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To Megan

I am among those who think that science has great beauty. A scientist in his
laboratory is not only a technician: he is also a child placed before natural

phenomena which impress him like a fairy tale.

— Marie Curie
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A B S T R A C T

The capacity to measure the concentration of hydrogen peroxide in so-
lution is critical for many disparate application areas, including wine
quality sensing, aviation fuel monitoring and embryology. This thesis
covers work related to the development of a low-volume hydrogen
peroxide sensor, utilising microstructured optical fibres to perform
measurements on small (<20 µL) sample volumes.

This work has used the interaction between the guided light and
fluorescent molecules within the holes of microstructured optical fi-
bres to perform detection. This interaction has been used firstly to op-
timise the sensing architecture, using photostable Quantum dots as
a characterisation tool. This work also has potential biosensing appli-
cations, using the Quantum dots was fluorescent labels for antibody
reactions. This thesis covers work related to lowering the effective
detection limit using microstructured optical fibres to detect fluores-
cent molecules, utilising novel glasses and implementing a theoretical
model to reduce the amount of background signal that is generated
within the fibre. New candidates for fluorescent molecules in fibre
are also examined, resulting in a further reduction of the minimum
detectable concentration.

The second use of this interaction with the guided light involved
the use of fluorophores that react with hydrogen peroxide to produce
an increase in fluorescence. This increase in fluorescence can then be
observed by monitoring the signal from either end of the fibre. By
establishing a calibration curve that gives an expected fluorescence
signal for a given hydrogen peroxide concentration it is then possi-
ble to correlate the observed fluorescence with the concentration of
hydrogen peroxide present within the sample.

Additionally this thesis presents practical improvements to microstruc-
tured fibre dip sensors, including splicing the sensing fibres to com-
mercial optical fibres as well as methods for mixing low volumes of
liquids to enable rapid detection of target molecules.
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This thesis covers work related to the development of a low-volume
hydrogen peroxide sensor. This work has used the interaction be-
tween the guided light and fluorescent molecules within the holes
of microstructured optical fibres to perform detection. This has been
used firstly for potential biosensing applications, by detecting Quan-
tum dots which can be used as fluorescent labels for antibody reac-
tions. The second application involves a fluorophore that reacts with
hydrogen peroxide or hydroperoxides to produce an increase in fluo-
rescence. This increase in fluorescence can then be observed by mon-
itoring the fluorescence from either end of the fibre. By establishing
a calibration curve that gives an expected fluorescence signal for a
given hydrogen peroxide concentration it is then possible to correlate
the observed fluorescence with the concentration of hydrogen perox-
ide present within the sample.

Chapter 1 reviews the literature on optical fibre based sensing meth-
ods, exploring both unstructured core-clad fibres, as well as microstru-
tured fibres with transverse holes through their cross-sections. The
main focus of this chapter is on fluorescent techniques, but alterna-
tive methods are also examined.

Chapter 2 documents progress during this PhD project towards
lowering the effective detection limit using microstructured optical
fibres to detect fluorescent molecules. This work begins with sens-
ing using small, nanoscale core fibres, using quantum dots as the
fluorophore for detection. Here, some basic theoretical models are
also established to gain an understanding about how the parameters
of the fibre geometry affect the sensing performance. This chapter
proceeds with a detailed examination of the autofluorescence from
different soft glasses, culminating in the fabrication of a microstruc-
tured optical fibre from the glass showing the lowest fluoresence sig-
nal. This work then moves on to utilising doped nanoparticles for
detection, using an infra-red source and upconversion fluorescence
signals to perform detection. Several types of nanoparticles are exam-
ined, including particles doped with both Erbium and Thulium. An
extension of this work is included in Appendix A, looking at the fab-
rication of a novel fibre geometry to attempt to reduce the effects of
glass fluorescence in these types of sensors.

Chapter 3 examines practical improvements to the currently used
methods, that would act to improve the usability of these types of
sensors in real world scenarios. This is an attempt to move these sys-
tems out of the laboratory, and develop them to a point at which they
could potentially be deployed in the field. This covers work to splice
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these to conventional silica fibres, including both practical results for
splicing as well as a basic theoretical model to explore what would
be required to improve the efficiency of these splices. This work also
develops a novel temperature sensor, which is integrated with the
fluorescent sensors discussed earlier.

Chapter 4 explores work on the use of microfluidic mixing tech-
niques to attempt to circumvent the requirements for surface attach-
ment, while preserving the low-volume characteristics that are inher-
ent in sensing using these microstructured fibres. This allows easier
changes to new fluorophores, as commercially available molecules
can be used without the requirement of modifications to attach them
to the surface. This includes work on relatively large scale microflu-
idic chips, moving on to development of a cost-effective mixing sys-
tem utilising in-house made capillaries and a simple micro-T mixing
chamber.

Chapter 5 delves into work on fabricating microstructured optical
fibres from a new type of soft glass with an improved UV transmis-
sion. The motivation behind this work is to open up new possibilities
for fluorescent molecules by increasing the transmission window of
these fibres into a range which is suitable for more of these molecules.
This chapter investigates work on extruding these types of preforms,
and the subsequent fibre fabrication and characterisation.

Chapter 6 investigates work towards practical fuel degradation sens-
ing, specifically looking for hydroperoxides, again using a fluorescent
method which a literature survey shows to be the method most suit-
able for use in a microstructured fibre. The motivation for this work
is the desire to fabricate a quick, effective sensor that can give an im-
mediate indication as to the degradation state of a sample of aviation
fuel. This chapter primarily looks at characterisation of fluorophores
synthesised at the University of Adelaide to determine their viability
for use in the optical fibres.

Chapter 7 looks at an extension to this work, where the focus has
shifted from sensing in fuel to work on detection of hydroperoxides
in aqueous solutions. This initially begins with wine sensing as the
application, but it becomes apparent that the ideal application for this
type of low-volume sensor is in the detection of hydrogen peroxide
around embryos in In vitro fertilisation (IVF). This chapter again pri-
marily focuses on fluorophore characterisation, looking both at the
performance of the fluorophore in cuvette as well as in fibre. This
covers both commercially available fluorophores, as well as character-
isation of several fluorophores synthesised at Adelaide.

This chapter culminates with work on the functionalisation of one
of these synthesised fluorophores on the internal surfaces of the mi-
crostructured fibres. This exploress progress towards developing a
new method for functionalisation in the fibres, as well as characteri-
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sation and progressive development of the performance of the fluo-
rophore itself.
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