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ABSTRACT 

 

Osteoarthritis (OA) is a progressive joint disease and a common cause of disability. OA 

is characterised by loss of articular cartilage, subchondral bone sclerosis, cysts, and 

osteophyte formation. Increased subchondral bone remodelling plays an important role 

in the pathophysiology of OA and is associated with disease progression. It is known 

that Osteoprotegerin (OPG), receptor activator of nuclear factor kappa b (RANK) and 

its ligand RANKL tightly control bone remodelling. In addition, RANK, RANKL and 

OPG gene expression has been shown to be dysregulated in human OA subchondral 

bone.  

 

Commonly OA is diagnosed at advanced stages, which makes it difficult to study the 

initiating events in the human disease. Animal models of OA are of considerable 

importance to study the progressive changes in OA, and to evaluate suitable OA drugs. 

Alendronate (ALN) is a potent bone resorption inhibitor and clinical trials using 

bisphosphonates to treat OA have yielded mixed results. This suggests that the effects 

of bisphosphonates may or may not be beneficial depending on the stage of OA 

progression. 

 

The first aim of this thesis was to characterise the temporal structural changes of tibial 

articular cartilage and subchondral bone in a low-dose MIA-induced OA rat model. The 

results from micro-CT analysis showed that the tibiae of the MIA-injected knees had 

significant bone loss at 2 weeks (early OA), followed by increased bone volume, 

trabecular thickness and separation at 6 weeks (intermediate OA) and 10 weeks  



ii 

 

(advanced OA). Micro-CT images revealed subchondral bone sclerosis, cysts, and 

osteophyte formation at 6 and 10 weeks. Histology revealed progressive cartilage 

degradation characteristic of the human disease.  

 

The second aim of this thesis was to study the effect of ALN treatment initiated at day 0 

(pre-emptive), week 2 (early treatment), and week 6 (delayed treatment) in a low-dose 

MIA rat model. To address the second aim the efficacy of ALN was tested on cartilage 

degradation, subchondral bone remodelling, and joint discomfort observed in this 

animal model. The study demonstrated that pre-emptive ALN treatment preserved 

subchondral trabecular bone microarchitecture, decreased bone turnover, prevented joint 

discomfort, and offered moderate chondroprotection. Early and delayed ALN treatment 

prevented loss of trabeculae and decreased bone turnover but did not have any identified 

effect on cartilage.  

 

Finally, the RANK, RANKL, OPG gene expression in OA was characterised in a low-

dose MIA rat model. The effect of ALN treatment on subchondral bone RANK, 

RANKL, and OPG gene expression at 2, 6, and 10 weeks after OA induction was 

assessed. This study showed that the RANKL and OPG gene expression was 

dysregulated in this animal model. In addition, the efficacy of ALN on early 

subchondral bone changes appears to occur through the modulation of RANKL and 

OPG gene expression.  
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Collectively, these findings demonstrate that the low-dose MIA rat model closely 

mimics the pathological features of progressive human OA disease. Moreover, this 

animal model showed a clear relationship between the cartilage damage and 

subchondral bone changes. ALN treatment preserved subchondral trabecular bone 

microarchitecture and decreased bone turnover. In addition, ALN prevented RANKL 

and OPG gene dysregulation in OA subchondral bone. Normalising subchondral bone 

remodelling offers an optimal treatment option and future drug intervention studies 

focusing on subchondral bone would provide improved treatment options for OA. 
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1 Introduction 

Osteoarthritis (OA) is the most common degenerative joint disease among middle aged 

and older people throughout the world. The prevalence of OA is very high after the age 

of 55 and it is more common in women than in men (Fig. 1.1) (Oliveria et al. 1995). 

The risk factors for OA include age, sex, heredity, joint trauma, and obesity. OA mainly 

affects the weight-bearing joints of the knee, hip, vertebra, hand and foot. The knee 

joint is the most commonly affected site and approximately 6% of the adult population 

30 years or older is estimated to have symptomatic knee OA (Felson and Zhang 1998). 

The main symptoms of OA are persistent pain, stiffness, and limitation in movement of 

the affected joints. Advanced stages could lead to joint contractures, muscle atrophy, 

joint deformation, and joint dysfunction (Buckwalter et al. 2004). OA is a major socio-

economic burden to society due to its high and increasing prevalence. It is a common 

cause of long-term immobility, psychological distress, and poor quality of life among 

the aged population (Altman 2010). The etiopathology of OA is poorly understood and 

currently there is no treatment available to prevent or halt the progression of the disease. 

Costly joint replacement surgery remains the only option for patients with late or end 

stage OA.  

 

1.1 The knee joint 

The knee joint is the most commonly affected joint by OA. It is a complex organ 

consisting of three major compartments: the patellofemoral joint, and the medial and 

lateral tibiofemoral compartments (Fig. 1.2) (Englund 2010). The patella, sesamoid 

bone that articulates within the femoral groove to form the patellofemoral joint (Clark 

A. L. 2008). The menisci are fibrocartilaginous structures present between the 
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Figure 1.1 Incidence of the hand, hip, and knee OA in members of the Fallon 

Community Health Plan, 1991–1992, by age and sex (Oliveria et al. 1995, with 

permission from John Wiley & Sons, Inc.). 

 

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2 Frontal view of the normal knee joint showing tibia, femur, patella, 

ligaments and meniscus (adapted with permission from 

http://factotem.org/library/database/Knee-Articles/Knee-anatomy-

physiology.shtml).  
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articulating surfaces of the tibia and femur on the medial and lateral compartments. The 

tibial and femoral condyles are covered by cartilage and the subchondral bone is present 

just beneath the cartilage. The knee joint is surrounded by a capsule which consists of 

the synovial membrane and the whole knee joint is stabilised by both muscles and 

ligaments. It is now known that all these joint structures are involved in OA (Fig. 1.3) 

(Martel-Pelletier and Pelletier 2010). Subchondral bone has been shown to be involved 

in the early stages of OA with dynamic changes during the disease progression which 

will be the main focus of this thesis.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
Figure 1.3 Structure of the normal and OA knee joint showing pathological 

features such as cartilage fibrillation, subchondral bone sclerosis, osteophyte 

formation and cyst formation (adapted from http://www.hss.edu/conditions_an-in-

depth-overview-of-osteoarthritis.asp). 
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1.2 Aetiopathology of OA 

Primary or idiopathic OA develops in the absence of any known underlying 

predisposing factor while, secondary OA develops due to local or systemic pathogenic 

factors. Secondary OA may occur due to joint injuries (post-traumatic), joint 

malformation/malalignment, joint inflammation, metabolic diseases such as rickets and 

endocrine disorders such as acromegaly, and hyperparathyroidism (Arden and Nevitt 

2006, Michael et al. 2010, Moskowitz R.W. et al. 2001). Recently, Herrero-Beaumont 

et al. has proposed classifying primary OA into three interrelated subsets: genetically 

determined (type I OA), estrogen hormone dependent (type II OA), and aging related 

(type III OA) (Herrero-Beaumont et al. 2009). OA is mainly characterised by loss of 

cartilage, subchondral bone sclerosis, cyst, and osteophyte formation. This disease is 

associated with morphologic, biochemical, molecular and biomechanical changes of 

both cells and matrixes in the cartilage and bone which is reviewed in the following 

sections.  

 

1.3 Articular cartilage 

Articular cartilage is an avascular, aneural and alymphatic connective tissue that forms a 

smooth gliding surface over the subchondral bone of the diarthrodial joints. It is a 

highly specialised biomaterial with high tensile and compressive properties that absorbs 

and dissipates load across the entire joint surface, and sustains shearing forces 

(Heinegard and Saxne 2011). Articular cartilage derives its unique biomechanical 

properties from a dense network of collagen fibrils and proteoglycans. Both the 

structure and composition of the cartilage extracellular matrix, synthesised by sparsely 

populated chondrocytes are important to fulfil its functions (Aigner and McKenna 
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2002). Any change in the structure and composition of the extracellular matrix, affects 

the functional integrity of the cartilage. 

 

1.3.1 Structural organisation of normal articular cartilage 

Articular cartilage can be divided into four zones: the superficial zone, the middle 

(transitional) zone, the deep (radial) zone, and the calcified cartilage zone, where the 

cartilage interfaces with the bone (Fig. 1.4). The superficial zone consists of flattened 

chondrocytes arranged parallel to the articular surface. They secrete lubricin, which is 

essential for the smooth, frictionless movement of the joints (Poole A. R. et al. 2001). In 

the superficial zone the proteoglycan content is low with thin tangentially arranged 

collagen fibrils. The collagen fibrils are associated with small leucine rich decorin, and 

biglycan, which are most concentrated in the superficial zone. This zone enables 

cartilage to resist shear, tensile and compressive forces during movement (Poole A. R. 

et al. 2001). The middle zone is composed of abundant proteoglycans, with thicker 

collagen fibrils arranged in radial bundles, which are secreted by round shaped 

chondrocytes. The deep zone has the largest collagen fibrils arranged radially, and has 

the highest aggrecan content. The cell density is the lowest and the chondrocytes are 

aligned perpendicular to the articular surface. The calcified cartilage is demarcated by a 

tidemark that separates hyaline cartilage from the subchondral bone. It mainly anchors 

the cartilage to the subchondral bone and consists of a very sparse chondrocyte 

population, which are hypertrophic (Martel-Pelletier et al. 2008). 
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Figure 1.4 Structural organisation of normal articular cartilage showing various 

zones of the cartilage, the calcified zone and the subchondral bone. Important 

cartilage matrix components such as chondrocytes, collagen fibrils and associated 

molecules are shown in this diagram (Poole et al., 2001, with permission from 

Lippincott Williams & Wilkins).  
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1.3.2 Composition of articular cartilage 

1.3.2.1 Chondrocytes 

Chondrocytes are the only cell type found in the cartilage matrix and occupy less than 2 

% of the cartilage volume (Hunziker et al. 2002). Chondrocytes are formed from 

undifferentiated mesenchymal cells and the majority of the epiphyseal chondrocytes 

undergo secondary ossification and subsequent endochondral ossification. However, the 

epiphyseal chondrocytes present closer to the synovial cavity become permanent 

resident articular chondrocytes (Pacifici et al. 2000). Chondrocytes differ in size, shape, 

and metabolic activity depending on the different cartilage zone in which they reside 

(Fig. 1.5) (Schumacher et al. 1994). They are highly resilient and are able to survive at 

low oxygen concentration in the cartilage extracellular matrix (Lafont 2010). 

Chondrocytes are metabolically active and synthesize collagen and proteoglycan 

molecules. Moreover, cartilage matrix turnover is regulated by several cytokines such as 

interleukin-1 (IL-1), insulin-dependent growth factor-I and transforming growth factor-

 (TGF-). 

 

1.3.2.2 Collagen 

Collagen constitutes 50 – 60% of the cartilage dry weight. Type II collagen forms a 

major bulk of collagen fibrils in the healthy articular cartilage. The diameter of collagen 

fibrils ranges from 20 nm (superficial zone) to 120 nm (deep zone). Type II collagen is 

a triple helix composed of three identical 1 (II) chains (Poole A. R. et al. 2001). A 

number of pyridinoline cross-links stabilize the collagen molecules which serve as a 

marker for mature collagen (Takahashi et al. 1994). Cartilage oligomeric matrix protein 

(COMP), a noncollagenous extracellular matrix protein is also involved in binding the 
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collagen molecules together. Hence COMP plays a major role in fibril assembly to form 

collagen microfibrils (Poole A. R. et al. 2001). Collagen type XI, type IX, and type VI 

are also found in normal cartilage. Type XI and IX collagen are found in association 

with type II collagen. Type VI collagen is found in the pericellular matrix directly 

surrounding the chondrocyte and anchors the chondrocytes to the matrix. Type X 

collagen is synthesized only by the deep zone chondrocytes of the articular cartilage and 

hypertrophic chondrocytes of the growth plate under normal conditions (Buckwalter 

and Mankin 1998).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Chondrocytes and collagen fibrils from normal articular cartilage.  

(A) Chondrocytes from superficial layer (i) to deep cartilage zone (iv) differ in size 

and shape. (B) Collagen fibrils from different zones of the cartilage differ in size 

and arrangement (Buckwalter et al. 1998, with permission from Journal of Bone 

and Joint Surgery). 
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1.3.2.3 Proteoglycans 

Proteoglycans constitute about 5 – 10% of cartilage and aggrecan is the abundant 

proteoglycan found in the cartilage. The aggrecan monomer consists of a core protein 

with repeating units of chondroitin sulfate and keratin sulfate. Multiple monomer 

aggrecan molecules are attached non-covalently to hyaluronic acid to form 

supramolecular aggregates of proteoglycans (Martel-Pelletier et al. 2008). These 

aggregates are negatively charged and provide the osmotic properties needed for the 

articular cartilage to resist compressive loads. Other proteoglycans such as the 

syndecans, glypican, decorin, biglycan, fibromodulin, lumican, epiphycan, and perlecan 

are also present in the cartilage matrix (Umlauf et al. 2010).  

 

1.3.3 Pathological changes in OA cartilage matrix 

Loss of articular cartilage is an important feature of OA; however, the initiating events 

that lead to OA pathology are still unclear. Microscopically, cartilage fibrillation is the 

first sign of OA pathology due to degradation of collagen fibrils. Matrix 

metalloproteinases (MMPs) play a major role in collagen fibril degradation. This leads 

to a weakened collagen network, which no longer can resist the swelling properties of 

the proteoglycan and subsequent swelling of cartilage. Using high-resolution magnetic 

resonance imaging (MRI), cartilage swelling at the early stages of experimental OA has 

been shown (Calvo et al. 2001). At the same time, there is loss of proteoglycans and the 

chondrocytes try to compensate this loss by increasing proteoglycan synthesis (Poole A. 

R. et al. 2002). However, due to increased activity of both MMPs and aggrecanases, 

there is increased loss of aggrecan fragments. Moreover, expression of molecules such 

as tenascin, collagen type IIA and III that are not normally present in the cartilage has 

also been reported (Aigner and McKenna 2002).  
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Apart from biochemical changes, biomechanical changes also play a key role in 

progressive cartilage degradation (Lammi 2004). Using quantitative cartilage loss 

assessment, Sharma et al. showed that factors that altered mechanical loading such as 

medial meniscal damage and varus malalignment and lateral meniscal damage 

independently predicted tibial and femoral cartilage loss (Sharma et al. 2008). Kleeman 

et al. has demonstrated a relationship between cartilage degradation and stiffness of 

various grades of OA cartilage (Kleemann et al. 2005). The data from their mechanical 

tests showed a correlation between increasing cartilage degradation and stiffness 

reduction. Mechanical loading has been shown to induce increased activity of MMPs 

that induce catabolic events or increased turnover in cartilage (Blain et al. 2001). 

Human and animal OA studies have shown increased MMP activity that leads to 

degradation of collagen fibrils (Reboul et al. 1996, Salminen et al. 2002). In particular, 

MMP-13 plays the greatest role in degrading the collagen fibrils in the cartilage matrix. 

MMP-1 is also involved in the degradation of newly synthesised collagen. Cleavage of 

type II collagen by collagenses leads to chondrocyte hypertrophy and expression of type 

X collagen (Martel-Pelletier et al. 2008).  

 

1.3.4 Alterations in OA articular cartilage metabolism 

During the disease process, chondrocyte metabolism is altered with subsequent cartilage 

degradation mediated by the activity of proteolytic enzymes, cytokines, chemokines, 

and inflammatory mediators (van der Kraan et al. 2002). Articular cartilage turnover is 

regulated mainly by collagenases, which are specifically named as MMPs. The collagen 

fibrils are cleaved by MMP-1, MMP-8, and MMP-13. MMP-13 favours type II collagen 

cleavage and the collagen fragments are further cleaved by gelatinases such as MMP-2 

and MMP-9. Proteolytic cleavage of aggrecan is brought about by aggrecanase 
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(Cawston and Wilson 2006). Aggrecanases namely ADAMTS-4 and 5 (a disintegrin 

and metalloproteinase with thrombospondin motifs) are involved in the normal turnover 

of aggrecan molecules and their activity is shown to be increased in OA cartilage 

(Hardingham 2008). Literature also shows that both ADAMTS-4 and ADAMTS-5 are 

involved in early cartilage degradation that may progress into OA (Heinegard and 

Saxne 2011). Chondrocyte metabolism is regulated by members of the TGF- 

superfamily, which induce chondrogenic differentiation and promote chondrogenesis. 

TGF- plays an important role in cartilage formation during embryonic stages and 

stimulates proteoglycan synthesis and cartilage repair (van der Kraan et al. 2009). Bone 

morphogenetic proteins (BMPs) are multi-functional growth factors that belong to the 

TGF-superfamily. BMP signalling is involved in endochondral bone formation and 

chondrogenesis. Elevated BMP levels have been reported in OA which stimulates both 

matrix synthesis and cartilage degeneration by altering chondrocyte metabolism and 

stimulating MMP-13 expression (van der Kraan et al. 2010). Other proinflammatory 

cytokines that are critically involved in OA pathogenesis are IL-1 and tumor necrosis 

factor alpha (TNF). The levels of both these cytokines are increased in OA cartilage 

and are known to stimulate MMP and ADAMTS activity (Kapoor et al. 2011). Figure 

1.6 shows the involvement of MMPs and other proteases involved in OA cartilage 

matrix degradation. 
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Figure 1.6 Cartilage degradation mediated by proinflammatory cytokines, 

increased activity of proteases, and external factors such as altered loading of the 

knee joint (Kapoor et al. 2011, with permission from Nature Pub. Group). 

 

1.3.5 Cellular changes in OA cartilage 

A number of cellular-level changes occur in OA cartilage such as phenotypic 

alterations, activation, redifferentiation, hypertrophy, and chondrocyte death. The 

altered chondrocytes can no longer maintain the cartilage matrix and this subsequently 

leads to cartilage degradation. It has been shown that chondrocytes from fibrillated 

cartilage are clustered (Fig. 1.7), with dissimilar morphological phenotypes that 

fluctuate between an active secretory phenotype and an osmiophilic contracted 

apoptotic cell type (Kouri et al. 1996a, Kouri et al. 1996b). The altered OA 

chondrocytes undergo activation and redifferentiation in OA (Kirsch et al. 2000, Kouri 

and Lavalle 2006). Recent studies show that chondrocyte hypertrophy could be an 

initiating event in OA that leads to protease-mediated cartilage degradation (van der 
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Kraan and van den Berg 2012). Hypertrophic chondrocytes have also been shown to 

upregulate MMP-13 and aggrecanase activity that leads to cartilage matrix damage 

(Dreier 2010). 

 

 

 
 
 
 
 
 
 
 

Figure 1.7 Safranin O/Fast green stained sections showing chondrocyte cluster 

formation in OA. Chondrocyte clusters (A, arrow) from a rat tibial articular 

cartilage at 10 weeks after OA induction with 0.2 mg monosodium iodoacetate. 

Magnified image of a chondrocyte cluster (B). Cartilage matrix showed loss of 

proteoglycans, however increased proteoglycan synthesis is evident in the 

pericellular matrix surrounding the chondrocytes with altered metabolism (C). 

 

 

Cell death has long been considered pathological; however, more recently it has been 

accepted that physiological cell death is essential for normal development and 

maintenance of adult tissues (Kim and Blanco 2007). In OA, chondrocyte death could 

occur due to excessive mechanical force, cartilage injury, increased production of 

reactive oxygen species, and inadequate growth factor production. Chondrocyte loss in 

OA had also been correlated to disease severity in both animal and human studies 

(Zamli and Sharif 2011). Cell death in OA is controversial as it is unclear if 

chondrocytes undergo necrosis or apoptosis. Moreover, occasional identification of 

markers for both forms of cell death in a single cell makes it difficult to distinguish 

between the two forms of cell death (Del Carlo and Loeser 2008). A study by Matsuo et 

           14



al. supports the occurrence of cell apoptosis in OA, in which they reported significantly 

increased caspase-3 and caspase-9 positive cells in the superficial and deep zones of OA 

cartilage (Matsuo et al. 2001).  

 

Based on the above literature, it is clear that cartilage damage in OA is brought about by 

a multitude of factors. Increased cartilage matrix turnover mediated by the effect of 

growth factors and cytokines act on the chondrocytes and increase the anabolic activity 

as a repair mechanism. However, due to altered chondrocyte metabolism the catabolic 

activity exceeds the anabolic activity, which leads to a net loss of matrix molecules and 

the chondrocytes can no longer maintain the cartilage matrix. Further loading of the 

weakened cartilage leads to progressive cartilage loss, which is observed as joint space 

narrowing in radiographs of OA patients. Recent exciting research focussed on the 

molecular mechanisms that cause cartilage damage has the potential to advance our 

understanding of OA pathogenesis.  

 

1.4 Subchondral bone 

The subchondral trabecular bone together with the subchondral plate that are present 

immediately beneath the articular cartilage form the “subchondral bone”, which 

provides support for the overlying articular cartilage (Fig. 1.8). According to Duncan et 

al. the “subchondral plate” is defined as a zone that separates the articular cartilage from 

the marrow cavity. It normally consists of the calcified region of the articular cartilage 

and a layer of lamellar bone that gives rise to the supporting trabeculae (Duncan et al. 

1987). The subchondral plate and subchondral trabeculae are different mechanically, 

physiologically and the anatomy of the subchondral region itself is highly variable 

(Madry et al. 2010). 
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Figure 1.8 Diagram of normal tibial plateau showing subchondral bone made of 

the subchondral plate and the trabecular bone. TM=tidemark; P=perforation; 

CB=cortical bone (Duncan et al. 1987, with permission from Journal of Bone and 

Joint Surgery).  

 

1.4.1 Normal structure of the subchondral plate 

The subchondral plate consists of two mineralized layers, together forming a single unit 

(Fig. 1.9). The calcified cartilage is distinctly separated from the hyaline cartilage by a 

discrete band of mineralized cartilage called the tidemark, which is denser than the 

adjacent cartilage and measures up to 10 m in thickness (Lyons et al. 2005). The 

tidemark is chemically more complex with a distinct trilaminate appearance and it 

forms a sharp boundary between the calcified and non-calcified cartilage (Lyons et al. 

2007). The calcified cartilage extends towards the marrow cavity and is remodelled and 

replaced by lamellar bone that supports the subchondral trabeculae, which are 
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perpendicular to the joint surface. The collagen fibrils of the articular cartilage cross the 

tidemark and are continuous with those of the calcified cartilage. The articular cartilage 

or the hyaline cartilage mainly consists of type II collagen, and the calcified zone 

consists of type X collagen; whereas, the underlying subchondral bone is composed of 

type I collagen (Madry et al. 2010).  

 

1.4.2 The osteochondral junction 

The junction between the cartilage and bone is called the osteochondral junction, the 

integrity of which is essential for maintaining a healthy joint. The osteochondral 

junction (Fig. 1.10) consists of the deepest layer of non-calcified cartilage, the tidemark, 

the calcified cartilage, the cement line that separates the subchondral plate and calcified 

cartilage, the subchondral plate of lamellar bone, trabecular bone and bone marrow 

spaces (Lyons et al. 2006). The tidemark clearly delineates the calcified and un-calcified 

cartilage and is involved in pathological conditions such as OA (Suri and Walsh 2011). 

Histomorphometric analysis of the adult articular calcified cartilage zone has revealed 

distinct morphology of the calcified cartilage zone with a ‘‘ravine-engomphosis” shape 

on the upper interface, and a ‘‘comb-anchor” shape on the lower interface (Wang et al. 

2009). This morphology of the calcified cartilage tightly binds the subchondral bone 

and cartilage.  

 

 

 

 

 

 

           17



 

 

 

 

 

 

 

 

 

 

 

Figure 1.9 Electron microscopic appearance of normal subchondral bone plate 

from a 76-y-old male. Back-scattered image (a), secondary emission image (b), 

scale bar 200 m. Enlarged image showing subchondral bone layers (c) and 

fibrous nature (d), scale bar 100 m (from Li et al. 1999, with permission from 

Blackwell Publishing Ltd.). 

 

 

 

 

 

 
 

 

 

 

 

Figure 1.10 Scanning electron micrograph of subchondral plate. cc, calcified 

cartilage; scp, subchondral plate; rz, radial zone; tm, tidemark between the non-

calcified cartilage and calcified cartilage (from Madry et al. 2010, with permission 

from Springer). 

           18



1.4.3 Vascularity of the subchondral bone plate 

Subchondral bone is richly supplied with blood vessels and is well innervated. The 

subchondral plate is invaded by hollow spaces, which provide a direct connection 

between the uncalcified cartilage and the marrow cavity of the subchondral trabecular 

bone. The perforations that are canal-like holes are preferentially grouped in the central 

weight bearing regions of the subchondral plate of the tibial plateau (Berry et al. 1986). 

Duncan et al reported that the subchondral bone perforations in the medial tibial plateau 

occurred beneath the area covered by the meniscus. Some of these holes penetrated the 

subchondral plate and connected with the marrow space. Interestingly, in the medial 

tibial plateau the larger holes occupied a more peripheral and posterior location; 

whereas, a large number of holes were found in the central area of the lateral tibial 

plateau than in its submeniscal region (Duncan et al. 1987). Moreover, the occurrence 

of perforations varied with the stress within the joint, which were concentrated in the 

regions with greatest stress (Ahmed and Burke 1983). These perforations supply 

nutrients and oxygen to the chondrocytes in the deep layers of the calcified cartilage 

(Imhof et al. 2000). 

 

1.4.4 Subchondral plate thickness and density distribution 

The thickness of the subchondral plate varies within the joint and depends on the stress 

applied to the joint. The subchondral plate in the tibial plateau is thicker at the centre, 

which is in contact with the femur. Milz et al. reported that a 7 – 12 fold increase in 

subchondral plate thickness occurs from the periphery to its centre in the tibial plateau 

(Milz et al. 1995). Similar to the thickness distribution reported by Milz et al. the 

density of the normal tibial plateau was found to be maximum at the centre of the 

medial and lateral compartment and the density decreased concentrically towards the 
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periphery (Noble and Alexander 1985, Odgaard et al. 1989). Thus, the patterns of 

density distribution correlate with the mechanical situation in each joint and reflect the 

long-term stress acting. The strength of subchondral plate is greater on the medial 

condyle than the lateral condyle and the strength decreased rapidly with distance from 

the surface. Moreover, there was a significant correlation between the strength 

distribution and mineralization of the subchondral plate (Madry et al. 2010). 

Subchondral bone is an effective shock absorber in the diarthrodial joints and protects 

the overlying cartilage against damage due to excessive loading. During load transfer 

from cartilage to subchondral bone, large shear stresses are created in the subchondral 

region. The undulations of the tidemark and the osteochondral junction play an 

important role in transforming these shear stresses into compressive and tensile stresses. 

Moreover, normal subchondral bone can attenuate about 30% of the load through joints 

while cartilage can attenuate only up to 3% (Radin et al. 1970).  

 

1.4.5 Pathological changes in OA subchondral bone 

Key features of OA include subchondral bone sclerosis, osteophyte formation, 

development of subchondral bone cysts, and advancement of tidemark with vascular 

invasion into the calcified cartilage (Walsh et al. 2007). These changes indicate that 

subchondral bone plays a major role in the pathology of OA (Fig. 1.11). Radin and Rose 

were the first to propose that changes in the subchondral bone in OA were associated 

with cartilage damage (Radin et al. 1978a). They also speculated that the changes in 

subchondral bone preceded the changes in articular cartilage, and that the bone changes 

adversely affected the load bearing capacity of the overlying cartilage, leading to 

cartilage damage (Radin and Rose 1986). Moreover, studies using isotope-labelled 

agents and radiographic techniques strongly suggest that modifications in subchondral 
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bone occur early in OA and confirm that changes in bone turnover precede the evidence 

of any bone-related changes detected (Buckland-Wright et al. 1991b, Hutton et al. 

1986). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11 Pathological changes in the OA subchondral bone and possible 

relationship with cartilage damage (Henrotin et al. 2009, with permission from 

ISO press). 

 

1.4.6 Subchondral bone remodelling in OA  

Subchondral bone changes have been proposed as an early event in the pathogenesis of 

OA and subchondral bone remodelling plays an important role in the disease process 

(Lajeunesse and Reboul 2003). Pre-clinical and clinical studies clearly indicate that 

altered subchondral bone remodelling leads to increased bone resorption at the early 

phase of OA followed by increased bone volume due to subchondral bone sclerosis. 

Animal models have consistently showed increased subchondral bone remodelling in 
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OA (Botter et al. 2006, Hayami et al. 2006, Panula et al. 1998, Pastoureau P. C. et al. 

1999). Examination of femoral head trabecular bone from a guinea pig model of OA 

showed a significant increase in bone volume fraction due to the development of thicker 

trabeculae. Moreover, a microscopic computed axial tomography study revealed that 

trabecular remodelling is an early event in this animal model of OA (Layton et al. 

1988). Another experimental study using young beagle dogs showed that increased 

subchondral bone remodelling was evident at the early phase of OA (Panula et al. 

1998). Using a canine model of OA, Lavigne et al. reported intense subchondral bone 

remodelling in the knee after anterior cruciate ligament transection (Lavigne et al. 

2005).  

 

In human OA, dual energy x-ray absorptiometry (DEXA) analysis of the hip and total 

body showed that patients with OA had similar or increased bone density compared to 

controls, suggesting increased bone turnover in OA (Stewart et al. 1999). A study by 

Hunter et al. showed that both bone turnover and bone resorption was increased in knee 

OA in female twins (Hunter et al. 2003). In the Chingford study, urinary N-terminal 

type I collagen telopeptides (NTX) and C-terminal type I collagen telopeptides (CTX) 

of OA patients were measured at three different time points. Progressive knee OA 

patients demonstrated significantly increased bone resorption marker level than control. 

Bone resorption was increased in patients with progressive knee OA due to altered bone 

turnover (Bettica et al. 2002). Histology and bone morphometry of tibial condyles with 

OA revealed increased bone volume and higher bone formation activity in the medial 

condyle in comparison with the lateral condyle. Moreover, cartilage degeneration was 

found to be influenced by remodelling of subchondral bone (Matsui et al. 1997).  
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1.4.7 OA related changes in trabecular microarchitecture  

The altered bone remodelling in OA leads to microarchitectural changes in the 

trabecular bone. Fazzalari et al. showed OA related changes in the trabecular bone 

architecture in femoral head specimens obtained from end stage OA patients. The 

authors reported increased trabecular thickness, trabecular spacing and a decrease in 

trabecular number in OA specimens compared to normal controls (Fazzalari and 

Parkinson 1998). Osteoarthritis may also change the age dependences of both the 

structural parameters and the mechanical properties usually reported for normal 

cancellous bone (Perilli et al. 2007a). A radiographic study of patients with OA of the 

hand over an 18-month period showed greater subchondral cortical thickness at an early 

stage of OA compared to healthy control subjects which increased with time. However, 

in one third of the patients cortical plate thickness reduced over time and the authors 

speculate that it could be due to local inflammation (Buckland-Wright et al. 1991a). 

Moreover, sclerosis was greatest in joints with progressive joint space narrowing the 

extent of which is determined by the forces exerted within the hand (Buckland-Wright 

et al. 1992). Similarly, in the knee joint significant thickening of the subchondral plate 

was observed in the medial compartment of joints with severe joint space narrowing due 

to complete loss of articular cartilage (Buckland-Wright et al. 1994). Chappard et al. 

assessed the subchondral microarchitectural alterations in the femoral head from OA 

(with and without cartilage) and osteoporosis using micro-computed tomography 

(micro-CT). They found significantly increased bone volume fraction, trabecular 

thickness, and trabecular number with decreased trabecular separation in the OA 

femoral head subchondral bone without cartilage, compared to OA subchondral bone 

with cartilage and subchondral bone of osteoporosis (Chappard et al. 2006). 
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In a meniscectomized guinea pig model of OA, evidence of early subchondral bone 

changes was observed in a densitometric study using DEXA (Pastoureau P. C. et al. 

1999). The bone mineral density (BMD) of the medial femoral condyle was 

significantly lower in the meniscectomized animals compared to sham animals one 

month after operation. By contrast, 3 months after meniscectomy the BMD was found 

to be higher in the femur than in the contralateral femur. In another pre-clinical study, 

Hayami et al. have shown that anterior cruciate ligament transection leads to early bone 

loss followed by increased bone volume (Hayami et al. 2006).  

 

1.4.8 Biochemical changes of subchondral bone in OA 

The pathological changes observed in the subchondral bone are due to altered bone 

metabolism, which is abnormally increased in OA. Mansell et al. reported highly 

increased collagen turnover rate in OA bone compared to controls (Mansell et al. 1997). 

The authors reported a 20-fold increase in the levels of C-terminal pro-peptide of type I 

collagen, increased alkaline phosphatase activity and a significant increase in MMP-2 

activity in the OA femoral head compared to controls. Moreover, the collagen content 

was significantly increased; however, collagen mineralization was significantly 

decreased in the OA femoral head (Mansell and Bailey 1998). Earlier studies have 

reported hypomineralization in the femoral head and the femoral neck of OA patients 

(Li B. and Aspden 1997a, b). Apart from the presence of normal type I collagen 

heterotrimer [(1(I))22(I)], the osteoblasts from OA femoral head also synthesised 

type I collagen homotrimer [1(I)3] (Bailey et al. 2002). The ratio of type I collagen 1 

to 2 chains in normal bone was found to be 2:1, whereas in OA bone the ratio ranged 

from 4:1 – 17:1. Moreover, the presence of an excess of 1 chain depended on bone 
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turnover rate and the severity of OA. The pathological changes in the OA subchondral 

bone have been shown to be directed by changes in the underlying molecular 

mechanisms that lead to altered bone metabolism (Chan et al. 2011, Hopwood et al. 

2005, Kuliwaba et al. 2000, Truong et al. 2006). 

 

1.4.9 Hypomineralizaton of bone in OA  

Another important feature of human OA is decreased mineralization of subchondral 

bone. Couchourel et al. reported that mineralization of OA osteoblasts from tibial 

plateaus was reduced compared with mineralization of normal osteoblasts in culture. 

Collagen synthesis, alkaline phosphatase, and osteocalcin levels were found to be 

elevated, while COL1A1:COL1A2 mRNA ratio was 3-fold higher in OA osteoblasts 

compared with normal osteoblasts (Couchourel et al. 2009). In studies by both Mansell 

et al. and Couchourel et al. TGF levels were higher in OA compared to normal. TGF 

has been shown to control collagen synthesis and mineralization (Pfeilschifter et al. 

1990). Increased levels of TGF have been shown to be a pathogenic factor in OA (van 

den Berg 1995). A significant increase in TGF- in OA bone has caused the increased 

collagen synthesis and decreased mineralization. Candidate genes involved in the 

changes in mineralization in OA have been described in a recent study by 

Kumarasinghe et al. The authors have shown that the genes that control osteoblast 

proliferation, differentiation and mineralization such as tensin homolog (PTEN), twist 

homolog 1 (TWIST1), and S100 calcium binding protein A4 (S100A4) were 

differentially expressed in bone samples from the intertrochanteric (IT) region of hip 

OA patients in comparison to control (Kumarasinghe et al. 2010).  
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1.4.10 Biomechanical properties of bone  

Bone strength depends on both the quantity and quality of bone tissue. Bone strength is 

determined by the shape of bones, the microarchitecture of the trabecular bones, the 

turnover, the mineral, and collagen content (Cole and van der Meulen 2011). The 

collagen framework and the hydroxyapatite deposition play a major role in maintaining 

the strength of bone. Normal bone contains type I collagen ([1(I)]22(I)) which is 

about 80% of the total proteins present in bone and 95% of total collagen in bone. Type 

III and type V collagen are present at low levels in bone. The mineral content of bone is 

mainly composed of hydroxyapatite [Ca10(PO4)6(OH)2] crystals, measuring 

approximately 200 Å in their largest dimension (Clarke 2008). The spindle or plate-

shaped hydroxyapatite crystals are deposited between or within the collagen fibers, 

which are oriented in the same direction as the collagen fibers. The bone mineral 

content provides stiffness and plays a crucial role in bone structural behaviour. High 

bone remodelling rate is associated with reduced bone mineralization, resulting in loss 

of stiffness (Seeman 2008). The subchondral bone plate of femoral heads obtained from 

OA patients was less stiff than normal, was hypomineralised, and had different organic 

and water fractions suggesting a defect in the matrix (Li B. and Aspden 1997b). 

 

The type I collagen molecules are involved in the mechanical properties of bone and 

hence the collagenous framework provides the tensile strength to bone. The tensile 

strength of collagen is derived from its intermolecular cross-links. The collagen fibers 

are stabilized by the formation of inter- and intramolecular cross-links. The initial head 

to tail cross-linking occurs in the non-helical telopeptide region by condensation of a 

hydroxyallysine with a lysyl or hydroxylysyl side chain catalysed by lysyl oxidase. 

These cross-links are further stabilized by the formation of divalent cross-links 
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hydroxylysinonorleucine and dihydroxylysinonorleucine. These divalent cross-links 

correspond to the immature cross-links found in the young bone collagen. The 

formation of trivalent mature cross-links such as pyrroles and the pyridinolines occurs 

by spontaneous condensation between two divalent ketoamine cross-links (Viguet-

Carrin et al. 2006). Therefore, high bone turnover would reduce the number of cross-

links resulting in decreased tensile strength of bone.  

 

Both the matrix properties and microarchitecture influence bone mechanical properties. 

In OA bone mechanical properties are altered which is associated with the disease 

process (Day et al. 2004). Day et al. reported an association between decreased tissue 

elastic modulus of subchondral trabecular bone with pre-arthritic cartilage damage in 

post-mortem specimen from proximal tibia. The bone tissue modulus was found to be 

reduced by 60% in the medial condyle with cartilage damage compared to the control 

specimens. The subchondral trabecular bone volume fraction was found to be higher in 

the medial compartment compared to the lateral compartment of tibiae with cartilage 

damage (but not in the controls) (Day et al. 2001).  

 

1.4.11 Biomechanical adaptation: Osteophyte formation 

Osteophytes are the major radiographic hallmark feature of OA, which represents 

fibrocartilaginous and bony outgrowths found at the joint margins. Marginal 

osteophytes are of variable size and can appear as “spurs” or “lips” of bone around the 

edges of a joint (Fig. 1.12). Osteophytes are also known to develop in central areas of 

the joint with remnants of articular cartilage. Much understanding of osteophyte biology 

has come from experimental animal models of OA. Osteophyte formation in 

experimental OA has been reported in mice (van Osch et al. 1996), rats (Hayami et al. 
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2006), dogs (Brandt et al. 1991), rabbits (Hayashi M. et al. 2008) and guinea pigs 

(Pastoureau P. et al. 2003). Marginal osteophytes are formed by endochondral 

ossification at the junction of synovium or periosteum and hyaline cartilage. Moreover, 

it is suggested that the cell source of osteophyte precursors could be the mesenchymal 

stem cells present in the periosteum at the bone-cartilage junction, from the synovial 

membrane or the intramembraneous bone formation (van der Kraan and van den Berg 

2007). The newly formed osteophyte is integrated with the subchondral bone and it is 

covered with cartilage expanding the original cartilage surface. 

 

It has been shown that MR detected cartilage defects were highly associated with 

radiographically diagnosed osteophytes in the tibiofemoral joint in OA patients. 

Moreover, there was a correlation between the presence of osteophytes at the medial 

tibial condyle and knee pain (Boegard et al. 1998). Formation of osteophytes in OA is 

believed to be a mechanical adaption to stabilize the joint (Moskowitz R. W. 1999, van 

denBerg 1999). Adaptive remodelling plays a major role in OA in which bone adapts to 

the changing mechanical demands of the joint, which is brought about by altered 

responses of cells to mechanical loading (Wolff’s law) (Goldring 2008, Moskowitz R. 

W. 1999). A study by Pottenger et al. showed that in patients with medial compartment 

knee OA, marginal osteophytes appeared to stabilize OA knees, but can cause fixed 

deformity. Removal of marginal osteophytes from the medial compartment significantly 

increased the mobility of joints in these patients (Pottenger et al. 1990). 

 

Both TGF- and BMP-2 have been shown to induce osteophyte formation in 

experimental model of OA. BMP-2 induced osteophyte formation from the growth 

plates on the femur and on top of the patella of mice. Whereas, TGF- induced 
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osteophyte formation on the bone shaft beneath the collateral ligament on the femur and 

on top of the patella (Blaney Davidson et al. 2007b). In a murine model of OA, lack of 

TGF-3 has been shown to be associated with cartilage damage, which suggests a 

protective effect of TGF-3 in OA. Additionally, that study also showed that TGF-3 is 

involved in early osteophyte formation, whereas BMP-2 was involved in the later stages 

of osteophyte formation (Blaney Davidson et al. 2006). 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1.12 Osteophyte formation (arrow) in human OA (from Essentials in Bone 

and Soft-Tissue Pathology by William R. Reinus, reproduced with permission 

from Springer). 

 

Repeated, intraarticular injection of TGF- in the knee joint of normal mice has been 

shown to induce osteophyte formation at the margins of the cartilage and at insertion 

sites of ligaments (van den Berg et al. 1993). This suggests a possible role of 

endogenous TGF- in osteophyte formation. TGF- is essential for maintaining healthy 

cartilage and a lack of TGF- could result in OA-like cartilage damage (Scharstuhl et al. 

2002). However, application of TGF- supplementation resulted in fibrosis and 

osteophyte formation, which was blocked by local inhibition of TGF- or downstream 
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mediators such as mitogen activated protein kinase (MAPK) signals (Blaney Davidson 

et al. 2007a). In a murine model of OA, medial meniscectomy induced cartilage 

degradation and osteophyte formation on the anteromedial aspect of the tibial plateau in 

wild type mice. However, the MMP-13 knockout mice demonstrated a significant 

inhibition of cartilage damage with no effect on osteophyte development following 

medial meniscectomy (Little et al. 2009). This shows that MMP-13 does not have a 

significant role in osteophyte biology. 

 

1.4.12 Subchondral bone cyst formation in OA 

Another typical feature of OA is the formation of subchondral bone cysts in the weight 

bearing regions of joints (Goldring 2009). Subchondral bone cysts are known to occur 

in focal areas of bone resorption mainly within areas of sclerotic bone at sites of 

increased pressure transmission (Pouders et al. 2008). Two theories have been proposed 

regarding the pathogenesis of subchondral bone cysts in OA. According to the intrusion 

theory, subchondral bone cysts are formed due to elevated intra-articular pressure, with 

intrusion of synovial fluid through the damaged cartilage. According to the bone 

contusion theory, cystic necrosis develops due to fracture and vascular insufficiency of 

the subchondral bone caused by the impaction of apposing bony surfaces (Bancroft et 

al. 2004).  

 

Previous human and animal studies have confirmed that subchondral bone cysts occur 

in advanced stages of OA. Histological examination of acetabulum from hip OA 

patients showed the presence of acetabular subchondral cysts. The cyst wall was 

composed of fibrous tissue with mucinous fluid and/or fibromyxoid material in the cyst 

lumen (Fig. 1.13). Numerous inflammatory cells were found in the cyst wall and the 
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cyst lumen with macrophages in the fibrotic marrow surrounding the cyst. The 

surrounding subchondral bone was thickened with the presence of active osteoblasts and 

osteoclasts suggesting active bone remodelling (Sabokbar et al. 2000). Moreover, 

macrophages isolated from the wall of subchondral OA cysts have been shown to 

differentiate into osteoclastic cells in the presence of osteoblasts and 1,25(OH)2D3 

(Sabokbar et al. 2000). This shows that the macrophage-osteoclast differentiation may 

contribute to OA subchondral bone remodelling and enlargement of OA cysts.  

 

 

 

 

 

 

 

 

Figure 1.13 A) Histological appearance of subchondral bone cyst formation 

(arrow) in severe OA (reproduced with permission from Springer). B) MRI of 

human knee showing subchondral cyst-like signal alterations (arrow) within an ill 

defined BML (arrowhead) (Crema et al. 2009, with permission from Elsevier).  

 

Radiographic analysis of the tibiofemoral joint of OA patients undergoing arthroplasty 

revealed that only 10% of the patients with severe OA presented with subchondral bone 

cysts. Despite low sensitivity, subchondral bone cysts may serve as a reliable indicator 

of advanced articular cartilage degeneration in the OA joint (Kijowski et al. 2006). MR 

imaging is more sensitive in detecting small incident subchondral bone cysts as 

radiographs usually detect cysts with a relative larger area, large enough to produce 

hyperlucency in the subchondral bone, which usually occurs in advanced disease 
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(Crema et al. 2009). Subchondral cysts have a characteristic appearance on MRI, 

demonstrating well defined rounded areas of fluid like signal intensity on unenhanced 

images (Fig. 1.13). 

 

Finite element (FE) model analysis shows that a subchondral bone cyst in OA develops 

due to stress-induced bone resorption supporting the bone contusion theory of 

subchondral bone cyst formation. Thinning of cartilage did not cause a major increase 

in stress on the femoral head; however, full-thickness cartilage loss significantly 

increased the stress on the femur just beneath the lesion (Durr et al. 2004). A recent FE 

analysis of micro-CT scans from early knee OA patients showed that the presence of an 

intra-osseous defect such as the subchondral bone cyst leads to a two-fold increase in 

the peri-cystic stress under modest loading. The FE model showed a positive correlation 

between the diameter of the subchondral bone cyst and the resultant intra-osseous stress 

under load (McErlain et al. 2011). However, in this study data from early knee OA with 

a synthetically constructed subchondral bone cyst was used to monitor its effect on OA 

joints.  

 

In a low-dose MIA induced OA rat model, micro-CT images revealed focal areas of 

bone resorption in the medial tibia plateau which was consistent with the formation of 

subchondral bone cysts as confirmed from histology. Formation of subchondral bone 

cysts was associated with subchondral plate breach in this animal model (Mohan et al. 

2011). Other pre-clinical studies have reported the presence of subchondral bone cysts 

(Nolte-Ernsting et al. 1996, Tessier et al. 2003) and its association with subchondral 

plate breach (Janusz et al. 2001, McErlain et al. 2008). 
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1.4.13 Bone marrow lesions (BMLs) in OA 

MR imaging, a more advanced imaging technique, has further improved our knowledge 

regarding subchondral bone marrow lesions/edema and subchondral bone cysts in 

human OA. The term ‘‘bone marrow lesion’’ is now widely accepted to describe ‘‘bone 

marrow edema-like lesion’’ as edema appears to be only a minor constituent of bone 

marrow related abnormalities in OA (Crema et al. 2010a). BMLs are associated with 

pain and progressive structural deterioration in OA (Felson et al. 2001) however, few 

studies did not find a significant correlation between pain and BMLs (Bassiouni 2010). 

 

Studies show a strong association between subchondral bone cysts and BMLs in 

patients with knee OA (Carrino et al. 2006, Tanamas et al. 2010). Presence of cysts 

identified patients with greater cartilage loss and higher risk of knee replacement than if 

only BMLs were present. Moreover, their 2-year study period showed that the natural 

history of subchondral bone cysts varied, including development of new cysts, 

progression of existing cysts, regression in size, and occurrence of complete resolution 

(Tanamas et al. 2010). Crema et al. showed that the association between subchondral 

cysts and prevalent BMLs are much stronger, even though both prevalent BMLs and 

full-thickness cartilage loss predicted subchondral cyst formation longitudinally (Crema 

et al. 2010b). The study by Crema et al. strongly supports the bone contusion theory of 

subchondral cyst formation as prevalent BMLs strongly predicted incident subchondral 

cysts even after adjustment for full-thickness cartilage loss. 
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1.5 Bone-cartilage interaction 

Mounting evidence suggests increased communication between the subchondral bone 

and cartilage in the OA disease process (Lories and Luyten 2011, Suri and Walsh 2011). 

Transport between the articular cartilage and subchondral bone through the calcified 

cartilage layer has been demonstrated previously (Arkill and Winlove 2008, Pan J. et al. 

2009). In a more recent animal study, Pan et al. quantified the diffusivity of a 

fluorescein marker for small sized signalling molecules, by a new method called 

fluorescence loss induced by photobleaching. Although that study did not detect 

significant changes in tissue matrix permeability in OA joints, there was increased 

vascularity in the calcified cartilage in the aged and OA joints relative to the normal age 

controls (Pan J. et al. 2011). 

 

As discussed earlier in section 1.4.2 the irregular anatomy of the osteochondral junction 

and the vascular communication channels allows diffusion of molecules from and into 

the articular cartilage and the subchondral bone facilitating their communication (Fig. 

1.14) (Lyons et al. 2006, Madry et al. 2010). These channels were found to contain 

blood vessels (Clark J. M. 1990, Clark J. M. and Huber 1990, Duncan et al. 1987). 

Moreover, it is hypothesised that microcracks in the subchondral bone may provide a 

pathway for transmission of materials between the marrow cavity and the articular 

cartilage (Burr and Radin 2003). A study by Fazzalari et al. reported significantly 

increased accumulation of healing trabecular microfractures in the porotic form of OA 

femoral head (with widespread cartilage loss and less bone involvement), with 

decreased bone volume and trabecular thickness compared to the sclerotic form of OA 

femoral head with localized cartilage loss and more bone formation (Fazzalari et al. 

1987).  
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Angiogenesis of the cartilage, subchondral plate, and synovium is associated with OA 

(Pesesse et al. 2011, Walsh 2004, Walsh et al. 2007). In OA, increased vascularity is 

observed as vascular breaching of the tidemark, with invasion of vessels into the 

noncalcified articular cartilage. Moreover, as discussed earlier in section 1.4.2 loss of 

tidemark integrity contributes to cartilage degradation and severity of OA (Lyons et al. 

2005, 2007). Increased levels of vascular endothelial growth factor (VEGF) that 

promotes angiogenesis have been reported in the cartilage (Pufe et al. 2001) and 

subchondral bone in OA (Sanchez et al. 2008). 

 

 

 

 

 

 

 

 

 

 

Figure 1.14 Pathological changes in the osteochondral junction. Tidemark 

breaching due to pathological changes in the osteochondral junction leads to 

increased communication between cartilage and subchondral bone (from Suri et 

al. 2011). 
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1.5.1 Molecular cross-talk between bone and cartilage 

In OA, there is increased communication between the subchondral bone osteoblasts and 

the articular cartilage chondrocytes. The phenotype of subchondral bone osteoblasts is 

altered in OA and these altered OA osteoblasts have been shown to influence the 

metabolism of articular cartilage chondrocytes (Bailey et al. 2002, Hilal et al. 1998, 

Lisignoli et al. 1999, Sanchez et al. 2005b, Sanchez et al. 2008). Sanchez et al. showed 

that in a co-culture system, osteoblasts isolated from OA sclerotic subchondral bone 

decrease SOX9, COL2, PTHrP and PTH-R gene expression by OA chondrocytes but 

increase that of OSF-1. These findings suggest that OA subchondral bone osteoblasts 

could induce hypertrophic differentiation in chondrocytes and matrix mineralization 

(Sanchez et al. 2005b). It has also been shown that osteoblasts from OA subchondral 

bone induce cartilage degradation by stimulating MMP production and inhibiting 

aggrecan synthesis in chondrocytes isolated from OA cartilage (Sanchez et al. 2005a). 

 

A number of signalling pathways have been identified to be involved in the OA disease 

process, few of which are discussed here. The wingless-type MMTV integration site 

(Wnt) signalling pathway and TGF-/BMP has been shown to be involved in OA (Blom 

et al. 2009, Kumarasinghe et al. 2011, Luyten et al. 2009). Microarray gene expression 

profiling of trabecular bone from hip OA patients suggests altered expression of genes 

belonging to the Wnt and TGF-/BMP signalling pathways (Hopwood et al. 2007). 

Both the Wnt and TGF-/BMP pathways are involved in cell proliferation, 

differentiation and control of bone mass (Canalis et al. 2003, Krishnan et al. 2006, Wu 

et al. 2010). In animal models, inhibition of dickkopf-1 (Dkk-1), a Wnt antagonist, has 

been shown to induce osteophyte formation (Diarra et al. 2007). Over expression of 

sclerostin, another Wnt antagonist secreted by osteocytes, leads to low bone mass in 
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transgenic mice (Winkler et al. 2003), while sclerostin knockout mice showed increased 

bone mass (Li X. et al. 2008). 

 

Recent evidence suggests the involvement of MAPK signalling in OA which plays an 

important role in osteogenesis and bone homeostasis. MAPKs have important functions 

as mediators of cellular responses to a variety of extracellular stimuli (Chowdhury et al. 

2008, Prasadam et al. 2010a, Prasadam et al. 2010b, Saklatvala 2007). In a more recent 

study, Prasadam et al. have shown that in human OA, alteration of signals between 

subchondral bone osteoblasts and articular cartilage chondrocytes occurs via 

phosphorylation of the MAPK-ERK1/2 signalling pathway (Prasadam et al. 2010b).  

Another important molecular signalling system involved in OA is the receptor activator 

of nuclear factor-κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG) 

system that controls bone modelling and remodelling (Boyce and Xing 2008). This 

molecular triad is known to be involved in OA and has become a potential therapeutic 

target for OA (Tat et al. 2009). The importance of the RANK/RANKL/OPG system and 

its involvement in OA is discussed in detail below.  

 

1.5.2 Key regulators of bone remodelling: the RANKL/RANKL/OPG 

system 

Bone remodelling is a tightly coupled process of osteoclast mediated bone resorption 

and osteoblast mediated bone formation. Bone remodelling is a continuous process, 

which is essential to repair bone microdamage, and maintain bone mass, architecture 

and bone strength. Any disruption of the coupled remodelling process leads to increased 

bone turnover, resulting in excessive bone loss or excess bone formation and 

consequent skeletal pathology (Eriksen 2010). Discovery of the RANK/RANKL/OPG 
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system has lead to better understanding of osteoclast biology and the process of bone 

remodelling (Fig. 1.15). In a more recent study, Tanaka et al. has clearly demonstrated 

the essential role of RANKL/OPG during bone remodelling in vivo (Tanaka et al. 2011).  

 

1.5.2.1 Osteoprotegerin (OPG) 

OPG is a natural decoy receptor for RANKL, and competes with RANK to bind with 

RANKL. OPG belongs to the tumour necrosis factor (TNF) receptor super family and is 

mainly secreted by osteoblasts and cells of the osteoblast lineage. OPG is secreted as a 

soluble protein and lacks a transmembrane and cytoplasmic domain (Khosla 2001). The 

main function of OPG in bone is to inhibit osteoclast differentiation and activity. OPG 

inhibits the binding of RANKL to RANK, thereby prevents RANK activation and 

subsequent osteoclastogenesis, and finally inhibits bone resorption. OPG production is 

modulated by 1, 25-dihydroxyvitamin D3, estrogens, IL-1, TNF-, TGF-β, parathyroid 

hormone and glucocorticoids (Tat et al. 2009). 

 

1.5.2.2 RANK 

RANK also belongs to the TNF receptor superfamily and it is synthesized as a 

heterotrimer on the surface of osteoclast progenitor cells, mature osteoclasts, and 

chondrocytes. Ligation of RANK with its ligand RANKL results in osteoclastogenesis 

and the activation of mature osteoclasts resulting in bone resorption (Jones D. H. et al. 

2002). RANK activation by RANKL involves distinct signalling cascades, including 

TNFR-associated factor proteins (TRAF), nuclear factor of activated T cells (NFAT), 

the MAPK and nuclear factor B (NFB), which are involved in osteoclastogenesis 

(Edwards and Mundy 2011). 
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1.5.2.3 RANKL 

RANKL belongs to the TNF receptor superfamily. It exists in three isoforms and is 

secreted as both a membrane-bound form and soluble form (Ikeda et al. 2001). RANKL 

is highly expressed in osteoblast/stromal cells, primitive mesenchymal cells and 

hypertrophic chondrocytes (Lacey et al. 1998). In bone, it mainly stimulates osteoclast 

differentiation, activity, and inhibits osteoclast apoptosis. RANKL expression is 

influenced by several hormones, growth factors, peptides and cytokines. Recent 

literature indicates that -catenin, a member of Wnt signalling pathway, might also be 

involved in regulation of RANKL. RANKL expression can be upregulated by bone 

resorbing factors such as glucocorticoids, vitamin D3, IL-1, IL-6, IL-11, IL-17, TNF-, 

PGE2, and PTH (Yasuda et al. 1998).  

 

The RANK/RANKL/OPG system has been shown to have important clinical 

implications and is a treatment target in skeletal disease such as osteoporosis (Jabbar et 

al. 2011), rheumatoid arthritis (Haynes et al. 2001), Paget’s disease (Alvarez et al. 

2003), multiple myeloma (Giuliani et al. 2002), and bone metastasis (Kearns et al. 

2008). Interestingly in OA, altered expression of RANKL and OPG mRNA has been 

shown to be associated with bone remodelling (Kwan Tat et al. 2008, Logar et al. 2007, 

Sakao et al. 2008). Altered expression of RANKL and OPG mRNA/protein has also 

been demonstrated in OA cartilage (Komuro et al. 2001, Moreno-Rubio et al. 2010, 

Upton et al. 2012), synovial fluid and serum (Pilichou et al. 2008, Skoumal et al. 2005) 

Despite the importance of the RANK/RANKL/OPG system in OA, very few studies 

have focussed on this molecular triad. Moreover, the RANK/RANKL/OPG system 

could be a potential therapeutic target for OA. 
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Figure 1.15 Regulatory mechanisms of bone remodelling: role of RANK, RANKL, 

and OPG in osteoclast activation. (from Kearns et al. 2008).  

 

 

1.6 Bisphosphonates as disease modifying OA drugs 

(DMOADs) 

In OA, subchondral bone turnover is increased demonstrating decreased trabecular 

number and decreased integrity, resulting in localized subchondral osteoporosis. 

Bisphosphonates have the capacity to suppress bone turnover and hence could have the 

potential to be used as DMOADs. For many decades, bisphosphonates have been 

mainly used in the treatment of osteoporosis. Besides they are also used to treat other 

bone pathologies characterised by increased bone resorption, such as Paget’s disease, 

malignant hypocalcaemia during myeloma, metastatic bone disease, and fibrous 

dysplasia of bone (Devogelaer 2000).  
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1.6.1 Structure of Bisphosphonates 

Bisphosphonates are stable analogues of pyrophosphate with a carbon atom (P-C-P) 

substituting an oxygen atom (P-O-P) structure (Fig. 1.16). The P-C-P bond of 

bisphosphonates is completely resistant to enzymatic hydrolysis and is very important 

for the high affinity of bisphosphonates to attach to the surface of bone. 

Bisphosphonates bind to hydroxyapatite crystals, and inhibit crystal growth and 

dissolution similar to pyrophosphate in vitro. Their main biological effect is their ability 

to inhibit osteoclast mediated bone resorption (Russell and Rogers 1999).  

 

In the P-C-P structure both the phosphonate groups are required for both the affinity for 

bone mineral and biochemical potency of bisphosphonates. The biological activity of 

bisphosphonates depends on the two side-chains (R1 and R2) attached to the carbon 

atom. R1 substituents, such as a hydroxyl or amino group, enhance chemisorption to 

mineral, while R2 substituents are responsible for variations in antiresorptive potency of 

different bisphosphonates. The antiresorptive potency is attributed to the ability of 

certain bisphosphonates to interfere with the metabolism of mevalonate, an intermediate 

compound of the cholesterol biosynthetic pathway and is also thought to be associated 

with the ability to bind to hydroxyapatite crystals (Russell 2007). According to 

Nancollas et al. the significant differences in the kinetic binding affinity of several 

bisphosphonates to hydroxyapatite crystals was in the order as follows: clodronate < 

etidronate < risedronate < ibandronate < alendronate < pamidronate < zoledronate 

(Nancollas et al. 2006). Apart from bisphosphonates’ most important effect to inhibit 

osteoclast-mediated bone remodelling, extra-skeletal biological effects have also been 

reported. It has been shown that bisphosphonates exert ‘‘immunomodulating’’ effects 

on cells of the immune system, by influencing the cells to produce anti-inflammatory 
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cytokines. They also change the molecular expression involved in the immune 

processes and anti-inflammatory response (Corrado et al. 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.16 Structure of non-nitrogen-containing and nitrogen-containing 

bisphosphonates (Zacharis 2008, with permission from Elsevier). 
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1.6.2 Mechanism of action of bisphosphonates 

The mechanism of action of bisphosphonates differs based on the presence or absence 

of a nitrogen group in the R2 side chain. Non-nitrogen-containing bisphosphonates, 

such as clodronate and etidronate, inhibit the function of osteoclasts and cause 

osteoclast death by interfering with the mitochondrial ATP translocases (Russell et al. 

2008). The nitrogen-containing bisphosphonates such as alendronate, risedronate and 

zoledronate interfere with specific metabolites and enzymes such as squalene synthase 

and farnesyl pyrophosphate synthase in the mevalonate biosynthetic pathway that leads 

to the synthesis of cholesterol and other sterols in the osteoclasts (Fig. 1.17) (Fisher et 

al. 2000, Kimmel 2007, Reszka and Rodan 2004). 

 

1.6.3 Biological activity of nitrogen containing bisphosphonates: 

with reference to alendronate 

Alendronate, an aminobisphosphonate, is a potent inhibitor of bone turnover and 

osteoclast-mediated bone loss due to its high affinity for hydroxyapatite crystals in bone 

(Nancollas et al. 2006), and its high specificity for farnesyl diphosphate synthase 

(Bergstrom et al. 2000). The mode of action of alendronate is as follows:  

1. Binding to bone surfaces: alendronate preferentially binds to areas of high bone 

resorption and bone turnover. Alendronate binds to hydroxyapatite crystals 

through its high affinity for Ca2+ in the highly acidic spaces under the osteoclasts 

(Sato et al. 1991). 

2. Release of alendronate and internalisation into the osteoclasts: the affinity of 

alendronate for Ca2+ ions reduces due to the high acidity environment created by 

the osteoclast. As a result, alendronate is released from the bone surface 
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resulting in increased local concentration of alendronate under the osteoclasts. 

The released alendronate from the bone surface is internalised by the osteoclasts, 

probably by endocytosis (Russell and Rogers 1999, Sato et al. 1991). 

3. Interference with osteoclast formation and function: The internalised 

alendronate disrupts the formation of the cytoskeleton or ruffled border of 

osteoclasts (Russell et al. 1999) by interfering with the mevalonate pathway 

(Bergstrom et al. 2000, Luckman et al. 1998), resulting in loss of normal 

osteoclast function. Inhibition of osteoclast formation occurs possibly through 

the inhibition of IL-6, which is known to stimulate osteoclastogenesis (Sahni et 

al. 1993). Alendronate also induces apoptosis thereby reducing the number of 

osteoclasts (Hughes et al. 1995). Collectively, this leads to the inhibition of 

osteoclast-mediated bone resorption and bone turnover (Breuil et al. 1998, Sato 

and Grasser 1990, Schenk et al. 1986). 

 

1.6.4 Bisphosphonate treatment for OA 

OA is associated with subchondral bone changes including increased subchondral bone 

remodelling, loss of trabecular architecture and low BMD (Goldring 2009). In 

postmenopausal osteoporosis, alendronate has been shown to increase bone density in 

the spine and hip and completely suppressed bone resorption and bone turnover (Watts 

and Becker 1999). The effect of alendronate on bone turnover suppression has prompted 

the exploration of the disease-modifying potential of the bisphosphonates. 
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Figure 1.17 Mechanism of action of bisphosphonates. Nitrogen containing 

bisphosphonates internalised by the osteoclasts during resorption interfere with 

mevalonate biosynthetic pathway leading to loss of function and apoptosis of 

osteoclasts (Roelofs et al. 2010, with permission from Bentham Science Publishers). 

 

Clinical trials with bisphosphonate treatment for OA have yielded promising results, 

while few studies failed to establish a significant association of alendronate treatment 

and OA disease progression (Saag 2008). Postmenopausal women with knee OA treated 

with alendronate showed significantly decreased subchondral bone lesions and reduced 

knee pain compared to those who were not treated (Carbone et al. 2004). However, 

there was no reduction in the radiographic progression of OA in the elderly women on 

alendronate treatment. In a secondary analysis of data from a Fracture Intervention 

Trial, Neogi et al. showed that alendronate was associated with less spinal osteophyte 
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and disc space narrowing progression compared to placebo (Neogi et al. 2008). 

However, the authors mentioned that the effect of alendronate on disc space narrowing 

in the lumbar spine did not persist when the thoracic spine was included in the analysis. 

 

A two-year longitudinal radiographic study showed that risedronate treatment preserved 

the structural integrity of subchondral bone in knee OA patients. Buckland-Wright et al. 

found that knee OA patients with marked medial compartment cartilage loss (joint 

space narrowing ≥0.6 mm) treated with 15 mg/day risedronate retained trabecular 

structure, and those treated with 50 mg/week risedronate had increased trabecular 

number (Buckland-Wright et al. 2007). In a much larger study by Bingham et al., 

although risedronate treatment resulted in a reduction in the level of a cartilage turnover 

marker, there was no improvement in the signs or symptoms of OA, nor did it alter 

progression of knee OA (Bingham et al. 2006). After further analysis of data from the 

same population of OA patients, Garnero et al. reported that risedronate treatment 

reduced the levels of bone turnover marker, N-terminal telopeptide of type I collagen 

(NTX-I), and cartilage turnover marker, C-terminal telopeptide of type II collagen 

(CTX-II), at 6 months, which continued up to 24 months. Moreover, the authors 

reported that patients with decreased CTX-II levels 6 months after risedronate treatment 

had a lower risk of radiological progression at 24 months (Garnero et al. 2008). In 

another clinical trial although risedronate significantly reduced urinary levels of NTX-I 

and CTX-II there was only a trend towards improvement in joint structure and 

symptoms in knee OA patients (Spector et al. 2005). Healthy postmenopausal women 

treated with alendronate showed significantly decreased urinary excretion of CTX-II 

which suggests that bisphosphonates may have chondroprotective effects in humans 

(Lehmann et al. 2002). 
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While clinical trials have been disappointing, pre-clinical studies for bisphosphonate 

treatment have been promising. An earlier study using the anterior cruciate ligament 

transection in dogs showed that bisphosphonate treatment (NE-10035) reduced 

subchondral bone turnover, but did not have a significant effect on osteophyte formation 

or cartilage degradation (Myers et al. 1999). Risedronate treatment in female New 

Zealand white rabbits with ACLT altered the short-term progression of subchondral 

bone changes by slowing early-stage changes in the microarchitecture and preserved 

mechanical integrity (MacNeil et al. 2008).  

 

In a rat ACLT model of OA, alendronate treatment significantly inhibited subchondral 

bone remodelling and bone resorption observed at an early stage of OA. Alendronate 

treatment also decreased the bone and cartilage turnover, prevented osteophyte 

formation, and suppressed osteoclast formation (Hayami et al. 2004). In a study using 

male Japanese white rabbit ACLT model of OA, alendronate treatment markedly 

reduced and delayed cartilage degeneration in OA joints (Zhang et al. 2011). 

Immunohistochemistry assay indicated that alendronate treatment elevated BMP-2 

while inhibited MMP-13 expression in the cartilage. Further, alendronate suppressed 

subchondral bone resorption, markedly increased bone volume fraction (BV/TV), 

trabecular thickness (Tb.Th), and trabecular number (Tb.N). However, this study 

reported higher subchondral plate thickness and porosity in the alendronate treated 

group compared to the untreated group, while no significant difference was found 

between the alendronate treated and Sham group. Thus, alendronate treatment protected 

the cartilage, prevented bone turnover and bone loss in this animal model (Zhang et al. 

2011). In another ACLT model using female Japanese White rabbits alendronate 

treatment prevented subchondral bone loss, protected the cartilage, and suppressed the 
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expression of MMP-13, IL-1, type-X collagen, VEGF, and RANKL 12 weeks after 

OA induction. In this animal model, alendronate had a chondroprotective effect (Shirai 

et al. 2011). 

 

In chymopapain induced cartilage damage in male New Zealand white rabbits, 

treatment with zoledronate inhibited bone resorption and decreased biochemical 

markers for bone and cartilage metabolism (Muehleman et al. 2002). Thus, zoledronate 

seems to have a chondroprotective effect in this animal model. Zoledronate treatment 

(either with a low-dose of 10 g/kg or a high-dose of 25 g/kg) in dogs with cranial 

cruciate ligament transection surgery prevented significant BMD decreases in the 

medial femoral condyle at 1 and 3 months after surgery (Agnello et al. 2005). In that 

animal model zoledronate reduced subchondral bone loss and bone metabolism 

markers. In a more recent study using the MIA-induced OA rat model the effects of 

zoledronate treatment was assessed, with the treatment initiated before OA induction 

and at various times following OA induction (Strassle et al. 2010). Pre-emptive 

treatment prevented loss of BMD, cartilage degeneration, resorption of calcified 

cartilage, subchondral bone resorption, as well as pain. Late treatment resulted in partial 

restoration of BMD, and had a significant, but limited, effect on pain. This study 

demonstrated that the bisphosphonate zoledronic acid had a significant effect of bone, 

cartilage, as well as pain behaviour (Strassle et al. 2010). 

 

In a more recent study, a canine model with ACLT was treated with the non-nitrogen 

containing bisphosphonate tiludronate. Tiludronate treated dogs showed positive 

functional outcome in terms of gait and pain behaviour than OA placebo controls. 
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Tiludronate treatment resulted in decreased synovitis, greater subchondral bone surface 

lower MMP-13 in cartilage and cathepsin K in subchondral bone (Moreau et al. 2011).  

 

The above literature has discussed the important pathological changes in OA 

subchondral bone and the potential molecular signalling pathways involved in these 

changes. Moreover, from the literature, it is evident that subchondral bone changes 

contribute to the progression of cartilage lesions and subsequent OA disease 

progression. It is also clear that the health of both the cartilage and the subchondral 

bone is necessary to maintain joint integrity. The literature on bisphosphonate treatment 

for OA offers hope as it seems to have a positive effect on both the cartilage as well as 

bone, at least in animal models. In clinical trials using bisphosphonates for OA, the 

efficacy was assessed after the treatment was initiated in advanced stages of the disease. 

In animal models of OA, the efficacy was assessed after the treatment was initiated a 

few days before OA induction or from the day of OA induction. Therefore, the effect of 

the bisphosphonate could depend on the time of treatment initiation and explains the 

mixed results obtained in clinical trials. In this thesis, the effect of a potent nitrogen 

containing bisphosphonate, alendronate, was assessed at early, intermediate and late 

stages of the disease using an animal model of OA. Moreover, the efficacy of 

alendronate was assessed with the treatment initiated at various timepoints after OA 

induction. 
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1.7 Animal models of OA 

Despite the explosion of information regarding the pathology of OA, the etiopathology 

of the disease still remains obscure and currently there are no treatment options 

available to halt the progression of OA. Initiating events in early OA are difficult to 

study in humans due to difficulty in obtaining suitable tissue samples for research. It is 

also difficult to track disease progression since human OA progression is very slow and 

extremely variable. Animal models of OA provide important information regarding the 

pathological changes in the early stage of OA. Animal models not only shed light on 

OA pathology but they are also helpful to test suitable therapeutic drugs for OA. Many 

animal models reproduce the signs and symptoms of human OA; however, they do not 

completely represent the human disease condition, and the results obtained from any 

animal model should be interpreted with caution. Careful consideration should also be 

given to the experimental design, use of suitable controls, and statistical data analysis 

and interpretation. 

 

1.7.1 Commonly used animal species 

The commonly used animals in OA research include mouse, rat, guinea pig, rabbit, and 

dog. Other animals such as cat, monkey, macaque, sheep, and horse have also been used 

as OA animal models previously (Table 1.1). When using animal models to study 

human OA, factors such as species differences, tissue heterogeneity between human and 

animal tissues, time taken for OA progression, and skeletal maturity of the animals need 

to be considered. In rats and mice, it is important to note that not all growth plates close 

completely and even if the animals are skeletally mature, there is still a possibility for 

long bone growth to exist. When using large animal models, factors such as cost, 
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management, housing, genetic variability and ethical controversial issues need to be 

considered. 

 

For drug efficacy studies usually animal models that develop OA more rapidly are 

preferred as the duration for the experiment is short to determine the effect of drugs. 

However, it is also important to use an animal model in which OA progression can be 

monitored. The commonly used animal models of OA include the chemically induced 

model (monosodium iodoacetate, collagenase), spontaneous model, surgical model 

(anterior cruciate ligament transection and medial meniscectomy), genetically modified 

model, and ovariectomy model (postmenopausal OA) (Ameye and Young 2006). 

 

1.7.2 Types of OA induction 

Spontaneous OA in the knee joints of mice and guinea pigs occurs naturally, the 

progression is slow, and the pathological features resemble human disease. However, 

the period for drug testing is fairly long. Surgical models are instability models of OA 

and represent traumatic OA in humans. Generally, the greater the instability, the greater 

the lesion. Therefore, these models may mimic aspects of pathogenesis and pathology 

of instability-induced OA in human. Surgically induced models of OA often have rapid 

and severe cartilage degeneration after the instability is created. The use of genetically 

modified mouse models are useful to examine the role of specific genetic factors in OA. 

However, there is high variability in the temporal progression of OA in these models 

and the relationship between disease and activity impairment and OA onset requires to 

be established. The mouse models could be effective screening models even though 

they do not accurately represent the effect of joint loading in human OA (Poole R. et al. 

2010). OA-like changes in the subchondral bone and calcified cartilage has also been 
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described in animal models after application of repetitive loading across the surfaces of 

the joint (Radin et al. 1978b, Thomson et al. 1991). 

 

Table 1.1 Animal models used to study OA and the methods of OA induction 

 

1.7.3 Monosodium iodoacetate-induced experimental OA model 

The MIA-induced OA model was first described by Kahlben and has been demonstrated 

in a number of species such as chicken, mice, horses, and rats (Kalbhen 1987). MIA is a 

potent inhibitor of the enzyme glyceraldehyde-3-phosphate dehydrogenase in 

chondrocytes, resulting in disruption of glycolysis and eventual cell death (Kalbhen 

1984). The MIA model of OA is a highly reproducible non-trauma model in which a 

OA induction Species Reference 

Spontaneous Mouse  (Stoop et al. 1999) 
 Guinea pig  (Huebner et al. 2002) 
 Macaque  (Carlson et al. 1994) 
   
Genetic modification  Mouse   
   

Intraarticular injection 
(collagenase, iodoacetate, 
papine) Mouse, rat, rabbit, horse 

(Kalbhen 1987, 
Muehleman et al. 2002, 
van der Kraan et al. 
1990) 

   
Immobilization  Rat, rabbit, dog (Brandt 2002) 
   
ACL transection (ACLT) Rat, guinea pig, rabbit, cat, dog (Bendele 2001) 
   

Meniscectomy 
Rat, guinea pig, rabbit, dog, 
sheep, monkey 

(Moskowitz and 
Goldberg 1987) 

   
Meniscal destabilisation  Rat, guinea pig, rabbit  
   
Combination surgery  Mouse, rat, guinea pig, rabbit (McErlain et al. 2008) 
   

Impact loading Rabbit, dog 
(Radin et al. 1978b, 
Thomson et al. 1991) 

   
Ovariectomy Rat, sheep, macaque (Sniekers et al. 2008a) 
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single intra-articular injection of MIA in the rat’s knee joint induces OA-like changes in 

the cartilage and subchondral bone (Guingamp et al. 1997, Guzman et al. 2003). 

Histological analysis of the MIA-injected knee showed loss of proteoglycan, 

progressive cartilage degradation, chondrocyte clusters, subchondral bone sclerosis, 

cyst, and osteophyte formation (Guzman et al. 2003, van der Kraan et al. 1989). These 

changes were more sever in the medial compartment of the knee. The BMD of the 

MIA-injected knee was found to be significantly decreased compared to the 

contralateral knee 7 days after MIA-injection till the end of the study till day 56 

(Morenko et al. 2004). The onset, progression, and severity of OA can be easily 

controlled in this animal model by varying the concentration of MIA (Kobayashi et al. 

2003). The MIA-induced OA rat model also represents the effect of weight bearing on 

OA knee joints and pain (Fernihough et al. 2004, Ferreira-Gomes et al. 2010, 

Ivanavicius et al. 2007, Pomonis et al. 2005). Bove et al. has showed that the weight 

bearing of the MIA-injected knee was decreased compared to controls and the changes 

in weight bearing of the MIA-injected knee were dose-dependent (Bove et al. 2003). 

 

1.7.4 Dose response study 

A dose response study by Guingamp et al. clearly showed that the severity of cartilage 

degradation depends on the dosage of MIA-injected into the knee joint (Table 1.2). 

Higher doses of MIA (up to 3 mg) caused cartilage erosion, sclerosis and exposure of 

subchondral bone on day 15 post MIA injection, and on day 30 there was complete loss 

of articular cartilage, with greatly remodelled subchondral bone (Guingamp et al. 1997). 

Whereas, a low-dose of MIA (0.25 mg) induced moderate cartilage damage at 3 weeks 

(Janusz et al. 2001). In a pilot study, I evaluated the dose responsiveness of tibial 

cartilage and subchondral bone to MIA using a high-dose of 2 mg MIA (n=3) and a 
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low-dose of 0.2 mg MIA (n=3) in rats. As early as after 2 weeks, high-dose MIA 

induced characteristic features of end-stage human OA, such as loss of tibial articular 

cartilage, exposure of subchondral bone, subchondral trabecular bone erosion, cysts and 

osteophytes. In contrast, these changes were observed only at 10 weeks in the low-dose 

MIA model. The low-dose MIA model, of relatively slow progressing OA, enables in 

vivo monitoring of tissue-level changes representative of progressive human OA; 

whereas, in the high-dose model the disease progression is very rapid, which is less 

suitable for longitudinal monitoring of cartilage and subchondral bone changes. This 

pilot study has been included in the thesis and discussed in detail in appendix 1.  

 

From the previous literature and the pilot study, it is clear that the low-dose MIA-

induced OA rat model is a non-trauma model that reproduces important features of 

human OA. It is also possible to track the cartilage and subchondral bone changes over 

time in this animal model. Hence, the low-dose MIA-induced OA rat model was used in 

this thesis. 

 

Table 1.2 Macroscopic cartilage lesion score on day 30 after injection of saline or 

various doses of monosodium iodoacetate (MIA) into rat knees (modified from 

Guingamp et al., 1997) 

 

 Tibial plateaus  Femoral condyles  

Injection Medial Lateral  Medial Lateral Total 

Saline 0 0  0 0 0.00 

MIA (mg)       

0.01 0.44 0.55  0.00 0.00 0.99 

0.03 2.11 1.44  1.55 1.33 6.43 

0.10 2.67 2.33  2.33 2.67 10.00 

0.30 3.56 3.89  4.00 4.00 15.45 

3.00 3.89 3.89  3.89 4.00 15.67 
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1.8 In vivo micro-computed tomography (micro-CT) 

assessment of bone in rodent models of OA 

Small animal models of OA have become invaluable tools in OA related studies. 

Histological characterisation and quantification of bone and cartilage changes in animal 

models of OA provides valuable cellular details and dynamic indices of bone 

remodelling. However, it only gives two-mention (2D) data and it is a destructive 

technique. On the other hand, micro-CT is an advanced non-destructive imaging 

technique that provides accurate three-dimension (3D) data and have been used to 

assess bony changes in small animal models of OA ex vivo (Kapadia et al. 1998, 

Wachsmuth and Engelke 2004). 

 

High-resolution in vivo micro-CT (Fig. 1.18) has emerged as a novel non-destructive 

imaging technique that enables tracking of bone related changes in the same animal 

over time (Waarsing et al. 2005). Previously in vivo micro-CT has been used to track 

changes in individual bone architecture and trabeculae over time in ovariectomized 

(OVX) rats (Boyd et al. 2006, Perilli et al. 2010, Waarsing et al. 2004b). The use of in 

vivo micro-CT reduces the number of animals required in an experiment where each 

animal serves as its own control. Moreover, longitudinal study designs using in vivo 

micro-CT have contributed to pharmacological intervention studies in pre-clinical 

models. Hence, in vivo micro-CT is widely used in imaging small animal models of OA 

to assess subchondral bone changes (Appleton et al. 2007, Botter et al. 2011, Jones M. 

D. et al. 2010, McErlain et al. 2008, Morenko et al. 2004).  
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Figure 1.18 High resolution in vivo micro-CT scanner for small animal imaging. 

Skyscan 1076 an in vivo scanner for small animal models (A) with a rat in the 

scanner bed (B). Major components of a typical in vivo scanner such as the 

rotating gantry, detector, x-ray tube and the rodent bed (C, D) (Bartling et al. 

2007, with permission from Bentham Science Publishers). 

 

1.8.1 In vivo micro-CT imaging of cartilage in rodent models of OA 

Apart from detecting bone related changes, in vivo micro-CT has also been used to 

access cartilage changes in small animal models of OA (Piscaer et al. 2008a). In vivo 

micro-CT-arthrography clearly showed glycosaminoglycan depletion and detected 

cartilage degeneration in the rat OA knee-joints injected with a radio-opaque dye 

containing ioxaglate complex (Piscaer et al. 2008b, Siebelt et al. 2011a, Siebelt et al. 

2011b). However, due to rapid diffusion of the dye out of the joint cavity, the dye did 

not reach equilibrium state in the cartilage and there was a decrease in attenuation 
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toward the calcified cartilage. To prevent the rapid diffusion of dye out of the joint 

cavity, the dye was mixed with epinephrine the effect of which on joint tissues needs to 

be determined. In a recent study, Piscaer et al. used single-photon–emission computed 

tomography (SPECT) to indicate macrophage activation. In that study OA was induced 

in the rat knee joint either using MIA or ACLT followed by an injection with a folate 

radiotracer for targeting the folate receptor expressed on activated macrophages. SPECT 

imaging showed peak activity 2 weeks after OA induction, which disappeared after 8 

weeks (Piscaer et al. 2011). Thus, recent developments in in vivo biomedical imaging 

including micro-CT and SPECT, show that these imaging modalities have the potential 

to detect changes in bone, cartilage and cellular activity in small animal models of OA. 

 

1.8.2 Considerations for in vivo micro-CT imaging of rodents 

Some important factors need to be considered when scanning small animal models 

using in vivo micro-CT scanner such as scan resolution, scan time, radiation exposure, 

and anaesthesia. Use of inhalation anaesthetics such as isoflurane gives good muscle 

relaxation, maintains cardiac function and quick recovery from anaesthetic, however 

prolonged exposure affects normal metabolism of animals (Hildebrandt et al. 2008). 

Scan resolution, scan time and radiation exposure are related to each other and are the 

limiting factors in in vivo scans. High scan resolution gives high quality images 

however; it leads to increased scan time and radiation exposure (Wachsmuth and 

Engelke 2004). A study by Dare et al. showed that a single dose of up to 400 mGy does 

not induce significant changes in cell growth and differentiation of osteoblast-like cells 

in vitro (Dare et al. 1997). However, effects of sublethal doses due to repeated scanning 

is very important in longitudinal studies. A study by Klink et al. showed that repeated 

scanning of mice at 10.5 m isotropic voxel size lead to a 20% reduction in bone 
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volume fraction but repeated scanning of aged female Wistar rats at 12.5 m isotropic 

voxel size did not induce significant differences between radiated and non-radiated 

limbs (Klinck et al. 2008). In another study, eight weekly scans of aged female Wistar 

rats at an isotropic solution of 15 m for 35 minutes did not have an effect on bone 

structural parameters and bone marrow cells in tibia (Brouwers et al. 2007). Therefore, 

scanning protocols should be optimised for small animal imaging to minimise radiation 

exposure and reduce scan time. The development of in vivo micro-CT protocol for the 

studies included in this thesis has been discussed in detail in appendix 2. 

 

1.9 Research aims 

It is estimated that one-third of all adults have radiological signs of OA, the incidence of 

which increases with age and it the most common cause of knee and hip replacement 

(Felson et al. 2000). OA mainly affects the knee joint which is mostly associated with 

chronic pain and it is considered as an organ failure as the whole knee joint is affected.  

Current treatment options aims at alleviating the pain associated with OA. As outlined 

in previous sections, a considerable literature exists investigating the molecular and 

tissue level pathological changes in OA cartilage and subchondral bone. Discovery of 

early involvement of subchondral bone in the pathology of OA has spurred research 

activities focussed on subchondral bone adaptations in OA.  

 

Difficulty in obtaining early OA tissue samples has hindered obtaining information 

regarding early initiating events in OA disease. Moreover, human OA is a slowly 

progressive disease and it takes a very long time to monitor disease progression from 

early stage to advanced stages. Although animal models of OA do not completely 

mimic human OA, they give important clue regarding early pathological changes. 
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Moreover, recent advancements in micro-CT imaging techniques have enabled 

researchers to follow OA disease progression in small animal models of OA. Previous 

studies have characterised changes in subchondral BMD over time in animal models. 

However, microarchitectural changes in the subchondral have not yet been followed in a 

suitable animal model that represents progressive human OA.  

 

Human and animal studies have shown increased subchondral bone remodelling in OA. 

Moreover, bisphosphonates have been shown to slow OA disease progression by 

inhibiting subchondral bone remodelling while human studies have given mixed results. 

This is mainly due to the difference in the time of bisphosphonate treatment initiation. 

The effect of bisphosphonate treatment initiated at different time points on subchondral 

trabecular microarchitecture needs to be determined.  

 

Several molecular mechanisms have been shown to be differentially regulated in OA. 

The RANK/RANKL/OPG nexus that controls bone remodelling has recently gained 

importance as it has been shown to play an important role in OA. Few literature exists 

regarding RANKL and OPG in OA and very few literature is available on the effect of 

bisphosphonates on RANKL and OPG in OA. RANK, RANKL and OPG mRNA 

during the progression of OA and the effects of bisphosphonate treatment on RANK, 

RANKL and OPG mRNA expression needs to be determined. 
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1.9.1 Project aims 

 Characterise a low-dose MIA-induced OA animal model that represents features 

of human OA to track the subchondral bone and cartilage changes in the early, 

intermediate and late stages of OA. 

 Investigate the effect of bisphosphonate treatment initiated at different time 

points on subchondral bone and cartilage in the animal model. 

 Characterise the mRNA expression of RANK, RANKL, and OPG at early, 

intermediate, and late stages of OA in the animal model. 

 Investigate the effect of bisphosphonate treatment initiated at different time 

points on mRNA expression of RANK, RANKL, and OPG. 

 

Chapter 2 is a recently published study which characterised the temporal changes in the 

subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-

induced OA using in vivo micro-computed tomography. Chapter 3 includes a study that 

investigated the pre-emptive, early, and delayed alendronate treatment on subchondral 

trabecular bone microarchitecture, cartilage and joint discomfort in a rat model of low-

dose monosodium iodoacetate induced OA. Chapter 4 includes the study that 

characterised the mRNA expression of RANK, RANKL, and OPG at early, 

intermediate, and late stages of OA in a rat model of low-dose monosodium 

iodoacetate-induced OA. Additionally, that study investigated the effect of 

bisphosphonate treatment initiated at different time points on mRNA expression of 

RANK, RANKL, and OPG. 
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ABSTRACT 

Introduction: To investigate the efficacy of pre-emptive, early, and delayed 

alendronate (ALN) treatment initiation on subchondral trabecular bone and cartilage in 

low-dose monosodium iodoacetate (MIA)-induced osteoarthritis (OA) in rats. 

 

Methods: Male Wistar rats were randomly divided into three groups: OA (n=36), ALN 

(n=36) and control (n=12). Rats from the OA and the ALN group were injected with a 

low-dose of 0.2 mg MIA in the right knee and sterile saline in the left knee joint. Rats in 

the ALN group received pre-emptive (n=12, day 0 – end of week 2), early (n=12, end of 

week 2 – end of week 6), or delayed (n=12, end of week 6 – end of week 10) ALN 

treatment (30 g/kg/week). The control rats received a single sterile saline injection in 

the right knee joint and no ALN treatment. The first subgroup of rats (OA, pre-emptive 

ALN and control) were scanned in vivo after 2 weeks and then sacrificed, the second 

subgroup of rats (OA, early ALN and control) were scanned after 2 and 6 weeks and 

sacrificed, and the third subgroup of rats (OA, delayed ALN and control) were scanned 

after 2, 6, and 10 weeks of OA induction and sacrificed. At each time point, bone 

histomorphometric, histological and biomarker analysis were undertaken. Changes in 

hind limb weight bearing were assessed from day -1 until day 14. 

 

Results: In the OA group, there was progressive cartilage degradation, increased 

subchondral bone turnover, early subchondral bone loss followed by sclerosis, cysts, 

and osteophyte formation. Pre-emptive ALN treatment preserved subchondral 

trabecular bone microarchitecture, prevented increased bone resorption, decreased bone 

turnover and joint discomfort. Pre-emptive ALN treatment had a moderate effect on 
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cartilage. Both early and delayed ALN treatment prevented loss of trabeculae and 

decreased bone turnover, but did not have a significant effect on cartilage degradation. 

 

Conclusion: Our study indicates that the time point of initiating bisphosphonate 

treatment for OA is crucial. Pre-emptive ALN treatment preserved subchondral 

trabecular bone microarchitecture, had a moderate effect on the cartilage and prevented 

increased bone turnover associated with the onset of OA. Further research into the role 

of subchondral bone in the pathophysiology of early to late stage OA is necessary to 

develop new therapeutic strategies for the treatment of OA. 

 

Keywords 

Osteoarthritis 

Subchondral bone 

In vivo micro-CT 

OA animal model 

Monosodium iodoacetate 

Alendronate 
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1. Introduction 

Osteoarthritis (OA) is a slowly progressive degenerative joint disease associated with 

impaired quality of life as well as high economic costs [1]. OA is characterised by 

breakdown of articular cartilage, altered subchondral bone remodelling, sclerosis, cysts 

and osteophyte formation. OA was primarily considered as a cartilage disorder but 

Radin and Rose first proposed the important role of subchondral bone and its link to 

cartilage degradation [2]. Numerous important transformations occur in the subchondral 

bone during the initiation and progression of OA [3]. Most importantly, in OA 

subchondral bone remodelling is increased and the newly formed bone is less 

mineralised with greater amounts of osteoid, and reduced mechanical properties [4]. 

Repeated loading of the subchondral bone with altered chemical and mechanical 

properties results in the progression of OA [5]. Despite the explosion of information 

regarding OA pathology, the mechanism of OA initiation and progression remains 

incompletely understood and currently there is no cure for OA. 

 

Bisphosphonates are potent inhibitors of osteoclast mediated bone resorption and bone 

turnover. Clinically, bisphosphonates are used in the treatment of osteoporosis, Paget’s 

disease, hypercalcemia, and metastatic cancer [6]. Bisphosphonates also possess anti-

inflammatory effects influencing the production of anti-inflammatory cytokines [7]. 

Recent pre-clinical studies and clinical trials have shown that bisphosphonates could be 

used as potential disease modifying OA drugs due to their ability to suppress increased 

bone turnover. However, these clinical studies have yielded mixed results [8-10]. In 

clinical trials, alendronate (ALN), which is one of the most potent bisphosphonates, has 

been shown to prevent subchondral bone lesions and reduce knee pain; however, it did 

not prevent progression of OA [11]. In another study, ALN decreased spinal osteophyte 
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progression in women with vertebral fractures, despite it not showing a significant 

improvement in spinal disc space narrowing [12]. In these human OA studies, efficacy 

of ALN was assessed with the treatment mostly initiated at advanced stages of OA. On 

the other hand, in pre-clinical studies, ALN treatment initiated either from a few days 

before OA induction or from the day of OA induction has been shown to protect 

cartilage, and inhibit altered bone remodelling [13-15].  

 

The potential beneficial effect of ALN (and of bisphosphonates in general) in OA could 

depend on the timing of treatment initiation, as OA is associated with increased bone 

turnover and bone resorption in the early phase, followed by subchondral bone sclerosis 

at the late phase of OA [16]. In a recent study, Strassle et al. showed that pre-emptive 

zoledronate treatment (day 0 – week 3) prevented decrease of subchondral bone mineral 

density (BMD), whereas delayed treatment (up to 5 weeks) reduced its efficacy in a 

high-dose (1 mg) MIA-induced OA rat model [17]. That study assessed BMD by using 

dual energy X-ray absorptiometry, which gives bone quantity measures from planar 

projections of the underlying three-dimensional bone structure. However, the effect of 

bisphosphonate on OA subchondral trabecular bone microarchitecture with the 

treatment initiated at early, intermediate, and late stages of the disease, has not yet been 

investigated using three-dimensional methods (3D), such as high resolution in vivo 

micro-computed tomography (micro-CT). As such, it is important to investigate the 

effect of bisphosphonate treatment initiation time points (pre-emptive, early, and 

delayed) on subchondral trabecular bone microarchitecture in 3D, in a suitable animal 

model that mimics human OA disease progression. 
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Previously, we have demonstrated that a low-dose (0.2 mg) MIA-induced OA rat model 

mimics in a timely manner important pathologic features of human OA [18]. Using in 

vivo micro-CT and confirmed by histology, we have demonstrated disease progression 

in the tibial subchondral trabecular bone over time, with an initial increased bone 

resorption followed by sclerosis, cyst and osteophyte formation representative of 

progressive human OA [18]. In the present study, we used the low-dose MIA-induced 

OA rat model to study the effect of pre-emptive, early and delayed ALN treatment 

initiated at various stages of the disease. We assessed the efficacy of ALN on cartilage 

degradation, subchondral trabecular bone microarchitecture, and joint discomfort 

observed in this animal model. 

 

2. Materials and Methods 

2.1. Animals and OA induction 

Eighty-four 8-week-old young adult male Wistar rats ≈ 230 g (Animal Resource Centre, 

Canning Vale, WA, Australia), were kept in a sanitary ventilated animal room (12-h 

light-dark cycle) with food and water available ad libitum. The rats were divided into 

three groups: OA group (n=36), ALN treatment group (n=36), and control group 

(n=12), and were acclimatised for one week before the start of the experiment. On day 

0, all the rats were anaesthetized with isofluroane and OA was induced (OA and ALN 

group) by injecting 0.2 mg MIA in the rat’s right knee joint as described previously 

[18]. The left contralateral control knee was injected with sterile saline. The control rats 

received a single sterile saline injection in the right knee while the left knee was un-

injected. 
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2.2. Alendronate treatment 

Thirty-six rats were treated with ALN administered as twice-weekly subcutaneous 

injections at a dosage of 15 g/kg. The ALN solution was made by dissolving one tablet 

of alendronate sodium (Fosamax 40 mg, MSD, South Granville, NSW, Australia) in 

100 ml of sterile water. The solution was stirred for 2 hours and then diluted with sterile 

physiologic saline to appropriate concentrations to obtain the required dose as above. 

 

The ALN treatment regime used in this study is as follows: 

1. Pre-emptive ALN treatment group – treatment started from day 0 to end of week 

2. 

2. Early ALN treatment group – treatment started from end of week 2 (day 14) to 

end of week 6. 

3. Delayed ALN treatment group – treatment started from end of week 6 (day 42) 

to end of week 10. 

 

The hind limbs of all the rats were imaged with high-resolution in vivo micro-CT. The 

first subgroup of rats from the OA (n=12), pre-emptive ALN treatment (n=12) and 

control group (n=4) were scanned after 2 weeks and sacrificed. The second subgroup of 

rats from the OA (n=12), early ALN treatment (n=12) and control group (n=4) were 

scanned after 2 and 6 weeks, and sacrificed. The third subgroup of rats from the OA 

(n=12), delayed ALN treatment (n=12) and control group (n=4) were scanned after 2, 6, 

and 10 weeks, and sacrificed.  

 

Double-fluorescent labelling of newly formed bone was achieved by intraperitonial 

injections of calcein (5 mg/kg body weight; Sigma-Aldrich, Sydney, NSW, Australia) 
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and xylenol orange (90 mg/kg body weight; Sigma-Aldrich, Sydney, NSW, Australia), 

7 and 2 days before sacrifice respectively. The animal handling and experimental 

procedures outlined in this study were carried out in accordance with The University of 

Adelaide Animal Ethics Committee and The Institute of Medical and Veterinary 

Science Animal Ethics Committee. 

 

2.3. In vivo micro-CT analysis 

In vivo micro-CT imaging was performed using a Skyscan 1076 (Skyscan, Kontich, 

Belgium) as described previously [18, 19]. Briefly, each rat was anaesthetized with 

isofluroane and the right and left knees were scanned separately. During each scan only 

the knee for image data acquisition was irradiated, while the other limb and the rest of 

the body were lead-shielded from radiation. The scans were performed using the 

following scanner settings: X-ray source voltage 60 kVp, current 100 A, a 1-mm thick 

aluminum filter to reduce beam-hardening artefact, 1 frame averaging. The pixel size 

was 8.7 m, the exposure time was 4.7 s, and the rotation step was 0.8°, with a 

complete rotation over 197° [18, 19]. Each scan lasted 20 minutes during which the rat 

was under anaesthesia. The cross-sectional images were reconstructed using a filtered 

back-projection algorithm (NRecon, V 1.4.4, Skyscan, Kontich, Belgium). The 

reconstructed images were of 1,500×1,500 pixels each, 8.7 m pixel size, and were 

stored as 8-bit images (256 gray levels). 

 

On the stack of reconstructed micro-CT cross-section images, manual regions of interest 

(ROI) of an irregular anatomical contour were drawn in the subchondral trabecular bone 

region for the medial and lateral tibial plateau, for both the right and left knee (software 

CT Analyser, V 1.8.05, Skyscan, Kontich, Belgium). The VOI included the subchondral 

           90



trabecular bone starting below the subchondral plate, and extending distally towards the 

growth plate, excluding both the cortical bone and growth plate interface. For the 

calculation of the morphometric parameters, the images were segmented using a 

uniform threshold method as done previously [18, 19]. The value for segmentation was 

based on comparisons with thickness measurements in 3D, by scanning a specially 

designed physical micro-CT phantom composed of aluminium inserts (foils) with 

calibrated thicknesses (20, 50, 100, 250 μm), embedded in PMMA [19, 20]. The 

following 3D morphometric parameters were calculated for the medial, lateral, and total 

(=medial + lateral) VOI of subchondral trabecular bone (software CT Analyser, 

Skyscan): bone volume (BV, mm3), bone volume fraction (BV/TV, %), trabecular 

thickness (Tb.Th, µm), trabecular separation (Tb.Sp, µm) and trabecular number (Tb.N, 

1/mm).  

 

2.4. Hind limb weight-bearing (HLWB) assessment 

Hind limb weight-bearing of the rats was measured on days -1, 1, 3, 5, 7, 9, 12, and 14 

using an incapacitance tester (Bioseb, Chaville, France). The percent weight borne on 

the MIA-injected limb was used as an index of joint discomfort in OA [21, 22]. The rats 

were trained by acclimating them to the incapacitance tester by placing them in the 

apparatus for 2 – 3 minutes for 5 days before the actual readings were taken. Briefly, the 

rats were positioned to stand on their hind paws in an angled (65 º from horizontal) 

plexiglass box placed above the incapacitance tester so that each hind paw rested on a 

separate force plate. The force (g) exerted by each limb was measured. Three 

consecutive 5-second readings were taken and averaged to obtain the mean score [21, 

22]. The percent weight borne on the MIA-injected limb was determined as described 

by Pomonis et al [22]. 
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2.5. Macroscopic analysis 

The rats were sacrificed after 2, 6, and 10 weeks of OA induction and the tibiae were 

dissected for macroscopic study. The tibial cartilage was imaged using a fluorescence 

stereomicroscope (SZX 10, Olympus) and the macroscopic lesions were graded as 

described previously [18]. Briefly, the macroscopic lesions were graded as follows: 0 = 

normal appearance, 1 = slight yellowish discoloration of the chondral surface, 2 = little 

cartilage erosions in load-bearing areas, 3 = large erosions extending down to the 

subchondral bone, and 4 = large erosion with large areas of subchondral bone exposure 

[23]. The medial and lateral tibial plateaus were graded separately and the scores were 

averaged to determine the total grade for the MIA-injected knee and the contralateral 

control knee. 

 

2.6. Histological analysis 

The tibiae of six rats from each subgroup within the OA and the ALN treatment group 

and two rats from each subgroup within the control group were fixed in 4% 

paraformaldehyde, decalcified, and embedded in paraffin. Three coronal sections (5 m 

thick) 100 m apart were obtained and stained with 1.5% Safranin O, and 0.02% fast 

green counter stain. The sections were observed for OA-like features and the 

Osteoarthritis Research Society International (OARSI) scoring method was used to 

grade and stage tibial cartilage [24].  

 

The tibiae of the remaining rats (n=6 for each subgroup within the OA and the ALN 

treatment group and n=2 for each subgroup within the control group) were fixed with 

70% ethanol, dehydrated through a graded series of ethanol and embedded in methyl 

methacrylate. For each sample, two coronal sections were cut at 5m thickness, spaced 

           92



100 m apart. The amount of label incorporation in the tibial subchondral trabecular 

bone was measured under epi-fluorescence and the MAR was calculated as described 

by Frost et al. [25].Mineral apposition rate (MAR) was quantified for each sample at a 

magnification of 200X from unstained sections. Three areas from both the medial and 

the lateral tibial plateau were assessed and then combined to obtain the total value.  

 

2.7. Serum COMP, CTX-I and urine CTX-II analysis 

Fasting blood specimens were obtained from all the rats at baseline, 2, 6 and 10 weeks 

after OA induction for repeated measurement of serum cartilage oligomeric matrix 

protein (COMP, a cartilage turnover marker), and C-terminal telopeptide of collagen 

type I (CTX-I, a bone turnover marker). The serum samples were collected and frozen 

in aliquots at -80°C. Assays for serum COMP (Animal COMP ELISA, MD 

Bioproducts, St. Paul, MN, USA), and CTX-I (IDS RatLaps ELISA, Fountain Hills, 

AZ, USA) were performed according to the manufacturers’ instructions. A morning 

spot urine sample was collected from all the rats after 2, 6 and 10 weeks of OA 

induction for urine C-terminal telopeptide of collagen type II (CTX-II, a cartilage 

turnover marker) analysis. The urine samples were centrifuged and frozen in aliquots at 

-80°C. Urinary CTX-II levels were determined by IDS Urine pre-clinical Cartilaps 

ELISA kit (Fountain Hills, AZ, USA). Each measurement for urinary CTX-II was 

normalized to urinary creatinine.  

 

2.8. Statistical analysis 

For bone histomorphometric parameters repeated measures two-way ANOVA was 

applied to determine the “time effect” and “time by group interaction effect”. The “time 

effect” indicates if there was any change over time within each group (tibia of control 
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and MIA-injected knee), and the “time by group interaction effect” indicates if the 

different groups showed different patterns of changes over time. If F-values for a given 

variable were found to be significant, a paired Student’s t-test was applied, to assess the 

changes in the morphometric parameters in each tibia over time and between the MIA-

injected knee and contralateral control knee. The p-values were adjusted for repeated 

comparisons by Holm’s Bonferroni stepdown procedure [26]. The effect of treatment 

between OA, ALN, and control groups at each time point was studied using a one-way 

ANOVA with Tukey’s post hoc test (SPSS for Windows, Rel. 19.0.0. 2010. Chicago: 

SPSS Inc., USA). Hind limb weight-bearing and biomarker data sets were examined 

using Kruskal-Wallis test with Dunn’s multiple comparison test (GraphPad Prism 

version 5.03 for Windows, San Diego, California, USA). Differences were considered 

significant for p < 0.05.  

 

For OARSI score and MAR, the control group was not included since statistical 

analysis could not be performed with n=2. The OARSI and MAR datasets were 

analysed with a two way ANOVA to determine whether the effect of treatment or time 

point was significant. If F-values were found to be significant, a paired Student’s t-test 

was applied and the p-values were adjusted for repeated comparisons by Holm’s 

Bonferroni stepdown procedure. 

 

3. Results 

3.1. In vivo micro-CT: subchondral trabecular bone histomorphometry 

3.1.1 Effect of pre-emptive ALN treatment (treatment started on day 0) 

In the MIA-injected knee of the OA group, there was a significant decrease in BV, 

BV/TV, and Tb.N, and a significant increase in Tb.Sp, relative to the control group 
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(Fig. 1). After two weeks of OA-induction, pre-emptive ALN treatment effectively 

prevented the early subchondral bone loss observed in the MIA-injected knee of the OA 

group. There was a non-significant increase in Tb.N in the pre-emptive ALN group 

compared to the OA group. BV, BV/TV and Tb.N did not differ significantly between 

the MIA-injected knee of the pre-emptive ALN treatment group and the control group. 

The Tb.Sp in the ALN group was significantly lower relative to the OA group, and 

significantly higher relative to the control group.  

 

At the same time point, the comparison in subchondral trabecular bone 

histomorphometric parameters between the MIA-injected knee and the contralateral 

control knee within the pre-emptive ALN treatment group, showed no statistically 

significant differences (Table 1). 

 

3.1.2 Effect of early ALN treatment (treatment started after 2 weeks of OA 

induction) 

Two weeks after OA induction, in the MIA-injected knee of the OA group, the 

histomorphometric parameters BV and Tb.N were significantly decreased (medial and 

total compartment), whereas Tb.Th (all compartments) and Tb.Sp (medial and total) 

were significantly increased relative to the control group (Fig. 2). At the same time 

point, the MIA-injected knee of the early ALN treatment group showed no significant 

differences compared to the OA group in any of the subchondral trabecular bone 

histomorphometric parameters. 

 

After 6 weeks of OA induction, there was no significant difference in BV and BV/TV in 

the MIA-injected knee of the OA group relative to the control group. However, Tb.Th 
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and Tb.Sp were significantly increased, whereas Tb.N was significantly decreased 

relative to the control group (all compartments). After 6 weeks of OA induction, (4 

weeks after ALN treatment initiation), the MIA-injected knee of the early ALN 

treatment group compared to the OA group did not show significant differences in 

BV/TV and Tb.Th. However, BV was significantly increased (medial compartment), 

Tb.N was significantly increased (all the compartments), and Tb.Sp was significantly 

decreased (all the compartments). Compared to the control group, Tb.N and Tb.Sp from 

the MIA-injected knee in the early ALN treatment group were not significantly different 

(Fig. 2); however, BV, BV/TV, and Tb.Th were significantly increased.  

 

The comparison in subchondral trabecular bone histomorphometric parameters between 

the MIA-injected knee and the contralateral control knee within the early ALN 

treatment group is summarised in Table 2. After 2 weeks of MIA-injection, BV, 

BV/TV, Tb.N were significantly decreased and Tb.Sp was significantly increased 

relative to the contralateral control knee (all the compartments). After 6 weeks of OA 

induction (4 weeks after ALN treatment initiation), BV, BV/TV, Tb.Th and Tb.Sp were 

significantly increased. There was no significant difference in Tb.N relative to the 

contralateral control knee (all the compartments).  

 

3.1.3 Effect of delayed ALN treatment (treatment started after 6 weeks of OA 

induction) 

After 2 weeks of OA induction, the histomorphometric parameters BV, BV/TV and 

Tb.N in the MIA-injected knee of the OA group were significantly decreased and Tb.Sp 

was significantly increased relative to the control group (in all the compartments). After 

6 weeks, there was no significant difference in BV and BV/TV in the MIA-injected 
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knee of the OA group relative to the control group. Tb.Th and Tb.Sp in the MIA-

injected knee of the OA group were significantly increased compared to the control 

group, whereas Tb.N was significantly decreased (lateral compartment) of the OA 

group relative to the control group. After 2 and 6 weeks of OA induction (before ALN 

treatment initiation), there was no significant difference in the histomorphometric 

parameters from the MIA-injected knee between the OA group and the ALN treatment 

group (in all compartments) (Fig. 3). After 6 weeks, BV, BV/TV, Tb.Th and Tb.Sp in 

the MIA-injected knee of the delayed ALN treatment group were increased compared to 

the control group (medial and total compartment). At the same time point, Tb.Th and 

Tb.Sp in the OA group were significantly increased compared to the control group 

(medial and total compartment). 

 

After 10 weeks (4 weeks after ALN treatment initiation), there was no significant 

difference in the histomorphometric parameters from the MIA-injected knee between 

the OA group and the ALN treatment group (all the compartments) (Fig. 3). In the OA 

group relative to control group, Tb.N was significantly decreased, whereas Tb.Th and 

Tb.Sp were significantly increased (all the compartments). In the delayed ALN 

treatment group compared to the control group, BV (medial compartment), Tb.Th, and 

Tb.Sp (all the compartments) was significantly increased. Tb.N was significantly 

decreased compared to the control group only in the lateral compartment. 

 

A summary of the comparison in subchondral trabecular bone histomorphometric 

parameters between the MIA-injected tibia and the contralateral control tibia within the 

delayed ALN treatment group is given in Table 3. There was a significant increase in 

subchondral trabecular BV, BV/TV, Tb.Th and Tb.N, and a significant decrease in 
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Tb.Sp in both the knees over time (p<0.05, total compartment). As expected, after 2 

weeks, in the MIA-injected tibia compared to the contralateral control, BV, BV/TV, 

Tb.N were significantly decreased and Tb.Sp was significantly increased. After 6 weeks 

(before ALN treatment initiation) and 10 weeks (after 4 weeks of ALN treatment 

initiation), there were significant increases in BV, BV/TV, Tb.Th, and Tb.Sp, relative to 

the contralateral control knee. There were no significant differences in subchondral 

Tb.N between the two limbs after 6 weeks and 10 weeks. 

 

3.2 Effect of ALN on hind limb weight-bearing  

In the OA group, the HLWB of the MIA-injected limb was significantly decreased on 

day 1, 3, (p<0.001 for both) 5 and 7 (p<0.05 for both) compared to its baseline value on 

day -1 (Fig. 4A). Compared to the control group, the OA group showed a trend towards 

decreased weight-bearing on the MIA-injected limb from day 1 to day 7, with 

significant difference in HLWB between the OA and control group observed on day 3 

(p<0.05). Pre-emptive ALN treatment significantly prevented the decrease in weight-

bearing of the MIA-injected knee on day 1, 3, and 5 (p<0.05, p<0.001 and p<0.05, 

respectively, compared to the OA group) (Fig. 4A). There was no difference in HLWB 

between the ALN and the control group at any time point. There was no change in 

HLWB of rats in the ALN group over time, similar to the control group. 

 

3.3 Effect of ALN on macroscopic cartilage changes 

There were no detectable macroscopic cartilage changes in both the left and right tibia 

of the control group. Also, there were no detectable macroscopic cartilage changes in 

the contralateral control tibia of the OA group, and the contralateral control tibia of the 

ALN group, compared to the tibiae of the control group, at any time point (Fig. 4B). 
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After 2 weeks, the tibia from the OA group showed mild cartilage damage. The tibia 

from the pre-emptive ALN treatment showed discoloration in weight-bearing regions of 

the medial tibial plateau (Fig. 4B). At 6 weeks, yellow discoloration and mild cartilage 

lesions were observed in the tibia from both the OA and the early ALN treatment group. 

At 10 weeks, tibia from both the OA and the delayed ALN treatment group showed 

focal lesions with yellow discoloration, and a few large lesions exposing the 

subchondral bone on the medial weight-bearing regions. The joint scores (mean ± SEM) 

were as follows: 2 ± 0.37, 3 ± 0.26, 3.17 ± 0.31 at 2, 6 and 10 weeks, respectively, for 

the OA group; 1.17 ± 0.17, 2.33 ± 0.33, 2.5 ± 0.43 for pre emptive, early and delayed 

ALN treatment groups, respectively. The joint score increased from week 2 to week 10 

in both the OA and the ALN treatment groups. The differences in joint score between 

the OA and the ALN groups and between time points were not statistically significant. 

 

3.4 Effect of ALN on microscopic cartilage changes 

Figure 5 shows microscopic cartilage images in the OA, the ALN treatment and control 

group at 2, 6, and 10 weeks after injection. There were no OA-like cartilage changes in 

both the left and right tibia of the control group. There were no OA-like changes in the 

contralateral control tibia of the OA group, and the contralateral control tibia of the 

ALN group, compared to the tibiae of the control group, at any time points. In the MIA-

injected knee of the OA group, after 2 weeks there was loss of proteoglycan, mild 

chondrocyte degeneration, and cartilage fibrillation in the tibial articular cartilage. 

Formation of small osteophytes was evident in all the six rats. In the MIA-injected knee 

of the pre-emptive ALN treatment group the proteoglycan loss and chondrocyte 

degeneration was less severe compared to the OA group and the cartilage was intact. 

Small osteophytes were present in 5 out of 6 rats.  

           99



After 6 weeks, the cartilage matrix in the MIA-injected knee from both the OA and the 

early ALN treatment group showed loss of proteoglycans, branched vertical fissures 

with chondrocyte necrosis and chondrocyte cluster formation. In the MIA-injected knee 

of both the OA groups and the early ALN treatment group, all the rats showed 

subchondral bone sclerosis with osteophyte formation. However, in the early ALN 

treatment group the osteophyte was in the form of cartilaginous outgrowths without 

bony transformation (Fig. 5). After 10 weeks both the OA and the delayed ALN 

treatment group showed severe proteoglycans loss, chondrocyte necrosis, chondrocyte 

clusters, extensive cartilage matrix loss with delamination, and exposure of subchondral 

bone. The subchondral bone was sclerosed and mineralised osteophytes were visible in 

both OA and delayed ALN treatment group (Fig. 5). At 6 and 10 weeks, cysts were 

observed in 4 out of 6 rats in the OA group and in 3 out of 6 rats in the delayed ALN 

treatment group. In both the OA and ALN group subchondral bone, normal 

haematopoietic bone marrow was replaced by fine fibrous stroma containing spindle 

cells. The subchondral plate was breached in focal areas with reparative tissue including 

fibrocartilage.  

 

The OARSI scores of the OA group were significantly higher at 6 weeks (p<0.001) and 

10 weeks (p<0.01) compared to 2 weeks after MIA injection. Similarly, the OARSI 

scores of the early ALN treatment and the delayed ALN treatment group were 

significantly higher compared to the pre-emptive ALN treatment group (p<0.001 and 

p<0.05 respectively). The OARSI scores did not differ between the OA group and the 

ALN treatment group at any time point (Fig. 6A).  
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3.5 Effect of ALN on subchondral trabecular bone mineral apposition rate (MAR) 

The MAR of the OA group was significantly increased at 2 weeks compared to 6 and 10 

weeks in the medial (p<0.0001, p<0.01), lateral (p=0.001, p<0.01) and total (p<0.0001, 

p<0.001) compartments. The MAR of the pre-emptive ALN treatment group was 

significantly increased compared to the early ALN treatment and the delayed ALN 

treatment group in all the three compartments (p<0.001 for all). Pre-emptive ALN 

treatment significantly decreased the MAR which was increased in the OA group at 2 

weeks in the medial (p<0.01), lateral (p<0.01) and total (p<0.0001) compartments (Fig. 

6B).  

 

3.6 Effect of ALN on serum COMP, CTX-I and urine CTX-II 

Figure 7 shows the levels of serum COMP, serum CTX-I and urine CTX-II of the OA 

group, the ALN treatment group and the control group, after 2, 6 and 10 weeks of OA 

induction. In all the three groups there was statistically significant decrease in the serum 

COMP, CTX-I and urine CTX-II levels over time (p<0.05). In the OA group compared 

to the control group, there was a non-significant increase in serum COMP, CTX-I and 

CTX-II levels after 2, 6, and 10 weeks of OA induction. Pre-emptive ALN treatment, 

early ALN treatment and delayed ALN treatment significantly decreased the serum 

CTX-I levels similar to the levels in the control group. In contrast, ALN treatment (pre-

emptive, early, and delayed) did not have a significant effect on serum COMP and urine 

CTX-II levels.  

 

4. Discussion 

Subchondral bone remodelling plays an important role in the pathophysiology of OA 

and bisphosphonates are potent inhibitors of bone turnover. Clinical trials using 
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bisphosphonate treatment for OA have yielded mixed results suggesting that the 

therapeutic effect of ALN may depend on the time of treatment initiation. Assessing the 

effects of ALN on early pathological changes in human OA is difficult. Hence, an 

animal model that mimics OA progression is essential to assess the effects of ALN on 

cartilage and subchondral bone at various stages of the disease. Using a low-dose MIA 

rat model, we have previously demonstrated OA progression in a timely manner [18]. In 

order to assess the efficacy of ALN treatment at early, intermediate, and late stages of 

OA, we initiated ALN treatment at different stages of OA in a low-dose MIA rat model. 

The experimental design of the present study enabled us to determine the efficacy of 

time course ALN treatment on tibial subchondral trabecular bone architecture, cartilage 

changes, bone and cartilage turnover markers, and joint discomfort in this animal 

model.  

 

Trabecular bone microarchitecture is an important determinant of bone quality [27], and 

changes in microarchitectural properties have been reported previously in human OA 

[28-30] and animal studies [31-33]. In the present study, changes in the tibial 

subchondral trabecular bone microarchitecture were observed in the OA group, such as 

decreased BV, and BV/TV after 2 weeks, followed by increased BV, BV/TV, Tb.Th, 

Tb.Sp and reduced Tb.N at 6 and 10 weeks after OA induction. Pre-emptive ALN 

treatment prevented subchondral trabecular bone loss and preserved subchondral 

trabecular microarchitecture (Table 1). Early ALN treatment maintained subchondral 

Tb.N and Tb.Sp (Fig 2, Table 2), and delayed ALN treatment maintained Tb.N (Table 

3). This suggests that pre-emptive ALN treatment has the most beneficial effect on 

subchondral trabecular bone microarchitecture, and the efficacy gradually decreases 

with later treatments (early and delayed ALN treatment). A recent OA-study reported 
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that zoledronic acid increased BMD in the high-dose MIA (1 mg) model in a time-

dependent manner, and the longest treatment (from week 2 – week 5) produced the 

largest beneficial effect on BMD [17]. The present OA-study, using in vivo micro-CT in 

a low-dose MIA rat model, demonstrates the time-dependency of the beneficial effects 

of ALN on the subchondral bone microarchitecture. A similar dependence on time point 

of bisphosphonate-treatment initiation on bone microarchitecture was observed in 

osteoporosis studies, in an animal model of ovariectomized rats treated with zoledronic 

acid [19, 34].  

 

In the present study, we did not observe significant improvement in cartilage 

degradation after 2 weeks of ALN treatment in the pre-emptive ALN group. This could 

be due to the fact that not enough time has elapsed to actually observe a beneficial 

effect of ALN on cartilage degradation. In our study, although ALN treatment did not 

have a significant effect on OARSI score, we observed less severe loss of proteoglycans 

and chondrocytes in the pre-emptive ALN group. This suggests that pre-emptive ALN 

treatment has a moderate effect on cartilage degradation in this animal model. Hayami 

et al. reported similar observations in a rat anterior cruciate ligament transection 

(ACLT) model of OA in which a clinically relevant dose of 30g/kg/week ALN 

completely inhibited the early bone loss at 2 weeks but did not have a significant effect 

on cartilage degradation. However, they found that a high-dose of 240 g/kg/week ALN 

prevented bone loss and had partial chondroprotective properties [13]. In another pre-

clinical study using rabbit ACLT model, Zhang et al. showed that 70g/kg/week ALN 

treatment protected the cartilage and improved subchondral bone architecture by 

preventing increased subchondral bone resorption at the early phase of OA [15].  

 

           103



In the present study, 30g/kg/week of alendronate was used. A dosage of 30 

g/kg/week ALN has been shown to completely prevent bone resorption in 

ovariectomized rats and is suggested to be close to the clinical dose of ALN used to 

treat human osteoporosis [13]. Higher doses of bisphosphonates may be beneficial to 

both cartilage and bone; however, the effect of continuous suppression of bone turnover 

after long-term use needs to be determined. Supra physiological doses of ALN and 

risedronate have shown to suppress bone turnover by 90 – 95% in the vertebrae and 

increase microdamage accumulation in beagles [35].  

 

Prevention of bone loss by ALN treatment is mainly attributed to the direct effect of 

ALN on osteoclasts. During bone resorption, osteoclasts release and internalise ALN 

from bone, which interferes with the normal mevalonate pathway essential for 

osteoclast function, ruffled border formation, and survival of osteoclasts. This translates 

into inhibition of bone resorption and decreased activation frequency of bone 

remodelling [37]. Apart from a direct effect on osteoclasts ALN has also been shown to 

inhibit osteoclastic bone resorption through its action on osteoblasts [38, 39]. 

Osteoblasts have been shown to control osteoclast mediated bone resorption by 

secreting osteoclast inhibitors [40]. Further, bisphosphonates have been shown to alter 

bone remodelling in osteoporosis and Paget’s disease by modulating osteoprotegerin 

(OPG) and receptor activator of nuclear factor kappa b ligand (RANKL) [41, 42]. In our 

study, we observed significant reduction of MAR by pre-emptive ALN treatment, which 

shows ALN has an effect on osteoblastic activity. It is probable that in our study, ALN 

treatment inhibited bone resorption by modulating OPG and RANKL secreted by 

osteoblasts, which have been shown to play a major role in OA pathology [43]. 
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In the present study, ALN did not have a significant effect on osteophyte formation, 

even though early ALN treatment seemed to slow down osteophyte formation, which 

were not fully mineralised (Fig. 5). Another pre-clinical study reported that ALN did 

not have a statistically significant effect on osteophyte score [14]. A few pre-clinical 

studies have shown that ALN can inhibit osteophyte formation however, in these studies 

ALN treatment was initiated a few days before OA induction or from the day of OA 

induction [13, 15, 44]. In a clinical trial, Neogi et al. showed that ALN reduced the 

progression of spinal osteophytes in OA. However, the spinal radiographic changes in 

that study were subtle and may not have a major clinical relevance [45]. 

 

OA is characterised by painful joints. In our study the rats injected with low-dose MIA 

showed significant decrease in HLWB up to day 7, and pre-emptive ALN treatment 

significantly prevented the decrease in HLWB. Increased bone turnover and 

subchondral bone pathology observed at 2 weeks in the OA group rats coincides with 

decreased HLWB. In the MIA rat model, the iodoacetate injection causes early phase 

neuropathy, which could be the cause of pain [46]. Moreover, subchondral bone 

structural pathology has been shown to be associated with knee pain in OA [11, 47]. 

Carbone et al. reported that ALN treatment decreased subchondral bone attrition and 

reduced knee joint pain in postmenopausal women with OA [11]. Risedronate has also 

been shown to non-significantly improve OA joint pain score from baseline [9]. 

 

In the present study, the prevention of subchondral bone pathology by ALN treatment 

could have resulted in alleviation of weight-bearing deficits in the rats. It is also 

possible that the direct analgesic property of ALN could have caused the alleviation of 

weight-bearing deficits found in the low-dose MIA induced OA in rats. Our observation 
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for HLWB in the pre-emptive ALN group is consistent with a recent study in which pre-

emptive treatment with zoledronic acid significantly and dose-dependently reversed 

weight-bearing deficits in the high-dose MIA rat model [17]. Strassle et al. speculate 

that apart from direct analgesic action, zoledronate (pre-emptive and delayed treatment) 

may have reduced joint pain by directly inhibiting chondrocyte cell death induced by 

MIA or by preventing osteoclast mediated chondrocyte death. A limitation of our study 

is that we were able to follow HLWB only until day 14 as it became increasingly 

difficult to fit the growing rats in the incapacitance tester after 2 weeks. Moreover, early 

and delayed ALN treatment effects on HLWB would have given additional information 

regarding ALN efficacy on chronic pain.  

 

In the present study, there was an age-related decline in serum COMP, CTX-I and urine 

CTX-II in the OA group, ALN treatment group and control group due to decreased 

cartilage and bone turnover. Two weeks after OA induction the serum CTX-I level was 

significantly increased while the serum COMP and urine CTX-II levels showed a trend 

towards increased levels compared to the control group. This shows increased cartilage 

and bone turnover at early stage OA. The difference in cartilage turnover marker levels 

between the OA group and the control group after 2, 6 and 10 weeks did not reach 

statistical significance in our study. This may be because only one knee was induced 

with OA and the levels of biomarker released from a single OA knee are likely to be 

low. In addition, we had only four rats in the control group, which might be insufficient 

to reach statistically significant differences. 

 

Pre-emptive ALN, early ALN and delayed ALN treatment significantly decreased bone 

turnover rate; however, ALN treatment did not have any effect on cartilage turnover. 
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Human OA has been shown to be associated with increased levels of serum COMP, 

CTX-I and CTX-II [48, 49]. Hayami et al. reported similar effects of ALN 

(30g/kg/week) on COMP, CTX-I and urine CTX-II in OA rats [13]. As mentioned 

earlier, high doses of ALN may be required to see a significant effect on cartilage as 

shown by Hayami et al using 240 g/kg/week ALN [13].  

 

A limitation of our study is that the follow up of pre-emptive and early ALN treatment 

until the advanced stages of OA is missing. Longer-term follow up could have revealed 

a significant effect of ALN on cartilage and osteophyte formation as observed in other 

studies [13, 14]. However, our study design allowed us to determine the effect of ALN 

treatment on histological changes in the cartilage at early, intermediate, and advanced 

stages of OA. 

 

5. Conclusions 

In conclusion, we have used a low-dose MIA-induced OA rat model that results in 

progressive pathological changes in the cartilage and subchondral bone. We have 

demonstrated that pre-emptive ALN treatment preserved subchondral trabecular bone 

microarchitecture, decreased bone turnover, joint discomfort, and offered moderate 

cartilage protection. Both early and delayed ALN treatment were less effective on 

subchondral bone microarchitecture, preventing mainly decrease of trabecular number 

(loss of trabeculae) and decreased bone turnover, but did not prevent changes in bone 

volume or trabecular thickness, and did not have any significant effect on the cartilage. 

Our study indicates that the time point of initiating bisphosphonate treatment for OA is 

crucial. Targeting subchondral bone remodelling could offer a potential treatment 

option for the management of OA. However, further research into the role of 
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subchondral bone in the pathophysiology of early to late stage OA is necessary to 

develop new therapeutic strategies for the treatment of OA. 
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Figure 1. Effect of pre-emptive ALN treatment on tibial subchondral trabecular 

bone after 2 weeks of ALN treatment initiation. Histomorphometric parameters of 

the MIA-injected knee from the OA and the ALN group and the right knee of the 

control group are shown. Data shown as mean ± SD. * p<0.05, ** p<0.001, and *** 

p< 0.0001. 
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Figure 2. Effect of early ALN treatment (started 2 weeks after OA induction) on 

tibial subchondral trabecular bone. Histomorphometric parameters of the MIA-

injected knee from the OA and the ALN group and the right knee of the control 

group are shown. Data shown as mean ± SD. # measurement after ALN treatment 

initiation. * p<0.05, ** p<0.001, and *** p< 0.0001. 
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Figure 3. Effect of delayed ALN treatment (started 6 weeks after OA induction) on 

tibial subchondral trabecular bone. Histomorphometric parameters of the MIA-

injected knee from the OA and the ALN group and the right knee of the control 

group are shown. Data shown as mean ± SD. # measurement after ALN treatment 

initiation. * p<0.05, ** p<0.001, and *** p< 0.0001. 
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Figure 4A. Effect of pre-emptive ALN treatment on rat hind limb weight-bearing. Pre-emptive ALN effectively prevented decreased 

weight-bearing of the OA knee on day 1, 3 and 5 after MIA injection. Results are reported as mean ± SEM. 

a = Hind limb weight-bearing difference over time compared to baseline value of the OA group (p<0.001 for day 1 and 3 and p< 0.05 for 

day 5 and 7 respectively)  

b = OA vs. control (p<0.05). * p<0.05 OA vs. ALN, *** p<0.001 OA vs. ALN 

 

Figure 4B. Rat tibial plateau of saline, un-injected, OA and ALN treated knees. Tibia of saline-injected knee and un-injected control 

knee showed no macroscopic changes in the cartilage. Tibia of OA knee showed progressive cartilage lesions after 2, 6, and 10 weeks of 

OA induction. Tibia from pre-emptive ALN treatment showed very mild cartilage changes after 2 weeks whereas, tibia from the early 

ALN treatment and delayed ALN treatment group showed cartilage changes similar to the respective OA group. Scale bar = 1.5 mm. 
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Figure 5. Articular cartilage and subchondral bone of medial tibial plateau from control, OA, and ALN treatment group after 2, 6, and 

10 weeks. Progressive cartilage degradation was evident in the OA group. Loss of trabeculae was observed after 2 weeks (square) 

followed by subchondral bone sclerosis after 6, and 10 weeks. Progressive osteophyte formation (arrow) was evident at 2, 6, and 10 

weeks after OA induction. In the pre-emptive ALN treatment group there was less severe proteoglycan loss and less chondrocyte 

necrosis compared to the OA group. Pre-emptive treatment did not have a significant effect on the cartilage or osteophyte formation; 

however it prevented loss of subchondral trabeculae. Early ALN treatment (treatment started 2 weeks after OA induction) and delayed 

ALN treatment (treatment started 6 weeks after OA induction) did not prevent cartilage degradation or subchondral bone sclerosis. 

However, in the early ALN treatment group the osteophytes were in the form of cartilaginous outgrowths without bony transformation. 

Original magnification x 40. 
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Figure 6A. OARSI scores of OA, pre-emptive ALN, early ALN, and delayed ALN 

groups. ALN treatment did not have a significant effect on OARSI score. Results 

are reported as mean ± SEM. * p<0.05 and ** p<0.01. 

 

 Figure 6B. Tibial subchondral trabecular bone mineral apposition rate (MAR) of 

OA, pre-emptive, early ALN, and delayed ALN groups. In the OA group, MAR 

was significantly increased at 2 weeks compared to, 6, and 10 weeks after OA 

induction. Pre-emptive ALN treatment significantly decreased MAR whereas, 

early ALN and delayed ALN treatment did not have a significant effect on MAR. 

Results are reported as mean ± SEM. * p<0.05 and ** p<0.01. 
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Figure 7. Serum COMP, CTX-I, and urine CTX-II levels of the OA group, pre-

emptive ALN, early ALN, delayed ALN treatment groups and the control group. 

The pre-emptive, early, and delayed ALN treatment did not have a significant 

effect on serum COMP and urine CTX-II levels. However, they significantly 

suppressed serum CTX-I levels observed in the OA group. Results are reported as 

mean ± SEM. * p<0.05 and ** p<0.01. 
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Table 1 Tibial subchondral trabecular bone histomorphometric parameters in the 
pre-emptive ALN treatment group, at 2 weeks after ALN treatment initiation. 
 

  2 Weeks (after ALN treatment) 

  OA Contralateral 
control 

  

  mean ± SD mean ± SD 

%d OA-
contralateral 

control p-value 

 
BV (mm3)                 

Medial 743 ± 68 785 ± 63 -5.3 0.570 
Lateral 738 ± 74 771 ± 53 -4.3 0.234 
Total 1480 ± 137 1555 ± 97 -4.8 0.360 

        

BV/TV (%)        

Medial 20 ± 2 21 ± 2 -6.2 0.331 
Lateral 18 ± 3 18 ± 1 -2.0 0.646 
Total 19 ± 2 20 ± 1 -4.3 0.441 

        

Tb.Th (m)        

Medial 96 ± 3 93 ± 3 2.5 0.123 
Lateral 89 ± 4 87 ± 2 2.6 0.108 
Total 92 ± 3 90 ± 2 2.5 0.074 

        

Tb.N (1/mm)        

Medial 2.1 ± 0.2 2.2 ± 0.1 -4.4 0.333 
Lateral 2.0 ± 0.2 2.1 ± 0.1 -2.5 0.410 
Total 2.1 ± 0.2 2.2 ± 0.1 -3.5 0.331 

        

Tb.Sp (m)        

Medial 257 ± 16 250 ± 9 2.7 0.381 
Lateral 250 ± 9 247 ± 10 1.5 0.224 
Total 254 ± 11 249 ± 8 2.1 0.299 

 

Data reported as mean ± SD, % d is the percentage difference in values for tibial 
subchondral bone between the OA and contralateral control knee. 
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Table 2 Tibial subchondral trabecular bone histomorphometric parameters in the early ALN treatment group (treatment started 2 
weeks after OA induction). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Data reported as mean ± SD, % d is the percentage difference in values between the OA and contralateral control knee. 

  2 Weeks   6 Weeks (after ALN treatment) 

  OA Contralateral 
control 

    OA Contralateral 
control 

  

  
mean ± SD mean ± SD 

%d OA-
contralateral 

control 
p-value   

mean ± SD mean ± SD 

%d OA-
contralateral 

control 
p-value 

BV (mm3) 
                

  
                

Medial 719 ± 118 868 ± 97 -17.2 0.001  1313 ± 195 1165 ± 132 12.7 0.011 
Lateral 723 ± 89 818 ± 86 -11.6 0.002  1171 ± 162 1025 ± 126 14.2 0.003 

Total 1442 ± 186 1686 ± 158 -14.5 0.001  2484 ± 297 2190 ± 237 13.4 0.003 

BV/TV (%)                  

Medial 20 ± 3 24 ± 3 -16.9 0.001  36 ± 5 32 ± 4 13.0 0.010 

Lateral 17 ± 2 19 ± 2 -11.5 0.002  27 ± 4 24 ± 3 14.3 0.003 
Total 18 ± 2 21 ± 2 -14.5 0.001  32 ± 4 28 ± 3 13.5 0.003 

Tb.Th (m)                  

Medial 96 ± 3 94 ± 3 2.2 0.064  128 ± 12 104 ± 7 23.0 0.000 
Lateral 90 ± 4 88 ± 2 2.1 0.089  108 ± 11 95 ± 3 13.9 0.003 

Total 93 ± 3 91 ± 2 2.2 0.053  118 ± 10 99 ± 4 18.7 0.000 

Tb.N (1/mm)                  

Medial 2.0 ± 0.3 2.5 ± 0.2 -18.8 0.000  2.8 ± 0.2 2.9 ± 0.2 -3.3 0.152 
Lateral 1.9 ± 0.2 2.2 ± 0.2 -13.5 0.001  2.5 ± 0.2 2.5 ± 0.3 0.5 0.857 

Total 2.0 ± 0.2 2.3 ± 0.2 -16.3 0.000  2.7 ± 0.2 2.7 ± 0.2 -1.5 0.474 

Tb.Sp (m)                  

Medial 262 ± 21 239 ± 8 9.7 0.004  234 ± 13 215 ± 13 8.8 0.013 

Lateral 259 ± 15 242 ± 13 6.8 0.012  241 ± 11 228 ± 17 5.9 0.025 

Total 260 ± 16 240 ± 9 8.2 0.004   237 ± 8 221 ± 13 7.3 0.015 

           120



Table 3. Tibial subchondral trabecular bone histomorphometric parameters in the delayed ALN treatment group (treatment started 6 
weeks after OA induction). 
 

  2 Weeks 6 Weeks 10 Weeks (after ALN treatment) 

  OA Contralateral 
control 

  OA Contralateral 
control 

  OA Contralateral 
control 

  

  
mean ± SD mean ± SD 

%d  

p-
value mean ± SD mean ± SD 

%d  

p-
value mean ± SD mean ± SD 

%d  

p-
value 

BV (mm3)                                                 
Medial 674 ± 85 791 ± 90 -14.7 0.004 1350 ± 136 1102 ± 105 22.5 0.003 1531 ± 251 1159 ± 156 32.1 0.005 

Lateral 680 ± 52 767 ± 71 -11.4 0.006 1120 ± 112 1026 ± 70 9.2 0.018 1251 ± 176 1053 ± 88 18.8 0.006 
Total 1354 ± 108 1558 ± 156 -13.1 0.004 2470 ± 182 2128 ± 137 16.1 0.001 2782 ± 307 2212 ± 195 25.8 0.000 

BV/TV (%)                         

Medial 19 ± 2 21 ± 2 -13.0 0.006 37 ± 4 30 ± 3 22.9 0.016 42 ± 7 32 ± 4 32.7 0.004 
Lateral 16 ± 1 18 ± 2 -11.3 0.006 26 ± 3 24 ± 2 9.4 0.016 29 ± 4 25 ± 2 19.0 0.005 

Total 17 ± 1 20 ± 2 -13.0 0.003 32 ± 2 27 ± 2 16.9 0.001 36 ± 4 28 ± 3 26.7 0.000 

Tb.Th (m)                         

Medial 95 ± 5 95 ± 4 0.3 0.824 133 ± 7 107 ± 6 24.6 0.000 147 ± 13 107 ± 7 36.7 0.000 

Lateral 89 ± 3 88 ± 3 0.9 0.347 112 ± 7 97 ± 4 15.4 0.000 119 ± 9 98 ± 4 21.0 0.000 
Total 92 ± 4 92 ± 3 0.6 0.474 123 ± 5 102 ± 5 20.2 0.000 133 ± 9 103 ± 5 29.2 0.000 

Tb.N (1/mm)                         

Medial 2.0 ± 0.2 2.3 ± 0.2 -13.3 0.016 2.8 ± 0.2 2.8 ± 0.2 -1.5 0.675 2.8 ± 0.3 2.9 ± 0.3 -3.1 0.412 

Lateral 1.8 ± 0.2 2.0 ± 0.2 -12.1 0.010 2.3 ± 0.2 2.5 ± 0.2 -5.2 0.239 2.5 ± 0.2 2.5 ± 0.2 -1.8 0.435 
Total 1.9 ± 0.1 2.2 ± 0.2 -12.7 0.007 2.6 ± 0.2 2.6 ± 0.2 -3.2 0.244 2.7 ± 0.2 2.7 ± 0.2 -2.5 0.269 

Tb.Sp (m)                         

Medial 271 ± 11 248 ± 12 9.4 0.000 239 ± 10 231 ± 13 3.5 0.062 239 ± 18 217 ± 18 10.3 0.006 
Lateral 263 ± 19 247 ± 12 6.4 0.004 248 ± 19 233 ± 11 6.5 0.003 246 ± 21 229 ± 12 7.4 0.010 

Total 267 ± 13 247 ± 12 7.9 0.000 244 ± 11 232 ± 11 5.0 0.002 243 ± 15 223 ± 13 8.8 0.001 

 
Data reported as mean ± SD, % d is the percentage difference in values between the OA and contralateral control knee. 
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ABSTRACT 

Subchondral bone remodelling plays a critical role in the pathophysiology of 

osteoarthritis (OA). The RANK/RANKL/OPG nexus that tightly controls bone 

remodelling is known to be differentially regulated in OA. Bisphosphonates are potent 

inhibitors of bone resorption/remodelling and are used for the treatment of human 

osteoporosis. In this study, the effect of alendronate (ALN) on distal femoral 

subchondral bone RANK, RANKL and OPG mRNA expression was determined in a 

low-dose monosodium iodoacetate (MIA)-induced OA rat model. Male Wistar rats were 

randomly divided into three groups: OA, ALN, and control group. Rats (OA and the 

ALN group) were injected with 0.2 mg MIA in the right knee and sterile saline in the 

left knee joint (contralateral control). Rats in the ALN group received pre-emptive (day 

0 – end of week 2), early (end of week 2 – end of week 6), or delayed (end of week 6 – 

end of week 10) ALN treatment (30 g/kg/week). The control rats received a single 

sterile saline injection in the right knee joint and no ALN treatment. The rats were 

sacrificed at 2, 6 and 10 weeks and total RNA was extracted from the distal femoral 

subchondral bone. RANK, RANKL, and OPG mRNA expression was determined by 

real-time RT-PCR analyses. RANK mRNA expression did not differ significantly 

between the three groups. Pre-emptive ALN treatment significantly reduced RANKL 

mRNA expression and the RANKL/OPG mRNA ratio, which was significantly 

increased in the OA group at 2 weeks compared to the control group. Early ALN 

treatment significantly decreased RANKL mRNA expression at 6 weeks compared to 

the OA group. In conclusion, alendronate treatment decreases the RANKL/OPG mRNA 

ratio and thereby inhibits subchondral bone resorption in the early stage of OA. 

Targeting subchondral bone offers a potential treatment option for OA and warrants 

further investigation. 
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Introduction 

Osteoarthritis (OA) is the most common joint disease and a major cause of disability 

with high socioeconomic costs in Western society. It is a complex disease affecting the 

whole joint, involving the cartilage, subchondral bone, synovial membrane, and 

meniscus.1 OA is characterised by altered subchondral bone remodelling. Altered bone 

remodelling leads to new bone formation, subchondral bone sclerosis, which is 

hypomineralized and osteophyte formation.2 These bone related changes are driven by 

altered osteoblastic and osteoclastic activity which are closely associated with cartilage 

degeneration,3 leading to disease progression. Hence, subchondral bone remodelling has 

become an important target for OA treatment in recent years.4, 5 

 

It is known that bone remodelling is tightly controlled by the molecular triad consisting 

of osteoprotegerin (OPG), receptor activator of nuclear factor κB (RANK) and its ligand 

RANKL.6 RANKL is synthesised primarily by the osteoblasts and activates its receptor, 

RANK, expressed on osteoclasts to stimulate osteoclastogenesis. Thus, the RANK-

RANKL binding is essential for osteoclast formation, activation, survival and promotes 

bone resorption. In the bone microenvironment, OPG is secreted as a soluble protein by 

the cells of the osteoblast lineage. It is a decoy receptor for RANKL that inhibits 

osteoclast differentiation, activation, induces osteoclast apoptosis, and thus modulates 

bone resorption.7 The RANK/RANKL/OPG nexus has been shown to play a major role 

in bone pathologies such as osteoporosis, rheumatoid arthritis, metastatic bone tumours, 

and Paget’s disease.8 Altered levels of RANKL and OPG are also known to be involved 

in human OA.9 Increased serum RANKL/OPG ratio was found to be correlated with 

disease severity in human OA,10 and enhanced expression of RANKL mRNA was 

reported in human OA subchondral bone osteoblasts.11 Logar et al. reported a 
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significantly higher expression of cathepsin K, MMP-9, osteocalcin, and TRAP relative 

to RANKL in the proximal femur of an osteoarthritic group compared to a fracture 

group, which pointed towards increased bone turnover in OA.12 Thus, the 

RANK/RANKL/OPG nexus has important clinical implications in the pathology of OA, 

and is a potential therapeutic target in the development of treatment for OA.  

 

Alendronate (ALN) is a nitrogen containing bisphosphonate and one of the most potent 

inhibitors of osteoclast mediated bone resorption.13 Bisphosphonates have been shown 

to alter bone remodelling in osteoporosis and Paget’s disease by modulating the 

RANK/RANKL/OPG nexus.14, 15 Clinical trials16, 17 and pre-clinical studies18, 19 have 

shown that ALN treatment decreases subchondral bone remodelling and protects the 

cartilage in OA. We have previously shown that pre-emptive ALN prevented early tibial 

subchondral bone loss and suppressed increased bone turnover in a low-dose 

monosodium iodoacetate (MIA)-induced OA rat model.20 However, the effect of ALN 

treatment on the RANK/RANKL/OPG nexus in OA is not clear. In the present study, 

we hypothesised that ALN can prevents an increase of subchondral bone remodelling 

by modulating the RANK/RANKL/OPG nexus in a low-dose MIA-induced OA rat 

model. Moreover, differential mRNA expression of RANK, RANKL, and OPG has not 

yet been characterised at different stages of OA progression. This is the first study to 

look at the differential gene expression of RANK, RANKL, and OPG in a low-dose 

MIA-induced OA rat model. In addition, we determined the effect of pre-emptive, early, 

and delayed ALN treatment on OA subchondral bone RANK, RANKL, and OPG gene 

expression in this rat model. 
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Materials and Methods 

Animals and OA induction 

The distal femoral subchondral bone used for target gene expression analysis in this 

study was collected from male Wistar rats used in our previous study.a Eight-week old 

young adult male Wistar rats ≈ 230g (Animal Resource Centre, Canning Vale, WA, 

Australia) were kept in a sanitary ventilated animal room with controlled temperature 

(20 - 24°C), a light-dark cycle (12h/12h) with food and water available ad libitum. They 

were closely monitored and daily clinical record sheets were completed throughout the 

duration of the study by the animal care facility staff.  

 

The rats were divided into three groups: OA (n=36), ALN treatment (n=36) and control 

(n=12). On day 0, all the rats were anaesthetized with isofluroane and were given a 

single intra-articular injection of 0.2 mg MIA through the infrapatellar ligament of the 

right knee. MIA was dissolved in sterile physiologic saline and administered in a 

volume of 50l using a 26-gauge 0.5-inch needle. The left contralateral control knee 

was injected with 50l of sterile physiologic saline. The control rats were given a single 

sterile saline injection on the right knee while the left knee was un-injected. The control 

rats did not receive ALN treatment. The animal handling and experimental procedures 

were carried out in accordance with The University of Adelaide Animal Ethics 

Committee and The Institute of Medical and Veterinary Science Animal Ethics 

Committee. 

 

                                                 
a Geetha Mohan, Egon Perilli, Ian H Parkinson, Julia M Humphries, Nicola L Fazzalari and Julia S 

Kuliwaba. Pre-emptive, early, and delayed alendronate treatment in a rat model of low-dose monosodium 

iodoacetate induced osteoarthritis: effect on subchondral trabecular bone microarchitecture, cartilage 

degradation, bone and cartilage turnover, and joint discomfort. 2012. Manuscript submitted for 

publication 
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Alendronate treatment 

Thirty-six rats were treated with ALN administered as twice-weekly subcutaneous 

injections at a dosage of 15g/kg. The ALN solution was made by dissolving one tablet 

of Alendronate (Fosamax 40 mg, MSD, South Granville, NSW, Australia) in 100 ml of 

sterile water. The solution was stirred for 2 hours and then diluted with sterile 

physiologic saline to appropriate concentrations to obtain the required dose as above. 

 

The ALN treatment regime used in this study is as follows: 

4. Pre-emptive ALN treatment group (n=12) – treatment started from day 0 to end 

of week 2. 

5. Early ALN treatment group (n=12) – treatment started from end of week 2 (day 

14) to end of week 6. 

6. Delayed ALN treatment group (n=12) – treatment started from end of week 6 

(day 42) to end of week 10. 

 

Tissue preparation 

As part of a previous studya by our group, the left and right hind limbs of all the rats 

were imaged with high-resolution in vivo micro-CT, with scanning details explained 

elsewhere.21 The first subgroup of rats from the OA group, pre-emptive ALN treatment 

group, and control group, was scanned at week 2. The second subgroup of rats from the 

OA group, early ALN treatment group, and control group, was scanned after 2 weeks 

and 6 weeks. The third subgroup of rats from the OA group, delayed ALN treatment 

group, and control group, were scanned after week 2, 6, and 10. Histomorphometric 

parameters such as bone volume (BV), bone volume fraction (BV/TV) and trabecular 

number (Tb.N) were determined for the proximal tibial subchondral bone, as described 
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previously.21 The rats of the first subgroup, second subgroup and third subgroup were 

then sacrificed at 2, 6, and 10 weeks post-MIA injection, respectively, with CO2 

overdose. Both the right and left femur from all the rats were dissected using sterile 

instruments. The articular cartilage was carefully dissected away from the distal femur 

and incisions were made along the epiphyseal line of the distal femur to remove the 

subchondral bone using a sterile scalpel. The subchondral bone sampled for total RNA 

isolation consisted of the subchondral plate and subchondral trabecular bone. 

 

Total RNA isolation and cDNA synthesis 

The isolated distal femoral subchondral bone was crushed in liquid nitrogen using a 

sterile RNase-free mortar and pestle. The crushed bone specimens were mixed with 1 

ml of Trizol (Invitrogen, Carlsbad, CA, USA) and stored at -80ºC until RNA was 

extracted. Total RNA was isolated from the distal femoral subchondral bone using a 

modified phenol/chloroform extraction method.22, 23 The homogenized bone samples in 

Trizol were thawed at room temperature for 5 minutes, and then centrifuged at 12,000g 

for 10 min at 4ºC. The supernatant was removed and mixed with chloroform and 

centrifuged at 12,000g for 15 min at 4ºC. Following centrifugation, the aqueous phase 

containing RNA was transferred to sterile RNase-free eppendorf tubes and mixed with 

5l of glycogen/ml of Trizol to improve the yield of RNA. Then isopropanol was added 

to this mixture and stored at -20ºC overnight to precipitate the RNA. The following day, 

the specimens were thawed at room temperature for 10 minutes and centrifuged at 

12,000g for 20 min at 4ºC. The supernatant was removed and the pellet containing the 

RNA was washed with 75% ethanol and centrifuged at 12,000g for 10 min at 4ºC. The 

supernatant was removed and the pellet was dried on a heating block at 37º for 2 – 3 

minutes. The RNA was redissolved in DEPC water and stored at -80ºC. The RNA 
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specimens were quantified and checked for purity with a Nanodrop 1000 

spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). The samples 

with a 260/280 ratio of 1.9 - 2.0 were used for reverse transcription (RT). RNA was 

reverse transcribed from 1 g of total RNA from each sample, using a first-strand 

cDNA synthesis kit with Superscript III, (Invitrogen, Carlsbad, CA, USA, Cat No. 

18080085) and 250 ng random hexamer primer (Geneworks, Adelaide, SA, Australia, 

Cat No. RP-6), according to the manufacturer’s instructions.  

 

Real-time RT-PCR 

RANK, RANKL, OPG and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

mRNA expression were analysed by real-time RT-PCR using the SYBR Green 

incorporation technique.24 The cDNA was amplified using iQ SYBR Green Supermix 

(BioRad, Hercules, CA, USA) on a Rotor-Gene 6000 (Corbett Life Science, Sydney, 

NSW, Australia). The PCR reaction settings were as follows: 94ºC for 15 min, followed 

by 40 cycles at 94ºC (30 s), at 60ºC (30 s), and at 72ºC (30 s). This was followed by an 

additional extension step at 72ºC for 4 min. All PCR reactions were validated by the 

presence of a single peak in the melt curve analysis and confirmation of a single 

amplified specific product by agarose gel electrophoresis. Relative expression between 

samples was calculated using the comparative cycle threshold (CT) method (CT).25 

All the PCR reactions were performed in triplicates. The housekeeping gene GAPDH 

was used as the reference gene and the target gene expression CT values were 

normalised to the expression of GAPDH. The primer sequences used are listed in Table 

1.  
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Statistical Analysis 

Analysis of variance (ANOVA) of multiple groups was performed to compare gene 

expression levels using a one-way ANOVA followed by Tukey’s post hoc test. Non-

parametric data were analysed with the Kruskal-Wallis test with Dunn’s multiple 

comparison test (GraphPad Prism version 5.03 for Windows, San Diego, CA, USA). 

For all statistical tests, a P value less than 0.05 was considered statistically significant. 

 

Results 

The mRNA corresponding to each of the target genes was expressed in the distal 

femoral subchondral bone of the OA, the ALN treatment and the control groups. First, 

the difference in target gene mRNA expression within each group (OA, ALN treatment 

and control group) was assessed between time points (2, 6, and 10 weeks). Then, the 

difference in target gene mRNA expression between the groups at each time point was 

assessed. The target gene expression between the right saline injected knee and left un-

injected knee in the control group did not differ significantly (p>0.05 for all genes, data 

not shown). Moreover, we did not find any statistically significant difference in target 

gene expression between the right or left knee of the control group and the contralateral 

control knee from the OA and the ALN treatment groups (p>0.05 for all genes, data not 

shown). Therefore, for the control group, gene expression data of the right and left knee 

at each time point was combined for comparison with the MIA-injected knee of the OA 

group and the ALN treatment groups. 
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Target gene expression within the OA group 

The RANK mRNA expression did not differ statistically between the MIA-injected 

knee and the contralateral control knee, and over time (Fig. 1A). The RANK mRNA 

expression levels were significantly lower, compared to RANKL at 2 and 6 weeks 

(p<0.001 and p<0.01 respectively) and compared to OPG mRNA expression levels, at 

2, 6, and 10 weeks (p<0.05, p<0.001 and p<0.001 respectively). At 2 weeks, there was a 

non-significant increase in RANKL mRNA expression in the MIA-injected knee 

compared to contralateral control knee. The RANKL mRNA expression significantly 

decreased over time for both the MIA-injected and the contralateral control knee (Fig. 

1B). The OPG mRNA expression of the MIA-injected knee was significantly decreased 

compared to the contralateral control knee at 2 and 6 weeks post-MIA injection. There 

was no statistically significant difference in the OPG mRNA expression over time in the 

MIA-injected knee. In the contralateral control knee, the OPG mRNA expression was 

significantly increased at 6 weeks compared to 10 week (Fig. 1C). The RANKL/OPG 

mRNA ratio of the MIA-injected knee was significantly increased compared to the 

contralateral control knee at 2 weeks. The RANKL/OPG mRNA ratio significantly 

decreased over time in both the MIA-injected and the contralateral control knee (Fig. 

1D). 

 

Target gene expression within the ALN treatment group  

The RANK mRNA expression did not differ statistically between the MIA-injected 

knee and the contralateral control knee in any of the ALN treatment groups. However, 

the RANK mRNA expression of the contralateral control knee was significantly 

decreased in the delayed ALN treatment group, compared to the pre-emptive ALN 

treatment group (Fig. 1E). The RANKL, OPG mRNA expression, and the 
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RANKL/OPG mRNA ratio did not differ significantly between the MIA-injected knee 

and the contralateral control knee in any of the ALN treatment groups (Fig. 1F – H). 

The RANKL mRNA of the MIA-injected knee was significantly increased in the pre-

emptive ALN treatment group compared to the early ALN treatment group. In the early 

ALN treatment group, the OPG mRNA expression of the MIA-injected knee was 

significantly increased whereas; the RANKL/OPG mRNA ratio was significantly 

decreased compared to the pre-emptive and the delayed ALN treatment group.  

 

Effect of ALN treatment on RANK, RANKL, and OPG mRNA expression 

Pre-emptive ALN, early ALN, or delayed ALN treatment did not alter the RANK 

mRNA expression levels significantly (Fig. 2A). In addition, there was no statistically 

significant difference in the RANK mRNA expression between the OA, the ALN 

treatment, and the control groups over time. At 2 weeks, pre-emptive treatment 

significantly decreased the RANKL mRNA expression relative to the OA group (Fig. 

2B). Early ALN treatment significantly decreased the RANKL mRNA expression 

relative to the control group whereas; at 10 weeks the RANKL mRNA expression of the 

delayed ALN treatment group was significantly increased compared to the OA and the 

control group (Fig. 2B). The OPG mRNA levels were non-significantly increased in the 

pre-emptive ALN and the early ALN treatment group relative to the OA group (Fig. 

2C). Delayed ALN treatment did not have a significant effect on OPG mRNA 

expression. When we looked at the effect of ALN on the RANKL/OPG mRNA ratio, it 

was found to be significantly decreased by pre-emptive ALN treatment. At 6 weeks 

although not statistically significant, the RANKL/OPG mRNA ratio of the early ALN 

treatment group was decreased; whereas, the ratio of the delayed ALN treatment group 

was non-significantly increased compared to the OA and the control group (Fig 2D).  
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Effect of ALN on tibial subchondral bone histomorphometric parameters 

Bone histomorphometric analysis (micro-CT) from previous studya showed that in the 

pre-emptive ALN group, BV, BV/TV and Tb.N did not differ significantly while Tb.Sp 

was significantly increased relative to the control group. BV and BV/TV was 

significantly increased whereas, Tb.N was non-significantly increased and Tb.Sp was 

significantly lower relative to the OA group. In the early ALN group, at 6 weeks (4 

weeks after ALN treatment initiation), BV, BV/TV, and Tb.Th were significantly 

increased whereas, Tb.N and Tb.Sp did not differ significantly relative to the control 

group. Compared to the OA group, there was no significant difference in BV and 

BV/TV and Tb.Th whereas, Tb.N was significantly increased and Tb.Th and Tb.Sp was 

significantly decreased in the early ALN treatment group. In the delayed treatment 

group, at 10 weeks (4 weeks after ALN treatment initiation), Tb.Th and Tb.Sp was 

significantly increased relative to the control group. There was no significant difference 

in the histomorphometric parameters between the OA group and the delayed ALN 

treatment group. 

 

Discussion 

Bisphosphonates inhibit bone resorption and are used in the treatment of bone 

pathologies with increased osteoclast mediated bone resorption 13. Studies using animal 

models have shown that OA is associated with increased bone resorption in the early 

stage followed by sclerosis.21, 26 In a low-dose MIA-induced OA rat model, we observed 

increased subchondral bone resorption 2 weeks after MIA injection followed by 

subchondral bone sclerosis 6 and 10 weeks after MIA-injection (Fig. 3).21 In the present 

study, we have characterised RANK, RANKL and OPG mRNA expression at early, 

intermediate, and late stages of OA disease progression in a low-dose MIA-induced OA 
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rat model. We assessed the effect of ALN treatment on distal femoral subchondral bone 

in this animal model. This is the first study to report the effect of time-course ALN on 

differential gene expression of RANK, RANKL, and OPG in different stages of OA in a 

low-dose MIA-induced OA rat model.  

 

The structural data reported for the MIA-injected knee at 2, 6 and 10 weeks after OA 

induction in our previous study 21 coincides with gene expression data reported for the 

MIA-injected knee in the present study. The significantly increased RANKL mRNA 

expression and RANKL/OPG mRNA ratio in the subchondral bone of distal femur at 2 

weeks in the MIA-injected knee reflects the significantly decreased subchondral BV and 

BV/TV observed in the tibia of the MIA-injected knee. Similarly at 10 weeks after OA 

induction, the RANKL mRNA expression and the RANKL/OPG mRNA ratio was 

significantly decreased compared to 2 weeks which suggested decreased osteoclastic 

activity that reflects the significantly increased bone tibial subchondral BV and BV/TV 

in the MIA-injected knee reported in our previous study. 

 

Target gene expression analysis in this animal model revealed increased RANKL 

mRNA expression, decreased OPG mRNA expression and increased RANKL/OPG 

mRNA ratio, in the OA group at 2 weeks compared to the control group. The 

RANKL/OPG ratio is an indicator of bone resorptive status27 and the increased 

RANKL/OPG ratio at 2 weeks in this animal model is indicative of increased bone 

resorption (Fig. 3). This finding strongly supports our previous findings of significantly 

decreased BV, BV/TV and Tb.N at 2 weeks after MIA injection in the tibial 

subchondral bone of this animal model.21 At 10 weeks corresponding to advanced stage 

OA, we found a non-significant increase in the tibial subchondral bone volume and 
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bone volume fraction compared to control.21 However, in the gene expression analysis 

we did not find a significant difference in RANK, RANKL or OPG mRNA expression 

in the distal femoral subchondral bone between the OA and control group at 10 weeks. 

This suggests that other molecular signalling systems such as the canonical-catenin 

Wnt pathway, Cathepsin K, and hedgehog pathway could be involved in addition to the 

RANK, RANKL, and OPG system at advanced stages of the disease.28, 29 Recently, the 

Wnt signalling pathway has been identified to contribute to the pathogenesis of OA.30 

Altered Wnt signalling has been shown in human and experimental OA.24, 31  

 

The increase in RANKL expression observed in the present study is in line with 

previous literature. Increased RANKL expression was reported in human osteoblasts 

isolated from knee OA subchondral bone,11 and Tat et al. reported increased RANKL 

mRNA expression in human OA subchondral bone osteoblasts secreting low 

prostaglandin E2 (PGE2).
32 This suggests a strong role for RANKL and OPG in altered 

bone remodelling in OA. We have previously shown that in end-stage human hip OA, 

RANK, RANKL and OPG expression is disrupted and there is an increase in 

osteocalcin gene expression indicating increased osteoblastic activity.23, 33 This shows 

altered bone remodelling with an imbalance in osteoclastic and osteoblastic activity in 

OA.  

 

Bisphosphonates exert their direct effect on osteoclasts by inhibiting the osteoclast 

mevalonate pathway that leads to abnormal osteoclast morphology and function 

resulting in impaired bone resorption.34 The proposed mechanism of ALN action is as 

follows: ALN binds to hydroxyapatite crystals in the bone matrix, and then is ingested 

by osteoclasts during bone resorption. The ingested ALN becomes cytotoxic to 
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osteoclasts, which interferes with ruffled border formation necessary for bone 

resorption.35, 36 Later, Sahni et al. showed that part of the inhibitory action of 

bisphosphonates on osteoclasts is mediated through osteoblasts. They showed that 

osteoclast-resorbing activity was inhibited when osteoclasts isolated from rat femur 

were cocultured with bisphosphonate-treated CRP 10/ 30 cells (rat osteoblast cell line). 

However, the inhibitory effect was not evident when the osteoclasts were treated with 

bisphosphonate for 5 min and subsequently cocultured with untreated CRP 10/30 

cells.37 In the present study, we did not observe a significant change in RANK mRNA 

expression in the OA, ALN, and control group. Moreover, pre-emptive ALN treatment 

significantly decreased the RANKL mRNA expression and the OPG mRNA expression 

was non-significantly increased in the pre-emptive ALN and early ALN treatment 

groups. These data suggests that ALN may have an effect on osteoblast activity in 

addition to its direct effects on osteoclasts.  

 

In a rat anterior cruciate ligament transection (ACLT) model of OA, ALN treatment 

lead to reduced the number of osteoclasts and suppressed bone loss. In that animal 

model, ALN treatment not only prevented bone loss by reducing the number of 

osteoclasts but also affected the normal morphology and function of the osteoclasts.18 In 

a rabbit ACLT model of OA, bone loss with an increased number of osteoclasts was 

observed at 12 weeks. In that animal model, ALN treatment significantly prevented the 

bone loss by reducing the osteoclast number in the tibia however, a small number of 

osteoclasts were still present in the femur.38 In the high-dose MIA (1 mg) rat model, 

increased osteoclastic activity at the bone-cartilage interface and subchondral bone was 

observed. Pre-emptive zoledronic acid treatment prevented bone and cartilage erosion 

and early zoledronic acid treatment significantly reduced bone and cartilage erosion, 
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thereby improving joint integrity.39 In the present study, we were unable to look at the 

osteoclastic activity by TRAP staining due to technical difficulties. However, close 

observation of the Safranin O/Fast green stained sections showed the presence of 

increased osteoclastic activity in the tibial subchondral bone in the MIA-injected tibia. 

Focal areas of resorbed bone were lined by active osteoblasts (Fig. 4).  

 

In our previous study, we have shown that ALN treatment decreased tibial subchondral 

bone loss, bone turnover rate, mineral apposition rate, and preserved subchondral bone 

microarchitecture.a The cellular mechanism of the therapeutic benefit of ALN in this 

animal model appears to be via modulation of osteoblast activity. We found that pre-

emptive ALN treatment effectively suppressed increased RANKL mRNA expression, 

and the RANKL/OPG mRNA ratio. Pre-emptive ALN treatment also non-significantly 

increased OPG mRNA expression, when compared to the OA group. Early ALN 

treatment decreased the RANKL mRNA expression but the delayed ALN treatment did 

not have an effect (Fig. 2). However, there was no change in RANK mRNA expression 

in any of the groups. This is in line with a previous study by Pan et al. which showed 

that human osteoblast-like cells from human OA specimens exposed to zoledronic acid 

treatment markedly increased OPG secretion and reduced transmembrane RANKL 

protein expression even though the gene expression was not significantly altered.40 

Similarly, Eslami et al. reported that the RANKL/OPG mRNA ratio was significantly 

reduced in bone marrow cell cultures from hip OA patients who were receiving ALN 

treatment at the time of surgery compared to controls. Moreover, there was a 50% 

decrease in RANKL/OPG ratio measured in marrow stromal cells from control subjects 

treated with ALN for 3 days in cell culture.41 The authors also showed that in vivo ALN 

treatment decreased in vitro differentiation of bone marrow cells to develop into 

           145



 

osteoclasts. Another study reported that primary cultures of human osteoblasts from hip 

OA patients treated with ALN for 24 hours did not show significant change in OPG or 

RANKL mRNA expression from baseline.42 Such discrepancies in the reported efficacy 

of ALN treatment on RANKL and OPG mRNA expression could be due to use of 

different cell culture techniques in different studies. 

 

In the delayed ALN treatment group we found significantly increased RANKL mRNA 

expression compared to the OA and control groups which was unexpected. A study by 

Enjuanes et al. reported that human primary osteoblast cultures from hip OA patients 

treated with ALN and vitamin D for 72 hours did not have an effect on OPG gene 

expression but increased RANKL gene expression.43 The authors speculate that the 

increase in RANKL mRNA expression could be due to the addition of endogenous 

vitamin D. Increased number of osteoclasts and formation of giant osteoclasts have been 

reported previously in osteoporotic women on bisphosphonate therapy.44 In the present 

study, although we do not have an explanation for the unexpected increase in RANKL 

mRNA expression of delayed ALN treatment group, presence of giant osteoclasts with 

impaired resorptive activity that could have contributed to the increased RANKL 

mRNA expression in the distal femur needs to be confirmed with TRAP staining. 

 

A main limitation of the present study is that we only looked at the RANK, RANKL, 

and OPG mRNA expression in the subchondral bone. Immunohistochemical 

localisation of these cytokines in this animal model would have given more information 

about the expression of these cytokines at the protein level. Moreover, human OA 

chondrocytes have also been shown to express RANK, RANKL and OPG.45, 46 This 

shows that the RANK, RANKL, and OPG cytokine system intricately controls bone and 

           146



 

cartilage metabolism. Further studies are needed to investigate the effect of ALN on 

chondrocyte RANK, RANKL, and OPG expression.  

 

Conclusion 

In summary, we have demonstrated that RANKL and OPG mRNA are differentially 

expressed in OA. The increased RANKL mRNA expression and increased 

RANKL/OPG mRNA ratio that favour bone resorption is likely to contribute to the 

increased subchondral bone loss observed at 2 weeks (early OA) in the low-dose MIA-

induced OA rat model. In addition, this study suggests that the action of ALN on 

subchondral bone resorption in OA could be by decreasing the RANKL and OPG 

mRNA expression by osteoblasts. Bisphosphonates may therefore be a promising 

therapeutic alternative to inhibit bone resorption and thereby preserve the structural 

integrity of subchondral bone in early stage OA. This study has demonstrated that 

targeting subchondral bone remodelling is a potential treatment option for the 

management of OA and warrants further investigation. 
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Figure 1. RANK, RANKL, and OPG mRNA expression within the OA group and 

ALN treatment group. Data are shown as mean ±SEM.     ** p<0.01, *** p<0.001 
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Figure 2. RANK, RANKL, and OPG mRNA expression between the OA group, 

ALN treatment group and control group. Black bar at 2, 6 and 10 weeks 

represents pre-emptive ALN, early ALN and delayed ALN treatment group 

respectively. Data are shown as mean ±SEM.     ** p<0.01, *** p<0.001 
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Figure 3. Safranin O/Fast green stained sections showing articular cartilage and 

subchondral bone of proximal tibia (medial plateau) from control, OA, and ALN 

treatment group after 2, 6, and 10 weeks of injection. In the OA group, there was 

progressive cartilage degeneration with increased subchondral bone resorption 

after 2 weeks followed by sclerosis after 6 and 10 weeks of MIA injection. Pre-

emptive ALN treatment partially prevented proteoglycan loss and cartilage 

degradation and prevented subchondral bone resorption after 2 weeks of 

treatment. In both the early ALN and delayed ALN treatment group, cartilage 

degradation and subchondral bone sclerosis was evident after 6 and 10 weeks of 

MIA injection. Original magnification x 40. 
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Figure 4. Safranin O/Fast green stained sections articular cartilage and 

subchondral bone of proximal tibia (medial plateau) from OA group, 2 weeks after 

MIA injection. Tibia from MIA-injected knee showed increased osteoclastic and 

osteoblast activity suggesting increased subchondral bone turnover. Note the 

presence of large osteoclast-like cell (A, arrow) in the large resorptive areas filled 

with fibrotic bone marrow and reactive osteoblasts (B, arrow) lining the focal 

areas of subchondral bone resorption. Original magnification x 100. 
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Table 1 Primers of targeted genes 

 Targeted 

genes 

Sequence (5' → 3')* Amplicon 

length (bp) 

Accession 

number 

 

OPG 

 

F: ATTGGCTGAGTGTTCTGGT 

 

142 

 

NM012870 

  R: CTGGTCTCTGTTTTGATGC    

RANK F: CAGCCTGGAAGCAGATCGACA 121 XM573424 

  R: AAGTCGCAGCCTTCGGAATC    

RANKL F: TCGCTCTGTTCCTGTACT 147 NM057149 

  R: AGTGCTTCTGTGTCTTCG    

GAPDH F: CTCTTGTGACAAAGTGGAC 103 NM017008 

  R: TGAACTTGCCGTGGGTGA     

 

OPG, osteoprotegerin; RANK, receptor activator of nuclear factor κB; RANKL, 

receptor activator of nuclear factor κB ligand; GAPDH, glyceraldehyde-3-phosphate 

dehydrogenase. 

*F = forward; R = reverse. 
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5 Discussion 

OA is a complex multifactorial disease affecting the whole joint and the etiopathology 

of this disease is poorly understood. Currently there is no cure for OA and the treatment 

available is limited to patients who present with symptomatic disease. OA treatment 

aims at alleviating symptoms of OA and joint replacement is the only option for patients 

with advanced OA. So far, cartilage has been the main focus of OA research as OA was 

considered primarily as a cartilage disorder. However, remarkable research findings 

from the last three decades have clearly shown a strong role for subchondral bone in the 

pathogenesis of OA and have opened new avenues for OA drug development (Burr and 

Radin 2003, Day et al. 2004, Dieppe 1999, Kwan Tat et al. 2010, Radin and Rose 

1986).  

 

Image analysis using micro-CT in human OA studies and animal models has advanced 

our knowledge of subchondral bone changes and its contribution to the progression of 

cartilage degradation in OA. In pre-clinical studies, in vivo micro-CT has been 

instrumental to accurately detect and quantify bony changes in three dimensions (3D). 

Despite progress in OA research, there is a lack of understanding regarding early 

initiating events in OA and the underlying molecular mechanisms. This is because 

obtaining tissue samples from early OA patients is very difficult and human OA is 

mostly diagnosed in its advanced stages.  
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5.1 Overview of study findings 

In the first part of this thesis (Chapter 2) the tissue level changes in the subchondral 

bone and cartilage during the early, intermediate and advanced stages of OA were 

studied in a low-dose (0.2 mg) MIA-induced OA rat model. In vivo micro-CT analysis 

showed increased bone loss at the early stage of OA (2 weeks after OA induction) 

followed by increased subchondral bone thickness, decreased trabecular number and 

increased trabecular separation at the intermediate and advanced stages of OA (6 and 10 

weeks after OA induction). Subchondral plate thickness was increased at 2 and 6 weeks, 

while the porosity was increased at all time points. Other important features such as 

osteophytes and subchondral bone cysts were evident. Histological analysis showed 

progressive cartilage degradation with total loss of cartilage and exposure of 

subchondral bone at the advanced stage of OA. Another key finding was that there was 

no change in serum C-reactive protein (CRP) level, a marker of systemic inflammation, 

in the MIA-injected rats compared to age matched control rats and over time.  

 

After characterising the animal model, the hypothesis that subchondral bone 

remodelling inhibition had an effect on cartilage changes was tested (Chapter 3). This 

was achieved by investigating the effect of alendronate on OA subchondral bone, 

cartilage, bone and cartilage turnover and pain, with treatment initiated at various time 

points of the disease. This approach indicated that the time point of initiating 

bisphosphonate treatment for OA influences outcome and explains the discrepancies 

observed in clinical trials. In this study, pre-emptive ALN treatment was started on the 

day of OA induction. Two weeks of pre-emptive ALN treatment preserved the 

subchondral trabecular bone microarchitecture and inhibited increased bone turnover 

associated with the onset of OA. Pre-emptive treatment had a moderate effect on the 
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cartilage degradation. Both early and delayed ALN treatment prevented loss of 

trabeculae and decreased bone turnover, but did not have a significant effect on cartilage 

degradation.  

 

Finally, the RANK/RANKL/OPG nexus, the regulator of bone remodelling responsible 

for increased subchondral bone remodelling in OA was characterised and the effect of 

alendronate was investigated using the low-dose MIA-induced OA rat model (Chapter 

4). In the OA group, RANKL mRNA expression and RANKL/OPG mRNA ratio were 

significantly increased at 2 weeks in the distal femoral subchondral bone. OPG mRNA 

expression was significantly decreased at 2 and 6 weeks after MIA-injection. Pre-

emptive and early ALN treatment significantly decreased the RANKL mRNA 

expression, RANKL/OPG mRNA ratio and non-significantly increased OPG mRNA 

expression. This shows that pre-emptive and early alendronate treatment significantly 

decreased osteoclast mediated bone resorption in this animal model. 

 

5.2 Comparison to existing literature  

Small animal models of OA are invaluable tools to investigate the pathophysiology of 

OA and they provide tissue samples at various stages of the disease. A single intra-

articular injection of MIA into the rat’s knee joint induced OA-like changes in both the 

cartilage and subchondral bone (Guingamp et al. 1997, Guzman et al. 2003, Kalbhen 

1984). Other OA animal models have also been shown to mimic human OA (Bendele 

2001). However, they are influenced by mechanical instability (surgical models), or are 

highly variable (genetically modified models) or have a reduced incidence or prolonged 

duration of OA development (spontaneous model). The MIA-induced OA rat model is a 

non-trauma model that reproduces key features of human OA such as cartilage 
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degradation, subchondral bone sclerosis, osteophyte formation, and cyst formation in an 

experimentally cost effective time frame. This animal model clearly demonstrates 

consistent progressive thickening of subchondral bone (sclerosis) and a close 

relationship between the subchondral bone changes and cartilage degradation in OA. 

Moreover, the use of high resolution in vivo micro-CT enabled a better understanding of 

OA-related changes in the 3D microarchitecture of subchondral bone which plays an 

important role in determining bone strength (Compston 2006, Dempster 2000).  

 

The low-dose MIA-induced OA rat model showed disease progression from early, 

intermediate and late stages of OA and provides sufficient disease “dynamic range” to 

detect therapeutic effects. However, high-dose MIA (2 mg) induced severe cartilage 

degradation with aggressive bone erosion within 2 weeks comparable to advanced 

stages of OA (appendix 1). Previously, Guingamp et al. reported similar effects of 

high-dose MIA in a dose response study in rats (Guingamp et al. 1997). Hence, it is 

important to use appropriate concentrations of MIA depending on the aims of the OA 

study. The low-dose MIA suited this study as this dose clearly induced non-invasively 

detectable progressive and measurable changes in the cartilage and subchondral bone 

over a cost effective time frame. The MIA-induced OA rat model has also been 

previously characterised as a pain model which is discussed later. Thus, the low-dose 

MIA induced OA rat model reproduced key features of human OA such as increased 

subchondral bone remodelling, subchondral bone sclerosis, osteophyte formation and 

cyst formation. 

 

Another important finding reported in Chapter 2 was that the CRP level in this animal 

model did not differ between the OA group and control group of rats and between time 
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points in the MIA-injected rats. CRP is a marker of systemic inflammation and 

significantly increased serum CRP levels have been reported in animal models with 

systemic inflammation such as the adjuvant-induced arthritis in rats (Banerjee et al. 

2003, Cai et al. 2006). This shows that low-dose (0.2 mg) MIA injection does not 

induce systemic inflammation in this animal model. Therefore, the dose of MIA 

injected is crucial in order to demonstrate non systemic inflammatory disease 

progression in this animal model of OA. In human clinical practice CRP plays an 

important role as a marker to diagnose a wide range of tissue-damaging, inflammatory, 

and infective conditions such as rheumatoid arthritis, cardiovascular disease, severe 

bacterial, fungal, and viral infections (Pepys and Hirschfield 2003). Measurement of 

CRP, an acute phase protein has emerged as a promising marker to diagnose human OA 

and predict disease progression (Spector et al. 1997). Increased serum CRP levels in OA 

patients have been reported previously. However, few studies that reported increased 

CRP levels in OA patients compared the CRP levels of OA patients to young healthy 

controls (Pearle et al. 2007, Sharif et al. 1997, Tetik et al. 2010). The results from an 

extremely large study that surveyed CRP levels in plasma of healthy individuals from 

2291 males and 2203 females, ages 25–74 years, and from 604 males and 650 females, 

ages 25–64 years, showed a significant trend to higher CRP values with increasing age 

(Hutchinson et al. 2000).  

 

Garnero et al. measured serum CRP levels in established knee OA patients using a 

highly sensitive assay and reported that there was no significant increase in CRP levels 

in OA patients compared to age matched controls (Garnero et al. 2001). CRP levels are 

also associated with body mass index (BMI) and CRP levels have been shown to 

increase with increases in BMI (Kao et al. 2009). The Rotterdam Study-I, the largest 
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cohort study to date reported an association between increased serum CRP level and 

prevalence of knee OA. However, in their study a systematic review of 18 studies 

showed no association between serum CRP levels and prevalence, incidence and 

severity of OA after adjusting for age and BMI (Kerkhof et al. 2010). This shows that 

the mild inflammatory response and associated increase in serum CRP levels observed 

in OA could be driven by BMI and/or age. 

 

Chapter 3 of this thesis focused on bisphosphonate treatment effects on subchondral 

trabecular bone and cartilage in a low-dose MIA-induced OA rat model at various 

stages of OA progression. Previous pre-clinical studies (Hayami et al. 2004, Shirai et al. 

2011, Zhang et al. 2011) have shown a positive effect of alendronate on both bone and 

cartilage; however, clinical studies have given mixed results (Saag 2008). While in the 

pre-clinical studies, treatment was initiated pre-emptively, in clinical studies the 

treatment was usually initiated at advanced stages of OA. This gives a strong indication 

that the efficacy of bisphosphonate treatment depends on the time of treatment 

initiation. A previous pre-clinical study determined the effect of zoledronic acid on 

subchondral bone mineral density using dual-emission X-ray absorptiometry (DXA) 

(Strassle et al. 2010). In this thesis the temporal changes in the subchondral trabecular 

microarchitecture and bisphosphonate treatment effects in OA have been clearly 

demonstrated using in vivo micro-CT. Moreover, this thesis focused on changes in 3D 

microarchitectural properties of subchondral bone which gives a better understanding of 

bone-related changes due to bisphosphonate treatment in OA.  

 

Microarchitecture is an important determinant of bone quality (Cole and van der 

Meulen 2011, Dalle Carbonare and Giannini 2004, Dempster 2000) and deterioration in 
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bone microarchitecture diminishes bone quality (Brandi 2009). Advanced imaging 

technologies such as clinical micro-CT and MRI has been useful for evaluating bone 

architecture (Majumdar 2003) and to detect changes in bone architecture in response to 

bisphosphonate treatment in human osteoporosis (Burghardt et al. 2010). Improvement 

of bone architecture after bisphosphonate treatment has been reported in human 

osteoporosis (Jobke et al. 2006, Recker et al. 2005). Further research is warranted to 

determine the effects of long-term bisphosphonate treatment on bone as significant 

microdamage accumulation has been reported in canine trabecular bone due to high 

dose bisphosphonate treatment for up to one year (Mashiba et al. 2001). In this study, 

alendronate had a positive effect on bone architecture and remodelling but only had a 

moderate effect on cartilage condition. The pre-emptive effects of alendronate in this 

study are in line with a previous study (Hayami et al. 2004), which showed that two 

weeks of alendronate treatment(pre-emptive treatment started 3 days before OA 

induction) prevented bone loss and moderately improved cartilage.  

 

Joint pain is an important symptom in OA, and the exact cause of joint pain in OA is 

unclear. If OA is primarily considered a cartilage disorder, cartilage damage could not 

be the source of pain as it is avascular and aneural (Becerra et al. 2010). On the other 

hand subchondral bone is highly innervated and both peripheral and central pain 

sensitisation is known to occur in human OA (Aspden 2008). Moreover, subchondral 

bone pathology such as bone osteophytes, and marrow lesions have been shown to be 

associated with human OA (Boegard et al. 1998, Felson et al. 2001). The MIA-induced 

OA rat model is an accepted model to assess OA-related pain (Combe et al. 2004, 

Pomonis et al. 2005). In chapter 3, MIA-induced OA pain was measured by the hind 

limb weight bearing (HLWB) in this animal model. There was a significant decrease in 
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HLWB of the MIA-injected knee in the OA group of rats from day 1 to 7 compared to 

the baseline value and on day 3 compared to the control group. Previously in this animal 

model, significantly increased activating transcription factor-3-immunoreactivity (a 

marker of nerve injury) following MIA-injection was measured in lumber (L)5 dorsal 

root ganglia of the knee on days 8 and 14 (Ivanavicius et al. 2007). This coincides with 

the findings of reduced weight bearing up to day 7 in the MIA-injected knee reported in 

chapter 3. Moreover, significantly increased calcitonin gene-related peptide (CGRP) 

positive cells was observed in the dorsal root ganglia that is involved in central and 

peripheral pain sensitisation in the MIA-injected rat knee (Ferreira-Gomes et al. 2010) 

 

The decrease in HLWB of the MIA-injected knee reported in chapter 3 could have 

contributed to the bone loss observed in this animal model at 2 weeks. Prevention of 

bone loss, bone pathology and preservation of bone microarchitecture by pre-emptive 

alendronate treatment coincides with the normalisation of weight bearing after pre-

emptive ALN treatment in this animal model. This is consistent with a clinical trial in 

which alendronate treatment for knee OA was associated with decreased subchondral 

bone lesions and less severity of knee pain (Carbone et al. 2004). The investigations 

described in chapter 3 of this thesis led to the conclusion that targeting subchondral 

bone remodelling could offer a potential treatment option for the management of OA. 

 

Chapter 4 of this thesis reports RANK, RANKL, and OPG mRNA expression which 

controls bone remodelling (Khosla 2001, Kohli and Kohli 2011) and has an important 

role in OA (Fazzalari et al. 2001, Logar et al. 2007, Sakao et al. 2008, Tat et al. 2009). 

The results of this final study showed that the increased subchondral bone remodelling 

and the significant bone loss in OA observed in this animal model is associated with the 
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increased RANKL/OPG mRNA ratio at 2 weeks. Similar increased RANKL/OPG ratios 

have been reported in human OA studies (Kwan Tat et al. 2008, Pilichou et al. 2008). 

The structural data reported for the MIA-injected knee at 2, 6 and 10 weeks after OA 

induction in chapters 2 and 3 coincides with gene expression data reported for the 

MIA-injected knee in chapter 4. The significantly increased RANKL mRNA 

expression and RANKL/OPG mRNA ratio in the subchondral bone of distal femur at 2 

weeks in the MIA-injected knee reflects the significantly decreased subchondral BV and 

BV/TV observed in the tibia of the MIA-injected knee. Similarly at 10 weeks after OA 

induction, the RANKL mRNA expression and the RANKL/OPG mRNA ratio was 

significantly decreased compared to 2 weeks which suggested decreased osteoclastic 

activity. This reflects the significantly increased bone tibial subchondral BV and 

BV/TV in the MIA-injected knee reported in chapter 2 and 3. 

 

The prevention of bone loss by alendronate treatment reported in chapter 3 is explained 

by the decrease in RANKL/OPG mRNA ratio by alendronate at 2 weeks. In cell culture 

studies, human osteoblast-like cells with bisphosphonate treatment have shown 

decreased RANKL/OPG mRNA ratio (Eslami et al. 2011, Pan B. et al. 2004). In 

addition, the results from 6 and 10 week time points show that apart from the 

RANK/RANKL/OPG nexus other molecular mechanisms could come into play during 

the advanced stages of the disease (Beyer and Schett 2010, Funck-Brentano and Cohen-

Solal 2011, Prasadam et al. 2010a, Wu et al. 2010). The investigation of the RANK, 

RANKL, and OPG nexus in this animal model has reinforced the important role of 

subchondral bone in OA and clearly indicates that subchondral bone is a potential target 

for OA drug intervention studies. 
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5.3 Strengths and limitations  

The key strength of this thesis is the use of a longitudinal study design to assess 

microarchitectural changes in 3D using high resolution in vivo micro-CT. This study 

approach has reduced the number of animals required to detect OA-related changes in 

the subchondral bone. This approach has also strengthened the statistical power as each 

animal served as its own control. Moreover, very few studies have looked at the 3D 

microarchitectural changes in OA pre-clinical models. As mentioned earlier 

microarchitectural properties are important determinants of bone quality. This thesis has 

investigated temporal changes in bone microarchitecture with and without 

bisphosphonate treatment in OA progression. The choice of a minimally invasive, non-

trauma rat model of OA is another strength of this thesis. The use of a low-dose MIA rat 

model eliminates the need for surgical interventions and is not influenced by 

mechanical instability of the knee joints. This OA rat model is highly reproducible and 

the severity and rate of progression of OA can be easily controlled by varying the dose 

of MIA injected into the rat’s knee joint. Another advantage of the MIA-induced OA rat 

model is that pain has been validated as a clinical outcome in this model (Bove et al. 

2003, Combe et al. 2004, Pomonis et al. 2005, Schuelert and McDougall 2009, 

Stevenson et al. 2011).  

 

To the best of my knowledge, the study reported in chapter 4 of this thesis is the first 

study to report temporal changes in gene expression of RANK, RANKL and OPG in 

OA. This is also the first study to report changes in the RANK, RANKL and OPG 

mRNA expression after alendronate treatment in a pre-clinical model of OA. Moreover, 

the structural changes in the proximal tibial subchondral bone coincide well with the 

gene expression analysis of distal femoral subchondral bone. These findings advance 
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the understanding of the role of the RANK/RANKL/OPG nexus in OA subchondral 

bone remodelling. 

 

The limitations of the studies reported in this thesis have already been discussed within 

the respective chapters. However, a few limitations are note worthy. Although the MIA 

rat model of OA reproduces important features of human OA, it does not fully represent 

the human disease condition. Differences between species, the time take for disease to 

develop, and tissue heterogeneity between rat and human need to be carefully 

considered. Hence, the results obtained from this thesis need to be interpreted with a 

caveat. In the alendronate treatment study, extension of the treatment regime for pre-

emptive and early treatment groups out to 6 and 10 weeks (advanced stages of OA), 

would have given more information regarding alendronate efficacy. Finally, the RANK, 

RANKL and OPG mRNA expression could not be directly correlated with the 

subchondral bone histomorphometric parameters since gene expression analysis was 

performed in the distal femur whereas, histomorphometric parameters were determined 

for the proximal tibial. Further, immunohistochemical studies for the expression of 

RANK, RANKL and OPG protein in the proximal tibia were not undertaken which 

would have complemented the gene expression of RANK, RANKL and OPG in the 

femur. 

 

5.4 Areas for further research and clinical implications 

In this thesis a suitable animal model for OA was characterised and the temporal 

changes in the bone and cartilage in disease progression were clearly demonstrated. 

Moreover, bisphosphonate therapy has been shown to preserve the subchondral bone 

microarchitecture in this animal model of OA. This non-trauma animal model would 
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serve as an excellent model for further research to understand OA pathology and 

important molecular pathways involved in OA disease onset and progression. 

Moreover, it would serve as an excellent tool to test the efficacy of disease modifying 

OA drugs. 

 

The large amount of data generated from in vivo micro-CT imaging reported in this 

thesis could be used in finite element (FE) analysis of tibial subchondral bone. Using FE 

analysis important information such as the stiffness of subchondral bone and its 

contribution to cartilage degradation and OA progression could be investigated (Brown 

and Vrahas 1984, Burr and Schaffler 1997, Burr and Radin 2003, Radin and Rose 

1986). FE analysis could also be used to study the role of subchondral bone cysts in OA 

which have been shown to be associated with accelerated cartilage degeneration and 

OA progression (Crema et al. 2010b, Hayashi D. et al. 2011, Tanamas et al. 2010, Zhao 

et al. 2010). Furthermore, the changes in material properties of subchondral bone in the 

low-dose induced OA rat model have not yet been determined. Analysis of subchondral 

volumetric BMD and collagen content together with previously determined 3D 

microarchitectural properties of subchondral bone would provide us a picture of bone 

quality in this animal model during early, intermediate and late stages of OA. 

 

As OA involves the whole joint, a number of tissues could be considered as targets for 

OA treatment. However, the subchondral bone and particularly the calcified cartilage 

layer are intricately involved in bone-cartilage cross talk and provide exciting 

opportunities to explore and target important pathways and key molecular regulators 

involved in OA pathogenesis. In the low-dose MIA-induced OA animal model, 

subchondral plate breach with reparative tissue was observed. This subchondral plate 
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breach associated with increased porosity could lead to increased communication 

between the joint tissues. This could subsequently provide pathways for the movement 

of factors such as IL-1, IL-17, TNF or TGF that stimulate catabolic events in both the 

cartilage and bone and warrant investigation in this animal model. 

 

RANK, RANKL, and OPG mRNA expression in the cartilage and detection of 

corresponding protein expression by immunohistochemical studies would provide 

further information regarding molecular cross talk between bone and cartilage. The role 

of other molecular pathways such as the Wnt signalling pathway have been shown to be 

involved in OA (Hopwood et al. 2007). The role of molecules involved in this pathway 

such as sclerostin and Dkk-1 could be another avenue to explored using this animal 

model. Recently the two aggrecanases ADAMTS-4 and ADAMTS-5 have been shown 

to have an important role in cartilage degradation and development of OA (Glasson et 

al. 2007, Kapoor et al. 2011). It has also come to light that these two aggrecanases are 

regulated not only at the transcriptional level but also at the level of their activation 

(Bertrand et al. 2010). These aggrecanages and associated molecules such as syndecans 

that are considered essential for the activity of ADAMTS-5 should also be investigated 

in this animal model. 

 

Finally, this animal model provides an excellent opportunity to identify potential 

biomarkers to detect the onset and progression of OA, as it is easy to collect urine and 

blood samples from the rats. This has important clinical relevance as OA is mostly 

diagnosed at advanced stages by a patient presenting with OA symptoms and detecting 

joint space narrowing in radiographs. Hence, detection of OA at an early stage would 
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aid in signalling the need for early intervention to slow progression or use DMOAD  to 

provide better treatment options for patients.  

 

5.5 Conclusion 

The studies reported in this thesis highlight the importance of subchondral bone 

remodelling and changes in trabecular microarchitecture in the initiation and 

progression of OA. In vivo micro-CT has enormous potential to track and accurately 

quantify subchondral bone changes in animal models of OA. The MIA-induced OA rat 

model mimics human OA progression and could be used to further explore cellular 

pathways involved in OA initiation and progression. It is also an excellent tool to 

explore the bone-cartilage cross talk in OA. The bisphosphonate study strongly suggests 

that targeting subchondral bone remodelling early in OA disease onset has the potential 

to slow the progression of OA. Further studies can determine the efficacy of 

bisphosphonate treatment to manage OA at different progressive stages of the disease. 
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Appendix I 

A dose response study in the monosodium iodoacetate rat model of osteoarthritis: 

in vivo micro-CT, histological and serological evaluation 

 

Introduction 

Osteoarthritis (OA) is a major cause of disability and a major socio economic burden to 

society. OA mainly affects the joints of knee, hip, spine, hand and foot. Knee and hip 

are the most commonly affected joints (Michael et al. 2010). The main characteristics of 

OA are cartilage loss, increased bone remodelling, osteophyte formation, subchondral 

sclerosis, and bone attrition. Although these changes are typical of end stage OA, recent 

studies have shown that bone changes occur early in the disease (Burr and Schaffler 

1997, Calvo et al. 2001). OA develops progressively over several years, and in many 

patients it is asymptomatic. Mostly OA is diagnosed at advanced stages when the 

patients feel pain during movement of the joint and when narrowing of joint space 

width is visible in radiographs. For these reasons, study of early pathological changes in 

human OA is difficult. 

 

Animal models have advanced our knowledge regarding the pathogenesis of OA and 

are useful to test suitable therapeutic drugs for OA. The choice of an OA animal model 

depends on the purpose of the study and the selected animal model should represent 

features of human OA as closely as possible. Some of the commonly used animal 

models of OA are spontaneous animal models, surgical models (anterior cruciate 

ligament transection, medial meniscectomy), genetically modified and chemically 

induced models (collagenase, monosodium iodoacetate) (Bendele 2001).   
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The monosodium iodoacetate (MIA) model was first introduced by Kalhben (Kalbhen 

1987) in chicken and rats. MIA is a potent inhibitor of glucose-6-phosphate 

dehydrogenase and blocks glycolysis in chondrocytes (Kalbhen 1984). This leads to 

chondrocyte necrosis and cartilage matrix degradation. A single intraarticular injection 

of MIA into the rat’s knee joint has been shown to induce features of human OA in both 

the cartilage and subchondral bone (Guingamp et al. 1997, van Osch et al. 1994). It is a 

highly reproducible and a non-trauma animal model. The MIA rat model of OA has 

been validated to study OA related pain (Bove et al. 2003, Fernihough et al. 2004, 

Pomonis et al. 2005)and to test suitable drugs for OA (Bar-Yehuda et al. 2009, Janusz et 

al. 2001, Kalff et al. 2010). In these pre-clinical studies, high doses of MIA (up to 3 mg) 

has been used which causes severe disease onset and rapid progression. However, a 

suitable MIA rat model is required to monitor gradual progression of OA that mimics 

human OA disease progression. In the present pilot study, the dose responsiveness of 

tibial cartilage and subchondral bone to a high-dose (2 mg) and a low-dose (0.2 mg) of 

MIA has been evaluated at 2, 6 and 10 weeks post OA induction. 

 

Materials and Methods 

Animals and OA induction 

Eighteen 8-week-old young adult male Wistar rats ≈ 230 g (Animal Resource Centre, 

Canning Vale, WA, Australia), were used in the pilot study. Only two to three rats were 

group housed per cage, with solid bottom and paper beddings, in order to minimize any 

discomfort to the rats. The rats were kept in a sanitary ventilated animal room with 

controlled temperature (20 - 24°C), with a light-dark cycle (12h/12h), and they were fed 

with standard laboratory rodent chow (Specialty Feeds, Glen Forrest, WA, Australia) 

with water available ad libitum. The rats were randomly divided into two groups: high-
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dose MIA group (n=9) and low-dose MIA group (n=9), and were acclimatised for one 

week before the start of the experiment. On day 0, all the rats were induced with OA 

under anaesthesia in strict aseptic conditions. The rats were anesthetised with 

isoflurane/O2 mixture and were placed in supine position on the operating table. Both 

their knees were shaved using electrical clippers and disinfected using 70% alcohol. 

Each rat was given a single intra-articular injection of 2 mg MIA (high-dose group) or 

0.2 mg MIA (low-dose group) through the infrapatellar ligament of the right knee (Fig. 

1). MIA was dissolved in sterile physiologic saline and administered in a volume of 50 

l using a 26-gauge 0.5-inch needle. After injection, the knee joint was relaxed and then 

the needle was removed to make sure that MIA does not leak out and to prevent 

bleeding of the knee joints. Using the same technique, 50 l of sterile saline was 

injected into the rat’s left knee joint, which is used as the contralateral control. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. OA induction by a single intraarticular injection of 0.2 mg MIA into the 

rat’s knee joint under isoflurane anaesthesia. 
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Imaging 

The hind limbs of all the rats were imaged with high-resolution in vivo micro-CT as 

described in the in vivo micro-CT analysis section of this appendix. The 2-week 

subgroup of rats from the high-dose group (n=3), and low-dose group (n=3) were 

scanned after 2 weeks of OA induction. The 6-week subgroup of rats from the high-

dose group (n=3), and low-dose group (n=3) were scanned after 2 and 6 weeks of OA 

induction. The 10-week subgroup of rats from the high-dose group (n=3), and low-dose 

group (n=3) were scanned after 2, 6 and 10 weeks of OA induction. The rats from each 

subgroup were sacrificed after the final scans. 

 

Rat urine and blood collection 

Morning spot urine specimens were collected from each rat at 2, 6, and 10 weeks after 

overnight fasting for repeated measurement of cartilage turnover marker. Each rat was 

placed in an individual sterile, autoclavable cage with wire-mesh base for 3 – 5 minutes. 

After the rat urinated, the rat was removed from the cage and the urine was collected 

from the base of the cage using a sterile disposable pipette into a sterile eppendorf tube 

(Kurien et al. 2004). The urine specimens were transported to the lab on ice and 

immediately centrifuged at 3500 rpm for 5 minutes to remove any debris. Aliquots of 

urine specimen were stored at -80ºC until the assays were performed. 

 

An overnight fasting blood specimen was collected from each rat at 2, 6, and 10 weeks 

after OA induction for repeated measurement of bone and cartilage turnover markers. 

After urine collection, the blood samples were collected under light anaesthesia 

(isoflurane/O2) from the rat’s lateral tail vein by venipunture. To facilitate adequate 

blood flow the rat’s tail was immersed in a warm water bath (40º C) for 10 seconds and 
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the tail was disinfected with 70% ethanol. A 21-gauge needle was inserted 4 – 5 mm 

into the lateral tail vein approximately one-third along the length of the tail from the tail 

tip at an angle of 45º (Furuhama and Onodera 1983). Blood flow occurs due to vessel 

pressure and 1 ml of blood was collected in a sterile eppendorf tube. After blood 

collection, the needle was gently withdrawn and pressure was applied on the site of 

puncture to stop bleeding. Just before sacrifice, blood sample was collected using 

cardiac puncture technique under isoflurane/O2. The rats were laid on their back and 2 

ml of blood was collected by inserting a 3 ml syringe with 21-gauge needle just 

underneath the sternum into the heart at an angle of 30º. The blood specimens were 

transported to the lab on ice and immediately centrifuged at 3500 rpm for 10 minutes to 

collect the serum. Aliquots of serum specimen were stored at -80ºC until the assays 

were performed. 

 

Intraperitonial injection of fluorochrome labels 

Double-fluorescent labelling of newly formed bone was achieved by intraperitonial 

injections (IP) of calcein (5 mg/kg body weight; Sigma-Aldrich, Sydney, NSW, 

Australia) and xylenol orange (90 mg/kg body weight; Sigma-Aldrich, Sydney, NSW, 

Australia), 7 and 2 days before sacrifice respectively. IP injections were given to the 

rats under light anaesthesia (isoflurane/O2) using a 1 ml syringe with 25-gauge, 1-inch 

needle with a short bevel. The injection was made in the lateral aspect of the lower left 

quadrant on the rat’s right side and close to the midline. Inserting the short bevelled 

needle on the rat’s right side avoids intestinal organs such as the cecum and small 

intestine. The needle was inserted at an angle of 30º to a depth of about 5 mm through 

the skin and musculature and immediately lifted against the abdominal wall, to avoid 

puncturing of the abdominal viscera. The syringe plunger was pulled back slightly 
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before injecting to ensure that the needle has not penetrated the bladder, blood vessels 

or intestines. The required volume of calcein or xylenol orange was injected gently and 

then the needle was removed.  

 

The animal handling and experimental procedures outlined in this study were carried 

out in accordance with The University of Adelaide Animal Ethics Committee and The 

Institute of Medical and Veterinary Science Animal Ethics Committee. In addition, the 

rats were closely monitored and daily clinical data sheets were completed throughout 

the duration of the study by the members of the animal care facility. 

 

In vivo micro-CT analysis 

In vivo micro-CT imaging was performed using a bench-top cone-beam type in vivo 

animal scanner (Skyscan model 1076, Skyscan, Kontich, Belgium). Each rat was 

anaesthetized with isofluroane/O2 and placed in the scanner bed in a supine position. 

The MIA-injected knees and the contralateral control knees were scanned together. 

During each scan only the knees were irradiated, while the rest of the body was lead-

shielded from radiation. The hind limbs of the rats were positioned close to the central 

scanner axis, and were securely fixed to scanner bed with the help of masking tape (Fig. 

2) to prevent any movement during scanning. The scans were performed using the 

following scanner settings: X-ray source voltage 74 kVp, current 100 A, a 1-mm thick 

aluminum filter to reduce beam-hardening artefact, 1 frame averaging, pixel size 17.4 

m, exposure time 885 ms, rotation step was 0.5° over 180° rotation, with a scan width 

of 68 mm. Each acquisition comprised two adjacent laterally shifted consecutive scans 

(i.e. one shifted scan per leg, field of view 35 mm in width, 18 mm in length each), 

which were automatically combined to obtain a 68 mm-wide, 18 mm long image 
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(appendix II). The total acquisition time was 40 minutes for each animal (20 min per 

leg), during which the rat was under anaesthesia. The cross-sectional images were 

reconstructed using a filtered back-projection algorithm (NRecon, V 1.4.4, Skyscan, 

Kontich, Belgium). 

 

 

 

 

 

 

 

 

 

Figure 2. In vivo micro-CT imaging of rat hind limbs with the rat on the scanner 

bed in supine position. 

 

For each scan, a stack of 1800 cross-sections was reconstructed, centered over the knee-

joint (total reconstructed height about 16 mm), with an interslice distance of 1 pixel 

(17.4 µm). The reconstructed images were of 2000×2000 pixels each, 17.4 m pixel 

size, and were stored as 8-bit images (256 grey levels) (Perilli et al. 2010). On the stack 

of the reconstructed micro-CT cross-section images, manual regions of interest (ROI) of 

an irregular anatomical contour were drawn in the subchondral trabecular bone region 

for the medial and lateral tibial plateau (Fig. 3), for both the MIA-injected knee and the 

contralateral control knee (software CT Analyser, V 1.8.05, Skyscan, Kontich, 

Belgium). The volume of interest (VOI) consisted of a stack of ROIs drawn over 52 

cross-sections, resulting in a height of 0.45 mm. The VOI included the subchondral 
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trabecular bone starting below the subchondral plate, and extending distally towards the 

growth plate, excluding both the cortical bone and growth plate interface. The VOI used 

was of the same size and shape for all the three time points (2, 6, and 10 weeks), for 

both the control and the MIA-injected tibia. For the calculation of the morphometric 

parameters, the images were segmented using a uniform threshold (Perilli et al. 2010). 

The following 3D morphometric parameters were calculated for the medial VOI, the 

lateral VOI and the total (=medial + lateral) VOI of subchondral trabecular bone 

(software CT Analyser, Skyscan): bone volume (BV, mm3), bone volume fraction 

(BV/TV, %), trabecular thickness (Tb.Th, µm), trabecular separation (Tb.Sp, µm) and 

trabecular number (Tb.N, 1/mm). BV is the volume in 3D of the structure segmented as 

bone, and BV/TV is the ratio of the segmented bone volume to the total volume of the 

region of interest. Tb.Th is the mean thickness of the trabeculae, Tb.Sp is the mean 

distance between trabeculae, Tb.N is the average number of trabeculae present per unit 

length. Tb.Th and Tb.Sp were assessed using direct 3D methods, Tb.N was calculated 

using the formula Tb.N= (BV/TV)/Tb.Th (Bouxsein et al. 2010). 

 

 

 

 

 

 

 

 

Figure 3. Manual region of interest (ROI) drawn in the medial (M) and lateral (L) 

compartment of tibial subchondral bone. Scale bar = 2 mm 
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Reproducibility study 

A scavenged male Wistar rat was used for studying the reproducibility of the micro-CT 

analysis procedure. Both the right and left tibia were scanned five times in 1 day, 

repositioning the animal in the scanner each time for each scan, maintaining the same 

scanner settings. The morphometric parameters were calculated as described previously, 

and the coefficient of variation was determined. The reproducibility was high, with 

coefficient of variation (CV) values smaller than 5% for BV, BV/TV and Tb.N, smaller 

than 2% for Tb.Th and smaller than 3% for Tb.Sp (Table 1). These findings suggest that 

the in vivo micro-CT scanning procedure of the rat tibia had a good reproducibility and 

is similar to that of previous published studies on trabecular bone (Klinck et al. 2008, 

Perilli et al. 2010), as the effect due to MIA, to be measured, is expected to be larger 

than the CV reported here. 

 

Table 1 Coefficient of variation (%) of subchondral trabecular bone determined 

from in vivo micro-CT reproducibility study 

 BV BV/TV Tb.Th Tb.N Tb.Sp 
  

Left Right Left Right Left Right Left Right Left Right
Medial 4.2 5.1 5.4 4.3 1.5 2.0 4.6 2.8 2.7 2.1 
Lateral 3.4 1.7 3.4 2.1 1.4 0.5 2.4 1.8 0.8 1.0 
Total 3.2 3.2 4.2 2.3 0.8 1.2 3.5 1.2 1.3 0.6 

 

 

Collection of bone specimens 

At 10 weeks post-MIA injection the rats were euthanized with CO2 overdose and both 

the right and left tibiae were dissected for macroscopic study. A set of sterile 

instruments were utilized to perform the dissection. A skin incision was made across the 

groin approximately at the level of the inguinal ligament. All the muscle groups were 

sharply divided with scissors and the femoral vessels were dissected free with scalpel. 
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The dissection was carried downward to expose the femur. As the dissection 

approached the hip joint, the hind limb was transected by incising the capsule using a 

scalpel so that the head of the femur dislodges from its socket form the pelvis. The 

removed hind limb was washed in sterile phosphate buffered saline and the knee joint 

was disarticulated using scalpel and sharp scissors to separate the femur and tibia.  

 

Macroscopic analysis 

Soft tissues surrounding the tibia and femur were carefully removed to prevent articular 

cartilage damage. The image of the tibial cartilage was recorded using a fluorescence 

stereomicroscope (SZX 10, Olympus). With the microscope, the fluorochrome labels 

calcein and xylenol orange were imaged and recorded. The macroscopic lesions were 

graded as follows: 0 = normal appearance, 1 = slight yellowish discoloration of the 

chondral surface, 2 = little cartilage erosions in load-bearing areas, 3 = large erosions 

extending down to the subchondral bone, and 4 = large erosion with large areas of 

subchondral bone exposure. The scores for the tibiae were combined and the average 

values were determined for the MIA-injected knee and the control knee (Guingamp et 

al. 1997).  

 

Histological analysis 

Paraffin sectioning: Safranin O/Fast Green staining 

For histological analysis, the tibia and femur of one rat from each subgroup were fixed 

in freshly prepared 4% paraformaldehyde and left at 4C for 24 hours. The bone 

samples were decalcified in freshly prepared 15% EDTA/0.5% paraformaldehyde 

solution, and left at 4°C for 4 weeks or until decalcified. Decalcification was monitored 

using a Faxitron radiography system (LX-60, Illinois, USA) at 60 KvP for 19 seconds. 
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The decalcified specimens were transferred to plastic cassettes (Sakura Tissue-Tek Uni-

Cassette, California, USA) and processed in an automatic tissue processor (Sakura 

Tissue-Tek VIP 6, California, USA). The processed bone specimens were embedded in 

paraffin using the tissue embedding system (Sakura Tissue-Tek VIP 6, California, 

USA). From the paraffin embedded blocks, three sagittal sections (5 m thick) 100 m 

apart were obtained using a rotary microtome (Leica RM2235, Germany). The paraffin 

sections were stained with 1.5% Safranin O, and 0.02% fast green counter stain. Briefly, 

the sections were deparaffinised in xylene, rehydrated in decreasing concentrations of 

ethanol, and stained in 0.02% Fast Green FCF for 20 minutes. The sections were 

quickly rinsed in 1% acetic acid solution and stained in 1.5% alcoholic Safranin O 

solution for 5 minutes. Finally, the sections were dehydrated in increasing 

concentrations of ethanol, cleared in xylene and mounted permanently using DePex 

mounting medium. The stained sections were observed for OA-like features in the 

cartilage and subchondral bone. 

 

Resin sectioning: Blank sections 

The tibia and femur of another rat from each subgroup were fixed with 70% ethanol, 

dehydrated through a graded series of ethanol, and embedded in methyl methacrylate. 

For each sample, two sagittal sections were cut at 5m thickness, spaced 100 m apart 

using an automatic sliding microtome (Leica SM2500, Germany). Mineral apposition 

rate (MAR) was quantified for each sample at 20x objective from unstained sections. 

Three areas from either the medial or the lateral tibial plateau were assessed and then 

combined to obtain the total value. The amount of label incorporation in the tibial 

subchondral trabecular bone was measured under epi-fluorescence and the MAR was 

calculated as described by Frost et al. (Frost 1983):  
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MAR (m/day) =  x(e) (/4) 

            nt 

where x is the sum of all the measurements between double labels, e is the micrometer 

calibration factor (m), /4 is the obliquity correction factor, n is the total number of 

measurements, and t is the time interval expressed (days). 

 

Serum COMP, CTX-I and urine CTX-II analysis 

The serum cartilage oligomeric matrix protein (COMP, cartilage turnover marker), 

serum C-terminal telopeptide of collagen type I (CTX-I, bone turnover marker) and C-

terminal telopeptide of collagen type II (CTX-II, cartilage turnover marker) were 

measured at 2, 6 and 10 weeks after OA induction. Assays for serum COMP (Animal 

COMP ELISA, MD Bioproducts, St. Paul, MN, USA), serum CTX-I (IDS RatLaps 

ELISA, Fountain Hills, AZ, USA), and urine CTX-II (IDS Urine pre-clinical Cartilaps 

ELISA, Fountain Hills, AZ, USA) were performed according to the manufacturers 

instructions in duplicate which is given below.  

 

Serum COMP 

The serum samples were diluted (1:10) with sample buffer and the enzyme conjugate 

was diluted (1:10) with the conjugate buffer. Fifty l of the standard solutions or diluted 

samples were incubated with 50 l of polyclonal antibody in duplicate wells on a shaker 

at room temperature for 2 hours. The wells were washed 6 times manually with the 

wash buffer provided in the kit. The wells were completely emptied and incubated with 

100 l of enzyme conjugate on a slow shaker at room temperature for 1 hour. Again, the 

wells were washed 6 times manually with the wash buffer. The wells were completely 

emptied and incubated with 100 l of enzyme substrate for 15 minutes at room 
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temperature. The reactions were arrested by adding 50 l of stop solution (0.5 M 

H2SO4) into the wells placed on a shaker for 5 seconds to ensure complete mixing. 

Finally, the absorbance of the plate was read at 450 nm using an ultra microplate reader 

(Bio-Tek, Vermont, USA). 

 

Serum CTX-I 

The streptavidin-coated wells were incubated in 100 l of biotinylated RatLaps antigen 

containing a biotinylated peptide, EKSQDGGR for 30 minutes at room temperature. 

The wells were washed 5 times manually with the 50X diluted washing solution. The 

wells were completely emptied and incubated with 20 l standards (containing a 

synthetic peptide, EKSQDGGR), control (containing a synthetic peptide, EKSQDGGR) 

or the serum samples into the appropriate wells in duplicates followed by 100 l of 

primary antibody (specific for a part of the C-telopeptide 1 chain of rat type I 

collagen) for 18 hours at 2-8°C. The wells were washed 5 times manually with the 

washing solution and the wells were incubated with 100 l of peroxidase conjugated 

goat anti-rabbit IgG antibody for 1 hour at room temperature. The wells were washed 5 

times manually with the washing solution and incubated with 100 l of chromogenic 

substrate solution for 15 minutes at room temperature in darkness. The reaction was 

arrested by adding 100 l of stopping solution (0.18 M H2SO4) into each well. Finally, 

the absorbance was measured within two hours at 450 nm with 650 nm as reference in 

an ultra microplate reader (Bio-Tek, Vermont, USA). 

. 

Urine CTX-II analysis  

Standards covering the appropriate measuring range were prepared by diluting (1:2) 

Standard 1 provided in the kit. The wells were incubated with 100 l of biotinylated 
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antigen for 30 minutes at room temperature. The wells were washed 5 times manually 

with 50X diluted wash buffer. The wells were emptied and incubated with 10 l of 

either pre-diluted urine samples (1:3 in standard 0), controls or appropriate standards 

followed by 150 l primary antibody for 21 hours at 2 – 8ºC. The wells were washed 5 

times manually with the wash buffer and emptied completely. Then the wells were 

incubated with 100 l peroxidase-conjugated antibody solution for 1 hour at room 

temperature. The wells were washed and incubated with 100 l of the substrate solution 

for 15 minutes in darkness at room temperature. The reaction was arrested by adding 

100 l of the stopping solution (0.5 M H2SO4) into the wells. Finally, the absorbance 

was measure at 450 nm with 650 nm as reference within two hours in an ultra 

microplate reader (Bio-Tek, Vermont, USA). 

 

For urine CTX-II, the values were corrected with urine creatinine (BioAssay Systems, 

California, USA) which was determined according to the manufactures instructions as 

given below: Five l of 50 mg/100 ml standard solution and urine specimen was taken 

in duplicate into wells of a clear bottom 96-well plate. The working reagent was 

prepared by mixing 50 l of reagent A, 50 l of reagent, and 100 l of distilled water. 

The plate was tapped briefly to mix the reagents well. Two hundred l working reagent 

was quickly transferred to all wells, mixed briefly and the optical density was read at 

510 nm. 

 

Statistical analysis 

For bone histomorphometric parameters repeated measures two-way ANOVA was 

applied to determine the “time effect” (indicates if there was any change over time 

within each group) and “time by group interaction effect” (indicates if the different 
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groups showed different patterns of changes over time). If F-values for a given variable 

were found to be significant, a paired Student’s t-test was applied and the p-values were 

adjusted for repeated comparisons by Holm’s Bonferroni stepdown procedure.  

 

Results 

In vivo micro-CT: changes in 3D microarchitecture of tibial subchondral bone  

High-dose MIA group (2 mg MIA) 

In the high-dose MIA group, there was a non-significant increase in BV, BV/TV, 

Tb.Th, and Tb.N and a non-significant decrease in Tb.Sp over time in both the MIA-

injected (OA) and contralateral control knee (Fig. 4). The tibial subchondral BV of the 

high-dose MIA-injected knee was significantly lower than the contralateral control knee 

at 6 weeks (medial and total compartments). The tibial subchondral BV/TV was 

significantly lower at 6 weeks (all the compartments), and at 10 weeks (medial 

compartment). At 10 weeks, tibial subchondral Tb.Th was significantly increased in the 

MIA-injected knee compared to the contralateral control (medial and total 

compartments; Tb.Th in the lateral compartment showed a trend towards increase). The 

Tb.N was significantly decreased at 6 weeks (all the compartments), and at 10 weeks 

(medial and total compartments). Subchondral Tb.Sp of the MIA-injected knee was 

significantly increased at 6 weeks (all the compartments) and at 10 weeks (lateral and 

total compartments). 

 

Low-dose MIA group (0.2 mg MIA) 

In the low-dose MIA group, there was a significant increase in BV, BV/TV, Tb.Th, and 

Tb.N and a significant decrease in Tb.Sp over time in both the MIA-injected (OA) and 

contralateral control knee (Fig. 5). The tibial subchondral BV of the low-dose MIA-
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injected knee was significantly higher than the contralateral control knee at 10 weeks 

post MIA injection in the medial compartment. There was a trend towards increased BV 

in the total compartment. The tibial subchondral BV/TV of the low-dose MIA-injected 

knee showed a trend towards increase at 10 weeks compared to the contralateral control 

knee (medial and total compartments). Tb.Th of the low-dose MIA injected knee was 

significantly increased at 6 weeks (total compartment) and at 10 weeks (all the 

compartments). Tb.N was significantly decreased at 6 weeks (total compartment) and 

there was no difference between the MIA-injected and the contralateral control at 10 

weeks. There was no significant difference in Tb.Sp between the low-dose MIA-

injected knee and the contralateral control knee at any time point. 

 

Differences in histomorphometric parameters between the high-dose and the low-

dose MIA-injected knee 

The tibial subchondral BV and BV/TV of the high-dose MIA-injected knee was 

significantly lower compared to the low-dose MIA-injected knee at 6 weeks in all the 

compartments (Fig. 6). The BV of the high-dose MIA-injected knee was significantly 

decreased at 10 weeks (medial and total compartments), and BV/TV was significantly 

decreased at 10 weeks (medial compartment). There was no difference in Tb.Th 

between the low-dose and the high-dose MIA injected knee in any of the compartments. 

The Tb.N of the high-dose MIA-injected knee was significantly decreased at 6 weeks 

(all the compartments) and at 10 weeks (total compartment). Tb.Sp of the high-dose 

MIA-injected knee showed a trend towards decrease at 2 weeks, followed by a 

significant increase at 6 weeks (all the compartments), and a trend towards decrease at 

10 weeks (all the compartments). 
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Figure 4. Subchondral trabecular bone histomorphometric parameters of the 

contralateral control tibiae and the high-dose MIA-injected tibiae determined by 

micro-CT, at 2, 6, and 10 weeks post-MIA injection. Error bars= SD. * p<0.05, ** 

p<0.01, *** p<0.001, between control tibiae and MIA-injected tibiae 
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Figure 5. Subchondral trabecular bone histomorphometric parameters of the 

contralateral control tibiae and the low-dose MIA-injected tibiae determined by 

micro-CT, at 2, 6, and 10 weeks post-MIA injection. Error bars= SD. * p<0.05, ** 

p<0.01, *** p<0.001, between control tibiae and MIA-injected tibiae 
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Figure 6. Comparison of subchondral trabecular bone histomorphometric 

parameters of the high-dose MIA-injected tibiae and the low-dose MIA-injected 

tibiae, at 2, 6, and 10 weeks post-MIA injection. Error bars= SD. * p<0.05, ** 

p<0.01, *** p<0.001, between the high-dose and the low-dose MIA-injected tibiae 
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Qualitative subchondral bone changes at 10 weeks after OA induction 

At 10 weeks, two-dimensional (2D) coronal and axial micro-CT images of the 

contralateral control knee showed normal microarchitecture in the tibial subchondral 

bone (Fig. 7). The tibia of the low-dose MIA injected knee showed subchondral bone 

sclerosis in the medial tibial compartment. In contrast, the tibia of the high-dose MIA 

injected knee showed severe subchondral bone loss in both the medial and lateral tibial 

condyle, and the remaining trabecular structure showed thickening. These changes in 

the low-dose and the high-dose group were confirmed by the histology sections of the 

tibia (Fig. 10i). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Coronal and axial micro-CT images of the control, the low-dose and the 

high-dose MIA-injected knee at 10 weeks after OA induction. Control knee (saline-

injected) showed no OA-like changes. Low-dose MIA-injected knee showed 

subchondral plate breach (arrow) and sclerosis in the medial tibial compartment. 

High-dose MIA-injected knee showed sever bone erosion in the tibia (arrow) and 

femur in both the medial and lateral compartments. Scale bar = 2 mm 
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Three dimensional (3D) reconstructed micro-CT images of the contralateral control 

knee showed a smooth contour of the tibial plateau and femoral condyles (Fig. 8). The 

low-dose MIA-injected knee showed pitting of the tibial plateau and femoral condyles 

with marginal osteophytes. The tibial plateau and femoral condyles of the high-dose 

MIA-injected knee showed severe erosion of the subchondral bone and marginal 

osteophyte formation. 

 

 

 

 

 

 

 

 

Figure 8. 3D reconstructed images of the control, the low-dose, and the high-dose 

MIA-injected knee at 10 weeks after OA induction. Control knee (saline-injected) 

showed smooth contoured surface of the tibia and femur. Low-dose MIA-injected 

knee showed pitting of surface in the tibial plateau and femoral condyles with 

osteophyte formation (arrow). High-dose MIA-injected tibia showed severe bone 

erosion and osteophyte formation (arrow). 

 

 

Macroscopic changes 

The tibia and the femur of the contralateral control knee (saline-injected) did not show 

any macroscopic lesions, at 2, 6 and 10 weeks after OA induction. Two weeks after OA 

induction, the tibia and femur of the low-dose MIA-injected knee showed mild cartilage 

changes, whereas the tibia and femur of the high-dose MIA-injected knee showed 
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prominent cartilage lesions (Fig. 9A, B). Six weeks after OA induction, the tibia and 

femur of the low-dose MIA-injected knee showed small cartilage lesions whereas, the 

tibia and femur of the high-dose MIA-injected knee showed sever cartilage lesions. Ten 

weeks after OA induction, the tibia and femur of the low-dose MIA-injected knee 

showed cartilage lesions on the medial and lateral condyle, while the tibia and femur of 

the high-dose MIA-injected knee showed severely remodelled cartilage surface. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9A. Macroscopic changes in the tibia of the control (saline-injected), the 

low-dose MIA and the high-dose MIA-injected knee at 2, 6 and 10 weeks after OA 

induction. Tibia of the control knee did not show macroscopic lesions at any time 

point. Tibia of the low-dose MIA-injected knee showed progressive mild cartilage 

lesions while tibia of the high-dose MIA-injected knee showed severe macroscopic 

lesions. 
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Figure 9B. Macroscopic changes in the femur of the control (saline-injected), the 

low-dose MIA and the high-dose MIA-injected knee at 2, 6 and 10 weeks after OA 

induction. Femur of the control knee did not show macroscopic lesions at any time 

point. Femur of the low-dose MIA-injected knee showed progressive mild cartilage 

lesions. Femur of the high-dose MIA-injected knee showed severe macroscopic 

lesions. 

 

 

Microscopic changes 

The tibial articular cartilage of the contralateral control knee (saline-injected) did not 

show any OA-like changes 2, 6 and 10 weeks after OA induction (Fig. 10a-c). Two 

weeks after OA induction, the tibial articular cartilage of low-dose MIA-injected knee 

showed loss of proteoglycans from the weight bearing regions of the medial tibial 

plateau (Fig 10d). Whereas, the tibial articular cartilage of the high-dose MIA-injected 
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knee showed complete loss of cartilage, severe subchondral bone loss and exposure of 

subchondral bone at 2 weeks (Fig 10g, arrow). Six weeks after OA induction, the tibial 

articular cartilage of the low-dose MIA-injected knee showed loss of proteoglycans and 

fibrillation in the medial tibial plateau and sclerosis of subchondral bone (Fig. 10e). The 

low-dose MIA-injected knee showed loss of tibial articular cartilage, exposure of 

subchondral bone and sclerosis at 10 weeks after OA induction (Fig. 10f, arrow). On the 

other hand, the tibial articular cartilage of the high-dose MIA-injected knee showed 

complete loss of cartilage, subchondral bone sclerosis and exposure of subchondral 

bone at 6 and 10 weeks (Fig 10h, i, arrow) with bone erosion at 10 weeks. Progressive 

osteophyte formation was observed in both the low-dose and the high-dose MIA-

injected knee from 2 weeks up to 10 weeks after OA induction. The OARSI score of the 

low-dose MIA injected knee was 5, 10 and 20 at 2, 6 and 10 weeks respectively. The 

OARSI score of the high-dose MIA injected knee was 18, 20 and 22 at 2, 6 and 10 

weeks respectively.  
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Figure 10. Safranin O/Fast green stained sections of rat tibia showing articular 

cartilage and subchondral bone of the contralateral control knee (a-c), the low-

dose MIA-injected knee (d-f) and the high-dose MIA-injected knee (g-i) at 2, 6, and 

10 weeks post injection. Note the gradual cartilage degradation in the tibia of the 

low-dose MIA-injected knee (d-f). Severe cartilage changes and reparative 

fibrocartilage formation was observed in the tibia of the high-dose MIA-injected 

knee (g-i). 
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OARSI score and MAR 

The OARSI score of the contralateral control knee was zero for all time points. The 

fluorochrome double labels were significantly accumulated in regions of high bone 

resorption in the tibial subchondral bone of the high-dose MIA-injected knee. The tibial 

subchondral trabecular MAR of the low-dose MIA injected knee was 1.4 g/day, 1.02 

g/day and 1.04 g/day at 2, 6 and 10 weeks respectively. The MAR of the high-dose 

MIA injected knee was 1.8 g/day, 1.05 g/day and 1.06 g/day at 2, 6 and 10 weeks 

respectively. The MAR of contralateral control knee was 1.23 g/day, 0.82 g/day and 

0.81 g/day at 2, 6 and 10 weeks respectively. 

 

Serum COMP, CTX-I and urine CTX-II analysis 

There was a non-significant decrease in serum COMP, CTX-I and urine CTX-II levels 

over time in both the high-dose MIA and the low-dose MIA group. The levels of serum 

COMP, CTX-I and urine CTX-II of the high-dose MIA group was non-significantly 

increased than the low-dose MIA group (Fig. 11). 

 

 

 

 

 

 

Figure 11. Serum COMP, serum CTX-I and urine CTX-II levels at 2, 6 and 10 

weeks after OA induction in the low-dose and the high-dose MIA-injected rats.  
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Discussion 

In this pilot study, the dose responsiveness of tibial cartilage and subchondral bone to 

monosodium iodoacetate (MIA) was evaluated in an experimental model of MIA-

induced OA in rats. In vivo micro-CT analysis revealed that injection of high-dose MIA 

induced severe bone loss, with significantly reduced BV/TV, Tb.N and increased Tb.Sp 

at 6 and 10 weeks after OA induction. On the other hand, the low-dose MIA-injected 

knee at 10 weeks, showed significantly increased BV (medial compartment) due to 

subchondral bone sclerosis, which is similar to human OA. Histology revealed that 

high-dose MIA induced severe cartilage degradation (Fig. 10) and subchondral bone 

erosion (Fig. 7) in this animal model. Low-dose MIA induced progressive OA-like 

changes in both the cartilage (Fig 10) and subchondral bone in the rat tibia (Fig. 7). In 

the high-dose MIA group, severe articular cartilage degradation, subchondral bone 

erosion and exposure of subchondral bone was observed 2 weeks after OA induction 

whereas, these changes were observed only 10 weeks after OA induction in the low-

dose MIA group. Thus, progressive joint degeneration was induced by low-dose MIA 

(0.2 mg), whereas high-dose MIA (2 mg) induced highly rapid joint degeneration.  

 

Guingamp et al. reported similar observations in a dose-response study, in which 

sclerosed subchondral bone was exposed 15 days after OA induction using high doses 

of MIA (up to 3 mg) (Guingamp et al. 1997). The increased severity of joint 

degradation depends on the dose of MIA injected. The degree of joint pathology has 

been shown to correlate with a decrease in hind-paw weight bearing in this animal 

model (Bove et al. 2003, Kobayashi et al. 2003). Januz et al. reported that a dose of 0.25 

mg MIA resulted in moderate cartilage damage without aggressive cartilage and bone 

changes three weeks after OA induction (Janusz et al. 2004, Janusz et al. 2001).  
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In both the low-dose and the high-dose MIA group, subchondral bone remodelling was 

observed to be increased, by monitoring MAR values. Though the levels of MAR could 

not be analysed statistically since we had only one rat for each time point, it served to 

develop the methodology for the subsequent study. Serum COMP, serum CTX-I and 

urine CTX-II levels indicated high bone and cartilage turnover rate at 2 weeks which 

gradually decreased over time due to the effect of aging. Similar age related decrease in 

COMP, CTX-I and CTX-II values have been reported previously in an anterior cruciate 

ligament transection model (ACLT) in rats (Hayami et al. 2004). As for MAR, the 

COMP, CTX-I and CTX-II levels were not significantly different between time points, 

since samples from only 3 rats were analysed. Nonetheless, these measurements served 

to develop the methodology and validate the use of these markers for subsequent 

studies.  

 

In conclusion, the high-dose MIA rat model creates an acute model and is not suitable 

to track progressive changes in the cartilage and subchondral bone. The low-dose MIA 

rat model is less aggressive and provides a useful tool to study OA disease progression. 

Moreover, the low-dose MIA rat model of OA could be used to test OA-therapeutic 

drugs. In vivo micro-CT is a non destructive imaging technique that enables qualitative 

and quantitative tracking of subchondral bone changes in this animal model. 
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Appendix II 

 Development of an in vivo scanning protocol for tracking temporal changes in 

tibial subchondral bone in a low-dose MIA-induced OA rat model 

 

Introduction 

In vivo micro-CT is an invaluable tool that enables non-destructive imaging of small 

animals. Accurate quantification of bone changes and tracking of changes in individual 

trabeculae is now possible with this method (Waarsing et al. 2004b). This imaging 

modality has led to our improved understanding of changes in 3D bone 

histomorphometric parameters in rodent models of osteoporosis (Boyd et al. 2006, 

Perilli et al. 2010) and osteoarthritis (Botter et al. 2011, Jones M. D. et al. 2010, Mohan 

et al. 2011). However, scan resolution, scan time and radiation exposure are the limiting 

factors in micro-CT scanning in vivo. Scanning protocols need to be optimised for rat 

imaging in order to minimise radiation exposure and reduce scan time. The 

development of in vivo micro-CT protocol for the studies included in this thesis is 

discussed in detail in this appendix. 

 

Development of in vivo micro-CT scanning in the pilot study 

In the pilot study, in vivo micro-CT imaging was performed using a bench-top cone-

beam type in vivo animal scanner (Skyscan model 1076, Skyscan, Kontich, Belgium). 

The recommended method for scanning the rat’s hind limb is by positioning the hind 

limb using a centrally located plastic tube provided by the manufacturer (Fig. 1). This 

holder was likely developed for studies involving female rats, which are often used in 

osteoporosis related research, because of the commonly-used ovariectomized rat model 

(Brouwers et al. 2008, Perilli et al. 2010, Waarsing et al. 2006). However, for MIA-
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induced OA animal models, male rats are commonly used (Guingamp et al. 1997, 

Guzman et al. 2003, Morenko et al. 2004, Strassle et al. 2010), as for the studies 

included in this thesis (male Wistar rats). Since the male rats are bigger in size 

compared to the female rats, it was very difficult to fit the rat’s hind limb in the plastic 

tube provided by the manufacturer. Also when the hind limbs of the male rats were tried 

to fit into the plastic tube, the testicles of the rat tended to get trapped in the limb holder, 

with the consequence of being unnecessarily irradiated. 

 

Initially in the pilot study (appendix I), both the hind limbs (MIA-injected and 

contralateral control) of the OA rats were scanned together during each acquisition (68 

mm scan), with the rat placed in the scanner bed in a supine position (Fig. 2A). In the 

pilot study (appendix I), in vivo scanning was performed at 2, 6 and 10 weeks after OA 

induction using the following scanner settings: X-ray source voltage 74 kVp, current 

100 A, a 1-mm thick aluminum filter to reduce beam-hardening artefact, 1 frame 

averaging, pixel size 17.4 m, exposure time 885 ms, rotation step 0.5° over 180 

degrees rotation, with a scan width of 68 mm (“camera-shift” modality, Fig. 2B). 

 

 

 

 

 

 

 

Figure 1. Hind limb of a rat fixed to a centrally located plastic tube provided by 

the manufacturer for in vivo scanning (Skyscan model 1076, Skyscan, Kontich, 

Belgium). 
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Figure 2A. In vivo micro-CT imaging of rat hind limbs with both hind limbs 

together. The rats were placed on the scanner bed in supine position, with the hind 

limb secured in place with masking tape.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2B. Scout scan, with position of the knee joints highlighted (red rectangle), 

and X-ray image (center) of both hind limbs of the rat scanned simultaneously in 

vivo (17.4 mm pixel, 68 mm scan width obtained by combining two 35 mm-wide 

scans).  
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Improved in vivo micro-CT scanning protocol used in chapter 2 and 3 

For the studies reported in chapter 2 and 3, a special hind limb holder was devised 

consisting of a cylindrical plastic holder fitted to a polystyrene tube (Fig. 3A). This 

enabled each hind limb to be scanned separately (field of view 35 mm), with the limb 

extended and placed at the center of the scanner axis (Fig. 3B). This involves manually 

repositioning the animal at each scan, and placing the limb to be scanned in the holder. 

During each scan only the knee for image data acquisition was irradiated, while the 

contralateral limb and the rest of the body were lead-shielded from radiation. The 

scanner settings were as follows: X-ray source voltage 60 kVp, current 100 A, a 1-mm 

thick aluminum filter, 1 frame averaging, pixel size was 8.7 m, exposure time 4.7 s, 

rotation step 0.8°, with a complete rotation over 197° (Perilli et al. 2010). The total scan 

time for each limb was 20 minutes during which the rat was under anaesthesia.  

 

The use of the 9 m pixel size protocol improved the image quality compared to the 

image of the 18 m pixel size protocol, with reduced noise in the grey levels and 

increased spatial resolution. The time points (2, 6 and 10 weeks) for in vivo scans were 

selected in order to repeat the scans after a four weeks interval, to reduce radiation 

exposure (McErlain et al. 2008). Previous studies have shown that a radiation dose of 

0.4 Gy for a single scan did not have adverse effects on bone cells (Dare et al. 1997). 

Repeated scanning of rat proximal tibia every two weeks at a dose of 0.6 Gy (Klinck et 

al. 2008) or weekly scan of proximal tibia at 0.9 Gy per scan showed no change in rat 

bone microarchitecture and bone marrow cells (Brouwers et al. 2007). In the present 

study, the effective radiation dose measured in air (Solidose 400, Sweden), for a single 

scan with the settings used with the 9 m pixel size protocol is 1.6 Gy. The accumulated 

dose of 1.6 Gy per scan in one month is similar or inferior to the accumulated dose of 
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3.6 Gy in 1 month with 4 scans at 0.9 Gy per scan by others, where no changes in rat 

bone microarchitecture were observed (Brouwers et al. 2007) or the accumulated dose 

of 1.8 Gy in 1 month with 3 scans at 0.6 Gy per scan (Klinck et al. 2008). As such, 

effects on bone microarchitecture due to irradiation during micro-CT scanning can be 

excluded. 

 

 

 

 

 

 

 

 

 

 

Figure 3A. In vivo micro-CT imaging of a rat hind limb with the rat placed on the 

scanner bed in supine position, with the hind limb secured in a customised leg 

fixative device (inset). 
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Figure 3B. Scout scan (red rectangle) and X-ray image (center) of single hind limb 

of the rat scanned in vivo (8.9 m pixel, 35 mm scan width) with the hind limb 

fixed to the customised leg fixative device.  

 

 

Image reconstruction and segmentation 

The cross-sectional images were reconstructed from the projection data using a filtered 

back-projection algorithm (NRecon, V 1.4.4, Skyscan, Kontich, Belgium). For each 9 

m pixel size scan, a stack of 1800 cross-sections was reconstructed, centered over the 

knee-joint (total reconstructed height about 16 mm), with an interslice distance of 1 

pixel (8.7 m). The reconstructed images were of 1,500×1,500 pixels each, 8.7 m 

pixel size, and were stored as 8-bit images (256 grey levels) (Perilli et al. 2010).  

 

Segmentation is the process of separation of bone and non-bone in the grey level image. 

It is a crucial step for accurate quantification of bone microarchitectural properties. 

Commonly proposed segmentation techniques include the local thresholding and global 
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thresholding method. The local thresholding method is based on the gradients of the 

grey values of the pixels in a micro-CT cross-section image, in the transition between 

bone and non-bone (Waarsing et al. 2004a). The global threshold method is based on 

selecting a single grey level value from the grey level histogram, above (or below, 

depending on the look-up table) which all pixels are marked as bone and below (or 

above) which all remaining pixels are marked as non-bone (Ding et al. 1999, 

Hildebrand et al. 1999, Perilli et al. 2007b). In the studies included in this thesis, the 

images were segmented using the uniform global threshold method (Fig. 4). This 

segmentation value was based on comparisons with externally determined 3D quantities 

such as calibrated thickness measurements by scanning a specially designed micro-CT 

phantom (Perilli et al. 2006, Perilli et al. 2010).  

 

 

 

 

 

 

 

 

 

 

Figure 4. In vivo micro-CT scans with a pixel size of 9 m (A) and the segmented 

micro-CT image using the global threshold method (B) 
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Comparison of grey level values between MIA-injected and contralateral control 

knee 

To investigate whether the grey level values of the bone were different between OA and 

contralateral control knee, the grey level values of the tibial cortex, subchondral 

trabecular bone and subchondral plate was analysed for both the knees (n=12). There 

was no statistically significant difference between the average grey level value and 

standard deviation between the MIA-injected and contralateral control knee at 10 weeks 

(Table 1). 

 

Table 1. Grey level values (out of 256 levels, stored in bitmap format) for 

subchondral bone and cortical bone in the saline-injected (contralateral control) 

knee and MIA-injected knee.  

Significant difference (p-value) between the saline-injected and MIA-injected knee was 

determined by Student’s paired t-test (n=12). 

 

Selection of suitable ROI for measurement of subchondral trabecular bone 

histomorphometric parameters 

An important step in the determination of bone histomorphometric parameters is the 

choice of the region of interest (ROI), its position, and the contouring method used, in 

order to capture the OA-related changes in the subchondral trabecular bone. One 

  

Saline-injected 

knee 

MIA-injected 

knee p value 

  Mean ± SD Mean ± SD   

                

Subchondral trabecular bone 141 ± 18 146 ± 18 0.67 

Cortical bone 171 ± 12 168 ± 8 0.45 

Trabeculae 170 ± 10 165 ± 9 0.21 

Tibial subchondral plate 163 ± 11 161 ± 7 0.61 

Femoral subchondral plate 163 ± 6 159 ± 3 0.16 
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approach reported in the literature is the use of cylindrical volumes of interest (VOI), 

which was used for bone mineral density measurements (Appleton et al. 2007, McErlain 

et al. 2008). In the present thesis, in order to select a suitable ROI to measure the tibial 

subchondral trabecular bone histomorphometric parameters, cylindrical VOIs were 

drawn in anterior and posterior regions of the proximal tibia, and the corresponding 

results were calculated and compared. 

 

Bone histomorphometric parameters of tibial subchondral trabecular bone at 2, 6, and 

10 weeks after OA induction were calculated as follows (n=12 rats at each time point). 

On the stack of the reconstructed micro-CT cross-section images, cylindrical VOIs were 

placed in the anterior and posterior regions of the tibial subchondral trabecular bone 

region for the medial and lateral tibial plateau (Fig. 5) for both the MIA-injected knee 

and the contralateral control knee (software CT Analyser, V 1.8.05, Skyscan, Kontich, 

Belgium). The volume of interest (VOI) consisted of a stack of circular ROIs (2 mm 

diameter) drawn over 52 cross-sections, resulting in a cylinder of 0.45 mm height. The 

VOI included the subchondral trabecular bone starting below the subchondral plate, and 

extending distally towards the growth plate, excluding both the cortical bone and 

growth plate interface (Fig. 6). The following 3D morphometric parameters were 

calculated for the medial VOI, the lateral VOI and the total (=medial + lateral) VOI of 

subchondral trabecular bone (software CT Analyser, Skyscan): bone volume (BV, 

mm3), bone volume fraction (BV/TV, %), trabecular thickness (Tb.Th, μm), trabecular 

separation (Tb.Sp, μm) and trabecular number (Tb.N, 1/mm) (Bouxsein et al. 2010, 

Parfitt et al. 1987). 
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Figure 5. Circular ROIs (which, as a stack, builds a cylindrical VOI) placed in the anterior and posterior region, and manual ROI 

including the entire subchondral bone of the rat tibial subchondral bone, in the medial and lateral compartments.
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Figure 6. Selection of image slices of subchondral trabecular bone starting below 

the subchondral plate (A), and extending distally towards the growth plate 

(indicated by arrow); excluding both the cortical bone and growth plate (B). 

 

Results: 

The results of this sub analysis showed that all the bone histomorphometric parameters 

of the tibial subchondral bone differed significantly for anterior cylindrical ROI and 

posterior ROI at all time points for both the MIA-injected and the contralateral control 

knee (except Tb.Th in the contralateral control knee). Tables 2, 3 and 4 show the 

differences in bone histomorphometric parameters for both the MIA-injected and the 

contralateral control knee at 2, 6 and 10 weeks after OA induction respectively.   

 

The results of this analysis indicate that subchondral bone sclerosis and trabecular 

thickening occurs mostly in the posterior region, whereas loss of trabeculae seems to 

occur in the anterior region of the tibia from the MIA-injected knee. In particular, 

analysis of bone histomorphometric parameters for anterior VOI (Fig. 7) showed 

significantly decreased BV, BV/TV, and Tb.N in the MIA-injected knee compared to 

the contralateral control knee in the medial (2, 6 weeks), lateral and total compartments 

(2, 6 and 10 weeks after OA induction). The Tb.Th was significantly increased at 2 

A B 
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weeks and there was no difference between the MIA-injected and the contralateral 

control knee at 6 and 10 weeks after OA induction. The Tb.Sp was significantly 

increased in the medial (2 weeks), lateral and total compartments (2, 6 and 10 weeks 

after OA induction). On the other hand, the posterior ROI (Fig. 8) showed significantly 

increased BV and BV/TV at 6 and 10 weeks after OA induction in the medial and total 

compartments. Tb.Th was significantly increased in the medial (6, 10 weeks), lateral 

and total compartments (2, 6 and 10 weeks after OA induction). The Tb.N was 

significantly decreased only in the lateral compartment at 10 weeks and Tb.Sp was 

significantly increased at 6 and 10 weeks in the lateral compartment. Similar regional 

differences (anterior and posterior) were observed in both medial and lateral 

compartment for tibial subchondral trabecular bone BV, BV/TV, Tb.N and Tb.Sp in the 

contralateral control knee at 2, 6 and 10 weeks (Table 2, 3, and 4 respectively). The 

regional differences in bone parameters in this study are in line with regional 

differences between anterior and posterior, and between medial and lateral condyles, 

previously reported in the literature for human OA (Bobinac et al. 2003).  

 

In summary, the results indicate significant differences in bone histomorphometric 

parameters depending whether the ROI was chosen in the anterior or posterior regions 

of both the medial and lateral compartments of tibia. Thus, the results could be biased if 

the bone histomorphometric parameters are reported either from anterior ROI or 

posterior ROI alone. Therefore, to prevent this form of bias for the studies in this thesis, 

an ROI of irregular anatomical shape (Fig. 5) was manually drawn for each 

compartment (one ROI for the medial and one for the lateral, respectively), following 

the internal anatomical contours of the subchondral trabecular bone region, including 

the entire subchondral trabecular bone of the proximal tibia. 
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Table 2 Difference in tibial subchondral trabecular bone histomorphometric indices between anterior (n=12) and posterior (n=12) ROI 

in the control and the MIA-injected knee at 2 weeks. % diff is the difference in values between the anterior and posterior cylinder. 

  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  2 Weeks 

 OA  Contralateral control 

 Anterior cylinder Posterior cylinder %diff p-value Anterior cylinder Posterior cylinder %diff p-value 

  mean ± SD mean ± SD     mean ± SD mean ± SD     

BV (mm3)                 
Medial 127 ± 36 332 ± 61 -161 0.0000 202 ± 40 332 ± 53 -64 0.0000 
Lateral 113 ± 31 306 ± 65 -171 0.0000 170 ± 33 286 ± 56 -68 0.0001 
Total 240 ± 65 639 ± 111 -166 0.0000 372 ± 69 618 ± 106 -66 0.0000 

BV/TV (%)              
Medial 9.06 ± 2.57 23.70 ± 4.33 -162 0.0000 14.41 ± 2.85 23.68 ± 3.77 -64 0.0000 
Lateral 8.07 ± 2.19 21.85 ± 4.66 -171 0.0000 12.15 ± 2.38 20.38 ± 4.01 -68 0.0001 
Total 8.56 ± 2.32 22.77 ± 3.98 -166 0.0000 13.28 ± 2.47 22.03 ± 3.79 -66 0.0000 

Tb.N (1/mm)              
Medial 1.08 ± 0.28 2.44 ± 0.40 -126 0.0000 1.59 ± 0.28 2.53 ± 0.36 -59 0.0000 
Lateral 0.97 ± 0.24 2.35 ± 0.41 -141 0.0000 1.37 ± 0.25 2.32 ± 0.41 -70 0.0000 
Total 1.03 ± 0.26 2.39 ± 0.35 -133 0.0000 1.48 ± 1.48 2.43 ± 0.38 -64 0.0000 

Tb.Sp (m)              
Medial 303 ± 27 211 ± 25 31 0.0001 275 ± 23 213 ± 23 22 0.0004 
Lateral 317 ± 22 222 ± 27 30 0.0000 296 ± 20 218 ± 21 26 0.0000 
Total 310 ± 23 216 ± 21 30 0.0000 286 ± 19 216 ± 20 25 0.0001 

Tb.Th (m)              
Medial 84 ± 4 97 ± 5 -16 0.0005 90 ± 4 93 ± 3 -4 0.0723 
Lateral 82 ± 3 93 ± 6 -12 0.0002 89 ± 4 87 ± 3 2 0.2919 
Total 83 ± 3 95 ± 5 -14 0.0002 90 ± 3 90 ± 3 -1 0.4884 
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Table 3 Difference in tibial subchondral trabecular bone histomorphometric indices between anterior (n=12) and posterior (n=12) ROI 

in the contralateral control and the MIA-injected knee at 6 weeks. % diff is the difference in values between the anterior and posterior 

cylinder.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  6 Weeks 

  OA Contralateral Control 

 Anterior cylinder Posterior cylinder %diff p-value Anterior cylinder Posterior cylinder %diff p-value 

  mean ± SD mean ± SD    mean ± SD mean ± SD    

BV (mm3) 
                

Medial 207 ± 86 602 ± 155 -191 0.0008 292 ± 72 402 ± 111 -38 0.0269
Lateral 171 ± 51 492 ± 75 -188 0.0001 236 ± 37 374 ± 87 -59 0.0042
Total 377 ± 132 1094 ± 193 -190 0.0002 527 ± 94 775 ± 189 -47 0.0101

BV/TV (%)               
Medial 14.67 ± 6.08 42.77 ± 10.94 -192 0.0008 20.77 ± 5.10 28.59 ± 7.87 -38 0.0264
Lateral 12.14 ± 3.62 35.02 ± 5.40 -188 0.0001 16.81 ± 2.64 26.65 ± 6.20 -59 0.0042
Total 13.40 ± 4.63 38.89 ± 6.75 -190 0.0001 18.79 ± 3.35 27.62 ± 6.70 -47 0.0100

Tb.N (1/mm)               
Medial 1.50 ± 0.53 3.23 ± 0.54 -116 0.0003 2.11 ± 0.40 2.88 ± 0.62 -37 0.0096
Lateral 1.31 ± 0.36 2.91 ± 0.25 -123 0.0001 1.73 ± 0.20 2.78 ± 0.53 -61 0.0007
Total 1.40 ± 0.42 3.07 ± 0.33 -119 0.0001 1.92 ± 0.25 2.83 ± 0.54 -48 0.0023

Tb.Sp (m)               
Medial 280 ± 35 180 ± 19 36 0.0003 233 ± 30 186 ± 24 20 0.0031
Lateral 291 ± 35 201 ± 20 31 0.0005 259 ± 21 186 ± 23 28 0.0000
Total 286 ± 33 190 ± 10 33 0.0002 246 ± 22 186 ± 20 24 0.0002

Tb.Th (m)               
Medial 96 ± 8 131 ± 16 -37 0.0042 98 ± 7 98 ± 10 0 0.9903
Lateral 93 ± 4 120 ± 10 -29 0.0009 97 ± 6 95 ± 7 2 0.5770
Total 94 ± 6 125 ± 11 -33 0.0013 97 ± 6 96 ± 8 1 0.7915
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Table 4 Difference in tibial subchondral trabecular bone histomorphometric indices between anterior (n=12) and posterior (n=12) ROI 

in the contralateral control and the MIA-injected knee at 10 weeks. % diff is the difference in values between the anterior and posterior 

cylinder.  

  10 Weeks 

  OA Contralateral Control 

 Anterior cylinder Posterior cylinder %diff p-value Anterior cylinder Posterior cylinder %diff p-value 

  mean ± SD mean ± SD     mean ± SD mean ± SD     

BV (mm3)                 
Medial 318 ± 157 780 ± 133 -145 0.0002 366 ± 102 529 ± 113 -44 0.0010 
Lateral 195 ± 46 525 ± 94 -169 0.0006 307 ± 93 475 ± 88 -55 0.0003 
Total 513 ± 191 1304 ± 175 -154 0.0001 673 ± 187 1004 ± 192 -49 0.0004 

BV/TV (%)                 
Medial 22.71 ± 11.20 55.62 ± 9.47 -145 0.0002 26.07 ± 7.34 37.66 ± 8.06 -44 0.0010 
Lateral 13.91 ± 3.27 37.37 ± 6.81 -169 0.0006 21.87 ± 6.66 33.91 ± 6.30 -55 0.0003 
Total 18.31 ± 6.81 46.49 ± 6.24 -154 0.0001 23.97 ± 6.69 35.79 ± 6.89 -49 0.0004 

Tb.N (1/mm)                 
Medial 2.10 ± 0.68 3.40 ± 0.57 -62 0.0012 2.45 ± 0.41 3.31 ± 0.46 -35 0.0002 
Lateral 1.47 ± 0.27 2.94 ± 0.21 -99 0.0000 2.09 ± 0.41 3.21 ± 0.37 -53 0.0000 
Total 1.78 ± 0.45 3.17 ± 0.37 -78 0.0001 2.27 ± 0.39 3.26 ± 0.39 -44 0.0000 

Tb.Sp (m)                 
Medial 255 ± 41 174 ± 33 32 0.0023 232 ± 23 185 ± 23 20 0.0027 
Lateral 295 ± 24 212 ± 17 28 0.0004 251 ± 18 186 ± 15 26 0.0000 
Total 275 ± 29 193 ± 17 30 0.0004 241 ± 18 186 ± 16 23 0.0001 

Tb.Th (m)                 
Medial 104 ± 20 166 ± 31 -60 0.0096 105 ± 13 113 ± 14 -8 0.1599 
Lateral 94 ± 7 127 ± 25 -36 0.0266 103 ± 11 105 ± 9 -2 0.5641 
Total 99 ± 13 147 ± 27 -49 0.0128 104 ± 12 109 ± 11 -5 0.2602 
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Figure 7. Tibial subchondral trabecular bone histomorphometric parameters 

calculated from anterior ROI (n=12) in the medial, lateral and total compartments 

at 2, 6, and 10 weeks for the contralateral control and the MIA-injected knee. Data 

represented as mean ± SD. * P <0.05, ** P <0.01, between the contralateral control 

and the MIA-injected tibiae. 
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Figure 8. Tibial subchondral trabecular bone histomorphometric parameters 

calculated from posterior ROI (n=12) in the medial, lateral and total 

compartments at 2, 6, and 10 weeks for the contralateral control and the MIA-

injected knee. Data represented as mean ± SD. * P <0.05, ** P <0.01, between the 

contralateral control and the MIA-injected tibiae. 
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Subchondral plate analysis 

Subchondral plate thickening and increased subchondral plate porosity are important 

features of OA (Buckland-Wright 2004, Burr and Schaffler 1997, Dedrick et al. 1997, 

Intema et al. 2010). Recent studies show changes in subchondral plate thickness and 

porosity using micro-CT in mice and canine models of OA (Botter et al. 2011, Sniekers 

et al. 2008b). In the present thesis, changes in the tibial subchondral plate were 

determined in the MIA-injected knee and the contralateral control knee in a rat model of 

OA (Mohan et al. 2011). The 3D subchondral plate thickness (Pl.Th, m) and porosity 

(volume of the pores in the plate over the total volume of the plate, Pl.Por, %) of the 

medial and lateral compartments of the tibial subchondral plate were calculated on 

regions, measuring 2.5 mm in length from the posterior side (Fig. 9), 1.5 mm 

mediolateral in width (Fig. 11).  

 

The images were segmented using the same threshold used for subchondral trabecular 

bone analysis. The subchondral plate was separated from the trabecular bone of the tibia 

by using a software kindly provided by Botter et al (Botter et al. 2011). The separation 

of subchondral plate and trabecular bone was achieved by a second segmentation step 

after which, the cortex remains black, the trabeculae becomes dark grey, and bone 

marrow becomes light grey coloured (Fig. 10)  
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Figure 9. Image showing the selection of VOI for tibial subchondral plate analysis 

which included regions (between the red lines, indicated by arrow), measuring 2.5 

mm in length from the posterior side. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. A software provided by Botter et al. was used to separate the 

subchondral plate and trabecular bone. After the second segmentation step the 

cortex, subchondral plate and growth plate remains black, the trabeculae becomes 

dark grey, and bone marrow becomes light grey coloured. 
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Figure 11. Calculation of tibial subchondral plate thickness and plate porosity in a 

region measuring 1.5 mm mediolateral in width (rectangular box indicated by 

arrow) in the medial and lateral compartments using CT Analyser, (V 1.8.05, 

Skyscan, Kontich, Belgium). 

 

Conclusion 

In vivo micro-CT scanning of rodents enables tracking of bone related changes over 

time. It is crucial to optimise the scanning protocol and data analysis to suit each study. 

The in vivo micro-CT protocols described in this section have been optimised to track 

changes in subchondral trabecular bone and subchondral bone plate, in a low-dose 

MIA-induced OA rat model. Reliable results obtained from in vivo scanning of rodent 

models depend on critical factors such as scanning protocol, image processing, 

segmentation and image analysis. All the above mentioned factors have been addressed 

in order to optimise scanning protocol and post processing steps to ensure that the 

results obtained are repeatable and accurate.   
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