. Another area in which we use TolEqual is in Section 4.5,

where the optimal solution is purified by moving values within TolEqual of their

bound to their bound.

Hence, the reason for having this tolerance is due to numerical precision. Recall

we have discussed floating point numbers in Section 4.1.2. We know that when

arithmetic operations are performed on floating point numbers, we are not guaran-

teed to obtain the exact values we desire. Instead, we obtain values which lie very

close to the true value. Thus, we require some tolerance to allow for this error.

We have chosen the default value for TolEqual = 10−13 to allow for this numerical

precision. It is not realistic to assume that the accumulation of errors when per-

forming floating point arithmetic will lie within machine precision, hence, we have

chosen TolEqual to be larger than machine precision. However, TolEqual cannot

be too large or we would be taking into account more than numerical precision.

Thus, we have chosen TolEqual = 10−13 as a suitable balance between allowing

for error and encompassing too much variation.
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4.4.3 TolActive

TolActive is a tolerance on active constraints. Recall in Section 2.6 that we de-

fined active constraints to be the inequality constraints where equality holds. For

example, if the inequality constraints are gj(x) ≤ 0, then the active constraints at

x′ are the constraints where gj(x
′) = 0. Due to numerical precision as well as the

tolerances to which fmincon stops iterating, it would not be appropriate to expect

gj(x
′) = 0. Instead, active constraints are those where |gj(x′)− 0| <= TolActive,

that is, active constraints are constraints which are within TolActive of 0. We

have chosen the default value for TolActive = 10−8 due to its relationship with

TolDegenerate and TolX (see below).

4.4.4 TolX

As stated in the MATLAB documentation [13], let xi be the solution of the current

iteration and xi+1 be the solution of the next iteration. Then, we have that:

TolX is a lower bound on the size of a step, meaning the norm of

(xi − xi+1). If the solver attempts to take a step that is smaller than

TolX, the iterations end. TolX is sometimes used as a relative bound,

meaning iterations end when |(xi − xi+1)| < TolX ∗ (1 + |xi|), or a

similar relative measure.

In fmincon, the default value for TolX is 10−6 but we have chosen to set

TolX = 10−8. Note that this is the same value as the default for TolDegenerate

which is the tolerance on degenerate intervals. The reason for this is that the step

size taken cannot be bigger than the width of the intervals. If TolX is larger than

TolDegenerate, then the largest possible step from the upper bound to the lower

bound or vice-versa would result in a step size smaller than TolX. Thus causing

fmincon to stop.
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4.4.5 TolFun

In the MATLAB documentation [13], TolFun is defined as follows:

TolFun is a lower bound on the change in the value of the objective

function during a step. If |f(xi)− f(xi+1)| < TolFun, the iterations

end. TolFun is sometimes used as a relative bound, meaning iterations

end when |f(xi)− f(xi+1)| < TolFun∗(1 + |f(xi)|), or a similar relative

measure.

TolFun is also a bound on the first-order optimality measure. If the

optimality measure is less than TolFun, the iterations end. TolFun can

also be used as a relative bound.

The first-order optimality measure is the maximum of the following

two norms:

‖∇xL(x, λ)‖ =

∥∥∥∥∥∇f(x) + ATλineqlin + AeqTλeqlin

+
∑
i

λineqnonlin,i∇ki(x) +
∑
i

λeqnonlin,i∇keqi(x)

∥∥∥∥∥,
(4.4.2)

and∥∥∥−−−−−−−−−−→|`i − xi|λlower,i,
−−−−−−−−−−→
|xi − ui|λupper,i,

−−−−−−−−−−−−−→
|(Ax− b)i|λineqlin,i,

−−−−−−−−−−−→
|ci(x)|λineqnonlin,i

∥∥∥ ,
(4.4.3)

where the notation
−−−−−−−−−−→
|`i − xi|λlower,i represents the vector obtained by

multiplying the vectors |` − x| and λlower elementwise. Note that the

norm of the vectors in (4.4.2) and (4.4.3) is the infinity norm (maxi-

mum). The subscripts on the Lagrange multipliers correspond to solver

Lagrange multiplier structures, where

• lower, associated with lower bounds
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• upper, associated with upper bounds

• eqlin, associated with linear equalities

• ineqlin, associated with linear inequalities

• eqnonlin, associated with nonlinear equalities

• ineqnonlin, associated with nonlinear inequalities

The summations in (4.4.2) range over all constraints. If a bound is

±Inf, that term is not constrained, so it is not part of the summation.

After much testing, we decided to set TolFun = 10−6. Since we perform our own

first-order optimality check, we are not too particular about this check and simply

require fmincon to return a feasible solution.

4.4.6 TolCon

MATLAB’s documentation [13] has the following explanation for TolCon:

TolCon is an upper bound on the magnitude of any constraint function.

If a solver returns a point x with c(x) > TolCon or |ceq(x)| > TolCon,

the solver reports that the constraints are violated at x. TolCon can

also be a relative bound.

Note: TolCon operates differently from other tolerances. If TolCon is

not satisfied (i.e., if the magnitude of the constraint function exceeds

TolCon), the solver attempts to continue, unless it is halted for another

reason. A solver does not halt simply because TolCon is satisfied.

Since we want the maximum constraint violation to be as small as possible, we have

chosen to set TolCon = 10−12. Furthermore, we require TolCon to be smaller than

TolActive as we need to account for possible optimal values returned by fmincon

which lie outside their bounds.
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All of the concepts discussed in Sections 4.3 and 4.4 are specified as options or

input variables in the fmincon function. Then the optimal expected total cost, χk,

is returned together with the optimal Ps matrix containing the decision variables

for the chosen state k, for k = 1, . . . , n.

4.5 Purification

Now that we have an optimal expected total cost and an optimal Ps matrix, we

perform a purification of the decision variables in the optimal Ps matrix. The idea

behind this process is the same as that of purification for interior point methods

in linear programming problems. For our problem, we want to ensure that all

decision variables in the optimal Ps matrix are sufficiently close to satisfying all of

their constraints. Hence, given an optimal Ps matrix, we first move any decision

variables lying outside the interval to its closest bound. This may occur due to

numerical precision and tolerances.

Next, recall from Theorem 3.5.2 that we have proven the optimal Ps matrix must

be a vertex. Also recall from Section 4.4, TolActive is the tolerance on active

constraints and so any value within TolActive of its bound is considered to be

active or at its bound. Hence, we move any optimal values within TolActive of its

bounds to its closest bound.

After moving all of these optimal values to their bounds, it is unlikely for the row

sum,
∑
j

Pij, to remain within TolEqual of 1. Thus, we need to shift variables so

that the important row sum constraint, that is,
∑
j

Pij lies within TolEqual of 1,

is satisfied.

Procedure:

• Move optimal values outside their bounds to their bounds.
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• Move optimal values within TolActive of their bounds to their bounds.

• Check row sum constraint.

• If row sum constraint not satisfied, we move certain variables.

This gives us two possible types of variables we can move,

1. Free variables, which are variables x such that |x − lb| > TolActive and

|x − ub| > TolActive. That is, the optimal value x is not within TolActive

of its bounds.

2. Active variables, all the optimal variables which were initially active (i.e. at

one of their bounds) and also the variables which were moved to their bounds

(i.e. either outside the interval or within TolActive of the bounds).

Ideally, we want to allocate the amount needed to bring the row sum to 1 in the

above order.

Within each variable, we have two sub-cases,

1. Positive slack

(∑
j

Pij − 1 > TolEqual

)
,

2. Negative slack

(∑
j

Pij − 1 < −TolEqual

)
.

In the following, we detail methods to deal with these sub-cases for both free and

active variables.

1. Free variables

Since we know that the Ps matrix should be at a vertex to be optimal (The-

orem 3.5.2), we should consider moving these free variables to a bound first.

Note that the reason we have free variables is due to the solution returned

by fmincon being an interior point. Thus, we would add or subtract from

these free variables depending on whether a positive or negative amount is

needed to bring the row sum to 1.
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a) For a positive amount

Here, there is too much probability mass. Hence, to reduce the mass

and ensure that the row sums are within TolEqual of 1, we need to

decrease the value of the free variables.

Method:

For each row without a row sum within TolEqual of 1,

• Calculate the gradient for the current optimal values.

• Using only the gradients corresponding to the free variables, find

the largest gradient. That is, find the maximum of gradient as

every element of the gradient vector is positive. The reason for

this is that we want to move the variable which causes the largest

decrease in the objective function, as we are considering the min-

imisation problem. Note that a similar logic and method is used

for the maximisation problem.

• Move the variable corresponding to the largest gradient as much as

possible without exceeding its lower bound.

• Repeat this process until row sums are within TolEqual of 1, that

is,
∑
j

Pij − 1 < TolEqual, or we have no more free variables left

to move.

b) For a negative amount

Here, the variables are not large enough for the row sum to be 1. Hence,

we need to increase the value of the variables not at their upper bounds

which in turn increases the row sum and pushes it to be within TolEqual

of 1. We apply the same method as the one for the positive amount case,

except we move the variable corresponding to the smallest gradient (for

a minimisation problem) towards its upper bound without exceeding

the bound.



Chapter 4. Numerical Method 119

2. Active variables

If there are no free variables, then there is no choice but to move active

variables to enable the row sum to be within TolEqual of 1.

a) For a positive amount

Here, there is too much probability mass. Since all variables are active,

they must either lie on their lower or upper bound. To decrease the row

sum, we need to decrease the value of the variables. This cannot be

done to variables at their lower bounds as this would take the variables

outside their bounds. Thus, we can only subtract from variables at

their upper bounds.

Method:

For each row without a row sum within TolEqual of 1,

• Calculate the gradient for the current optimal values.

• Using only the gradients corresponding to variables which are at

their upper bound, find the largest gradient. That is, find the

maximum of gradient as every element of the gradient vector is

positive. The reason for this is that we want to move the variable

which causes the largest decrease in the objective function, as we

are considering the minimisation problem. For the maximisation

problem, a similar logic and method is used.

• Move the variable corresponding to the largest gradient as much as

possible without exceeding its lower bound.

• Repeat this process until row sums are within TolEqual of 1, that

is,
∑
j

Pij − 1 < TolEqual, or we have no more active variables left

to move.

• Note that if there are no more active variables to move, the row
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sum should be within TolEqual of 1. The reason for this is because

coherence and degeneracy have been applied.

b) For a negative amount

Here, the variables are not large enough to enable a row sum of 1. Sim-

ilar to the positive amount case, there are only active variables and so

increasing the row sum involves increasing the value of the variables.

Only variables at their lower bounds are considered for movement be-

cause increasing variables at their upper bound will result in pushing

the variable outside their intervals. The same method as the one devel-

oped for the positive amount case is used. The differences between the

two procedures are that we consider gradients corresponding to vari-

ables at their lower bounds for the negative amount case and also move

the variable with the smallest gradient (for a minimisation problem)

towards its upper bound without exceeding the bound.

After purification has been completed, we check that the optimal matrix P ∗s has

a probability of absorption equal to 1 to provide the user with more information

about the optimal matrix. If the probability of absorption is not equal to 1 for

P ∗s , we notify the user of this and do not check first-order optimality conditions as

(I − P ∗s )−1 will be undefined. (see Section 3.1).

4.6 Optimality conditions

Recall that the minimisation problem we solve, for a given state k, using fmincon

is given by,

minχk =
[
(I − Ps)

−1c
]
k
,
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subject to

hi(Ps) =
n∑

j=1

Pij −
(
1− P i0

)
= 0, i = 1, . . . , n,

`ij(Ps) = P ij − Pij ≤ 0, i, j = 1, . . . , n,

uij(Ps) = Pij − P ij ≤ 0, i, j = 1, . . . , n.

First-order optimality conditions allow us to determine if a point in the feasible

region is optimal. Recall that we have defined the Karush-Kuhn-Tucker (KKT)

conditions, which are first-order necessary conditions, for a point P ∗s to be a local

minimiser of the objective function, χk. Here, we re-state Theorem 2.6.2 using the

terms and constraints of our optimisation problem and refer the reader back to

Section 2.6 for definitions of terms used.

Theorem 4.6.1 (Karush-Kuhn-Tucker (KKT) Theorem). Let χk, for all

k = 1, . . . , n, hi, `ij, uij, for all i, j = 1, . . . , n be sufficiently differentiable (that is,

∇χk, for all k = 1, . . . , n, ∇hi, ∇`ij, ∇uij, for all i, j = 1, . . . , n exist). Let P ∗s be

a regular point and a local minimiser of χk(Ps) such that hi(Ps) = 0, `ij(Ps) ≤ 0,

uij(Ps) ≤ 0, for all i, j = 1, . . . , n. Then, there exists µi ∈ R, λ`ij ∈ R and λuij
∈ R

for all i, j = 1, . . . , n such that:

1. ∇χk(P ∗s )+
n∑

i=1

µi∇hi(P ∗s )+
n∑

i=1

n∑
j=1

λ`ij∇`ij(P ∗s )+
n∑

i=1

n∑
j=1

λuij
∇uij(P ∗s ) = 0,

2. λ`ij`ij(P
∗
s ) = 0 and λuij

uij(P
∗
s ) = 0, for all i, j = 1, . . . , n, and

3. λ`ij , λuij
≥ 0 for all i, j = 1, . . . n.

We note that for inequality constraints `ij and uij, at least one of the constraint or

the corresponding λ must be zero. Hence, we can specify L(Ps) and U(Ps) to be

the sets of active lower bound and upper bound constraints at Ps respectively, that

is, L(Ps) = {(i, j) : `ij(Ps) = 0} and U(Ps) = {(i, j) : uij(Ps) = 0}. Further, we

can consider for each i = 1, . . . , n, the sets of active lower bound and upper bound

constraints for each row i of the Ps matrix given by Li(Ps) = {j : `ij(Ps) = 0} and
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Ui(Ps) = {j : uij(Ps) = 0} respectively. Thus, the first condition in Theorem 4.6.1

reduces to

∇χk(P ∗s ) +
n∑

i=1

µi∇hi(P ∗s ) +
∑

(i,j)∈L(P ∗
s )

λ`ij∇`ij(P ∗s ) +
∑

(i,j)∈U(P ∗
s )

λuij
∇uij = 0.

Recall that a regular point, P ∗s , as defined in Section 2.6, is a feasible point satis-

fying the requirement that the set of vectors

{
∇hi(P ∗s ) for all i = 1, . . . , n, ∇`ij(P ∗s ) for all (i, j) ∈ L(P ∗s )

and ∇uij(P ∗s ) for all (i, j) ∈ U(P ∗s )
}

are linearly independent.

We note that for our problem, the requirement of a regular point in the KKT

conditions, Theorem 4.6.1, is not satisfied. However, the KKT conditions are

necessary conditions under the regularity assumption, not sufficient conditions.

This means that of all regular points only those that satisfy the KKT conditions

are candidates to be a local minimiser of the function. There may be other irregular

points, either satisfying the KKT conditions 1, 2 and 3, or not, which could be a

local minimiser. Further, any regular point that satisfies the KKT conditions is not

necessarily a local minimiser. Thus, second-order sufficient conditions (Theorem

2.6.3) are used to check that P ∗s is a minimiser of the objective function.

Here, we re-state Theorem 2.6.3 using the terms and constraints for our optimi-

sation problem and refer the reader back to Section 2.6 for definition of terms

used.

The Lagrangian function for this optimisation problem is given by,

l(Ps,µ,λ`,λu) = χk(Ps) +
n∑

i=1

µihi(Ps) +
∑

(i,j)∈L(Ps)

λ`ij`ij(Ps) +
∑

(i,j)∈U(Ps)

λuij
uij(Ps),
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and so the Hessian matrix of l(Ps,µ,λ`,λu) with respect to Ps is

L(Ps,µ,λ`,λu) = H χk(Ps) +
n∑

i=1

µiHhi(Ps) +
∑

(i,j)∈L(Ps)

λ`ijH`ij(Ps)

+
∑

(i,j)∈U(Ps)

λuij
Huij(Ps),

where H χk(Ps) is the Hessian matrix of χk at Ps and similarly for H`ij(Ps) and

Huij(Ps).

Here we also consider the set T (P ∗s ,µ,λ`,λu) which is used in Theorem 4.6.2.

T (P ∗s ,µ,λ`,λu) =
{

y :∇hi(P ∗s )Ty = 0, for all i = 1, . . . , n,

∇`ij(P ∗s )Ty = 0, for all (i, j) ∈ L̃(P ∗s ,λ`), and

∇uij(P ∗s )Ty = 0, for all (i, j) ∈ Ũ(P ∗s ,λu)
}
,

where we have L̃(P ∗s ,λ`) = {(i, j) : `ij(P
∗
s ) = 0, λ`ij > 0} and

Ũ(P ∗s ,λu) = {(i, j) : uij(P
∗
s ) = 0, λuij

> 0}.

The second-order sufficient conditions for a point P ∗s to be a strict local minimiser

of χk is given in the following theorem.

Theorem 4.6.2 (Second-Order Sufficient Conditions). Suppose that χk, for all

k = 1, . . . , n, hi, `ij, uij, for all i, j = 1, . . . , n are sufficiently differentiable (that is,

H χk, for all k =, 1, . . . , n, Hhi, H`ij, Huij, for all i, j = 1, . . . , n exist) and there

exists a feasible point P ∗s and µi ∈ R, λ`ij ∈ R and λuij
∈ R for all i, j = 1, . . . , n

such that:

1. ∇χk(P ∗s ) +
n∑

i=1

µi∇hi(P ∗s ) +
∑

(i,j)∈L(P ∗
s )

λ`ij∇`ij(P ∗s ) +
∑

(i,j)∈U(P ∗
s )

λuij
∇uij = 0,

2. λ`ij`ij(P
∗
s ) = 0 and λuij

uij(P
∗
s ) = 0, for all i, j = 1, . . . , n,

3. λ`ij , λuij
≥ 0 for all i, j = 1, . . . n, and

4. For all y ∈ T (P ∗s ,µ,λ`,λu),y 6= 0, we have yTL(P ∗s ,µ,λ`,λu)y > 0.

Then, P ∗s is a strict local minimiser of χk subject to hi(x) = 0, `ij(Ps) ≤ 0,

uij(Ps) ≤ 0 for all i, j = 1, . . . , n.
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However, recall that we proved in Theorem 3.5.2, that the optimal solution occurs

at the vertex of the feasible region. Also recall from Section 3.5 that the rows

of the Ps matrix are independent. Hence, we can consider each row separately

and discuss what it means for a row of the Ps matrix to represent a vertex of the

feasible region for that row. At a vertex solution for a row of Ps, this means that

the row has at least (n − 1) active constraints as at most one element in a row

of the Ps matrix can be free. If we consider a vertex solution, which satisfies the

KKT conditions 1, 2 and 3, for row i of the Ps matrix, then

T (P ∗s ,µ,λ`,λu) = {0},

if all active constraints j have λ`ij > 0 and λuij
> 0. That is, the union of the sets

L̃(P ∗s ,λ`) and Ũ(P ∗s ,λu) contains all active constraints j. If T (P ∗s ,µ,λ`,λu)={0},

then it tells us that there are no feasible directions to move in to result in a smaller

objective function. Hence, the vertex is a local minimum.

We note that the only way for T (P ∗s ,µ,λ`,λu) 6= {0} is when λ`ij = 0 or λuij
= 0

for some active constraint j. However, we note that throughout extensive testing

of the code, we never observed this to occur. Through some testing, it appears

that unless the initial point occurs at a vertex and has an active constraint j with

λ`ij = 0 or λuij
= 0, the sqp algorithm used in fmincon does not move to these

points when iterating to obtain the minimum. Since such an occurrence has not

been observed, we do not detail our method for checking second-order optimality

conditions for the cases where T (P ∗s ,µ,λ`,λu) 6= {0} when P ∗s is at a vertex of

the feasible region.

Recall that for the common case of a vertex solution with T (P ∗s ,µ,λ`,λu) = {0},

we do not need to check second-order optimality conditions as there are no feasible

directions which decrease the objective function. Hence, we just need to check

that a solution is optimal by checking that it satisfies the KKT conditions 1, 2 and

3.
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Recall when we discussed the tolerance TolFun in Section 4.4, we presented the

way MATLAB calculates its first-order optimality measure which is based upon

the KKT conditions 1, 2 and 3. This first-order optimality measure is used to

determine when the solver iterations end. Since we have placed quite a loose

tolerance on the first-order optimality measure (TolFun = 10−6) and fmincon

returns approximate solutions which depend on tolerances, we have implemented

our own method for ensuring that the KKT conditions 1, 2 and 3 in Theorem

4.6.1, are satisfied. By doing so, it will also allow us to be more confident with our

results.

4.6.1 Checking optimality

To check that the KKT conditions 1, 2 and 3 are satisfied, the Lagrange multi-

pliers, µi, λ`ij and λuij
for i, j = 1, . . . , n, are calculated by solving the following

equation,

∇χk(P ∗s ) +
n∑

i=1

µi∇hi(P ∗s ) +
∑

(i,j)∈A(P ∗
s )

λ`ij∇`ij(P ∗s ) +
∑

(i,j)∈A(P ∗
s )

λuij
∇uij = 0,

and ensuring that λ`ij , λuij
≥ 0. Since hi is an equality constraint, it must hold at

all times. Thus, ∇hi exists in the equation for all i. On the other hand, ∇`ij and

∇uij only appear when constraints `ij or uij are active.

We know that the following inequalities hold for the minimisation problem and all
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possible Ps matrices,

∇χk(Ps) ≥ 0, for all k = 1, . . . , n,

∇hi(Ps) = 1, for all i = 1, . . . , n,

∇`ij(Ps) =

−1, if (i, j) ∈ L(Ps),

0, otherwise,

∇uij(Ps) =

1, if (i, j) ∈ U(Ps),

0, otherwise.

There are a variety of cases which need to be considered when solving for the

Lagrange multipliers. Furthermore, we note that as each row of the Ps matrix

is independent of one another, we have blocks of constraints associated with dif-

ferent rows of the Ps matrix. This reduces our problem and allows us to con-

sider these blocks separately. Thus, for each row, we consider the following cases:

n active constraints, n−1 active constraints and less than n−1 active constraints.

Within these cases, we have further sub-cases to consider, which we explain in the

following. First, let us fix row i, for i = 1, . . . , n.

1. n active constraints

This corresponds to an underconstrained problem as we have more variables than

equations. Hence, we can choose any solution for µi, λ`ij , λuij
as long as λ`ij , λuij

≥ 0

for all i, j = 1, . . . , n.

Case 1: All lower bounds active. Here, the active constraints are hi and `ij, that

is,
n∑

j=1

Pij =
(
1− P i0

)
and Pij = P ij. Thus, we want to solve the following system

of equations, for all j ∈ Li(P
∗
s ),

µi − λ`ij = −
[
∇χk(P ∗s )

]
(i,j)

,
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where
[
∇χk(P ∗s )

]
(i,j)

is the element of the gradient vector, ∇χk(P ∗s ), correspond-

ing to the (i, j)th element of the P ∗s matrix, and is known to be non-negative. Here,

we can set µi = 0 and solve for the remaining λ`ij , which are non-negative.

Case 2: If the only active constraints are hi and uij, that is,
n∑

j=1

Pij =
(
1− P i0

)
and Pij = P ij, then we have a degenerate case since all upper bounds are active.

This tells us we have degenerate intervals as decreasing any Pij will not lead to a

row sum of 1. As we have dealt with degenerate intervals, this case should never

occur.

Case 3: Here, the active constraints are hi as well as some upper and lower bound

constraints, uij and `ij, that is,
n∑

j=1

Pij =
(
1− P i0

)
, some Pij = P ij and the other

Pij = P ij. Thus, for all j ∈ Li(P
∗
s ) and m ∈ Ui(P

∗
s ), we want to solve

µi − λ`ij = − [∇χk(P ∗s )](i,j) and µi + λuim
= − [∇χk(P ∗s )](i,m) .

Let

a = −max
(∣∣∣ [∇χk(P ∗s )](i,m)

∣∣∣), for all m ∈ Ui(P
∗
s ),

b = −min
(∣∣∣ [∇χk(P ∗s )](i,j)

∣∣∣), for all j ∈ Li(P
∗
s ).

Here, we require

b ≤ a.

If this condition is not satisfied, then we do not have a solution satisfying KKT

conditions 1, 2 and 3. Assuming b ≤ a, we need µ ∈ [b, a] and without loss of

generality, we set

µi =
a+ b

2
,

and solve for the remaining λ`ij and λuim
, guaranteeing that λ`ij and λuim

are all

non-negative.
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2. n− 1 active constraints

For this case, there should be a unique solution for the Lagrange multipliers.

Hence, we solve the system of linear equations to obtain the unique values for µi,

λ`ij and λuij
.

3. Less than n− 1 active constraints

This corresponds to row i of P ∗s not being a vertex of the feasible region. Since

we have an overconstrained problem, that is, there are more constraints than

variables for this case, we are generally unable to obtain a solution for µi. For

all j /∈ Li(P
∗
s ) ∪ Ui(P

∗
s ), we have µi = −

[
∇χk(P ∗s )

]
(i,j)

and as there are less

than n − 1 active constraints, there must be at least 2 such j. Therefore, unless[
∇χk(P ∗s )

]
(i,j)

are equal for all such j, no solution exists and P ∗s is not first-order

optimal. However, if
[
∇χk(P ∗s )

]
(i,j)

are equal for all such j and other constraints

ensure that λ`ij , λuij
≥ 0, then the point is first-order optimal.

The above method is used to obtain the Lagrange multiplier values for the minimi-

sation problem. We note the Lagrange multipliers for the maximisation problem

can be found in a similar way by taking extra care with signs.

After obtaining the Lagrange multiplier values, we need to determine if P ∗s is first-

order optimal. Recall from Theorem 4.6.1 that we require λ`ij , λuij
≥ 0 for all

i, j = 1, . . . , n. Thus, we simply check that λ`ij , λuij
≥ 0 for all i, j = 1, . . . , n for

the point P ∗s to be optimal.

4.6.2 Checking solution is at a vertex

Recall from Theorem 3.5.2, that we are free to choose the optimal solution to be

at a vertex of the feasible region. Thus, we choose to check that the optimal P ∗s
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satisfies this condition. A possible reason for P ∗s to not be at a vertex is if there

are equivalent vertex solutions but fmincon has returned a non-vertex optimal

solution instead. Although we purify the solution from fmincon, if an element in

P ∗s does not lie within TolActive of its bounds, we do not move it. Hence, it is

possible to have a first-order optimal solution which is not a vertex solution.

If this check fails, that is, P ∗s is not at a vertex, we move the elements of P ∗s lying

within their bounds to their bounds to form a vertex solution whilst ensuring that

the row sum constraint, that is,
∑
j

Pij is within TolEqual of 1, remains satisfied.

Recall that each row of the Ps matrix is independent of one another. Thus, we can

consider each row separately and only modify the rows with elements not forming

a vertex of the feasible region. Here, we assume that there are only 2 free variables

in each row. Hence, each row has a maximum of two possible vertices. In the

following, we detail the method used to shift P ∗s to a vertex of the feasible region.

Note that it is possible to generalise this method to consider more than 2 free

variables in each row, however we do not present that here.

Method:

1. Find the first row with more than 1 free variable and find the free variables

in this row.

2. For the first vertex, we increase the first free variable and decrease the sec-

ond free variable until one of them reaches their upper and lower bound

respectively.

• Calculate the distance between the first free variable and its upper

bound, d1.

• Calculate the distance between the second free variable and its lower

bound, d2.
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• Obtain the minimum of d1 and d2, d = min(d1, d2), and this is the

most we can move either variable to ensure that the row sum constraint

remains fulfilled and both variables are still within their bounds.

• Move each variable in the appropriate direction by the minimum dis-

tance, d.

• Note that by construction, we can be sure that the row sum constraint

remains satisfied and all variables lie within their bounds.

3. For the second vertex, we decrease the first free variable and increase the

second free variable until one of them reaches their lower and upper bound

respectively, using a method analogous to the one for the first vertex. The

only difference is the direction we move the variables. Instead of the distance

between the first free variable and its upper bound, here, we consider the

distance between the first free variable and its lower bound and the distance

between the second free variable and its upper bound.

4. Calculate the objective function value at each vertex.

• If the objective function values are the same, then without loss of gener-

ality, we choose the first vertex solution and replace the current optimal

solution with the first vertex solution.

• If the objective function values are different, then we choose the vertex

solution which optimises the objective function and replace the current

optimal solution with this vertex solution.

5. Re-run the algorithm starting at this vertex solution.

The reason for running fmincon again at the new vertex solution is because when

we consider a new P ∗s matrix, it is possible for the gradient vector to change.

Hence, this new P ∗s matrix may not be an optimal solution.
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4.6.3 What if fmincon fails?

Due to tolerances on the fmincon function, there may be times when it fails to

find a first-order optimal solution. So what can we do in this instance? One pos-

sibility is to consider linearising the objective function using a Taylor polynomial

expansion about the point P ∗s . For any n× n matrix M , define vec(M) to be the

n2×1 vector arranged in the usual order (M11,M12, . . . ,M1n, . . . ,Mn1, . . . ,Mnn)T .

Hence, we consider the following linear program instead,

χk(Ps) = χk(P ∗s ) +
(
vec(Ps)− vec(P ∗s )

)T∇χk(P ∗s ),

subject to the constraints (4.0.1). Since we expect the solution obtained from

fmincon to be close to the optimal,
(
vec(Ps) − vec(P ∗s )

)
should be small and so

we expect this approximation to be reasonable.

Since vec(P ∗s ) is a constant, we can reduce the objective function to

vec(Ps)
T∇χk(P ∗s ).

We use linprog to solve this linear program and then perform purification as well

as checking optimality conditions for this new optimal point.

4.7 Other methods to solve this problem

• Sequential linear programming: This is a promising method as it returns

comparable results to the ones obtained using our method. Furthermore,

as we show in Section 4.10, the sequential linear programming method runs

much quicker than our method and Blanc and den Hertog’s [2] method even

for larger problems. We note that the idea of solving an optimisation problem

sequentially is well established in the second-order case, where we sequen-

tially approximate a non-linear optimisation problem by quadratic problems.
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However, this is not well established in the first-order case, where we linearise

the non-linear objective function. Hence, more work needs to be performed

to ensure the robustness of this sequential linear programming method.

One obvious reason why sequential linear programming may not work is that

such an approach cannot return an optimal solution at any point other than a

vertex. In Section 3.5, we proved that the optimal vertex solution cannot be

improved upon by consideration of interior points. Thus, our problem seems

to be a suitable candidate for sequential linear programming techniques.

However, we do not know whether that is sufficient, or whether other issues

could arise. Since the computational time is much quicker than the other

two methods and returns comparable results, it is definitely a possible future

extension to this work.

• MDP methods: Since we have been able to prove that our optimisation prob-

lems are Markov decision processes with some restrictions (Lemma 3.5.1), we

could consider using MDP methods to find the optimal solution. However,

we would like to be able to use our method for structured problems. As we

will discuss in Chapter 5, when considering structured Markov chains, we do

not have a Markov decision process. Thus, MDP methods cannot be used

for structured Markov chains and so we do not consider MDP methods here.

4.8 Post-processing

Recall that we minimise and maximise for each of the n states separately. Thus, a

total of 2n optimisation problems are solved in this process. Just as we have done

throughout this chapter, we consider minimising and maximising for a state k,

for k = 1, . . . , n, of a discrete-time interval Markov chain. Hence, after obtaining

optimal solutions which occur at vertices of the feasible region, we perform some
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post-processing of the minimum and maximum solutions for each state k = 1, . . . , n

before returning a solution to the user. Due to tolerances on fmincon, the min-

imum and maximum expected total cost returned by the fmincon function are

approximations of the true minimum and maximum values. Thus, the purpose

of the post-processing stage is to ensure that we bound the true minimum and

maximum expected total cost for the interval discrete-time Markov chain.

The basic method we apply is to consider intervals centred at the minimum and

maximum Ps matrices with widths relative to the tolerance specified in fmincon.

Since we are unable to use fmincon again on these smaller intervals due to toler-

ances, we choose to use INTLAB for calculations. Although we have previously

stated the problems with using INTLAB’s method of solution, we know that the

intervals returned by INTLAB are conservative. Furthermore, as these new in-

tervals we are considering are very narrow, we would not expect the conservative

intervals returned by INTLAB to be too wide. We check that this is true by calcu-

lating width of the minimum and maximum interval expected total cost returned

by INTLAB. In the following, we expand and provide more detail on the basic

method described above.

Using the optimal Ps matrices, P ∗s , obtained from fmincon for one of our n prob-

lems, we can calculate intervals for the expected total cost of the chosen state of

the Markov chain. Since we have specified a tolerance on the decision variables,

TolX, in fmincon, we add and subtract the relative tolerance, P ∗s ×TolX, from P ∗s

to give an interval P∗s matrix, where P∗s = [P ∗s (1− TolX) , P ∗s (1 + TolX)]. This

procedure is performed on both the minimum and maximum P ∗s matrices returned

in the previous method.

Before we use these interval P∗s matrices to calculate the interval expected total

costs, we first ensure that the elements in the interval P∗s matrices do not exceed

the user-specified interval Ps matrix. To do so, we take the intersection of the

interval P∗s matrices with the outwardly rounded user-specified interval Ps ma-
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trix. This gives us interval P∗s matrices for the minimisation and maximisation

problems.

Let us consider the minimisation problem and note that the maximisation problem

follows analogously. We calculate the minimum interval expected total cost vector,

χ = (I − P∗s)
−1 c, using INTLAB’s backslash operator, χ = (I − P∗s) \c, where

P∗s is the interval matrix for the minimisation problem. Then, we extract the

appropriate element corresponding to the state k we have chosen to consider. As

discussed earlier, we use INTLAB to give us conservative intervals and since the

intervals in our P∗s interval matrix should be very narrow (2×TolX), the expansion

should be minor.

To determine the variability about the minimum solution, we calculate the differ-

ence between the upper and lower bounds of the calculated interval expected total

cost for the minimum interval P∗s matrix. If the width of this interval is small,

this tells us that there is a small variability about the minimum expected total

cost. This method is also used to determine the variability about the maximum

expected total cost.

Finally, we want to return an interval expected total cost for a chosen state of

an interval Markov chain, given an interval transition probability matrix, P. This

interval that we return has a lower bound corresponding to the lower bound of the

minimum interval expected total cost and an upper bound corresponding to the

upper bound of the maximum interval expected total cost.
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4.9 Comparison with intervals obtained from

INTLAB

Recall from Section 3.2 that we could have calculated the interval expected total

costs vector, [
χ,χ

]
= (I − P∗s)

−1 c,

directly using INTLAB (Section 2.2). However, we noted that as the methods used

by INTLAB are iterative, it does not allow us to impose the time-homogeneous

property. Furthermore, we wanted to ensure that the interval expected total costs

we obtain are as tight as possible. Here, we provide a comparison of the interval

mean hitting time, that is, the interval expected total cost, with c = 1, obtained

using INTLAB and our method.

Consider the following discrete-time interval Markov chain with interval transition

probability matrix,

P =


[1, 1] [0, 0] [0, 0]

0.3± ε 0.4± ε 0.3± ε

0.25± ε 0.5± ε 0.25± ε

 .
We would like to calculate the interval mean hitting time vector, ν, for the above

interval transition probability matrix with ε = 0.05.

Using our numerical method, we obtain an interval mean hitting time vector of

the form

ν =

[2.9577, 4.2858]

[3.0985, 4.4898]

 .
If we use INTLAB to directly calculate (3.1.6), we obtain

ν =

[1.5108, 5.4892]

[1.5828, 5.7506]

 .



136 4.9. Comparison with intervals obtained from INTLAB

Recall from Section 3.2 that we want to calculate minimal intervals, that is, inter-

vals of smallest width containing the true solution. Hence, from these intervals,

we observe that the intervals obtained using our method are tighter than the ones

obtained using INTLAB and thus, preferred.

Now let us compare the intervals obtained from both methods as we increase the

value of ε (see Table 4.9). We observe from this that as ε increases, that is,

the uncertainty in our parameters increases, the width of the mean hitting times

intervals increases as well. Hence, the larger the uncertainty in our parameters,

the more uncertain we are in the performance measure. The other important

observation from Table 4.9 is that for ε = 0.1, the intervals returned by INTLAB

contain negative numbers. Since it does not make sense for the mean hitting

time to be negative, the intervals obtained by INTLAB are unsatisfactory for our

needs.

ε Our method INTLAB

0.01

[3.3762, 3.6333]

[3.5369, 3.8063]

 [3.2293, 3.7707]

[3.3831, 3.9502]



0.05

[2.9577, 4.2858]

[3.0985, 4.4898]

 [1.5108, 5.4892]

[1.5828, 5.7506]



0.1

[2.5609, 5.5264]

[2.6829, 5.7895]

 [−5.3530, 12.3530]

[−5.6079, 12.9412]


Table 4.9.1: Table comparing mean hitting times obtained from our method with

those obtained from INTLAB for increasing values of ε.
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4.10 Comparison with the method of Blanc and

den Hertog

Recall from Section 3.2 that we discussed in detail the method developed by Blanc

and den Hertog [2]. Here, we provide a numerical comparison of their method

with ours and show that for a small problem, our method is faster but for larger

problems, solving a linear program is more efficient as expected.

Blanc and den Hertog’s formulation of the mean hitting times problem is described

by the following linear optimisation problem,

min vT1,

subject to

1TΞ = eT
k ,

vi(Iij − pij)− ξij ≤ 0, for i, j = 1, . . . , n,

ξij − vi(Iij − pij) ≤ 0, for i, j = 1, . . . , n,

vi pi0 −
n∑

j=1

ξij ≤ 0, for i = 1, . . . , n,

n∑
j=1

ξij − vi pi0 ≤ 0, for i = 1, . . . , n,

where 1 is a vector of ones and ek = [0, . . . , 0, 1, 0, . . . , 0]T is a vector of zeros with 1

in the kth element. The decision variables for this problem are vi and ξij. To obtain

solutions in the form of the original non-linear optimisation problem, we need to

transform ξij to obtain the elements pij of the Ps matrix, but no transformation is

required on vi.

This problem was solved using MATLAB’s linprog function with the Simplex

algorithm. We recorded how long it took to obtain bounds on the mean hitting

time and the corresponding optimal Ps matrices for states k = 1, . . . , n in the
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Markov chain. Then, we compared the computational time taken for Blanc and

den Hertog’s method and our method to solve the problem and obtain the desired

outputs. Figure 4.10.1 is a plot of the computational time for an increasing number

of states (3 to 30). For each state, 100 random interval transition probability

matrices were considered and the average time taken to solve each problem is

plotted. We can see from Figure 4.10.1 that as the number of states increases,

the method by Blanc and den Hertog is faster than our method. For less than

25 states, our method obtains the desired solutions faster than the method by

Blanc and den Hertog. However, for much larger state spaces, solving a linear

program is much quicker than our method. Recall from Section 4.7 that sequential

linear programming can be used to solve the optimisation problems. This was

implemented in MATLAB and the computational time for the sequential linear

programming method is also shown on the plot of computational times. We see

that it solves the optimisation problems much more quickly than the other two

methods.
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Figure 4.10.1: Plot of computational times for Blanc and den Hertog’s method,

our method and sequential linear programming.

4.11 Application to continuous-time Markov

chains

Recall from Section 3.6 that to obtain the expected total cost for a continuous-time

interval Markov chain, we first use uniformisation to transform the continuous-

time interval Markov chain to its associated discrete-time interval Markov chain.

Then, we solve for the expected total cost for the associated discrete-time interval

Markov chain before using Theorem 3.6.1 to obtain the expected total cost for the

continuous-time interval Markov chain. In the following, we discuss our choice of

a uniformisation constant and describe the outward rounding steps used in the
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transformation from a continuous-time interval Markov chain to its associated

discrete-time interval Markov chain.

4.11.1 Choice of uniformisation constant

The uniformisation constant u is defined, in Section 3.6, to be any real number

such that u ≥ m = max
i

(qi). Since we are able to choose any real number u, we

have decided to choose u such that u ≥ max
i

(qi) and ensure that u has an exact

floating point representation. Thus, u is a known constant and since it has an

exact floating point representation, there is no need for an interval representation

of u. The reason for choosing an exact floating point representation is due to

numerical precision. If u does not have an exact floating point representation, we

would need to use an interval representation to ensure that we contain the true

value of u.

Recall that the transformation required to obtain an interval transition proba-

bility matrix for the associated discrete-time interval Markov chain from an in-

terval generator matrix of a continuous-time interval Markov chain is given by,

Pu = I +
1

u
Q. Thus, if we have an interval representation of u, then we would

need to obtain an interval representation of
1

u
and multiply this by the interval

generator matrix Q whilst ensuring that at each step the true solution is con-

tained within the intervals. This increases the complexity of the transformation

and calculations involved. Since there is no restriction on the choice of u other

than u ≥ max
i

(qi), we can choose to make the calculations easier by requiring an

exact floating point representation of u and still obtain the desired results.

Since u ≥ max
i

(qi), we look to obtain an exact floating point number larger than

max
i

(qi). Recall from Section 4.1.2, that the inbuilt MATLAB function eps(x)

returns the absolute value of the distance between the number x and the next

larger machine number of the same precision [13]. Hence, we can use this function
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to obtain an exact floating point representation of u by apply the following,

u = max
i

(qi) + eps
(

max
i

(qi)
)
.

4.11.2 Outward rounding

As we have discussed in Section 4.1.2, we outwardly round intervals to ensure

that the true solution is always contained within the intervals. The method for

outward rounding is quite simple where the left endpoint is moved to the left

(on the number line) and the right endpoint is moved to the right [14]. Here,

we consider the use of outward rounding on the interval generator matrix Q and

also on the transformation from a continuous-time interval Markov chain to its

associated discrete-time interval Markov chain.

Given an interval generator matrix Q of a continuous-time interval Markov chain,

we perform the following transformation, Pu = I +
1

u
Q, to obtain an interval

transition probability matrix, Pu, for the associated discrete-time interval Markov

chain. We want to ensure that the interval transition probability matrix, Pu,

contains the true solution. Hence, we apply the following method to ensure that

this holds.

Let out(X) represent the outwardly rounded interval X. Then, our method is as

follows.

1. Outward round the interval generator matrix Q.

Q1 = out (Q) .

2. Outward round each step of the transformation Pu = I +
1

u
Q, to obtain

Pu = out

(
I + out

(
Q1

u

))
,

where u is the uniformisation constant and has an exact floating point rep-

resentation.
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This gives us an interval transition probability matrix, Pu, and we can now use

the numerical method (including pre- and post-processing steps) developed in this

chapter, for discrete-time interval Markov chains, to obtain interval expected total

costs for each state k = 1, . . . , n of the associated discrete-time interval Markov

chain. By applying the transformation in Theorem 3.6.1, we obtain the interval

expected total costs for each state k = 1, . . . , n of the continuous-time interval

Markov chain.

This concludes the discussion of our numerical method for a general discrete-

time interval Markov chain as well as the required extensions for continuous-time

interval Markov chain. In the next chapter, we consider interval birth and death

chains and prove analytic results for these.



Chapter 5

Interval birth and death chains:

An analytic approach

Due to their properties, birth and death chains are commonly used in many ap-

plications, such as ecological modelling and epidemic modelling (which we explore

in Chapter 6). Hence, it is of interest to us to incorporate intervals into these

structured Markov chains, investigate them in detail and explore ways to calculate

various performance measures, such as the expected total costs, for these chains.

Furthermore, recall from Chapter 3 that we were unable to prove analytic results

on the expected total cost for general Markov chains. Instead, in Chapter 4, we

developed a numerical method to obtain minimal intervals on the expected total

cost for general Markov chains. Here, we are interested in obtaining an analytic

solution for this class of discrete-time birth and death processes. In this chapter,

we define a discrete-time interval birth and death process as well as a discrete-time

interval constant-parameter birth and death process and prove analytic results for

both classes of processes.

143
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5.1 Discrete-time interval birth and death pro-

cess

Consider a discrete-time interval Markov chain (Xm,m ∈ Z+) with n + 1 states,

S = {0, 1, . . . , n} where state 0 is an absorbing state. Recall from Section 3.1 that

Xm has an interval transition probability matrix of the form,

P =



[1, 1] [0, 0] · · · · · · · · · [0, 0][
P 10, P 10

] [
P 11, P 11

]
· · · · · · · · ·

[
P 1n, P 1n

]
...

...
. . .

...
...

...[
P i0, P i0

] [
P i1, P i1

]
· · ·

[
P ij, P ij

]
· · ·

[
P in, P in

]
...

...
. . .

...
...

...[
P n0, P n0

] [
P n1, P n1

]
· · · · · · · · ·

[
P nn, P nn

]


,

where

n∑
j=0

Pij = 1, for Pij ∈
[
P ij, P ij

]
and i = 1, . . . , n,

0 ≤ P ij ≤ 1, for all i = 1, . . . , n and j = 0, . . . , n,

0 ≤ P ij ≤ 1, for all i = 1, . . . , n and j = 0, . . . , n,

P ij ≤ P ij, for all i = 1, . . . , n and j = 0, . . . , n.

Now let us investigate a modified version of the above discrete-time interval Markov

chain by introducing structure to the transition probability matrix.

Consider a discrete-time interval birth and death process (Xm,m ∈ Z+) with the

same set of states as the general discrete-time interval Markov chain described

above. The difference between these two processes is the structure of the transition

probability matrix. Due to the birth and death structure, the birth and death

process is only able to move to neighbouring states. That is, if the process is in

state i at time t, then at time t+ 1, it can remain in state i or move to either of its

neighbouring states i− 1 or i+ 1 with probability γi, µi and λi respectively. Note
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that these probabilities depend on the state the process is in at time t. Hence,

the interval transition probability matrix, P, for a discrete-time interval birth and

death process is given by,

[1, 1] [0, 0] [0, 0] [0, 0] · · · · · · [0, 0]

[µ
1
, µ1] [γ

1
, γ1] [λ1, λ1] [0, 0] · · · · · · [0, 0]

[0, 0] [µ
2
, µ2] [γ

2
, γ2] [λ2, λ2] [0, 0] · · · [0, 0]

...
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

[0, 0] · · · · · · [0, 0] [µ
n−1

, µn−1] [γ
n−1

, γn−1] [λn−1, λn−1]

[0, 0] · · · · · · · · · [0, 0] [µ
n
, µn] [γ

n
+ λn, γn + λn]


,

where

0 < µ
i
≤ µi ≤ 1, for i = 1, · · · , n,

0 ≤ γ
i
≤ γi ≤ 1, for i = 1, · · · , n,

0 ≤ λi ≤ λi ≤ 1, for i = 1, · · · , n,

µi + γi + λi = 1, for µi ∈ [µ
i
, µi], γi ∈ [γ

i
, γi], λi ∈ [λi, λi] and i = 1, · · · , n.

Note here that we assume 0 < µ
i

for i = 1, . . . , n to ensure that there is always

a positive probability of moving from state i to state i− 1, for i = 1, . . . , n. This

means that the probability of being absorbed into state 0 is always 1 from any

state k, for k = 1, . . . , n.

Here, we note that for the rest of the chapter we consider a finite state space.

However, everything generalises to an infinite state space with the removal of the

upper boundary.

Recall from Chapter 3 that we are interested in obtaining an interval for the

expected total cost for each state of the process. We obtained lower and upper

bounds on the expected total cost for each state by minimising and maximising the

expected total cost, χk, for each state k = 1, . . . , n separately. In Sections 5.1.1 and
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5.1.2, we will detail proofs for the analytic form of the minimum and maximum Ps

matrices. From these matrices, we can easily solve for the minimum and maximum

expected total cost for each state by solving χk =
[
(I − Ps)

−1 c
]
k
.

First, recall that the structure of the birth and death process only allows movement

between neighbouring states. This means that the process can only be absorbed

into state 0 from state 1. Thus, it seems likely that the expected total cost from

state k would be greater than or equal to the expected total cost from state k− 1,

for k = 1, . . . , n. The following theorem gives us this result.

Theorem 5.1.1. Let χk be the expected total cost incurred before the process is

absorbed into state 0, conditional on starting in state k = 1, . . . , n. For a discrete-

time interval birth and death process,

χk ≥ χk−1, for k = 1, . . . , n.

Proof. Let Kj be the random variable describing the total cost incurred before the

process first hits state j. Then we have

• K0 is the random variable describing the total cost incurred before the pro-

cess first hits state 0, and

• Kk−1 is the random variable describing the total cost incurred before the

process first hits state k − 1.

Recall, we have defined χk to be the expected total cost incurred before the

process is absorbed into state 0, conditional on starting in state k. That is,

χk = E[K0|X0 = k]. Hence, we have

χk = E[K0|X0 = k]

= E[Kk−1|X0 = k] + E[K0|X0 = k − 1], for k = 1, . . . , n,

because given that the process starts in state k, the structure of the birth and

death process implies that the process must pass through state k − 1 for it to be
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absorbed into state 0, and also the Markov property tells us that the next state of

the process only depends on the current state the process is in and not on any of

the states previously visited.

Thus, this means

χk ≥ E[K0|X0 = k − 1]

= χk−1, for k = 1, . . . , n.

5.1.1 Minimisation problem

Consider the minimisation problem which has the form,

minχk =
[
(I − Ps)

−1 c
]
k
,

where

Ps =



γ1 λ1 0 · · · · · · · · · 0

µ2 γ2 λ2 0 · · · · · · 0

0 µ3 γ3 λ3 0
. . .

...
...

. . . . . . . . . . . . . . .
...

0 · · · 0 µn−2 γn−2 λn−2 0

0 · · · · · · 0 µn−1 γn−1 λn−1

0 · · · · · · · · · 0 µn γn + λn


,

and subject to the constraints

µ
i
≤µi ≤ µi, for i = 1, · · · , n,

γ
i
≤ γi ≤ γi, for i = 1, · · · , n,

λi ≤λi ≤ λi, for i = 1, · · · , n,

µi + γi + λi = 1, for i = 1, · · · , n. (row sum constraint)
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We are interested in obtaining an analytic solution to the above problem which is

given by the following theorem.

Theorem 5.1.2. The minimum expected total cost, χk, for k = 1, . . . , n for the

discrete-time interval birth and death process is obtained by solving

χk =
[
(I − P ∗s )−1 c

]
k

where the optimal Ps matrix, P ∗s , is given by,

P ∗s =



γ∗1 λ∗1 0 · · · · · · · · · 0

µ∗2 γ∗2 λ∗2 0 · · · · · · 0

0 µ∗3 γ∗3 λ∗3 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 µ∗n−2 γ∗n−2 λ∗n−2 0

0 · · · · · · 0 µ∗n−1 γ∗n−1 λ∗n−1

0 · · · · · · · · · 0 µ∗n 1− µ∗n


,

and

µ∗i = µi, for i = 1, . . . , n,

γ∗i = min (γi, 1− µi − λi) , for i = 1, . . . , n− 1,

λ∗i = 1− µi − γ∗i , for i = 1, . . . , n− 1.

Proof. From Theorem 5.1.1, we know that the expected total costs for each state

are ordered according to χk ≥ χk−1, for k = 1, . . . , n. This means the process is

better to move to state i − 1 from state i, for i = 1, . . . , n, in order to minimise

χk, for k = 1, . . . , n. Thus, we seek to maximise the probability of moving from

state i to i−1, that is, maximise µi for i = 1, . . . , n. Also, we note that due to the

structure of the birth and death process, the process is better to remain in state i

as opposed to moving to state i+1 as it would require at least one extra transition

to get back to state i. Hence, after maximising the probability of moving from

state i to state i− 1, µi, we seek to maximise the probability of remaining in state

i, γi, and set λi, which is the probability of moving from state i to i+ 1, to be the

remaining probability. The two boundary cases follow similarly.
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Note that although µ1 is not within Ps, since µ1 corresponds to P10 for a general

discrete-time interval Markov chain, we know that µ∗1 = µ1 from Theorem 3.3.1.

Now let us consider the elements in Ps. Recall that we are interested in maximising

µi. Thus, we can set µ∗i = µi, for all i = 1, . . . , n as coherence (Section 4.1.3)

ensures that every element within the interval is attainable. Since no element has

been allocated in row i, for i = 1, . . . , n, we can choose to set µ∗i = µi, for all

i = 1, . . . , n and still be certain that the row sum constraint will be satisfied.

Next, we seek to maximise the probability of remaining in state i, γi, for

i = 1, . . . , n − 1, subject to the row sum constraint. Ideally, we would want

to set γ∗i = γi. However, as we have already set µ∗i = µi for i = 1, . . . , n, choos-

ing γ∗i = γi may result in the row sum constraint being violated. Hence, we set

γ∗i = min (γi, 1− µi − λi) for i = 1, . . . , n − 1. The second term ensures that if

γi cannot be chosen, then the largest value of γi within its interval is chosen that

ensures the row sum constraint is satisfied.

Finally, we allocate the remaining probability required for the row sum constraint

to be fulfilled in λi. Hence, λ∗i = 1− µi − γ∗i ∈
[
λi, λi

]
for i = 1, . . . , n− 1.

Thus, the following optimal values,

µ∗i = µi, for i = 1, . . . , n,

γ∗i = min (γi, 1− µi − λi) , for i = 1, . . . , n− 1,

λ∗i = 1− µi − γ∗i , for i = 1, . . . , n− 1,

will result in the minimal value of χk, for k = 1, . . . , n.

5.1.2 Maximisation problem

Now, consider the maximisation problem which has the form,

maxχk =
[
(I − Ps)

−1 c
]
k
,



150 5.1. Discrete-time interval birth and death process

where

Ps =



γ1 λ1 0 · · · · · · · · · 0

µ2 γ2 λ2 0 · · · · · · 0

0 µ3 γ3 λ3 0
. . .

...
...

. . . . . . . . . . . . . . .
...

0 · · · 0 µn−2 γn−2 λn−2 0

0 · · · · · · 0 µn−1 γn−1 λn−1

0 · · · · · · · · · 0 µn γn + λn


,

and subject to the constraints

µ
i
≤µi ≤ µi, for i = 1, · · · , n,

γ
i
≤ γi ≤ γi, for i = 1, · · · , n,

λi ≤λi ≤ λi, for i = 1, · · · , n,

µi + γi + λi = 1, for i = 1, · · · , n. (row sum constraint)

As before with the minimisation problem, we are interested in obtaining an analytic

solution to the above problem.

Theorem 5.1.3. The maximum expected total cost, χk, for k = 1, . . . , n for the

discrete-time interval birth and death process is obtained by solving

χk =
[
(I − P ∗s )−1 c

]
k

where the optimal Ps matrix, P ∗s , is given by,

P ∗s =



γ∗1 λ∗1 0 · · · · · · · · · 0

µ∗2 γ∗2 λ∗2 0 · · · · · · 0

0 µ∗3 γ∗3 λ∗3 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 µ∗n−2 γ∗n−2 λ∗n−2 0

0 · · · · · · 0 µ∗n−1 γ∗n−1 λ∗n−1

0 · · · · · · · · · 0 µ∗n 1− µ∗n


,
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and

λ∗i = λi, for i = 1, . . . , n− 1,

γ∗i = min
(
γi, 1− µi

− λi
)
, for i = 1, . . . , n− 1,

µ∗i = 1− λi − γ∗i , for i = 1, . . . , n− 1,

µ∗n = µ
m
.

Proof. Since we are interested in maximising the expected total cost, χk, for

k = 1, . . . , n, we want to avoid absorption to state 0 as much as possible. From

Theorem 5.1.1, we know that the expected total costs for each state are ordered

according to χk ≥ χk−1, for k = 1, . . . , n. Thus, to maximise χk for k = 1, . . . , n,

the process is better to move to state i + 1 from state i, for i = 1, . . . , n. This

means we seek to maximise the probability of moving from state i to state i + 1,

that is, maximise λi. Due to the structure of the birth and death process and to

avoid absorption into state 0, it makes sense for the process to remain in state i

as opposed to moving to state i− 1 as remaining in state i ensures that there is at

least one extra transition to get to state 0. Thus, after maximising the probability

of moving from state i to i+1, λi, we seek to maximise the probability of remaining

in state i, γi, and set µi, which is the probability of moving from state i to i− 1,

to be the remaining probability. Note that both boundary cases follow similarly.

For the boundary at i = n, since there are no λn and γn values, we seek to maximise

the probability of remaining in state n. That is, maximise 1−µn which is the same

as minimising µn. Hence, we set µ∗n = µ
n
. For the boundary at i = 1, we note that

although µ1 is not within Ps, since µ1 corresponds to P10 for a general discrete-time

interval Markov chain, we know that µ∗1 = µ
1

from Theorem 3.3.2.

Now let us consider the elements in Ps. Recall that we are interested in maximising

λi. Thus, we can set λ∗i = λi, for all i = 1, . . . , n − 1 as coherence (Section 4.1.3)

ensures that every element within the interval is attainable. Since no element has

been allocated in row i, for i = 1, . . . , n − 1, we can choose to set λ∗i = λi, for all
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i = 1, . . . , n− 1 and still be certain that the row sum constraint will be satisfied.

Next, we seek to maximise the probability of remaining in state i, γi, for

i = 1, . . . , n − 1, subject to the row sum constraint. Ideally, we would want

to set γ∗i = γi. However, as we have already set λ∗i = λi for i = 1, . . . , n − 1,

choosing γ∗i = γi may result in the row sum constraint being violated. Hence, we

set γ∗i = min
(
γi, 1− µi

− λi
)

for i = 1, . . . , n− 1. The second term ensures that

if γi cannot be chosen, then the largest value of γi within its interval is chosen that

ensures the row sum constraint is satisfied.

Finally, we allocate the remaining probability to µi to ensure that the row sum

constraint is fulfilled. Hence, we set µ∗i = 1−λi−γ∗i ∈
[
µ
i
, µi

]
for i = 1, . . . , n−1.

Thus, the following optimal values,

λ∗i = λi, for i = 1, . . . , n− 1,

γ∗i = min
(
γi, 1− µi

− λi
)
, for i = 1, . . . , n− 1,

µ∗i = 1− λi − γ∗i , for i = 1, . . . , n− 1,

µ∗n = µ
m
,

will result in the maximal value of χk, for k = 1, . . . , n.

From Theorems 5.1.2 and 5.1.3, we get analytic forms of P ∗s for the minimisation

and maximisation problems. Then, using these P ∗s in χk =
[
(I − P ∗s )−1 c

]
k
, for

k = 1, . . . , n, will give us the minimum and maximum expected total cost for each

state k of the discrete-time interval birth and death process.
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5.2 Discrete-time interval constant-parameter

birth and death process

Since we have obtained an analytic solution of the expected total cost for each

state of a discrete-time interval birth and death process, we now look to obtain

a similar analytic solution for the discrete-time interval constant-parameter birth

and death process. In the standard, non-interval case, a discrete-time constant-

parameter birth and death process is a specific case of the discrete-time birth

and death process. The only difference between the two is that the transition

probabilities for the discrete-time constant-parameter birth and death process are

constant across the states of the process, as the name suggests.

The discrete-time interval constant-parameter birth and death process

(Xm,m ∈ Z+) with n + 1 states, S = {0, 1, . . . , n}, has the interval transition

probability matrix,

P =



[1, 1] [0, 0] [0, 0] [0, 0] · · · · · · [0, 0]

[µ, µ] [γ, γ] [λ, λ] [0, 0] · · · · · · [0, 0]

[0, 0] [µ, µ] [γ, γ] [λ, λ] [0, 0] · · · [0, 0]
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...

[0, 0] · · · · · · [0, 0] [µ, µ] [γ, γ] [λ, λ]

[0, 0] · · · · · · · · · [0, 0] [µ, µ] [γ + λ, γ + λ]


,

where

0 < µ ≤ µ ≤ 1,

0 ≤ γ ≤ γ ≤ 1,

0 ≤ λ ≤ λ ≤ 1,

µ+ γ + λ = 1, for µ ∈ [µ, µ], γ ∈ [γ, γ], λ ∈ [λ, λ]. (row sum constraint)
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As with the discrete-time interval birth and death process, we ensure 0 < µ so that

there is a positive probability of moving from state i to state i−1, for i = 1, . . . , n.

This means that the probability of absorption into state 0 is 1 from every state k,

for k = 1, . . . , n.

First, we note that the discrete-time interval constant-parameter birth and death

process is not a special case of the discrete-time interval birth and death process,

unlike in the standard, non-interval case. The reason for this is that there are only

3 parameters in the discrete-time interval constant-parameter birth and death

process and the rows of the interval P matrix are not independent for this process.

On the other hand, for the discrete-time interval birth and death process, there

are 3 parameters for each row of the interval P matrix and hence, each row is

independent of the other.

Unlike the other processes we have considered previously (the discrete-time interval

Markov chain and the discrete-time interval birth and death process), the discrete-

time interval constant-parameter birth and death process is the first process we

encounter where the rows in the interval P matrix are not independent. Hence,

the previous theoretical properties, such as the connection with Markov decision

processes, and numerical methods we have developed and discussed for the other

processes, cannot be immediately applied to this process. The other method by

Blanc and den Hertog [2], which we considered in Chapters 2 and 4, also requires

the rows of the P matrix to be independent. Thus, we are unable to use their

method for this process. Instead, new theory must be developed to allow for

dependence between rows. However, the general principles still remain where

optimisation techniques are used to obtain the minimum and maximum objective

function values on a constrained region.

Recall that we are interested in the problem of obtaining an analytic solution

for the expected total cost, χk, for k = 1, . . . , n, of the discrete-time interval

constant-parameter birth and death process. First, we consider the minimisation
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problem. The following theorem gives us an analytic form for the optimal P ∗s for

the minimisation problem.

Theorem 5.2.1. The minimum expected total cost, χk, for k = 1, . . . , n, for the

discrete-time interval constant-parameter birth and death process is obtained by

solving χk =
[
(I − P ∗s )−1 c

]
k
, where the optimal matrix P ∗s is given by,

P ∗s =



γ∗ λ∗ 0 · · · · · · · · · 0

µ∗ γ∗ λ∗ 0 · · · · · · 0

0 µ∗ γ∗ λ∗ 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 µ∗ γ∗ λ∗ 0

0 · · · · · · 0 µ∗ γ∗ λ∗

0 · · · · · · · · · 0 µ∗ 1− µ∗


,

and

µ∗ = µ,

γ∗ = min (γ, 1− µ− λ) ,

λ∗ = 1− µ− γ∗.

Proof. Theorem 5.1.1 was stated for the discrete-time interval birth and death

process, but did not make any use of the independence between rows and so also

applies to the discrete-time interval constant-parameter birth and death process.

Hence, from Theorem 5.1.1, we know that χk ≥ χk−1 for k = 1, . . . , n. Like the

proof of Theorem 5.1.2, the process is better to move to state i − 1 from state i,

for i = 1, . . . , n, to minimise χk. This means we want to maximise µ followed by γ

then allocate the remaining probability to λ. This applies to states i = 2, . . . , n−1

as these rows contain µ, γ and λ. However, for the boundary cases, i = 1 and

i = n, the Ps matrix does not explicitly contain all of µ, γ and λ. We now consider

these cases.

For i = 1, we note that µ is not within Ps as it is the probability of absorption to
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state 0 from state 1. Since we are interested in minimising χk, this means we seek

to maximise the probability of absorption to state 0, that is, we want to maximise

µ first. Next, we note that χk ≥ χk−1 for k = 1, . . . , n, so we want to maximise γ

next and allocate the remaining probability to λ. Similarly for i = n, we seek to

maximise µ first as χk ≥ χk−1 for k = 1, . . . , n. Then, set γ+λ to be the remaining

probability. Since it does not matter what values we have for γ and λ, as long as

they are feasible, and sum up to the required total, we choose to maximise γ next

and then allocate the rest to λ. Thus for all cases, we choose to maximise µ, then

γ and finally λ subject to the row sum constraint.

Since we seek to maximise µ first, we can set µ∗ = µ because of coherence

(Section 4.1.3) which ensures that every element within the interval is attain-

able. Next, we maximise γ subject to the row sum constraint. Thus, we choose

γ∗ = min (γ, 1− µ− λ). This ensures that the row sum constraint is satisfied

whilst making γ as large as possible. Finally, we set λ to be the remaining proba-

bility. Hence, λ∗ = 1− µ− γ∗ ∈
[
λ, λ
]
.

Thus, we have

µ∗ = µ,

γ∗ = min (γ, 1− µ− λ) ,

λ∗ = 1− µ− γ∗.

Just like the minimisation problem, we have the following theorem which gives us

an analytic solution for the maximum expected total cost.

Theorem 5.2.2. The maximum expected total cost, χk, for k = 1, . . . , n, for the

discrete-time interval constant-parameter birth and death process is obtained by
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solving χk =
[
(I − P ∗s )−1 c

]
k
, where the optimal matrix P ∗s is given by,

P ∗s =



γ∗ λ∗ 0 · · · · · · · · · 0

µ∗ γ∗ λ∗ 0 · · · · · · 0

0 µ∗ γ∗ λ∗ 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 µ∗ γ∗ λ∗ 0

0 · · · · · · 0 µ∗ γ∗ λ∗

0 · · · · · · · · · 0 µ∗ 1− µ∗


,

and

λ∗ = λ,

γ∗ = min
(
γ, 1− µ− λ

)
,

µ∗ = 1− λ− γ∗.

Proof. We note that the proof for this choice of P ∗s for maximisation problem

follows analogously from the proof of the minimisation problem.

In this chapter, we have explored structured Markov chains and obtained analytic

solutions for the expected total cost for both the discrete-time interval birth and

death process as well as the discrete-time interval constant-parameter birth and

death process. In the last chapter of this thesis, we consider applying the tech-

niques we have developed to an SIR epidemic model where we allow the parameters

to vary within intervals. As with this chapter, we look to obtain analytic solutions

to the performance measures of interest. Finally, we end with an investigation

of using intervals as an alternative to sensitivity analysis and apply the method

developed to the performance measures of interest.





Chapter 6

Markovian SIR model and

sensitivity analysis

In this chapter, we consider a Markovian SIR (susceptible-infectious-recovered)

epidemic model where we allow uncertainty in the parameter values by incorpo-

rating intervals into our model. We note that the SIR model, like the discrete-time

constant-parameter birth and death process, is not a row-independent model as

there are only 2 parameters, β and γ, throughout the entire model. Hence the

work in Chapters 3 and 4, in particular the connection with Markov decision pro-

cesses and numerical methods developed, cannot be immediately applied to this

model. Instead, we extend the ideas and techniques developed in previous chapters

to allow for the row dependence in the SIR model.

Common performance measures for an SIR epidemic model include the mean final

epidemic size and the mean epidemic duration of an epidemic. We obtain an

analytic solution for the mean final epidemic size and develop a numerical method

for the mean epidemic duration as an analytic solution is not obtainable. Last, we

consider the use of intervals as an alternative to sensitivity analysis and develop

a method to accomplish this before applying this method to our epidemic model.

159
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Our use of intervals for sensitivity analysis is related to recent work by Roberts [19]

where he considers the deterministic SIR model with R0, the basic reproduction

number [10]. He considers a symmetric distribution on R0 and looked to evaluate

the consequences of this uncertainty on the dynamics of the epidemic, in particular,

the mean final epidemic size.

6.1 Markovian SIR epidemic model

An SIR model allows us to model the spread of a disease through a population,

where the individuals of the population are classified as susceptible (S), infectious

(I) or recovered (R). The SIR model is a continuous-time Markov chain, X(t),

with transition rates

q(s,i),(s−1,i+1) = βi
s

N − 1
, (infection)

q(s,i),(s,i−1) = γi, (recovery) (6.1.1)

where β > 0 is the effective transmission rate parameter (susceptible becoming

infectious), γ > 0 is the rate of recovery of an infectious individual (infectious

becoming recovered), N is the population size, i denotes the number of infectious

individuals and s denotes the number of susceptible individuals. Note that we

require β > 0 and γ > 0 to have an SIR model. If either β or γ is 0, then we

would not have an SIR model but an IR (infectious-recovered) or SI (susceptible-

infectious) model instead.

The state space, S, of this system is,

S = {(s, i) : 0 ≤ s, i ≤ N, 0 ≤ s+ i ≤ N},

where the set of states A = {(s, 0) : s = 0, . . . , N} correspond to the absorbing

states and the other states of the system, denoted by C, are the transient states.

The set A corresponds to the absorbing states since there are no more infectious
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individuals to continue the spread of the disease; thus, ending the epidemic. For

further information regarding the SIR model and other epidemic models, see [10]

and [11].

We are interested in calculating various performance measures for the SIR model

such as the mean final epidemic size and mean epidemic duration. However, we

note that the current form of the SIR model is a two-dimensional model. Hence

to allow for calculations to be performed with the SIR model, we need a mapping

which converts the current two-dimensional state-space to a one-dimensional state-

space. A possible mapping is

(s, i)→ y = Ni− 1
2
i(i− 3) + s+ 1, (6.1.2)

which allows us to form a generator matrix, Q, for the SIR model, where the first

N + 1 rows of the matrix correspond to the absorbing states of the model. Thus,

bringing this problem back in line with the form for a standard continuous-time

Markov chain with generator matrix Q.

The following is an example of the Q matrix for a population of N = 2 individuals

with the original two-dimensional states displayed,

Q =



(0, 0) (1, 0) (2, 0) (0, 1) (1, 1) (0, 2)

(0, 0) 0 0 0 0 0 0

(1, 0) 0 0 0 0 0 0

(2, 0) 0 0 0 0 0 0

(0, 1) γ 0 0 −γ 0 0

(1, 1) 0 γ 0 0 − (γ + β) β

(0, 2) 0 0 0 2γ 0 −2γ


.

As before, we are interested in extending this model to allow for an interval rep-

resentation of the parameters, β and γ, in the SIR model.
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Consider an interval SIR model with a population of N individuals. Since we are

interested in allowing intervals around the parameters β and γ, the transition rates

for the interval SIR model are given by (6.1.1) where β ∈
[
β, β

]
and γ ∈

[
γ, γ
]
.

These transition rates form the interval generator matrix, Q, for the interval SIR

model. Note that we impose the restriction that β, γ > 0 to be consistent with

the model defined in equation (6.1.1).

Now that we have defined an interval SIR epidemic model, we are interested in

calculating various performance measures such as the interval mean final epidemic

size and the interval mean epidemic duration of an interval SIR epidemic model.

First, we consider the mean final epidemic size.

6.2 Mean final epidemic size

Let Z be the random variable describing the total number of infections that have

occurred over the course of the epidemic. Then, the mean final size of an epidemic,

ζk = E [Z|X(0) = k] for k ∈ S, is the expected total number of infections that

have occurred over the course of the epidemic, conditional on starting in state

k.

To enable us to calculate the mean final epidemic size easily, we introduce a new

state 0 to the system. Thus, giving us a new state space S ′ = {0} ∪ S. We make

this state the new absorbing state of the process by specifying that c0 = 0 and

qa,0 = 1 for all a ∈ A and all other qi,0 = q0,j = 0. This effectively means that

the states in A are now transient. However, as we have set qa,0 = 1 for all a ∈ A

and all other qi,0 = q0,j = 0, this means that once the process enters any state

a ∈ A, it will move to state 0 after spending a mean time of 1 in the state a and

incur some cost ca, for a ∈ A; this cost corresponds to the number of recovered

individuals in the state a. For example, consider a population of size 4 and the

absorbing state, (1, 0), meaning the number of susceptible individuals is 1 and the
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number of infectious individuals is 0. The number of recovered individuals in the

absorbing state (1, 0) for a population of size 4 is 3 and so for this example, we set

c(1,0) = 3.

Thus, the mean final epidemic size, ζk for every state k ∈ S, of a standard, non-

interval SIR model can be calculated using

ζ = −Q−1
∗ c, (6.2.3)

where Q∗ is the new Q matrix just described, but restricted to the original state

space S and c contains the number of recovered individuals in the absorbing states.

Then, it is simply a matter of using the mapping (6.1.2) to obtain the mean final

epidemic size for the state of interest to us. Recall that as we have defined the

parameters β, γ > 0, this calculation is well defined and Q−1
∗ exists.

Here, we consider an example to show the form of Q∗ and c. For a population of

size N = 2, the corresponding Q∗ matrix and vector c are given by,

Q∗ =



−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

γ 0 0 −γ 0 0

0 γ 0 0 −(γ + β) β

0 0 0 2γ 0 −2γ


and c =



2

1

0

0

0

0


.

As in previous chapters, we look to obtain interval versions of the performance

measures of interest. Here, the performance measure of interest is the interval

mean final epidemic size and so we follow the logic used in the standard, non-

interval SIR model to enable easy calculation of the interval mean final epidemic

size. The main thing to note is that for the interval Q matrix, qa,0 = [1, 1] for all

a ∈ A and all other qi,0 = q0,j = [0, 0].
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We define the interval mean final epidemic size to be[
ζ, ζ
]

= −Q−1
∗ c, (6.2.4)

where Q∗ is the new interval Q matrix just described, but restricted to the original

state space S and c is a non-interval vector containing the number of recovered

individuals in the absorbing states. As we have previously required β, γ > 0 in the

interval generator matrix Q for the interval SIR model, Q−1
∗ is well defined and

hence so is (6.2.4).

Recall that we choose to solve minimisation and maximisation problems to obtain

the lower and upper bounds for the mean final epidemic size. Hence for each state

k ∈ S, we want to minimise and maximise the following objective function,

ζk = −
[
Q−1
∗ c
]
k
,

subject to the constraints

β ≤ β ≤ β,

γ ≤ γ ≤ γ.

Let us first consider the minimisation problem. Intuitively, if β is small and γ

is large, then this means there is a slower rate of infection and a higher rate of

recovery. Hence, if β = β and γ = γ, then one would expect the mean final

epidemic size to be minimised.

For the maximisation problem, the opposite situation occurs. For a larger value of

β, there is a higher rate of infection, and a smaller value of γ means recovery occurs

at a slower rate. Thus, we expect the mean final epidemic size to be maximised

when β = β and γ = γ.

We formalise this intuition in the following theorem.

Theorem 6.2.1. For an interval SIR model, the minimum mean final epidemic

size, ζ
k

for state k ∈ S, occurs when β = β and γ = γ and the maximum mean

final epidemic size, ζk for state k ∈ S, occurs when β = β and γ = γ.
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Proof. Recall that the transition rates for the SIR model are given as follows,

q(s,i),(s−1,i+1) = βi
s

N − 1
, (infection)

q(s,i),(s,i−1) = γi. (recovery)

To form the interval generator matrix Q for the SIR model, we use the mapping

(6.1.2) to convert the two-dimensional state space to a one-dimensional state space

and also allow β and γ to vary within the intervals
[
β, β

]
and

[
γ, γ
]

respectively.

Hence, we know that for a realisation Q ∈ Q, its parameters β and γ must obey

the following conditions,

β ≤ β ≤ β,

γ ≤ γ ≤ γ.

First consider minimising the mean final epidemic size ζk for a fixed state k ∈ S.

Since the costs of all states in the set of transient states C are 0 and the mean

time spent in each state in the set of absorbing states A is 1, we can convert our

continuous-time Markov chain into a discrete-time Markov chain by considering

the jump chain without affecting the value of ζ
k
.

For a given realisation Q ∈ Q, the one-step transition probabilities for the associ-

ated jump chain can be calculated as follows:

pj,k = −qj,k
qj,j

, j, k ∈ S, k 6= j, and pj,j = 0, j ∈ S. (6.2.5)

We also note that the mean final epidemic size is the total number of infections

during the epidemic. Thus, minimising the mean final epidemic size corresponds

to minimising the total number of infections, which can be achieved by minimising

the probability of infection for every state i ∈ S of the system. Since the SIR model

consists of only two parameters β and γ, which relate to every state, minimising

the mean final epidemic size involves minimising the probability of infection for

each state simultaneously, if possible.
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Consider the probability of infection, pinf , for each state of the SIR model. Using

the transformation (6.2.5), we have

pinf =

βis

N − 1

γi+
βis

N − 1

=
βis

(N − 1)γi+ βis
.

Since we are seeking to minimise the probability of infection and know that pinf

depends on the parameters, β and γ, we study the change in pinf as we vary β

and γ in their respective intervals. That is, we consider the partial derivatives of

pinf with respect to β and γ.

First, we look at the partial derivative of pinf with respect to β,

∂pinf
∂β

=
is [(N − 1)γi+ βis]− βis(is)

[(N − 1)γi+ βis]2

=
is [(N − 1)γi]

[(N − 1)γi+ βis]2

≥ 0,

for all values of (s, i) ∈ S and N as we know these variables are all non-negative

and all values of β, γ > 0.

Now, consider the partial derivative of pinf with respect to γ,

∂pinf
∂γ

=
−βis [(N − 1)i]

[(N − 1)γi+ βis]2

≤ 0,

for all values of (s, i) ∈ S and N as we know these variables are all non-negative

and all values of β, γ > 0 .

Since we have shown that
∂pinf
∂β

≥ 0, this means that as we decrease β, the prob-

ability of infection, pinf , decreases. Hence, the minimum probability of infection

occurs when β = β, for all states.
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We have also seen that
∂pinf
∂γ

≤ 0 which means that as γ increases, the probability

of infection, pinf , decreases. Thus, the minimum probability of infection occurs

when γ = γ, for all states.

If we combine the above results and recall that the minimum mean final epidemic

size, ζ
k

for k ∈ S, corresponds to minimising the probability of infection in all

states simultaneously, then we have that ζ
k

is achieved when β = β and γ = γ.

Now, if we look to maximise the mean final epidemic size, this means we seek to

maximise the total number of infections which can be achieved by maximising the

probability of infection, pinf , for every state of the system simultaneously. We

have already shown that
∂pinf
∂β

≥ 0 and
∂pinf
∂γ

≤ 0. Hence, it follows that the

maximum mean final epidemic size occurs when β = β and γ = γ.

6.3 Mean epidemic duration

The other performance measure of interest for the SIR model is the mean epidemic

duration. Let T be the random variable describing the epidemic duration, that

is, the time taken to first reach an absorbing state. Then, the mean epidemic

duration, τk = E [T |X(0) = k] for k ∈ C, is the expected time taken to first

reach an absorbing state, conditional on starting in state k. We calculate the

mean epidemic duration, τk for every state k ∈ C, of a standard, non-interval SIR

model, using

τ = −Q−1
c 1, (6.3.6)

where Qc is Q restricted to the set of transient states, C, of the system and τ is the

mean epidemic duration vector containing the mean epidemic duration for each

transient state k ∈ C. Then, it is simply a matter of using the mapping (6.1.2) to

obtain the mean epidemic duration for the state of interest to us. Recall that as
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we have defined the parameters β, γ > 0, this calculation is well defined and Q−1
c

exists.

Here we consider an example of the form of the Qc matrix for a population of

N = 2 individuals,

Qc =


−γ 0 0

0 − (γ + β) β

2γ 0 −2γ

 .
Like the mean final epidemic size, we are interested in obtaining the interval mean

epidemic duration which is defined to be

[τ , τ ] = −Q−1
c 1, (6.3.7)

where Qc is the interval generator matrix Q restricted to the set of transient states

C. Again, since we require β, γ > 0 in the interval generator matrix Q for the

interval SIR model, Q−1
c is well defined and hence so is (6.3.7).

We solve the above problem by using optimisation techniques, where we solve

a minimisation problem to obtain the lower bounds and solve a maximisation

problem to obtain the upper bounds on the mean epidemic duration. Unlike the

mean final epidemic size, we are not able to prove analytic results for the mean

epidemic duration. We also note that the minimum and maximum mean epidemic

duration do not necessarily occur at the intuitive values. Hence, we consider a

numerical method instead. In the following, we consider the minimisation problem

and note that the maximisation problem follows similarly.

For each state k ∈ C, we would like to solve the following problem,

min τk = −
[
Q−1

c 1
]
k
,

subject to

β ≤ β ≤ β,

γ ≤ γ ≤ γ.
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6.3.1 Numerical method

The numerical method for the mean epidemic duration closely follows the numer-

ical method presented in Chapter 4. Hence, we direct the reader back to Chapter

4 for details of concepts used and only explicitly discuss the differences between

the two methods.

Pre-processing

As discussed in Chapter 4, before we solve the minimisation problem, we first

need to pre-process the intervals to ensure that the true solution is always con-

tained within the intervals. We also consider pre-processing to reduce the number

of parameters in the model, which shrinks the search space of the optimisation

algorithm; hence, making the problem easier to solve. The concepts considered

in the pre-processing stage for the numerical method in Chapter 4 were degen-

eracy, outward rounding and coherence. For this method, we check and remove

degenerate intervals from the problem as well as apply outward rounding to the

intervals
[
β, β

]
and

[
γ, γ
]
. Note that since we do not have an equality constraint,

all elements in the intervals
[
β, β

]
and

[
γ, γ
]

can be attained. Hence, there is no

need for coherence to be applied.

MATLAB fmincon formulation

After pre-processing the intervals on β and γ, we look to solve the minimisation

problem using MATLAB’s fmincon function. Recall from Section 4.3 that the

fmincon function allows us to specify the objective function and constraints on

our problem. Furthermore, it allows for user-specification of the optimisation

algorithm, specifying a gradient of the objective function, an initial point from

which the algorithm starts its search and tolerances which determine when the

fmincon function stops iterating. In the following, we present the form of the
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gradient for the SIR model and consider the initial point sent to the fmincon

function. We do not explicitly discuss the choice of optimisation algorithm or

tolerances as these follow from Chapter 4.

Gradient

Since the fmincon function allows for user-specification of the gradient of the

objective function, we have chosen to use this option for the same reasons detailed

in Section 4.3.2.

Recall that the objective function for each state k, for k ∈ C, of the SIR model is

given by,

τk = −
[
Q−1

c 1
]
k
.

The following theorem specifies the gradient of the objective function for each state

k ∈ C.

Theorem 6.3.1. For each state k ∈ C, the gradient of τk is a 2× 1 vector given

by

∇τk =


∂τk
∂β

∂τk
∂γ



=


{
Q−1

c

∂Qc

∂β
Q−1

c 1

}
k{

Q−1
c

∂Qc

∂γ
Q−1

c 1

}
k

 .

Proof. First, let us state a few properties of matrix differentiation [17] required in

the proof:

∂(XY) = (∂X)Y + X(∂Y), (6.3.8)

∂
(
X−1

)
= −X−1 (∂X) X−1. (6.3.9)
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Consider the partial derivative of τk with respect to β.

∂τk
∂β

= −∂ [Q−1
c 1]k
∂β

= −
{
∂Q−1

c

∂β
1

}
k

−
{
Q−1

c

∂1

∂β

}
k

, from (6.3.8)

= −
{
−Q−1

c

∂Qc

∂β
Q−1

c 1

}
k

, using (6.3.9) and
∂1

∂β
= 0

=

{
Q−1

c

∂Qc

∂β
Q−1

c 1

}
k

.

The derivation of the partial derivative of τk with respect to γ follows similarly to

the one presented for β.

We note that the form of the partial derivatives look complicated. However, we

know from the transition rates of the SIR model that the matrix Qc is linear in β

and γ. Hence,
∂Qc

∂β
is the Qc matrix with β = 1 and γ = 0, and

∂Qc

∂γ
is the Qc

matrix with β = 0 and γ = 1.

Initial point

Since we do not know the shape of the function for the mean epidemic duration, we

cannot be sure if there are local minima or maxima in the interior of the feasible

region. Hence, to ensure that we obtain the global minima for the minimisation

problem, we consider all vertices of the feasible region as initial points. If there

are no degenerate intervals, then we have four initial points: β and γ, β and γ, β

and γ, β and γ. If β or γ lies within a degenerate interval, then we are only left

with two initial points.

Since we have multiple initial points, we consider each initial point separately and

provide it to fmincon. As a result, we obtain a set of optimal solutions, each of

which corresponds to an initial point. Then, we take the minimum of this set of

optimal solutions to be the minimum on the feasible region.
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Recall from Chapter 4 that after obtaining an optimal solution from fmincon,

we purify the optimal decision variables to ensure that they occurred at a vertex

of the feasible region (due to Theorem 3.5.2). However, Theorem 3.5.2 does not

hold for the SIR model. Hence, the purification step must be ignored for the SIR

model.

Optimality conditions

To ensure that the solution obtained from fmincon is in fact optimal, we check

that first and second-order optimality conditions are satisfied. First, we state the

minimisation problem we are interested in solving.

For a given state k ∈ C,

min τk = −
[
Q−1

c 1
]
k
,

subject to

`1 = β − β ≤ 0,

`2 = γ − γ ≤ 0,

u1 = β − β ≤ 0,

u2 = γ − γ ≤ 0.

Recall in Section 2.6, we defined the first-order necessary conditions, or the Karush-

Kuhn-Tucker (KKT) conditions, for a point to be a local minimiser of the objective

function, τk. Here, we re-state Theorem 2.6.2 using the terms and constraints for

our optimisation problem and refer the reader back to Section 2.6 for definitions

of terms used. Let x = (β, γ).

Theorem 6.3.2 (Karush-Kuhn-Tucker (KKT) Theorem). Let τk, for all k ∈ C,

`i, ui, for all i = 1, 2 be sufficiently differentiable (that is, ∇τk, for all k ∈ C,

∇`i, ∇ui, for all i = 1, 2 exist). Let x∗ = (β∗, γ∗) be a regular point and a local
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minimiser of τk(x) such that `i(x) ≤ 0, ui(x) ≤ 0 for all i = 1, 2. Then, there

exists λ`i ∈ R and λui
∈ R for all i = 1, 2 such that:

1. ∇τk(x∗) +
2∑

i=1

λ`i∇`i(x∗) +
2∑

i=1

λui
∇ui(x∗) = 0,

2. λ`i`i(x
∗) = 0 and λui

ui(x
∗) = 0, for all i = 1, 2, and

3. λ`i , λui
≥ 0 for all i = 1, 2.

For the inequality constraints `i and ui, at least one of the constraint or the

corresponding λ must be zero. Hence, we can specify L(x) and U(x) to be the

set of active lower bound and upper bound constraints at x respectively, that is,

L(x) = {i : `i(x) = 0} and U(x) = {i : ui(x) = 0}. Hence, the first condition in

Theorem 6.3.2 reduces to

∇τk(x∗) +
∑

i∈L(x∗)

λ`i∇`i(x∗) +
∑

i∈U(x∗)

λui
∇ui(x∗) = 0.

From Section 2.6, we recall that for x∗ to be a regular point, we require the set of

vectors {
∇`i(x∗) for all i ∈ L(x∗),∇uj(x∗) for all j ∈ U(x∗)

}
to be linearly independent.

However, we note that we do not have a regular point for our problem. As discussed

in Section 4.6, instead, we consider second-order sufficient conditions to check that

x∗ is a minimiser of the objective function. Here, we re-state Theorem 2.6.3 using

the terms and constraints for our optimisation problem and refer the reader back

to Section 2.6 for definitions of terms used.

The Lagrangian function for this optimisation problem is given by,

l(x,λ`,λu) = τk(x) +
2∑

i=1

λ`i`i(x) +
2∑

i=1

λui
ui(x),
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and so the Hessian matrix of l(x,λ`,λu) with respect to x is

L(x,λ`,λu) = Hτk(x) +
2∑

i=1

λ`iH`i(x) +
2∑

i=1

λui
Hui(x),

where Hτk(x) is the Hessian matrix of τk at x and similarly for H`i(x) and

Hui(x).

Here we also consider the set T (x∗,λ`,λu) which is used in Theorem 6.3.3.

T (x∗,λ`,λu) =
{

y : ∇`i(x∗)Ty = 0 for all i ∈ L̃(x∗,λ`)

and ∇uj(x∗)Ty = 0 for all j ∈ Ũ(x∗,λu)
}
,

where L̃(x∗,λ`) = {i : `i(x
∗) = 0, λ`i> 0} and Ũ(x∗,λu) = {i : ui(x

∗) = 0, λui
> 0}.

The second-order sufficient conditions for a point x∗ to be a strict local minimiser

of τk is given in the following theorem.

Theorem 6.3.3 (Second-Order Sufficient Conditions). Suppose that τk, for all

k ∈ C, `i, ui, for all i = 1, 2 are sufficiently differentiable (that is, Hτk, for all

k ∈ C, H`i, Hui, for all i = 1, 2 exist) and there exists a feasible point x∗ and

λ`i ∈ R and λui
∈ R for all i = 1, 2 such that:

1. ∇τk(x∗) +
2∑

i=1

λ`i∇`i(x∗) +
2∑

i=1

λui
∇ui(x∗) = 0,

2. λ`i`i(x
∗) = 0 and λui

ui(x
∗) = 0, for all i = 1, 2,

3. λ`i , λui
≥ 0 for all i = 1, 2, and

4. For all y ∈ T (x∗,λ`,λu),y 6= 0, we have yTL(x∗,λ`,λu)y > 0.

Then, x∗ is a strict local minimiser of τk subject to `i(x) ≤ 0, ui(x) ≤ 0 for all

i = 1, 2.

As discussed previously in Section 4.6, due to the tolerances (for example,

TolFun = 10−6) placed on fmincon and the desire to be more confident with

our results, we have implemented our own method for ensuring that the optimal-

ity conditions are satisfied. In the following sections, we detail two methods. The
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first checks that the KKT optimality conditions 1, 2 and 3 are satisfied and the

second checks that second-order sufficient conditions are satisfied.

Checking the KKT optimality conditions 1, 2 and 3

We check that the first-order optimality conditions are satisfied by solving for the

Lagrange multipliers, λ`i and λui
, for i = 1, 2, using the following equation,

∇τk(x∗) +
∑

i∈L(x)

λ`i∇`i(x∗) +
∑

i∈U(x)

λui
∇ui(x∗) = 0,

and ensuring that λ`i , λui
≥ 0. Furthermore, we know that for all possible vectors

x in the feasible region,

∇`1 =

−1

0

 , ∇`2 =

 0

−1

 , ∇u1 =

1

0

 , ∇u2 =

0

1

 .

In the following, we assume both β and γ lie within non-degenerate intervals.

Hence, they are not removed from the optimisation problem and both are consid-

ered when checking the KKT conditions 1, 2 and 3. Note that for problems where

either β or γ are degenerate, the cases needing to be considered are subsets of the

cases for non-degenerate intervals on both parameters.

There are a number of cases which need to be considered when solving for the

Lagrange multipliers. These include 2 active constraints, 1 active constraint and

no active constraints.

1. 2 active constraints

There are 3 sub-cases within this case that need to be considered.
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Case 1: Both upper bounds are active. That is, β = β and γ = γ. Thus, we

want to solve the following to obtain λu1 and λu2 ,

λu1∇u1(x∗) + λu2∇u2(x∗) = −∇τk(x∗),

⇒

1 0

0 1

λu1

λu2

 = −∇τk(x∗).

Case 2: Both lower bounds are active. That is, β = β and γ = γ. Thus, we

want to solve the following to obtain λ`1 and λ`2 ,

λ`1∇`1(x∗) + λ`2∇`2(x∗) = −∇τk(x∗),

⇒

−1 0

0 −1

λ`1
λ`2

 = −∇τk(x∗).

Case 3: One upper and one lower bound active. For example, β = β and γ = γ

or β = β and γ = γ. For the first example, we want to solve the following to

obtain λ`1 and λu2 ,

λ`1∇u1(x∗) + λu2∇u2(x∗) = −∇τk(x∗),

⇒

−1 0

0 1

λu1

λu2

 = −∇τk(x∗).

We note that a similar equation is used to solve the second example.

For all the above cases, we determine if x∗ obeys the first-order optimal KKT

conditions 1, 2 and 3 by checking λ`i , λui
≥ 0 for all i = 1, 2.

2. 1 active constraint

For this case, we have that the optimal point x∗ lies on a boundary of the feasible

region. The boundary could be any one of these: β = β, β = β, γ = γ or γ = γ.
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Let us consider β = β. To obtain a value for λ`1 , we solve

λ`1∇`1(x∗) = −∇τk(x∗),

⇒ λ`1

−1

0

 = −∇τk(x∗).

To determine if the point x∗ obeys the first-order optimal KKT conditions 1, 2

and 3, we check that λ`1 ≥ 0 and also check that the second element of ∇τk is

zero.

For the other possible active constraints, we solve for λ`i or λui
and check first-order

optimality in an analogous way

3. No active constraints

Here, the optimal point x∗ lies in the interior of the feasible region. By condition

2 of the KKT conditions (Theorem 6.3.2), we know that λ`i = 0 and λui
= 0 for

i = 1, 2. Hence, condition 1 of the KKT conditions reduces to ∇τk(x∗) = 0. This

means we need to check that both elements of the gradient are zero at x∗ to check

that we have a first-order optimal point.

Checking second-order optimality conditions

After determining that x∗ is a first-order optimal point, we need to check second-

order optimality conditions to ensure we are at a minimum as opposed to a maxi-

mum or saddle point, which are also first-order optimal points.

Before we detail the method to check for second-order optimality, recall from the

second-order sufficient conditions (Theorem 6.3.3) that the 4th condition requires

the Hessian of the Lagrangian which is given by,

L(x,λ`,λu) = Hτk(x) +
2∑

i=1

λ`iH`i(x) +
2∑

i=1

λui
Hui(x).
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We note that since `i(x) and ui(x) are linear functions of x, this means H`i(x) = 0

and Hui(x) = 0. Thus, the Hessian of the Lagrangian reduces to

L(x) = Hτk(x),

and we have removed λ`,λu as the Hessian of the Lagrangian no longer depends

on these values.

Since the 4th condition of the second-order sufficient conditions (Theorem 6.3.3)

requires computation of L(x), we need a form for the Hessian of the objective

function, Hτk(x).

Theorem 6.3.4. For each state k ∈ C, the Hessian of the objective function, τk,

is a 2× 2 matrix and is given by

Hτk =


∂2τk
∂β2

∂2τk
∂γ∂β

∂2τk
∂β∂γ

∂2τk
∂γ2


where

∂2τk
∂β2

= −2

{
Q−1

c

∂Qc

∂β
Q−1

c

∂Qc

∂β
Q−1

c 1

}
k

,

∂2τk
∂γ∂β

=
∂2τk
∂β∂γ

= −
{
Q−1

c

∂Qc

∂γ
Q−1

c

∂Qc

∂β
Q−1

c 1

}
k

−
{
Q−1

c

∂Qc

∂β
Q−1

c

∂Qc

∂γ
Q−1

c 1

}
k

,

∂2τk
∂γ2

= −2

{
Q−1

c

∂Qc

∂γ
Q−1

c

∂Qc

∂γ
Q−1

c 1

}
.

Proof. The following proof requires the same properties of matrix differentiation

as the ones used for the gradient given in (6.3.8) and (6.3.9).

Note that since Qc is linear in β and γ, we have

∂2Qc

∂β2
=
∂2Qc

∂γ2
=
∂2Qc

∂β∂γ
=
∂2Qc

∂γ∂β
= 0. (6.3.10)
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Consider the second-order partial derivative of τk with respect to β.

∂2τk
∂β2

=
∂

∂β

∂τk
∂β

=
∂

∂β

({
Q−1

c

∂Qc

∂β
Q−1

c 1

}
k

)
=

{
∂Q−1

c

∂β

∂Qc

∂β
Q−1

c 1

}
k

+

{
Q−1

c

∂2Qc

∂β2
Q−1

c 1

}
k

+

{
Q−1

c

∂Qc

∂β

∂Q−1
c

∂β
1

}
k

+

{
Q−1

c

∂Qc

∂β
Q−1

c

∂1

∂β

}
k

, from (6.3.8)

=

{
−Q−1

c

∂Qc

∂β
Q−1

c

∂Qc

∂β
Q−1

c 1

}
k

+
{
Q−1

c × 0×Q−1
c 1
}
k

+

{
Q−1

c

∂Qc

∂β

(
−Q−1

c

) ∂Qc

∂β
Q−1

c 1

}
k

+

{
Q−1

c

∂Qc

∂β
Q−1

c × 0

}
k

,

using (6.3.9), (6.3.10) and
∂1

∂β
= 0

= −2

{
Q−1

c

∂Qc

∂β
Q−1

c

∂Qc

∂β
Q−1

c 1

}
k

.

The derivation of
∂2τk
∂γ∂β

and
∂2τk
∂γ2

follows similarly to the derivation of
∂2τk
∂β2

.

Recall that we are interested in checking that our first-order optimal solution

satisfies the second-order sufficient conditions given in Theorem 6.3.3. We note

that conditions 1, 2 and 3 of Theorem 6.3.3 are the same as the KKT conditions

1, 2 and 3 in Theorem 6.3.2. Since we know that we have a first-order optimal

point, all that remains to be checked for this point to be second-order optimal is

condition 4 of Theorem 6.3.3 which states that for all y ∈ T (x∗,λ`,λu),y 6= 0,

we have yTL(x∗,λ`,λu)y > 0.

Hence, we require the set

T (x∗,λ`,λu) =
{

y : ∇`i(x∗)Ty = 0 for all i ∈ L̃(x∗,λ`)

and ∇uj(x∗)Ty = 0 for all j ∈ Ũ(x∗,λu)
}
,

where L̃(x∗,λ`) = {i : `i(x
∗) = 0, λ`i> 0} and Ũ(x∗,λu) = {i : ui(x

∗) = 0, λui
> 0}.

We note that this set depends on the number of active constraints with positive
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Lagrange multipliers, λ`i and λui
for i = 1, 2. Thus again, 3 cases need to be

considered.

1. 2 active constraints

As both β and γ are at their bounds, we have 4 possible sub-cases: β = β and

γ = γ, β = β and γ = γ, β = β and γ = γ and β = β and γ = γ.

Let us consider the first case where β = β and γ = γ. Then, we have the following

sub-cases.

a. If λ`1 > 0 and λ`2 > 0,

L̃(x∗,λ`) = {1, 2} and T (x∗,λ`,λu) = {0}.

This means there are no feasible directions to move in to result in a smaller

objective function. Hence, we are at the minimum.

b. If λ`1 > 0 and λ`2 = 0,

L̃(x∗,λ`) = {1} and T (x∗,λ`,λu) = {[0, y2]T : y2 ∈ R}.

Here, we need to check yTL(x∗,λ`,λu)y > 0 which corresponds to checking

that the (2, 2) element of Hτk(x∗) is positive.

c. If λ`1 = 0 and λ`2 > 0,

L̃(x∗,λ`) = {2} and T (x∗,λ`,λu) = {[y1, 0]T : y1 ∈ R}.

Here, we need to check yTL(x∗,λ`,λu)y > 0 which corresponds to checking

that the (1, 1) element of Hτk(x∗) is positive.

d. If λ`1 = 0 and λ`2 = 0, L̃(x∗,λ`) = {}. This means we simply need to check

that L(x∗,λ`,λu) = Hτk(x∗) is positive definite.

Note that for the other cases of β and γ at their bounds, similar logic follows.
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2. 1 active constraint

Here, either β or γ is at one of their bounds. This means that at most one of λ`i or

λui
is positive with the others zero, or all Lagrange multipliers could be zero.

For the case of at most one of λ`i or λui
is positive with the others zero, this

corresponds to either case (b) or (c) from Case 1. Hence, we just need to check

that the appropriate element of Hτk(x∗) is positive.

On the other hand, for the case where all Lagrange multipliers are zero, this

corresponds to Case 1 (d). Thus, we check that Hτk(x∗) is positive definite.

3. No active constraints

For this case, all Lagrange multipliers must be zero to satisfy condition 2 of The-

orems 6.3.2 and 6.3.3. Hence, this corresponds to Case 1 (d) and we check that

Hτk(x∗) is positive definite.

If the above conditions, where we consider either the appropriate element of

Hτk(x∗) is positive or Hτk(x∗) is positive definite, are satisfied, then we know

that the first-order optimal point, x∗, obeys the second-order sufficient conditions

(Theorem 6.3.3). Hence, the point x∗ is a strict local minimiser of the objective

function τk.

Recall from Chapter 4 that we checked if the optimal solution satisfied the con-

dition of being at a vertex of the feasible region (Theorem 3.5.2). Since Theorem

3.5.2 does not hold for the SIR model, there is no need to include this step here.

Using the same method as detailed in Chapter 4, we post-process the solutions

before returning the interval mean epidemic duration to the user.
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6.4 Sensitivity analysis

The idea behind sensitivity analysis is to determine how a performance measure

changes as we vary the inputs, or parameters, of the model. The standard method

for performing sensitivity analysis is to consider values around a chosen parameter

estimate and evaluate the performance measure at each of these values. This then

gives us an idea of how variable the performance measure is to the parameter

estimates. Since we are dealing with intervals, it is possible to specify an interval

of parameter estimates, then use interval calculations to obtain bounds on the

performance measure. However, this only gives us a snapshot of information on

the performance measure. Instead, we would like to be able to elicit more detailed

information about the performance measure from the parameters.

To use a model for an application, we must calibrate the model to the system via

available data. This results in a distribution on the parameters which allows for

greater flexibility as any type of distribution could be considered. For example,

if nothing is known about the true value of the parameters aside from bounds on

the parameter, then a uniform distribution on the parameters could be used which

recovers something akin to a traditional sensitivity analysis. Thus, if we considered

a distribution on the parameter estimates, then the corresponding distribution

on the performance measures is of great interest. This distribution would give

us a lot more information about the performance measure as we would know

where the largest variability of the performance measure lies as opposed to bounds

which simply tell us the minimum and maximum of the performance measure

on some interval of the parameter estimates. Hence, given some distribution on

the parameter estimates, we are interested in obtaining the cumulative distribution

function (CDF) of the performance measure. In the following, we present a method

which allows us to use the intervals obtained for a given performance measure to

create an approximate CDF for the performance measure.
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Let X be a continuous random variable with CDF FX(x) = P (X ≤ x) , x ∈ R.

Consider an interval of X values, denoted by
[
W,W

]
, such that (α× 100) % of

the distribution lies within this interval. That is,

FX

(
W
)
− FX (W ) = P

(
W ≤ X ≤ W

)
= α.

Now, consider the transformation Y = g(X). Applying this transformation to the

interval
[
W,W

]
gives the interval

[
Y , Y

]
= g

([
W,W

])
, which is the image set

(Section 2.2) where Y and Y are the smallest and largest values of Y , respectively,

on the interval
[
W,W

]
. Hence, we have that

P
(
Y ≤ Y ≤ Y ∩W ≤ X ≤ W

)
= P

(
W ≤ X ≤ W

)
= α.

Furthermore, we note that this extends to

FY

(
Y
)
− FY (Y ) = P

(
Y ≤ Y ≤ Y

)
≥ P

(
W ≤ X ≤ W

)
= α, (6.4.11)

where FY (y) = P (Y ≤ y) , y ∈ R is the CDF of Y .

Hence the probability that the performance measure lies in the interval calculation

must be at least the probability that the parameter lies in its chosen interval. We

can make use of this information in our method to obtain an approximate CDF of

Y using the intervals calculated.

Method to obtain an approximate CDF using intervals

Let X be a continuous random variable with CDF, FX(x), and let Y be the trans-

formed continuous random variable, Y = g(X), with CDF, FY (y), where g is

some performance measure (or function) of interest. Consider m non-overlapping
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(αj × 100)% intervals on the distribution of X, denoted by
[
Xj, Xj

]
for

j = 1, . . . ,m1. For example, if we consider a uniform distribution for X on [0, 1],

then for α1 = α2 = 0.5, the non-overlapping intervals we consider are [0, 0.5] and

[0.5, 1]. From these non-overlapping intervals on X, we obtain corresponding inter-

vals on Y which we denote by Ij =
[
Y j, Y j

]
= g

([
Xj, Xj

])
, for j = 1, . . . ,m.

Since we know FX

(
Xj

)
−FX

(
Xj

)
= αj, this means that FY

(
Y j

)
− FY

(
Y j

)
≥ αj

by (6.4.11). Hence, each interval Ij contributes at least the probability αj to the

CDF. Thus, each interval Ij has density at least dj =
αj

Y j − Y j

.

Then, we define P to be the ordered set of unique endpoints of the intervals,

P =
⋃
j

{
Y j, Y j

}
= {bi : i = 1, . . . , n},

where n is the total number of points in the set.

For example, if
[
Y 1, Y 1

]
= [0, 0.04] and

[
Y 2, Y 2

]
= [0, 0.06], then

P =
{
Y 1, Y 1

}
∪
{
Y 2, Y 2

}
= {0, 0.04, 0.06}.

Now, define b+
i as a value slightly larger than bi but less than bi+1. That is,

b+
i ∈ (bi, bi+1) , for i = 1, . . . , n− 1.

Note that we do not consider b+
n as it lies outside the largest endpoint, bn, and

hence outside the range of our data. Then, for all i, we calculate the approximate

probability density,

d
(
b+
i

)
=
∑

j:b+i ∈Ij

dj.

1Since all such intervals are closed, the term non-overlapping intervals should be interpreted

as meaning that the intersection of any pair of intervals has Lebesgue measure zero.
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Recall that we are interested in obtaining an approximate CDF of Y . Since we

are considering continuous random variables, an approximate CDF of Y is found

by integrating an approximate probability density function (pdf) of Y . From

our calculations, we can obtain an approximate pdf of Y by assuming that the

approximate probability density between consecutive endpoints is constant. Hence,

we integrate this approximate pdf of Y to obtain an approximate CDF of Y . The

cumulative probabilities FY (bi) for this approximate CDF can be calculated as

follows,

FY (bi) = P (Y ≤ bi) =
∑
k<i

d
(
b+
k

)
× (bk+1 − bk) , for i = 1, . . . , n.

By assuming a constant density between consecutive endpoints, we have assumed

that the increase in the approximate CDF is linear between consecutive endpoints,

bi. Therefore, we can plot the cumulative probabilities FY (bi) at each bi, for

i = 1, . . . , n, before joining these points to get the approximate CDF of Y .

In the following, we present an approximate CDF of Y for the mean final epidemic

size and mean epidemic duration using our method of intervals and compare our

approximate CDF to that achieved by simulation.

SIR epidemic model

Consider a population of N = 200 individuals with a constant rate of recovery of

an infectious individual, γ = 1, and consider a uniform distribution on the effective

transmission rate parameter, β ∼ Uniform[1, 4]. We obtained 100000 samples of β

and calculated the mean final epidemic size using equation (6.2.3) and the mean

epidemic duration using equation (6.3.6), for each sample. We provided these to

MATLAB’s ksdensity function to obtain kernel density estimates of the CDFs

for the mean final epidemic size and the mean epidemic duration.

We consider non-overlapping 5% intervals on β and use our method to obtain

approximate CDFs for the mean final epidemic size (Figure 6.4.1) and the mean
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epidemic duration (Figure 6.4.2) for the above SIR model. On the same figures,

we also plot the CDFs obtained using MATLAB’s ksdensity function to compare

with our approximate CDFs.

From the CDFs of the mean final epidemic size and the mean epidemic duration

(Figures 6.4.1 and 6.4.2), we observe that the approximate CDFs obtained using

our method very closely resemble the CDFs obtained using ksdensity.

The other comparison performed was based on computation times. Using 100000

simulations to obtain a CDF using ksdensity takes a lot more computational

time than our method. Hence, we are interested in comparing the approximate

CDF obtained using simulations which take a similar amount of computational

time as our method. For the mean final epidemic size, we found that it took a

similar amount of time to perform 39 simulations and obtain an approximate CDF

as it did for our method to obtain an approximate CDF using non-overlapping 5%

intervals. Similarly for the mean epidemic size, performing 320 simulations took a

similar amount of time as our method to obtain an approximate CDF.

In Figures 6.4.1 and 6.4.2, we have also included the plot of the mean final epidemic

size CDF using 39 simulations and the plot of the mean epidemic duration using

320 simulations. From these plots, we see that over a similar computational time,

our approximate CDF plots very closely resemble the CDF from the extensive

simulation (100000 samples). On the other hand, the CDFs formed using much

smaller samples are less accurate than our method. Hence, giving us evidence that

our method is potentially quite useful especially in regards to computational time

and accuracy of the approximate CDF.

In Sections 6.1, 6.2 and 6.3, we have investigated the use of intervals in the SIR

model, proved analytic results for an interval mean final epidemic size and de-

veloped a numerical method to obtain an interval mean epidemic duration for a

given interval SIR model. Lastly, in the final section, we investigated the idea of
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Figure 6.4.1: Comparison of CDFs of mean final epidemic size for N = 200, γ = 1

and β ∼ Uniform[1, 4].

using intervals as an alternative to traditional sensitivity analysis and compared

our method of obtaining an approximate CDF using intervals with the CDF ob-

tained using kernel density estimates from simulations. In what remains (the final

chapter), we conclude and summarise our findings as well as consider possible

extensions and future work.
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Figure 6.4.2: Comparison of CDFs of mean epidemic duration for N = 200, γ = 1

and β ∼ Uniform[1, 4].



Chapter 7

Conclusions

7.1 Summary

In this thesis, we explored a method for accounting for the uncertainty in parameter

estimates through the use of intervals and applied this to Markov chains. One

of the main objectives was to develop methods to obtain intervals on various

performance measures, such as the expected total cost and mean hitting times, for

interval Markov chains. We first considered discrete-time interval Markov chains

and the problem of obtaining intervals for the expected total costs for these interval

Markov chains. Since solving these interval systems of equations directly did not

satisfy the required constraints on the problem, we needed to develop a different

method to solve for the interval expected total costs and we chose to do so using

optimisation techniques. Since analytic solutions are desired, we first investigated

methods to obtain analytic solutions. Throughout this investigation for an analytic

solution, we obtained various theoretical properties of the problem which simplified

our problem greatly. Furthermore, it was through this investigation that we found

a connection with Markov decision processes and proved the form of the optimal

solution for our problem.

189
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However, as we were unable to obtain an analytic solution to our problem, we

developed a numerical method to obtain the interval expected total cost vector for

a discrete-time interval Markov chain. In the numerical method, we applied the

theoretical properties found to simplify our problem as well as to purify the approx-

imate solutions obtained from MATLAB’s fmincon function. Aside from discrete-

time interval Markov chains, we also considered continuous-time interval Markov

chains where we used the concept of uniformisation to convert a continuous-time

interval Markov chain to a discrete-time interval Markov chain without losing any

information. This meant we were able to transform any uniformisable continuous-

time interval Markov chain to its associated discrete-time interval Markov chain

and use the techniques we developed previously to solve for the interval expected

total cost for the associated discrete-time interval Markov chain. Then, all that

was needed was a transformation back to obtain the interval expected costs for

the continuous-time interval Markov chain.

Since birth and death processes are commonly used in many applications, we also

considered incorporating intervals into these structured Markov chains. As before,

we were interested in obtaining the interval expected total costs for these processes

and were able to prove analytic results for these. Two birth and death processes

were considered. The first being a discrete-time interval birth and death process

where the rows of the interval transition probability matrix are independent. The

second discrete-time interval birth and death process considered was the discrete-

time interval constant-parameter birth and death process. For this process, there

were only 3 parameters in the transition probability matrix and the rows of the

interval transition probability matrix were not independent. Hence, the previous

theory and numerical methods developed could not be immediately applied to this

process and new theory was developed.

We continued with the trend of constant parameter models, by considering an SIR

epidemic model. For this model, we investigated analytic and numerical results
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for the performance measures of interest, the interval mean final epidemic size

and the interval mean epidemic duration. We were able to prove analytic results

for the interval final epidemic size but for the interval mean epidemic duration a

numerical method was developed.

Finally to conclude our investigation, we considered the other main objective of

this thesis which was to investigate if interval analysis can be used in place of

sensitivity analysis. Hence, instead of considering traditional sensitivity analysis,

we considered a distribution around our parameters and managed to obtain an ap-

proximate CDF using intervals on performance measures. The approximate CDF

we obtained closely resembled the CDF obtained through extensive simulations.

Finally, to show the worth of our method of obtaining approximate CDFs, we

compared our approximate CDF with the approximate CDF obtained using simu-

lations which took a similar amount of computational time as ours. We observed

through the above comparison that our method performed better in terms of ac-

curacy as our approximate CDF was closer to the CDF obtained using extensive

simulations.

7.2 Future work

A potentially interesting extension to this thesis is to explore the use of sequen-

tial linear programming to solve our optimisation problems. In Chapter 4, we

observed that the sequential linear programming method outperformed our nu-

merical method and the method by Blanc and den Hertog [2] very significantly

when comparing computational times and also returned comparable results. We

noted in Section 4.7 that solving non-linear optimisation problems using sequential

quadratic programming is well established but linearising the non-linear objective

function and solving it sequentially is not well established at least in part because

sequential linear programming can only return vertex solutions. Thus is appro-
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priate in our problem, hence, with additional theoretical investigation and justi-

fication to ensure the robustness of this sequential linear programming method,

this method would be preferred due to its faster computational times. A possible

immediate avenue to explore is to consider the non-negativeness of the gradient for

our non-linear optimisation problem. We know that the gradient for our problem

is non-negative at all points in the feasible region and this may explain the ob-

served successes of the sequential linear programming method. Another possible

avenue is to re-visit the work by Blanc and den Hertog [2]. Since they were able

to convert the original non-linear optimisation problem into a linear programming

problem, this may explain why taking a linearisation of the non-linear objective

function and solving it sequentially seems to work.

Another potential area for investigation is to extend our method for obtaining

an approximate CDF to consider distributions on more parameters. Recall that

our method as specified in Section 6.4 is one-dimensional. For the SIR epidemic

model, the parameter γ was fixed and we only considered a uniform distribution

on the parameter β. Since our method for obtaining an approximate CDF for the

performance measures performs well when compared to the CDF obtained through

extensive simulations, it is of interest to extend our method further to handle more

than one-dimension. For the case of two parameters, we would be considering non-

overlapping grids instead of non-overlapping intervals, then obtaining intervals on

the performance measure corresponding to these grids. However, we note that

this process might potentially be quite time consuming and so computationally

efficient methods will need to be developed to obtain an approximate CDF when

we consider distributions on several parameters.
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