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Abstract
Many, if not all, manufacturing processes in industry require scheduling activities; such

activities are very important as often they determine the success or failure of some com-

panies. For example, in wine production, grapes are planted, mature fruits are harvested,

transported and crushed then the juice obtained is placed in tanks, which are managed

during fermentation, and finally the wine is bottle. A schedule can be a solution to a prob-

lem which has several, possibly conflicting objectives, e.g. the mininisation of production

costs and delays while meeting customer-imposed wine delivery times; the problem also

has constraints, e.g. a bottling line cannot be used without being cleaned to process white

wine when it last processed red wine. As can be expected, the problem has variables such

as the number of wine bottles ordered.

The environment (e.g. wine factory) in which the schedule is implemented may change

(e.g. one bottling line breaks down) whereby this schedule becomes infeasible. Conse-

quently, there could be a need to solve a new scheduling problem to obtain a new schedule

best suited to the new state of the environment. The number of variables in this new

problem may be the same as that of the previous problem. A large proportion of research

effort has been directed towards scheduling problems with a constant number of variables

despite changes in the environments where the problems are set. However, there are

important scheduling problems where the number of variables could vary. For example,

in some models of job-shop scheduling problems there are occurrences of additional rush

jobs and job cancellations.

This thesis deals with one particular class of scheduling problems, each being multi-

objective, resource constrained, and having numbers and values of variables which vary

over time. Various traditional operation research methods as well as a few Artificial

Intelligence-based techniques, such as Multi-Agent Systems and Evolutionary Algorithms

(EA), have been applied to solve this type of problem. In this thesis, a memory-based

EA technique was applied to solve problems from the class. Being memory-based, this

technique utilises the solutions to problems set in previous states of an environment in
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order to solve a problem set in the current state of this environment.

The memory-based EA technique, referred to as Centroid-Based Adaptation with Ran-

dom Immigrants (CBAR), is applicable only to solve multi-objective, resource-constrained

problems with a constant number of variables. In this thesis, CBAR is extended to be-

come applicable to solve all problems from the above-mentioned class. The result of this

extension is a technique referred to as Mapping of Task IDs for CBAR (McBAR).

This thesis investigates the performance, the performance stability over environmental

dynamics, and the efficiency of McBAR for solving various problems from the above class,

legitimises the sub-algorithms that constitute McBAR and extends McBAR to become

proactive (anticipative of future environmental changes).

Compared to the other techniques investigated in this thesis, results showed McBAR

to have the best and most stable performance, and to be most efficient for determining

solutions to problems from the above class. All of the sub-algorithms of McBAR are shown

to be legitimate, while McBAR having been made proactive is shown to be beneficial in

some applications.
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Introduction

Chapter 1

Intelligently designed schedules are significant in a myriad of fields, such as manufacturing,

air travel, and military operations [35,58,231]. With these schedules, manufacturing cost

could be reduced, flight schedules could be orderly, and military objectives could be

achieved. Tasks in schedules require resources, such as personnel, machines, and raw

materials [58, 209]. A scheduling problem where on-going tasks are restricted to utilise

a limited number of resources is referred to as a Resource-Constrained Project Scheduling

(RCPS) problem [58]. Many problems can be transformed into the form of an RCPS,

such as production sequencing, timetabling, and flight scheduling.

Many scheduling problems are multi-objective [194,214,241]. Suppose in creating an

edifice construction schedule one objective is to reduce construction duration that could

be accomplished by employing more labourers. However, due to overhead expenses (e.g.

hazard fee) per labourer, the construction cost could be higher for the same total man-

hours. Now, if the other objective is to reduce the construction cost, which could be

accomplished by employing fewer labourers, the construction duration could be longer.

Thus, in this example, the two conflicting objectives (minimisation of construction cost

and duration) cannot possibly be achieved simultaneously. The problem of simultaneous

optimisation of conflicting objectives is referred to as the Multi-Objective Optimisation

(MOO) problem [106].

There are several measures of the quality of a solution to a given MOO problem [237].

One of them is the weighted sum of the problem objective values. For example, the cost

and duration of a schedule being a solution to a MOO problem are multiplied by 0.3 and
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0.7, respectively, and then the products are summed to obtain the measure of the quality

of this schedule.

The quality of a schedule may be affected by changes in an environment on which

this schedule is implemented [40]. For example, in the implementation of an air traffic

schedule, bad weather or emergencies occur whereby this schedule might become infeasible

to implement or the schedule quality might deteriorate to an unacceptably low level.

Thus, it is necessary and/or could be beneficial to revise the schedule [40]. Many real-

world RCPS problems are set in dynamic environments which may change over time the

constraints, the number of variables, or the parametric values of these problems [37,104].

For example, a military operation scheduling problem has a constraint not to bomb a

civilian area. However, if after the start of implementing the problem solution/schedule,

the civilians are known to have left, then this constraint can be removed. It could also

transpire during the implementation that hostile combatants retreat to recuperate then

attack at some time later, and that such an attack could elicit the occurrence of new

military operational tasks not considered in the creation of the solution. If variables

of the scheduling problem correspond to tasks then the occurrence of the new tasks can

change the problem dimension. Another event in the military operation could be an

increase in the number of enemy combatants. If this number is a problem parameter

then the increase will change the value of this parameter.

In the context of this thesis, at any moment of change in any dynamic environment,

only three types of task status are considered: finished, to-be-executed and on-going,

which indicates the task status of being started. Let the total number of tasks be the

sum of the number of tasks at any of the statuses. Further, let M denotes a class of RCPS

problems set in dynamic environments where each problem has two or more conflicting

objectives and each environment has no decrease in the total number of tasks and has

at least one moment of increase in the total number of tasks, an increase that instigates

change in problem dimension. This introduction summarises the research in this thesis on

the creation of effective and efficient technique to determine solutions to many problems
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from M.

Section 1.1 explains the motivation of the thesis, i.e. the need to create the effective

and efficient technique. Before proceeding, notations are introduced and terms are defined

in Section 1.2. Then Section 1.3 declares the hypothesis and enumerates several thesis’

goals whose fulfilment proves this hypothesis. The methods to accomplish these goals are

then explored in Section 1.4, followed by the discussion of the major contributions of the

research in Section 1.5. Section 1.6 concludes outlining the organisation of the thesis.

1.1 Motivation

An RCPS problem is NP-hard which is often approached using modern heuristic methods,

e.g. Evolutionary Algorithm (EA) [123]. Consider a schedule as a solution to an RCPS

problem set in the original state of a dynamic environment. One possible approach for

addressing RCPS in this dynamic environment is to revise the schedule through an EA-

based technique every time this environment changes [205]. Suppose that the schedules

as solutions to problems set in the environment at previous states are stored in a memory

and then retrieved to help the search for a schedule as the solution to a problem set in the

current environmental state. This approach is referred to as a Memory-Based Approach

(MBA), and was shown in some researches [40,131,185] to be indeed effective for helping

the search.

In several studies MBA has been applied to solve problems set in dynamic environ-

ments [22, 223, 224]. Our previous study/research [40] successfully applied a type of

memory-based EA technique, referred to as Centroid-Based Adaptation with Random Im-

migrants (CBAR), to bi-objective RCPS problems set in dynamic environments with a

constant total number of tasks. However, our other work [3] demonstrated CBAR to be

inapplicable for solving any problem from M, i.e. a multi-objective RCPS problem set

in a dynamic environment with increases and without decreases in the total number of

tasks.
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Important scheduling problems are set in dynamic environments, each with a time-

varying total number of tasks. For example, in some job-shop scheduling, additional

rush jobs and job cancellations occur [22]. To solve this type of problem, some Ar-

tificial Intelligence (AI) techniques, such as Multi-Agent System (MAS) [14, 109] and

EA [27,28,127,164], have been applied. However, the application of a memory-based EA

technique to solve problems from M is absent in the literature. Thus, the motivation of

this research is the need to create an effective and efficient memory-based EA technique

to solve many problems from M. Exploiting the initial success of CBAR and considering

its inapplicability, the technique sought is an innovation of CBAR referred to as Mapping

of Task IDs for CBAR (McBAR).

1.2 Notations and Definitions

The following notations and definitions will be used in this thesis.

1.2.1 Tasks and Resources

Resources are assets that can be utilised for a system to function. Examples of resources

are soldiers, fuel and weapons. Let j be a resource type label; 1 ≤ j ≤ J , where J is

the number of resource types. Rj be the number of items of resource type labelled j.

Resource constraint is a restriction on the number rj,t of being-used items of a certain

resource type labelled j that, at any time t, must not exceed a given number Rj of items

of the same resource type; note that unavailable items of one resource type cannot be

replaced by items of other resource types, e.g. shut down fighter jets cannot be replaced

by tanks and soldiers. Let the resource constraint be denoted as rsrc and be expressed

as,

∀ 1 ≤ j ≤ J, ∀ t rj,t ≤ Rj (1.1)

Task is an activity to be undertaken. It is characterised by the following attributes: the
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nature of activity, expected duration, number and type of resources utilised, precedence

relationship to other tasks, starting time, and status as enumerated above. For example,

the task of bombing an area is expected to take four hours, requires six fighter jets, must

be executed after the failure of some negotiations, and is to start at dawn of the day after

the failure. Let Tn signify a task with ID n, 1 ≤ n ≤ N , where N is the total number

of tasks.

Task precedence relationship is a priority in the order of tasks. For example, if task T2

is to transport weapons and ammunitions, task T5 is to bomb an area, task T16 is to inter-

rogate prisoners of war, and task T17 is to clear the bombed area, then a task precedence

relationship could be: the bombing of the area must be done after transporting weapons

and ammunitions, and before clearing the bombed area and interrogating prisoners of

war. Let the precedence constraint of any scheduling problem on tasks be denoted as prec

and expressed as,

∀ p(i, j) ∈ P Ei ≤ Sj (1.2)

where P is a set of pairs p(i, j) of task indexes, 1 ≤ i, j ≤ N , with task Ti demanded in

the problem to precede task Tj; Ei is the ending time of task Ti, and Sj is the starting

time of task Tj.

1.2.2 General Static Problem

Following [156], let a multi-objective static RCPS problem be represented by a triple

〈 E | C | O 〉 where, E denotes the model of a static environment in which the problem is

set, C denotes the model of problem constraints, and O denotes the problem objectives.

The elements of the triple are made slightly specific as follows. Let E be a set composed

of the total number of tasks N and a set

P = {p1, p2, . . . , pM} (1.3)
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of M entities other than N that characterise the environment, i.e. E = {P,N}. Notice

that in E, the total number N of tasks is not made as an element of P so as to emphasise

one of the foci of the thesis on the increase of the total number of tasks in environments.

The other entities in P could be the cost of moving each resource from one task to another,

the duration of each task, the number and types of resources utilised by each task and

the landscape characteristics such as roads, topography and vegetation.

Let C be a set composed of a set Prec of task precedencies and a set Rsrc of resource

constraints whose elements are of the same form as the inequalities of 1.1 and 1.2 respec-

tively, i.e. C = {Prec,Rsrc}. A resource constraint in Rsrc could be that the number of

in-use fighter jets must not exceed seven and the precedence constraint in Prec could be

that troop deployment must be executed after aerial bombing.

Let O be a set {o1, o2, . . . , oK} of problem objectives to be optimised, where K is the

number of objectives included in the model of the problem. The objectives could be

to minimise fuel expenses, equipment damage, soldier fatalities, and operation execution

duration, and to maximise the secured area.

The static problem is then expressed as,

g = 〈 {P,N} | {Prec,Rsrc} | {o1, o2, . . . , oK} 〉 (1.4)

Note that the terms on the right-hand side of this expression are not fully specified.

Thus, g is a general problem set in a static environment.

1.2.3 Dynamic Environment

Now, consider a dynamic environment where snapshots are taken at its original state and

immediately after each time it changes. For example, a snapshot is taken at an original

environment topography that has a valley occupied by rebels. Let a scheduling problem

be formulated from this scenario. Now, suppose the next snapshot is taken immediately

after the environment changes for the first time to a state that, in addition to the last state
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of this environment, has a road-blocking landslide which hampers transport of logistics

from a depot, can thus change the scheduling problem. Note that a snapshot of a dynamic

environment is considered as a static environment. Thus, any problem set in it is referred

to as a static sub-problem.

Let the order i of taking a snapshot also be the sequential order of state alteration

(SOSA) of the dynamic environment from where this snapshot is taken. For instance,

a third snapshot is taken immediately after the third moment that the environment is

altered, i.e. the third SOSA. Given a dynamic environment, let each zeroth snapshot

and zeroth SOSA corresponds to the original state of this environment.

Let Γi be a class of multi-objective static RCPS sub-problems, each set in the ith

snapshot of a dynamic environment without decreases and with increases in the total

number of tasks. Further, let each of its members be expressed as,

gi = 〈 {Pi, Ni} | {Preci,Rsrci} | {o1, o2, . . . , oK} 〉 (1.5)

where each term in the right-hand side with subscript i has the same meaning as its

non-subscripted counterpart in Equation 1.4; however, this term corresponds to the ith

snapshot.

1.2.4 Dynamic Problems

As stated above, the members of M are multi-objective dynamic RCPS problems, each

set in a dynamic environment with increases and without decreases in the total number of

tasks. So, let a dynamic problem g ∈ M be expressed as a sequence of multi-objective

static RCPS sub-problems,

g = 〈g0, g1, . . . , gL〉 (1.6)

where 〈. . .〉 denotes an ordered set; each sub-problem gl ∈ g is a member of Γl and

is to be found in a corresponding in-sequenced snapshot of the environment where the
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problem g is set; where the subscripts denote the SOSA of the environment; and L is the

number of moments of changes in the environment. Note that a dynamic environment

can have several changes at a single moment. Let gl be referred to as a (static) sub-

problem of (dynamic) problem g. The perception of a dynamic problem as sequence of

static sub-problems is also evident in [212].

1.2.5 Subsets of M

Let us now define important subclasses of M.

• P2: Each member of this subclass is a sequence of sub-problems which individually

has two objectives – the minimisation of schedule cost o1 and duration o2, i.e. O in

Equation 1.5 is {o1, o2} for this subclass. In addition, each of these sub-problems

has constraints on four types of resources which we will define in Section 4.2.

• P3: Each member of this subclass is a sequence of sub-problems which individually

has three objectives – the last two named objectives and the objective to minimise

the probability o3 that a schedule becomes infeasible for violating resource con-

straints triggered by task duration changes, i.e. O in Equation 1.5 is {o1, o2, o3}

for this subclass. It is important to determine the probability, especially when the

investment required for the schedule is immense [41]. The resource constraints of

each of the sub-problems are the same as those of P2.

• Q2: Each member of this subclass is a sequence of sub-problems which individually

has two objectives – o1 and o2. And, each of these sub-problems has constraints on

two types of resources which we will define in Section 4.3.

Although not a sub-class of M, this thesis considers the class C2 of bi-objective RCPS

dynamic problems with a constant total number of tasks. The problems being associated

with McBAR (described in Section 1.1) are from the following sub-classes: L2 ⊂ P2,
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L3 ⊂ P3 and O2 ⊂ Q2. We will define the subclasses L2 and L3 in Section 4.2 and the

subclass O2 in Section 4.3.

A sample notation for a dynamic problem l2 from L2 is,

l2 =
〈
l20, l

2
1, . . . , l

2
I

〉
(1.7)

where the static sub-problem l2i ∈ l2 is a member of Γi; and I is a given integer.

1.2.6 Set of Important Techniques

The problems from L3 are solved by an extension of McBAR; while the problems from

O2 and L2 are associated with the techniques from the set,

T = {RI,NDLPOP,EDA/P2,GIBAR,CBAM,

McBA,McBAR,McBAS,MedianBAR}
(1.8)

where RI is an EA but not memory-based; NDLPOP is an EA and memory-based;

EDA/P2 is not an EA but memory-based; GIBAR and CBAM are EAs and memory-

based but do not have the core algorithm of McBAR; and the techniques at the lower row

of the equation are EAs and memory-based and have the core algorithm of McBAR. Full

definitions of the techniques will be given in Chapter 5, including the core algorithm of

McBAR explored in Section 5.6.7.

1.3 Goals

The general hypothesis of the thesis is as follows:

“McBAR is an effective and efficient technique to solve many problems from M.”

Considering the infinite size of M, the scope of the hypothesis does not encompass all

members of M. This hypothesis is proven by the achievement of the following goals:
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1. The first goal of the thesis is to demonstrate the effectiveness of McBAR for solving

bi-objective RCPS problems from L2 ∪ O2 ⊂ M set in a dynamic environment

with increases and without decrease in the total number of tasks. Associated with

this goal is the desire to exhibit the dynamics of the effectiveness under the changing

environment.

2. The second goal of the thesis is to show that the core algorithm of McBAR is still

effective despite being applied to solve the tri-objective problems from L3 ⊂ M (L3

is defined in Section 1.2.5). Such a demonstration takes into account the dynamics

of the environment in which the problems are set.

3. The third goal of the thesis is to determine the limitation on the effectiveness of

McBAR for solving problems from O2 ⊂ M (O2 is defined in Section 1.2.5). It is

of great interest to determine the limitations of any technique, since through these

limitations the users of the technique can decide when to start and stop applying this

technique. Thus, although the central focus of the thesis is to prove the effectiveness

of McBAR, we also include in the thesis the limitation of this effectiveness.

4. The fourth goal of the thesis is to demonstrate the relevance of sub-algorithms for

being the components of McBAR. Note that some components of a technique may

not be relevant, i.e. their absence might still leave the technique effective. If all

of the components are relevant then no computation is wasted by the technique

for solving a given problem. Note that the EA-related parameters of McBAR

are determined to greatly enhance the performance of McBAR. Thus, given that

a system is defined as efficient if it achieves maximum performance while wasting

resources the least, then this thesis’ goal is also meant to indirectly prove that

McBAR is efficient.

5. The fifth goal of the thesis is to directly demonstrate the efficiency of McBAR for

solving problems from L2 ⊂ M (L2 is defined in Section 1.2.5). Some algorithms

may be effective for solving some problems but could be inefficient in some aspects,
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e.g. a longer computing time relative to that of other techniques for solving the

same problem.

The achievement of the first, second and third thesis’ goals proves and characterises the

effectiveness of McBAR for solving various problems from M. And, the attainment of the

fourth and fifth thesis’ goals proves that McBAR is efficient for solving many problems

from M.

1.4 Methodology

As implied in Section 1.1, CBAR is transformed to become McBAR. The overview of this

innovation is presented before elaborating on the methodologies applied to accomplish the

thesis’ goals. In our previous work [3], CBAR was demonstrated to be inapplicable to solve

any problem from M, each set in an environment with increases and without decrease in

the total number of tasks. This inapplicability is remedied by upgrading the algorithm of

CBAR. In this upgrade, IDs of new tasks are inserted into genotypes (a string of task IDs)

when the total number of tasks increases. The resulting genotypes are then evolved to

obtain phenotypes as solutions to the problems from L2 ⊂ M. However, it was shown in

the same work, and will be demonstrated in Section 5.4, that the performance (solution-

searching ability) of this upgraded CBAR for solving the problems starts to degrade when

the increase occurs for the first time. To resolve the side-effect of the increase, CBAR

is further upgraded. In this second upgrade, the IDs (integers) of tasks in each of the

genotypes are mapped so as to minimise their change along each of the genotypes. The

fully upgraded CBAR is McBAR.

Let us now present an overview on the McBAR-involving methodologies applied to

achieve the above goals of the thesis.
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1.4.1 The Effectiveness of McBAR

The first thesis’ goal is achieved through the separate application of the two approaches

referred to as limited and general methods. In the limited method, each technique from

T (defined in Equation 1.8) is applied to solve each problem from L2 ⊂ M. From

the obtained solutions, the effectiveness of McBAR is characterised. On the other hand,

the general method creates accurate empirical models of the performances of techniques

from T through Response Surface Methodology (RSM) [144]. The models are used to

accurately predict the performances of the techniques for solving problems from O2 ⊂ M

(defined in Section 1.2.5). From the predicted performances the effectiveness of McBAR

is also characterised. The characterisations performed by both methods take into account

the dynamics of the environment in which their respective associated problems are set.

Let us now justify the use of the limited and general methods. As explained in Section

1.2.4, each problem from L2 is a sequence of static sub-problems l2i (defined through

Equation 1.7), each set in a snapshot taken immediately after the ith SOSA of a dynamical

environment in which the problem is set. In the sequence, any consecutive sub-problems

(e.g. l23 and l24) differ on some parameters and/or categories (e.g. total number of tasks,

task duration and resource availability status) by a small or large magnitude. Let this

magnitude be referred to as the consecutive sub-problem attribute difference magnitude

(CSADM). The limited method is applied to characterise the performance of techniques

from T for solving problems from L2, where each problem has a small or large CSADM.

Note that |L2| = 30 and |O2| = 506, 250, 000, i.e. the limited method takes into account

fewer problems than the general method.

The CSADMs of the problems taken into account by the general method (i.e. problems

from O2) are smaller than the maximum CSADM of the problems taken into account by

the limited method. Although desirable, impractically heavy computational expense is

required to build empirical models which accurately predict the performance of a technique

from T for solving problems with large CSADM. Thus, to take into account the problems

with a large CSADM, the limited method is devised; and to take into account numerous
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problems the general method is devised. Note that, in the preliminary stage of empirical

model creation through RSM, the general method utilises the solutions to problems from

L2, i.e. problems taken into account by the limited method. This is the other reason for

devising the limited method.

1.4.2 Tri-Objective Problems

As presented in Section 1.2.5, each sub-problem of each problem from P3 has three ob-

jectives. One of these objectives is to minimise the probability Prob that a schedule

becomes infeasible due to environmental changes. Thus, in determining a schedule as a

solution to the problem, the changes are anticipated so that when they occur the prob-

ability will be minimal. However, as McBAR does not have the ability to anticipate,

its core algorithm is extended to possess this ability. This extended core algorithm is

denoted as McBAR-P.

McBAR-P applies the Monte Carlo Simulation (MCS) for the anticipation. MCS is

a suitable technique for problems with large dimensions such as the sub-problems of the

dynamic problems from L3. However, MCS is computationally expensive for solving

such sub-problems. Thus, only a few dynamic problems are tackled by McBAR-P and

they differ from those taken into account by the limited method only by each having the

additional objective to minimise the probability Prob.

To achieve the second thesis’ goal, the duration, financial worth and other properties

of schedule S as solution obtained by McBAR are compared to those of the schedule

P determined by McBAR-P, where schedules S and P are solutions to sub-problems of

problems from L2 and L3, respectively, and these sub-problems differ only by the above-

mentioned additional objective. This comparison is made under the dynamics of the

environment in which the problems are set, to manifest the effectiveness of McBAR-P

under these dynamics. Prior to the comparison, the EA-related parametric values that

optimise the performance of McBAR-P for solving the tri-objective problems from L3 are

determined.
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1.4.3 Resiliency of Techniques

The general method explained in Section 1.4.1 creates empirical models through RSM

that characterise the techniques from T (defined in Section 1.2.6). Our preliminary in-

vestigations showed that a single binomial (in algebraic terms) empirical model cannot

accurately predict the performance, for solving problems from O2 ⊂ M (O2 is defined

in Section 1.2.5), of the technique that corresponds to this model. A different model is

then created, composed of several binomial sub-models, each accurate to predict the per-

formance of the technique that corresponds to the composite model, but the performance

for solving any problem is from a subset of O2 only. However, this composite model is

accurate to predict the performance of the technique for solving any problem from O2.

This type of composite model is utilised to determine the limitations on the effectiveness

of the techniques from T, i.e. to achieve the third thesis’ goal.

The third thesis’ goal is achieved by applying Lagrange optimisation [91] on the com-

posite models to determine the resiliency of techniques from T. The resiliency of a tech-

nique is a measure of the limitation on the effectiveness of a given technique from T. It

is defined as the degree of change in an environment by which the performance of the

given technique, for solving problems from O2 set in this environment, deteriorates to

a given level above the performance of the benchmark technique from T for solving the

same problem. The benchmark technique is one that is proven to have a performance, for

solving problems from L2, inferior to those of EA-based techniques from T.

1.4.4 Component Legitimisation

As explained in Section 1.3, the confirmation of the legitimacy of the components of

McBAR indirectly proves that McBAR is efficient. The concept utilised in this legitimi-

sations is as follows. Suppose technique A differs primarily from technique B on some

components. If, in general, A performs better than B for solving given problems then

the components of A distinct from B are regarded as relevant to A to solve these prob-
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lems. To exemplify this principle, consider the following. Being a variant of EA, McBAR

utilises crossover and mutation operators. To legitimise the use of these operators, the

performance of McBAR is compared to that of a significantly different type of heuristic,

referred to as the Estimation of Distribution Algorithm (EDA) [119]. Instead of using EA

operators, EDA makes use of sampling and estimation of Probability Density Functions

(PDFs) to create its next-generation population [119]. Now, if in most problems from

L2 ⊂ M, McBAR performs better than EDA then the EA operators used in McBAR are

considered to be relevant/legitimate components of McBAR to solve problems from L2

(defined in Section 1.2.5). Thus, some techniques from T other than McBAR are crafted

and their performances for solving problems from L2 are compared to that of McBAR to

legitimise the constituting sub-algorithms of McBAR, i.e. to fulfil the fourth thesis’ goal.

Note that some EA-related parametric values of McBAR are determined in order to

highly enhance the performance of McBAR. These values are determined using the method

of steepest ascent [31] with RSM. Thus, according to the definition of efficiency in Section

1.3, along with the high performance of McBAR and the to-be-proven legitimacy of the

components of McBAR, the other purpose of the presented methods in this sub-section

is to indirectly prove that McBAR is efficient.

1.4.5 Intelligence of Algorithms

Some machines can be perceived to possess intelligence; IBM’s Watson, for example, de-

feated human competitors in answering questions in a TV show entitled, “Jeopardy”. The

apparent intelligence of Watson is primarily due to its computer program/algorithm [158].

Thus, it is supposed that its algorithm possesses a degree of intelligence. Intelligence of

an algorithm was measured in various ways [121]. The measure of intelligence utilised

in the thesis is the Universal Intelligence (UI) [121]. One of the bases by which UI

measures algorithm intelligence is algorithm length, which is related to the number of

Central Processing Unit (CPU) cycles required to finish executing this algorithm [121].

Another basis is on the reward (e.g. system gain) given after the execution. Guided by
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the definition of efficiency in Section 1.3, the efficiency of a technique from T is measured

in terms of its performance and the number of CPU cycles spent by a computer in exe-

cuting its algorithm intended to solve a given problem from L2 ⊂ M. Advocated by

the commonality between the concepts behind UI and efficiency, UI is utilised to measure

the efficiency of any technique from T in solving the problems from L2. The fifth thesis’

goal is attained by using UI to compare the efficiency of McBAR to those of the other

techniques from T.

1.5 Contributions

The research undertaken for the thesis yielded six major contributions; five of which

correspond to the thesis’ goals enumerated in Section 1.3:

1. The first major contribution is the research into the creation of McBAR. Through

this research, various methods to remedy the inapplicability of CBAR to solve any

problem from L2 ⊂ M are investigated. This investigation found gene-insertion

into genotypes to be the most suitable among all the remedying methods, where the

inserted genes correspond to new tasks in the environment in which the problem is

set. The resulting deficiency in the performance of CBAR due to this insertion is

analysed and that leads to its further improvements. As noted in Section 1.4, the

final form of CBAR is renamed as McBAR.

2. The second major contribution refers to the first thesis’ goal and is the research

into the approach to show the effectiveness (measured in terms of the performance)

of McBAR in solving many problems from M. In this way various approaches

for this purpose are investigated. This investigation found the limited and general

methods to be the most practically appropriate approaches for the purpose. The

application of these methods showed the performance of McBAR to be generally

superior compared to those of techniques from T different to McBAR. This superior

performance is most profound when solving sub-problems – of problems from L2 ∪
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O2 ⊂ M – that are set in snapshots taken just after the first increase in the total

number of tasks in the environment in which the problems are set. This superior

performance generally remains despite the changes to the environment after the first

increase. Findings in the research were published in [3, 5–7].

3. The third major contribution refers to the second thesis’ goal and is the research into

the failure of implementing subsections of schedules due to environmental changes.

As presented in Section 1.4.2, the minimisation of the probability of this failure to

occur is one of the objectives of each of the tri-objective sub-problems of problems

from L3 ⊂ M. This research demonstrated the good performance of the core

algorithm of McBAR for solving the sub-problems, where this performance is mea-

sured in terms of the duration, cost of implementation and economic relevance of

the generated solutions. Findings in the research were published in [8].

4. The fourth major contribution refers to the third thesis’ goal and is the research into

the limitations of EA techniques. Several measures used to define the limitations

of EA techniques are investigated to arrive at resiliency (defined in Section 1.4.3)

as the most suitable measure to define the limitation of techniques from T. The

research finds McBAR to be the most resilient among the techniques under the

dynamics of problems from O2 ⊂ M. Findings in the research were published

in [4–6].

5. The fifth major contribution refers to the fourth thesis’ goal and is the research into

the design of the algorithms of techniques from T other than McBAR, namely the

algorithms that are useful for investigating the legitimacy of the sub-algorithms of

McBAR. The research found all the sub-algorithms of McBAR to be legitimate,

either using the limited or the general method described in Section 1.4.1. Findings

in the research were published in [5–7].

6. The sixth major contribution refers to the fifth thesis’ goal and is the research into

the efficiency measure of EA algorithms. Various efficiency measures are investi-

gated that lead to the selection of Universal Intelligence as the most suitable measure
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of efficiency of techniques from T. Among all the techniques, this research justified

McBAR as the most efficient technique in solving problems from L2 ⊂ M.

Several portions of the above researches undertaken for this thesis were published in

three conference proceedings and four journal articles. The research that pertains to some

topics in Section 5.1 is published in the following journal article:

• L. T. Bui, Z. Michalewicz, E. Parkinson, and M. B. Abello. Adaptation in Dy-

namic Environments: A Case Study in Mission Planning. IEEE Transactions on

Evolutionary Computation, 16(2):190-209, 2011.

The research that leads to the topics in Chapter 6 is published in the following conference

proceeding and journal article:

• M. B. Abello, L. T. Bui, and Z. Michalewicz. An adaptive approach for solving

dynamic scheduling with time-varying number of tasks part – I. In 2011 IEEE

Congress on Evolutionary Computation, 1703-1710, 2011.

• M. B. Abello and Z. Michalewicz. Multi-Objective Resource-Constrained Project

Scheduling with a Time-varying Number of Tasks. The Scientific World Journal,

DOI: 10.1155/2014/420101, 2014.

Some parts of the research related to Chapter 7 is published in the following conference

proceeding:

• M. B. Abello, L. T. Bui, and Z. Michalewicz. A Reactive-Proactive Approach for

Solving Dynamic Scheduling with Time-varying Number of Tasks. In 2012 IEEE

Congress on Evolutionary Computation, 1-10, 2012.

The research described in Chapter 8 and Sections 9.1 to 9.3 is published in the following

journal article:
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• M. B. Abello and Z. Michalewicz. Implicit Memory-Based Technique in Solving

Dynamic Scheduling Problems Through Response Surface Methodology - Part I:

Model and Method. International Journal of Intelligent Computing and Cybernet-

ics, 7(2):114-142, 2014.

• M. B. Abello and Z. Michalewicz. Implicit Memory-Based Technique in Solving

Dynamic Scheduling Problems Through Response Surface Methodology - Part II:

Experiments and Analysis. International Journal of Intelligent Computing and Cy-

bernetics, 7(2):143-174, 2014.

The research related to Section 9.2 is not included in the thesis due to scope limitations

but is published in the following conference proceeding:

• M. B. Abello, L. T. Bui, and Z. Michalewicz. An adaptive approach for solving

dynamic scheduling with time-varying number of tasks part – II. In 2011 IEEE

Congress on Evolutionary Computation, 1711–1718, 2011.

1.6 Thesis Outline

The structure of the thesis is as follows. Chapter 2 provides background knowledge useful

to understand topics utilised in the attainment of the thesis’ goals. This chapter begins

by exploring Evolutionary Algorithms (EA) since this is the backbone of all analysis in the

thesis. Then, a particular type of EA, referred to as Genetic Programming, is presented.

Resource-Constrained Project Scheduling (RCPS) is discussed next and is followed by the

presentation about the optimisation on scheduling problems set in dynamic environments

which are related to the test environments utilised in the thesis. The discussion pro-

gresses to the class of techniques referred to as Multi-Objective Optimisation (MOO).

One of these techniques is utilised to produce solutions for the memory-based McBAR.

Next, information about the Estimation Distribution Algorithm (EDA) is provided. The

enumerated topics are helpful in understanding how the first and fourth thesis’ goals are
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attained through the limited method. The concepts related to the probability of schedule

infeasibility are then explained. These concepts are useful for understanding the accom-

plishment of the second thesis’ goal. Response Surface Methodology (RSM) is explored

next. This technique is useful for building models of the performance of techniques from

T. Using these models the first and the fourth thesis’ goals are achieved applying the

general method, and the third thesis’ goal is also realised. This chapter concludes with a

discussion of Reinforcement Learning (RL) [190] and of the measure of intelligence derived

from RL, which is the measure that is applied to achieve the fifth thesis’ goal.

Chapter 3 reviews current literature related to the thesis. The reviewed topics are

sequenced in an order and purpose similar to that in Chapter 2 from the section on

Genetic Programming to the section on measure of intelligence. This chapter concludes

with the informative review on Multi-Agent Systems as applied to scheduling.

Chapter 4 provides information on the planning approach for a dynamic RCPS en-

vironment and then explains the nature of this environment which is referred to as the

Military Mission Environment (MME). All scheduling problems (contained in M) con-

sidered in the thesis are set in the MME, these problems are important for the fulfilment

of all the thesis’ goals. In particular, this chapter describes the problems taken into

account by the limited and general methods. The mathematical formulation of problems

from L2, L3 and O2 ⊂ M is explored in the Appendix.

Chapter 5 explains the algorithm of CBAR then demonstrates how CBAR becomes

inapplicable for solving any problem from M that is set in the MME. Information is

then provided on how CBAR is upgraded to remedy the inapplicability, followed by an

explanation of the effect of this remedy on the performance of the upgraded CBAR for

solving the problems. A resolution which revises CBAR further is presented next. The

final form CBAR is McBAR whose algorithm is explained last.

Chapter 5 also describes the techniques from T other than GIBAR (an upgrade of

CBAR) and McBAR. A significant portion of this description is about EDA being applied

to solve problems from L2. Notably, this application is absent in the literature. These
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other techniques are important to confirm the legitimacy of the sub-algorithms and other

characteristics of McBAR.

Chapter 6 presents the results of the investigations made through the limited method

on the performance of techniques from T for finding solutions to all problems from L2.

It elaborates the dynamic effects of these problems on performance, and discusses the

legitimisation of the sub-algorithms of McBAR through the performance. Thus, this

chapter presents the partial fulfilment of the first and fourth thesis’ goals through the use

of the limited method.

Chapter 7 explores the algorithm and the performance of McBAR-P (an extension

of the core algorithm of McBAR) for solving the tri-objective problems from L3 ⊂

M. Further, it presents the determination of the performance-enhancing EA-related

parametric values of McBAR-P. Thus, this chapter demonstrates the accomplishment of

the second thesis’ goal.

Chapter 8 provides information on the general method. As explained in Section 1.4.1,

the general method creates various composite models through RSM that characterise some

techniques from T. It explicates, using the predictions from the models, the establishment

of the effectiveness, the exhibition of the dynamical performance and to the legitimisation

of some components of McBAR for solving problems from O2 ⊂ M. The general method

is thus applied in this chapter to complete the achievement of the first and fourth thesis’

goals that was partially completed in Chapter 6.

Chapter 9 elaborates the mathematical definition of resiliency and the determination

of the resiliencies of some techniques from T using the models created in Chapter 8.

The third thesis’ goal is accomplished in this chapter. This chapter also investigates the

efficiency of techniques from T for solving all problems from L2. The fifth thesis’ goal is

attained in this chapter also.

Chapter 10 provides a summary of our findings and future work on this research.

The first to the third columns from the left of Figure 1.1 contain the labels of thesis
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goals, citations of contributed publications, and labels of chapters declared in Sections

1.3, 1.5 and 1.6 respectively. The arrows in this figure represent the relationships between

the labelled entities and goals. For example, the relationship of goals 1 and 4 to Chapter

6 where these goals are partially accomplished is signified by two arrows from a block

labelled 6 at the rightmost column to the blocks with numbers 1 and 4 at the mid-column.

Another example, the block labelled [7] at the left column denotes a citation (refer to the

Bibliography section) of a contributed publication which partially accomplished the goals

1 and 4.

Through both the limited and general methods and under the dynamic effects of

many bi-objective problems from M, the thesis establishes the effectiveness of McBAR

for solving these problems, and legitimises the sub-algorithms of McBAR. The thesis

also establishes the effectiveness of the core algorithm of McBAR for solving tri-objective

problems from L3 ⊂ M. Further, it proves McBAR to be the most resilient among

many of the techniques from T under the dynamics of problems from O2 ⊂ M, and

demonstrates McBAR to be the most efficient and intelligent among all of the techniques

from T.
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Background Knowledge

Chapter 2

This chapter provides background knowledge useful for understanding the pivotal concepts

for the fulfilment of the thesis’ goals. Being an important component of most analysis

undertaken in the thesis, the fundamental principle of Evolutionary Algorithm (EA) is

presented in Section 2.1. A particular type of EA, referred to as Genetic Programming,

is investigated in Section 2.2. Then, Resource Constrained Project Scheduling (RCPS)

is elaborated in Section 2.3 together with the algorithm we utilised to generate initial

populations for the EA-based techniques from T (defined in Section 1.2.6) to evolve.

This is followed in Section 2.4 by the explanation on some issues inherent in dynamic

environments and approaches to solve the scheduling problems set in these environments.

Multi-Objective Optimisation (MOO) is explored in Section 2.5 with strong emphasis on a

particular multi-objective optimisation algorithm and on the popular quality measure of

solutions determined by this algorithm. Section 2.6 provides information on Estimation

Distribution Algorithm (EDA) and highlights the fundamental difference between EDA

and EA. Next, the likelihood of plans or schedules to fail during execution and its specific

measure is described in Section 2.7. Section 2.8 explores Response Surface Methodology

(RSM) and explains the steps in the creation of accurate empirical models. This is followed

by the discussion on Lagrange Optimisation in Section 2.9 that is used to determine,

through the models, the resiliencies (defined in Section 1.4.3) of some techniques under

environmental changes. This chapter concludes in Section 2.10 with the presentation of

a measure of intelligence which is used to define the efficiency of techniques.



2 Background Knowledge 2.1 Evolutionary Algorithms

2.1 Evolutionary Algorithms

One of the goals of Artificial Intelligence is to create systems that can mimic some facets

of human intelligence [61,155,160]. It may be achieved by using some ideas from nature.

For example, the observation that humans have tendencies to perform actions that yield

more reward than those which do not, becomes the foundation of a field in Artificial

Intelligence referred to as, Reinforcement Learning (RL) [190]. Another example is

related to Charles Darwin’s theory of evolution which conjectures that individuals of

species that are more fitted to their natural habitat have a greater chance that their

offspring will exist into the next generation than other individuals in the same species.

The field of Evolutionary Algorithm (EA) was founded on this theory [95]. The general

algorithm of EA is illustrated in Figure 2.1. Let the population be a set of individuals of

a specie and t be an evolutionary generation number. The algorithm is as follows:

1. At t = 0, form an initial population P (t) of individuals of a specie. Let its size be

S > 0.

2. Measure fitness of each individual of P (t).

3. Based on fitness of each individual in P (t), select from P (t) individuals of an inter-

mediate non-empty population Prn(t). Individuals of Prn(t) are called parents.

4. Apply variation operators to parents in Prn(t) to produce offspring that form an-

other intermediate non-empty population Pch(t). Individuals of Pch(t) are called

offspring. The offspring inherit characteristics or variants of characteristics of their

parents in Prn(t). Note that some of these offspring could be identical to their

parents.

5. Measure fitness of each offspring in Pch(t).

6. Based on fitness of each offspring in Pch(t) and each parent in Prn(t), select from

these two populations a new population P (t + 1) which must have a size of S.

Population P (t+ 1) is considered to be the next generation where t→ t+ 1.
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2 Background Knowledge 2.1 Evolutionary Algorithms

7. Repeat steps 3 to 6 until a terminating condition is reached. The loop, defined by

these steps, represents one evolutionary cycle/generation.

Figure 2.1: Evolutionary Algorithm

EAs were applied to solve problems in various fields, such as arts [107], sociology [17],

engineering [157] and finance [39]. These EAs have their own design of the basic algorithm

in Figure 2.1. The following sub-sections discuss sample designs related to the key aspects

of the basic algorithm.

2.1.1 Individual Representation

An individual considered in step 1 of Figure 2.1 could be implemented as a string of genes

which are computer programming entities, such as binary or float values, algorithms,

object-oriented programming classes. Each gene is a code for an individual’s characteris-

tic/s and feature/s; and the string itself is called a genotype. A sample genotype is shown

in Figure 2.2 as an ordered set of integers. Let these integers correspond to IDs of tasks

in a military mission to defeat an enemy. For example, the fourth gene in the genotype

Mapping of Task IDs for CBAR Page 26 of 318



2 Background Knowledge 2.1 Evolutionary Algorithms

contains a value of 7 which, for example, is the ID of the task to bomb a particular enemy

position using 4 fighter jets for 18 units of time.

G = 〈1, 2, 3, 7, 4, 8, 9, 5, 10, 11, 6, 12〉

Figure 2.2: Genotype as an ordered set of integers

Genotype is a code for an entity called phenotype. For example, the genotype in

Figure 2.2 is a code for a schedule/phenotype illustrated in Figure 2.3. In this figure, the

horizontal axis signifies time, rectangular strips represent tasks, strip width denotes task

duration, strip label indicates task ID and Ri represents resources of similar type utilised

by tasks whose corresponding smallest enclosing rectangle is beside Ri. Expressed by this

figure, tasks 1, 2 and 3 are started simultaneously at time 0, followed by task 7 started

at the time of 14 units; tasks 4, 8 and 9 simultaneously start at time 16 units, and so on.

Usually, procedures are performed to convert genotypes into phenotypes. For example,

to convert genotype G above into a schedule, its elements e are considered consecutively.

The starting time of the task with a considered ID e is set to be the earliest time later

than the maximum end times of all its predecessors with IDs in G. Further, this starting

time is such that there are enough available resources to utilise by task with ID e over

the entire execution period of this task.

2.1.2 Initial Population

Basically, before starting an evolutionary process in EA, a population is created called

an initial population, e.g. P (0) in step 1 of Figure 2.1. It is formed in various ways. For

example, its individuals are copied from a database of results from previous runs of an

algorithm [161], derived from attributes of past populations determined by an algorithm

[40], or generated semi-randomly [88]. As an example of the last approach, forty ordered

sets of 12 elements can be formed by the random permutations of elements of the genotype

in Figure 2.2 to produce an initial population. The initial population can have a significant

impact on EA’s performance in determining solutions to some problems [40,131,161,224].
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2 Background Knowledge 2.1 Evolutionary Algorithms

2.1.3 Fitness Measure

The measure in steps 2 and 5 of Figure 2.1 is a function that maps a phenotype to value/s

used in the selection process in steps 3 and 6 of the same figure respectively. This measure,

for example, could be on a species’ ability to fit in a habitat. Based on this, the measure

is referred to as the fitness measure or, simply, fitness; the mathematical function that

performs the measurement is called the fitness function or objective function; and the

graphical presentation of this function is called the fitness landscape. For example, the

fitness function f yields the cost of implementing a given schedule whose corresponding

genotype is G in Figure 2.2. And, it is expressed as,

f(G) =
12∑
i=1

12∑
j=1

δi,j(G)ci,j (2.1)

where ci,j is the cost of moving items of resource type Rk, indicated in Figure 2.3, from

task i to task j; i and j are IDs in G; index k is dependent on the indices i and j; and

δi,j(G) is a unity if the items are required to be transferred between the tasks and zero

otherwise. Note that ci,j varies with the number of items being moved.

2.1.4 Modifying Operations

Parents’ genotypes are mixed, copied and/or modified to form their offspring’s genotypes

resulting in offspring that inherit modified or identical features of their parents. Genotype-

modifying operators referred to in step 4 of Figure 2.1 take numerous forms [83,84] and are

well discussed in the EA literature. The thesis focuses only on two particular modifying

operators: recombination and mutation operators. We refer to a recombination operator

as a crossover operator.
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2.1.4.1 Crossover Operator

Crossover operators mix genetic materials from both parents. For example, in Figure 2.4,

both parent genotypes PA and PB are cut after their ninth gene. The second section SA2

of parent PA becomes the first section of offspring CA and the first section SB1 of parent

PB becomes the second section of the same offspring. This type of crossover involves only

one randomly chosen cut point.

PA =

 SA1︷ ︸︸ ︷
7, 3, 1, 6, 10, 12, 9, 2, 5,

SA2︷ ︸︸ ︷
11, 4, 8

 PB =

 SB1︷ ︸︸ ︷
12, 7, 5, 2, 8, 11, 1, 6, 9,

SB2︷ ︸︸ ︷
4, 10, 3


CA =

 SA1︷ ︸︸ ︷
7, 3, 1, 6, 10, 12, 9, 2, 5,

SB2︷ ︸︸ ︷
4, 10, 3

 CB =

 SA2︷ ︸︸ ︷
11, 4, 8,

SB1︷ ︸︸ ︷
12, 7, 5, 2, 8, 11, 1, 6, 9


Figure 2.4: One-point crossover

Figure 2.5 illustrates two randomly chosen crossover points at the third and ninth

genes of the parent genotypes. In this scheme, offspring CA takes the first part from

parent PB for its first part, second part of PA for its second part, and third part of PB

for its third part. The process is the same for offspring CB produced with the inverse

order: PA→ PB → PA.

PA =

 SA1︷ ︸︸ ︷
7, 3, 1,

SA2︷ ︸︸ ︷
6, 10, 12, 9, 2, 5,

SA3︷ ︸︸ ︷
11, 4, 8

 PB =

 SB1︷ ︸︸ ︷
12, 7, 5,

SB2︷ ︸︸ ︷
2, 8, 11, 1, 6, 9,

SB3︷ ︸︸ ︷
4, 10, 3


CA =

 SB1︷ ︸︸ ︷
12, 7, 5,

SA2︷ ︸︸ ︷
6, 10, 12, 9, 2, 5,

SB3︷ ︸︸ ︷
4, 10, 3

 CB =

 SA1︷ ︸︸ ︷
7, 3, 1,

SB2︷ ︸︸ ︷
2, 8, 11, 1, 6, 9,

SA3︷ ︸︸ ︷
11, 4, 8


Figure 2.5: Two-point crossover

2.1.4.2 Mutation Operators

Mutation operators modify a genotype without the use of other genotypes. This modi-

fication could be applied to several genes. One mutation scheme is called a swap muta-

tion [174] which interchanges two genes in a genotype. Figure 2.6 illustrates a particular

example of this mutation scheme. In this figure, two genes are randomly picked, say first
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and last genes of the parent genotype Pr , and then interchanged, thereby yielding an

offspring Ch.

Pr = [7, 3, 1, 12, 10, 6, 9, 2, 5, 11, 4, 8] Ch = [8, 3, 1, 12, 10, 6, 9, 2, 5, 11, 4, 7]

Figure 2.6: Mutation of a gene

Different types of genotypes may require different mutation operators, e.g. uniform

[133], swap [174] and q-gaussian [193].

2.1.5 Selection Criteria

The selection mechanism performed in each of steps 3 and 6 of Figure 2.1 could be

implemented in various ways, e.g. roulette wheel, ranking, or tournament selection

schemes [83, 84]. In the roulette wheel scheme, individuals in a population are selected

with a probability proportional to their fitness. In the tournament scheme, two individuals

in a population are chosen randomly, and the one with higher fitness is selected.

2.1.6 Termination Condition

The loop in Figure 2.1 terminates when a termination condition is met. For instance, this

loop may terminate when the number of repetitions reaches a predefined limit; if maximum

fitness value of phenotypes saturates as evolutionary cycles progress; or if population

diversity is lost. Several other termination conditions are discussed in [181].

2.2 Genetic Programming (GP)

The type of EA described above processes genotypes as individuals typically expressed

as strings of genes. There is another type of EA, called Genetic Programming (GP),

which processes individuals in the form of computer programs. Each of these computer

programs is usually represented as a tree whose leaves represent data, e.g. variables and
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constants, and whose nodes – where the leaves originated – represent operations, e.g.

arithmetic and calculus operations. The leaves and nodes are referred to as terminals

and functions respectively and the set composed by them is called, primitive set. And

the segment connecting a node to another node or to a leaf is referred to as, link. The

measure of depth of a program-representing tree is the maximum number of links traverse

from the topmost node to the node without any linked node.

A tree representation of a sample program is depicted in Figure 2.7. The sample

program is constituted of the elements of the primitive set which have scalar multiplication

and addition as functions, and constants a and b, and variables x and y as terminals. As

depicted in the figure, the terminals x and a are used as operands of the multiplication (×)

function. The result of this multiplication is added, through the addition (+) function,

to the product (×) of the terminals y and b. This algorithm is applied to all functions

and terminals in the tree whereby the end result is the output of the program expressed

as, (
xa+ yb

) (
x2 + y2

)
(2.2)

Note that a tree could be composed of linked sub-trees.

 

y y x 
y x x b 

a 

+ + 

 

× 

 

× × × × 

Figure 2.7: Sample GP tree
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The general algorithm of GP is closely related to that of the above-discussed type of

EA and is the following [118]:

1. At t = 0, form an initial population P (t) of programs.

2. Execute each program in P (t) to measure its fitness.

3. Based on fitness of each program in P (t), select from P (t) programs of an interme-

diate non-empty population Prn(t).

4. Apply variation operators to elements in Prn(t) to produce offspring that form

another intermediate non-empty population Pch(t).

5. Repeat steps 2 to 4 on Pch(t) until a terminating condition is reached.

The following describes the components of this general algorithm.

There are other approaches [116, 132] in forming the initial population referred to in

step 1. One of these approaches, called the Grow method, is explained in the following.

Consider Figure 2.8 and the primitive set,

{+,×} ∪ {x, y, a, b} (2.3)

where the left and right subsets are the function and terminal sets respectively. At the

first step of the method called Grow method, an eligible (based on the problem being

solved) element of a considered primitive set is randomly chosen. If the chosen element

is a terminal the method terminates. Otherwise, the chosen function, say × in Figure

2.8a, has its symbol labelled at the highest node of a tree under construction. Second

step, every node added to a tree is attached with links whose number depends on the

function indicated at this node. Considering that the × function is a binary operator

then two links extend from the node. Third step, an eligible element is chosen from the

primitive set. If the chosen element is a constant, its value is randomly generated and

becomes a leaf on arbitrary empty tip of the links. If the chosen element is a non-constant
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terminal, it is made as a leaf on arbitrary empty tip of the links. If the chosen element is

a function (say + in Figure 2.8b) its symbol is labelled unto a node attached to an empty

tip of arbitrarily chosen member of the links. If all links are attached with terminals the

method stops. Otherwise, the second and third steps are repeated until there are nodes

attached at a given depth or all currently attached links are connected with terminals.

If the nodes at the given depth are attached the last step is to attach terminals (as

described above) to all of these nodes. The construction process then terminates. Figure

2.8c depicts a fully developed tree/program with depth of two and expressed as,

y = x (x+ 7.3) (2.4)

Notice that this equation, which corresponds to the developed program, can be inter-

preted. Intuitively, all GP-evolved programs can be interpreted. Thus, GP can facilitate

the explanation on how the programs solved given problems [147]. The other advantage

of utilising GP is that, unlike other types of EA, it would only need to determine one

program to solve various instances of a given problem.

There are several methods of measuring program fitness (considered in step 2) [44,

63, 74]. One method would be to average the output values (say y obtained in evalu-

ating Equation 2.4) of the program at many randomly selected independent values (x)

of this program. Another method, if a tree represents an electronic circuit the power

amplification of this circuit can be the fitness measure of this tree.

The selection scheme (pointed in step 3) to obtain the set Prn(t) can be any of the

standard selection schemes in EA, e.g. roulette wheel.

Genetic programming differs significantly to other EA approaches in its recombina-

tion and mutation operations. For example, in a GP crossover method called sub-tree

crossover, two programs, P and Q, are randomly picked from a population (e.g. Prn(t)).

Then, a randomly chosen link in P is cut. The sub-tree obtained in the cutting is con-

nected to the randomly chosen and then cut link in Q to obtain a next generation program
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(c) 

(b) (a) 

7.3 
x 

x 

× 

 

× 

 

+ 

 

x 

× 

 

+ 

 

Figure 2.8: Sample program generation: (a) node with multiplication (b) terminals of x
and function + (c) Completely generated program

(i.e. element of Pch(t)).

The sub-tree mutation is a popular mutation approach in GP. In this approach, a

randomly chosen link of a given tree/program is cut and then connected to a randomly

generated sub-tree.

These GP components are applied to evolve programs. The evolved programs do not

assure the determination of optimal solutions to problems it is applied to solve; rather,

GP can quickly determine programs that yield good quality solutions to the problem [43].

In another aspect, GP explores space of programs in its evolutionary process while other

types of EA explore space of solutions.
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2.3 Resource Constrained Project Scheduling

To extend the discussion from the previous chapter on the facets of RCPS, let us discuss

different ways of accomplishing a task; a particular representation of the precedence net-

work of tasks (PNT); and a schedule generation method. The mode of task execution is

the manner in which it is performed. For example, there could be two ways (two modes)

to secure a location during a military operation; a commanding officer may either use

bombs or soldiers to accomplish this goal. In RCPS, different task execution modes could

entail different combinations of resources utilised. And, task duration could be dependent

on the mode in which it is executed [187]. In the thesis, RCPS tasks are executed in

single-mode only.

A PNT could be expressed using nodes and arcs. For example, in Figure 2.9, tasks and

inter-tasks’ precedence relationships are represented by nodes and arcs respectively. The

node numbers are IDs of the tasks, and labels “S” and “E” correspond to starting and

ending tasks respectively. Note that any PNT that will be considered from here onwards

is of the form just described.

A process of generating schedules referred to as Serial Schedule Generation Scheme

(SSGS) [88] will be explained. But before proceeding, some terms will be defined. Let

a genotype be viewed as an ordered set of slots into which IDs of tasks that comprise a

schedule will be filled consecutively (e.g. from leftmost slot to the rightmost). Once an ID

is filled into the genotype, its corresponding task will be called a scheduled task. A root

task is defined as the task from which all other tasks succeed; for instance, the task labeled

“S” in Figure 2.9. The root task is considered as a scheduled task even though its ID is not

filled into the genotype. Eligible tasks have IDs not yet filled into the genotype and are

the immediate successors of scheduled tasks and/or the root task. For example, given the

PNT of Figure 2.9, if scheduled tasks have IDs 1, 2 and “S” their immediate successors,

based on the figure, have IDs in the sets {5, 10, 14}, {6, 7, 12} and {3} respectively. Thus,

the set of eligible tasks have IDs in the set Et = {5, 10, 14} ∪ {6, 7, 12} ∪ {3}.
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Figure 2.9: Original precedence network of tasks

A version of the SSGS algorithm to create a resource-constrained schedule is depicted

in Figure 2.10. It starts by determining the set Et of IDs of eligible tasks where the only

scheduled task is the root task. In the last example, the set of eligible tasks at this stage

of the algorithm is Et = {1, 2, 3}. A loop is then executed N (the number of tasks to be

scheduled) times to fill all slots of the above genotype that starts being devoid of IDs.

In the gth cycle of this loop a task ID j is selected randomly from Et and filled into the

genotype at slot indexed g. The starting time stj of the task that corresponds to this

ID is set to be the earliest time t′ later than the maximum end time (start time sti plus

duration dri ) of all its predecessors whose IDs comprised the set Pred(j). Further, its

starting time stj is such that there are enough available resources for it to utilise over its

entire execution period. The task with ID j is now considered scheduled. And the last

step in the loop is to update Et. After N cycles the genotype is completely filled and the

starting times of tasks that correspond to IDs in this genotype are determined. Thus, a
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2 Background Knowledge 2.4 Dynamic Optimisation Problem (DOP)

schedule is formed.

Procedure SSGS
Begin

Determine a set Et of eligible tasks
For g=1 to N

Randomly select a task ID j ∈ Et
Put this ID at genotype location g
Find t = max{0,max{sti + dri |i ∈ Pred(j)}}
Schedule task with ID j at the earliest precedence

and resource-feasible start time t′ > t
Set stj = t′

Update Et
End

End

Figure 2.10: Serial Schedule Generation Scheme (SSGS) Algorithm

2.4 Dynamic Optimisation Problem (DOP)

As explained in Chapter 1, real-world problems often contain many uncertain and dy-

namic factors, i.e. military mission planning might have to endure delays or failures of

capabilities. The problem of this sort that involves optimisation is referred to as Dynamic

Optimisation Problem (DOP) [104]. Let us define the following DOP attributes which

could change with the environment:

1. Objective functions : Consider the objective/fitness function in Equation 2.1 that

signifies the cost to implement a schedule. Suppose a task in this schedule is to

secure a location. If enemy units unexpectedly arrive at this location during the

schedule implementation, it could happen that more items of a certain resource type

are needed to secure this location than without these enemies. This new situation

can trigger changes in some number-dependent item costs ci,j in the equation. This

example illustrates how parametric values of an objective function may change in

a dynamic environment. This change could cause a movement of the optima of the

objective function to a new location in the search space associated with the optimisa-

tion problem that involves the objective function. Also, changes in the environment
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could cause changes in number and/or expression of the objective function. The do-

main of varying objective function has been popular for research in EAs for tracking

optima over time, i.e. the moving peak benchmark problem [37].

2. Variables : As described in Chapter 1, an example problem for this category is

dynamic machine scheduling where unexpected new jobs arrive or old jobs finish

and where each job corresponds to a variable in the problem. To date, dynamic

job-shop scheduling has been a popular test case for this category [58].

3. Constraints : For example, consider change in the configuration of a PNT (embodies

precedence constraint). The objective function and variables do not change for this

category; however, the constraints do. This category of change does not alter the

fitness landscape driven by the objective function, but it will affect the areas of

feasibility.

With the presented adverse effects of the changes in the environments where the DOPs

are set, it is unlikely that any solution found for these problems would stay valid for a

long time. Thus, an adaptive mechanism is required to introduce changes to the current

solution to a given DOP to obtain a new high-quality (and feasible) solution. There has

been increasing research effort in using EA as the mechanism. This is mainly because of

the way EA mimics natural evolution; a number of solutions are allowed to compete and

evolve over time. At the time of a bounded change, these solutions (now at fairly different

areas of the search space) can easily evolve toward the new optima.

In general, the EA approaches for DOPs are categorised into two broad areas: find-

ing/tracking optima and adaptation. As pointed out in Item 1, tracking of optima may

be performed when objective functions change. However, the tracking of optima does

not consider the scenario where schedule/solution associated with the objective function

is partially executed when the environment changes. Adaptation on the other hand,

considers this type of scenario. We discuss these two areas in the following subsections.
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2.4.1 Finding/Tracking Optima

There are several EA-based methods [42, 142, 200] to search and track optima of varying

objective functions. They usually make use of the last population before a problem change

as a starting point for the new EA search for the new problem. It should be noted that

the change should be bounded; thus its effect on the last associated search space is not

radical so that the information in the individuals of the population that corresponds to

the last problem is still useful. Three popular approaches are considered for the search

and tracking of the optima:

• Generating diversity after a change: Population diversity is considered as an im-

portant element for EAs to effectively track optima after a problem change. The

most natural way to do this is to re-initialise the population after a change. How-

ever, with some bounded changes, the new EA search space that corresponds to

the new problem is not radically different from the previous one. In such cases,

re-initialisation might slow down the EA convergence process; hence, reusing the

previous population obtained in solving the previous problems might be a better

option. Note that the last population might be driven toward the area surrounding

the previous optima/solution for the previous problem. However, with a change,

the new optima might be at a different location. Therefore, if we use the last popu-

lation, it needs some diversity. A popular approach is the use of hypermutation [51]

where the mutation rate is set to a high value for a limited number of generations,

or to just the first generation and then decreased over time. Note that a very high

mutation rate may result in a re-initialisation of the last population, whereas a too

low mutation rate does not help to boost diversity of this population.

• Maintaining diversity during the run: Diversity is maintained over time to make sure

the population is diverse enough to obtain a solution with quality recovered from the

effect of change. Typical approaches include the Random Immigrant [82] where new

individuals are inserted into the population on a regular basis, the multi-objective-
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based method utilising diversity as the second objective [42], and the thermody-

namic genetic algorithm where an entropy-based value for niching is used during an

optimisation process [142].

• Multi-population approaches : Several sub-populations are evolved together to cover

several promising areas of the fitness landscape. In this way, it is hoped that the

whole system will be able to quickly find new optima when experiencing a change

in its environment. Also, with this approach, several local optima can be tracked

simultaneously. Some typical examples are self-organising scouts [35], the multina-

tional approach [200], and the shifting balance approach [215].

2.4.2 Adaptation

As discussed above, the task of finding and tracking the optimal solution to a problem

does not take into account the situation where this solution is partially executed. If some

components/tasks of this solution/schedule are finished or ongoing, they cannot be al-

tered or there is a high cost associated with such alteration. In a military operation for

example, after a bridge has been destroyed and tanks have been transported over two

thousand miles, rescheduling the bridge destruction is impossible and the tank transport

is extremely costly. Adaptation, however, takes into account the finished and on-going

components. Generally speaking, adaptation is a process of adjusting to the new condi-

tions to keep a system functioning properly. Since the world is dynamic, adaptation is an

important process for many existing systems from biological, ecological, to social organi-

sations [168]. After some changes in the weather, species might take several evolutionary

cycles to develop new abilities to deal with new weather conditions. A company might

need to change some components of their business solution to deal with new market con-

ditions. Although adaptation is a complex process and different from system to system,

it needs to be executed in an incremental style in which, in the case of scheduling, current

ongoing tasks cannot be cancelled without careful consideration of cost. The following

rule has been suggested [127]:
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Schedule revision must judiciously be made to avoid the high cost of altering its ongoing

tasks which thus can be preserved.

Scheduling and planning have emerged as a popular adaptation test problem in which

dynamic factors are common, such as the arrival of new jobs (or tasks), cancellation of

current jobs, disruption of machines (or resources), and time delays in executing jobs.

There have been considerable research efforts on this topic [58, 90, 205, 236]. In general,

there are four classes of methods for tackling the adaptation issue.

1. Robust Proactive: These methods take into account some assumptions (and an-

ticipations) about uncertainties in environments in order to find the most suitable

solution [75]. The assumptions can be on the bound or level of environmental

changes, and on the probabilistic distribution of the changes. An example of these

methods is the addition of slack time to a schedule to make the quality and feasi-

bility of this schedule more robust to environmental changes. Solutions determined

through this method are usually obtained via sensitivity analysis (e.g. using MCS).

The methods are also considered as a robustness analysis process [208]. Schedules

created through these methods are expected to maintain high quality and be fea-

sible despite environmental changes, i.e. to be robust. In accordance with this

expectation they are intended to be implemented entirely regardless of changes in

this environment. However, when change in this environment is extreme they could

become infeasible [117].

2. Reactive-Predictive: In these methods, a pre-optimised solution is used as a baseline

for scheduling. Whenever an environmental change happens, this baseline solution

is revised or repaired to adapt to new environmental conditions. However, this base-

line is determined without any anticipation about present or future environmental

uncertainties. The repairing or revising process is usually repetitive and is consid-

ered as a local search process [127,205]. Aside from the cost (e.g. material, fuel and

labour) of implementing a schedule, the revision could incur another cost such as

penalties in breaching contracts made to material or labour suppliers.
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3. Robust Reactive-Predictive (RRP): These methods combine Robust Proactive and

Reactive -Predictive approaches. Analogous to the Robust Proactive approach,

these methods create robust baseline schedules with foresight on future uncertain

environmental changes. However, the schedules are revised when the environment

changes by a degree beyond a given limit or when the change causes violation of

given constraints [11,30,58]. The revision may still involve the foresight.

4. Completely Reactive: In these methods, there is no pre-optimised solution deter-

mined in advance. A new search process is carried out to find a new solution

adapting to new environmental conditions [175].

It is usually beneficial that a schedule revised through either method in Items 2 to

4 deviates as little as possible from its original form to avoid the high penalty costs of

violating decisions which are dependent on its to-be-executed activities [175]. Further,

these methods may be incorporated with machine learning strategies to improve their

performance in searching for solutions to problems set in the current environmental state.

These strategies utilise information that corresponds to past environmental states. They

are categorised as follows [156]:

• Rote Learning is a simple memorisation scheme. It records valuable solutions and

problems (e.g. g2 in Equation 1.6) set in previous environmental states. The

recorded information is then retrieved to assist in solving the problem set in the cur-

rent environmental state. However, this learning mechanism is not useful when the

probability of the environment returning to one of its previous states is small [156].

• Case-Based Reasoning records features of solutions and problems. It also forms rules

to select its recorded information which is relevant to a current problem. However, if

the database of recorded information has a small number of pairs of solution-problem

features it is likely to be inadequate to assist in solving a current problem [156].

• Induction Methods infer rules from previous information they had accepted and/or

produced. However, these rules are not guaranteed to be correct or accurate, i.e.
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as in inductive reasoning. For example, after an Artificial Neural Network had

been trained [207] using the solutions to previous problems and information on

these problems, it can give a prospective solution for a current problem [156]. This

prospective solution may become part of an initial population which, after evolving,

could yield an optimal solution to the current problem.

• Classifier Systems make use of genotypes which are strings of rules. In each geno-

type, genes are successively used in the iterations of an algorithm to obtain a solution

(e.g. schedule) to a given problem. The objective values of this solution become

the fitness values of the genotype. EA is applied to evolve the genotypes to obtain

a genotype that yields a high-quality solution [156].

Rote Learning and Case-Based Reasoning belong to the class called memory-based

approaches explained in Section 1.1. Let us now discuss an important concept behind

memory-based approaches. Consider a dynamic environment, say a battlefield. And,

suppose sub-problems gprev and gcurr (see Equation 1.6) are set, respectively, in previous

and current snapshots (defined in Section 1.2) of this environment. If based on a certain

definition of distance between sub-problems gprev is close to gcurr, then the fitness land-

scape that corresponds to sub-problem gcurr could also be close to that of gprev. It could

then be expected that solutions to these sub-problems are also close, based on another

distance definition. By the proximity of these solutions, only a few EA cycles could be re-

quired to evolve an initial population that contains solutions or derivatives of solutions to

gprev, to become solutions to gcurr [40, 161]. This expectation underlies several memory-

based approaches in EA [40, 131, 161, 224]. Note that the solution-searching ability of

memory-based approaches is highly dependent on the diversity of population which they

create [36].
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2.5 Multi-Objective Optimisation (MOO)

Let us now extend the exploration of Multi-Objective Optimisation undertaken in Chapter

1. Let x = {x1, x2, . . . , xM} ∈ CM be referred to as the decision vector (e.g. genotype)

of decision variables xi (e.g. ID of task in a schedule); M is the number of decision

variables; and fk (x) as the kth objective function which relates a decision vector to the

kth objective value (e.g., cost to implement an entire schedule). The objective vector f (x)

for a K -objective problem is denoted as,

f (x) = 〈f1 (x) , f2 (x) , . . . , fk (x) , . . . , fK (x)〉 . (2.5)

The concept of dominance of a solution is relevant for comparing the quality of this

solution to another solution of the same MOO problem [55]. To explain this concept,

consider two sets of indices, C = {i1, i2, . . . , iL} and D = {j1, j2, . . . , jE} where C∩D = ∅

and C∪D = {1, 2, . . . , K}. Let the indices be those of the objective functions fk contained

in the expression of f (x) in Equation 2.5. A solution x1 dominates another x2, denoted

as x1 � x2, if there exists a non-empty set C where fi (x1) < fi (x2) for all i ∈ C and

fj (x1) = fj (x2) for all j ∈ D, i.e. if there is one or more of the objective functions

each yielding an objective value at x1 less than that at x2 and if the rest of the objective

functions each yield an objective value at x1 equal to that at x2. This definition is

applicable when objectives are to be minimised. Otherwise, the inequality sign will be

reversed and “greater than” will be used instead of “lesser than” in the definition of

dominance.

To exemplify dominance, recall from Section 1.2 the three objectives: the minimisation

of schedule cost, duration and probability of implementation failure. For any schedule x,

let the objective functions f1 (x), f2 (x), and f3 (x) yield schedule cost, duration and the

probability respectively. If the cost in implementing schedule x1 is smaller than that of

schedule x2, i.e. f1 (x1) < f1 (x2); the duration in accomplishing schedule x1 is shorter

than that of schedule x2, i.e. f2 (x1) < f2 (x2); and the probabilities that implementing
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x1 and x2 will fail are equal, i.e. f3 (x1) = f3 (x2) then x1 � x2. In this example, the sets

of indices C = {1, 2} and D = {3}.

Now, consider the case where f3 (x1) > f3 (x2). Thus, not all of the three objective

functions yield values at x1 less than or equal to the values they respectively yield at

x2. Therefore, x1 does not dominate x2. Following a similar reasoning, the converse is

also true, i.e., x2 does not dominate x1. In this case, x1 and x2 are referred to as non-

dominated solutions. A set of non-dominated solutions is called a Non-Dominated Set

(NDS). A set of solutions to any MOO problem contains a NDS [54]. In practice, it is

from this NDS that a decision-maker selects one solution guided by his/her experience

and intuition, to implement in the field. Let the selected solution be referred to as the

chosen individual from here onwards. The objective vectors that correspond to elements

of NDS form a hypersurface called Pareto Front (PF). This hypersurface is exemplified

over a bi-objective space in Figure 2.11 and labelled as “PF”. In this figure, the circles

represent objective vectors oj = f
(
xj
)

(see Equation 2.5) where xj is a decision vector.
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Figure 2.11: Sample Pareto Front

Pareto improvement is the displacement of a decision vector x in a NDS so as to

improve at least one objective value of f (x) without making other elements of the NDS

dominated by the displaced x. If elements of NDS can no longer be Pareto improved then

this NDS is called Pareto Optimal Set (POS) and its corresponding hypersurface is called
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the Pareto Optimal Front (POF).

2.5.1 Hypervolume

Hypervolume is one measure of the quality of NDS [239]. As shown in the following

example, one way to compute hypervolume is as follows. Let Ov = {o1,o2, . . . ,o5} be

a set of objective vectors oj that correspond to decision vectors xj in an NDS. For each

objective vector oj ∈ Ov, a hypercube with corners Rp and oj is formed where Rp

is a chosen reference point that has coordinates greater than those of any point in Ov.

Figures 2.12(a) to (e) illustrate the hypercubes that correspond to objective vectors o1

to o5 respectively. The reference point Rp is indicated by “�” in these figures. The

volume of the union of all the hypercubes is called, the hypervolume, and illustrated in

Figure 2.12(f). This approach is appropriate when all objectives in MOO problems are

intended to be minimised, such as in the thesis. Other methods to compute hypervolume

are also applied in the literature, such as the Hypervolume by Slicing Objectives (HSO)

algorithm [213], the LebMeasure algorithm [69], and the MCS-based algorithm [64].

Hypervolume is useful for evaluating the behaviour/performance of a single method for

finding solutions under different conditions (e.g. with problem instances), or at different

runs or evolutionary cycles of an EA-based algorithm for solving the same MOO problem.

It is also useful for comparing the performance of techniques that solve similar MOO

problems [239]. In relation to these applications of hypervolume, we define the following:

Definition 1: Let H1 and H2 be hypervolumes of sets S1 and S2 of solutions respectively.

Further, let solutions in S1 and S2 be computed by a technique under conditions C1 and

C2, respectively. If H1 > H2 then this technique performs better under condition C1 than

under C2.

Definition 2: Suppose S1 and S2 are solutions computed, respectively, by techniques T1

and T2 under similar conditions, and H1 and H2 are hypervolumes of sets S1 and S2 of

solutions respectively. If H1 > H2 then technique T1 performs better than T2 under this
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Figure 2.12: Hypercube corresponding to objective vector (a) x1 (b) x2 (d) x4 (e) x5

condition.

2.5.2 Set Coverage

Another way to compare the quality of the set A of solutions to a MOO problem, de-

termined by the method TA, to another set B of solutions to the same MOO problem,

determined by another method TB, is through the set coverage [55]. Let D(A,B) be the
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Figure 2.12: (c) Hypercube corresponding to objective vector x3 (f) Hypervolume

set containing elements of B which are dominated by an element in A,

D(A,B) = {b ∈ B | ∃ a ∈ A : a � b} . (2.6)

The set coverage is defined as,

SC(A,B) =
|D(A,B)|
|B|

, (2.7)

where | | is the set cardinality. This definition can also be applied to mono-objective

optimisation.

Based on Equation 2.7, the set coverage has a range of 0 ≤ SC(A,B) ≤ 1. It will be

convenient for later discussions to have a set coverage-related quantity that has a range

symmetric around zero. For this purpose we define,

dSC(A,B) = SC(A,B)− SC(B,A), (2.8)

where dSC(A,B) is referred to as differential set coverage which is anti-symmetric in its
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arguments. Assuming that |A| = |B| and based on Equation 2.8, dSC(A,B) has a range

of values,

−1 ≤ dSC(A,B) ≤ 1. (2.9)

If dSC(A,B) > 0, Equation 2.8 implies that SC(A,B) > SC(B,A). By the definition

of set coverage in Equation 2.7, the implication indicates that there are more solutions

in B dominated by an element from A than the converse. Thus, technique TA is capable

of determining more solutions that dominate those determined by technique TB than the

converse. In view of this, technique TA is considered to perform better for determining

solutions than technique TB. We then take the following definition:

Definition 3: Suppose A and B are sets of solutions determined, respectively, by tech-

niques TA and TB under similar conditions. Technique TA performs better than technique

TB under these conditions if dSC(A,B) > 0.

2.5.3 The Multi-Objective Evolutionary Algorithm (MOEA)

As noted in Chapter 1, the RCPS problem is an NP-hard problem and is often approached

using modern heuristic methods such as EA [123]. Further, M is a class of RCPS problems,

and each has multiple objectives. A class of EA-based methods applied to solve multi-

objective NP-hard problems (such as those in M) is referred to as a Multi-Objective

Evolutionary Algorithm (MOEA). A popular member of this class is the Non-Dominated

Sorting Genetic Algorithm-II (NSGA-II) [55]. It is generally efficient for solving MOO

problems with small number (two or three) of conflicting objectives [159], such as those

being solved in this thesis. In the following, its framework is discussed first followed by

its three modules.

2.5.3.1 Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

The NSGA-II algorithm starts with a parent population P0. At evolutionary cycle i = 0,

these parents are subjected to evolutionary operators and a selection scheme to create

Mapping of Task IDs for CBAR Page 50 of 318



2 Background Knowledge 2.5 Multi-Objective Optimisation (MOO)

their offspring population Ci of the same size as Pi. Next, a module, called Fast Non-

Dominated Sorting (FNDS) to be described in Section 2.5.3.2, is applied to the union

Gi = Pi ∪ Ci. Then the measure, called crowding distance, for each individual in Gi is

determined through a process to be described in Section 2.5.3.3. The individuals from

Gi are selected through the scheme to be discussed in Section 2.5.3.4 to form the parent

population Pi+1 (of the same size as Pi) of the next generation. Now, the offspring

population Ci+1 of the next generation are formed from Pi+1 by applying the evolutionary

operators and selection scheme which selects individuals based on crowding distance or,

in some applications, dominance. The steps from the application of FNDS to the creation

of Ci+1 are repeated with i incremented by one at every cycle for a given number of cycles.

2.5.3.2 Fast Non-Dominated Sorting

As pointed out above, Fast Non-Dominated Sorting (FNDS) is a module of NSGA-II. It is

an algorithm for segregating solutions into groups whose attributes form some of the basis

in the selection process of NSGA-II. Given a population P , it starts by determining two

attributes of each decision vector sj ∈ P . The attributes are the number nj of elements

in P that dominate sj, called domination count ; and the set Dj ⊆ P , called dominated

set, whose elements are dominated by sj.

Let qk ∈ P be denoted as qj,k to indicate that it is related to sj. If sj � qj,k, then

qj,k is stored to Dj, which starts from empty. However, if qj,k � sj then the domination

count nj of sj, that starts from zero, is incremented by unity but qj,k is not included in

Dj. These steps are applied for each element of P ; as a result, each element of P will

have its own domination count and dominated set. For example, consider Figure 2.13

where circles, diamonds and squares represent two-dimensional objective vectors labelled

by oj = f
(
sj
)
; f is defined in Equation 2.5; and sj is a decision vector in a population P .

In particular, consider o2 indicated in Figure 2.13. Applying the definition of dominance,

the domination count of s2 (corresponds to o2) is zero and the dominated set of s2 is

D2 = {s8, s9, . . . , s15} whose elements have corresponding objective vectors in the set
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Figure 2.13: Pareto Fronts produced by Fast Non-Dominated Sorting

O2 = {o8,o9, . . . ,o15} enclosed by the thick polygon in Figure 2.13.

After determining the dominated set and domination count for each decision vector

in P , a set S1, which starts from empty, is formed by transferring to it elements from P

whose domination counts are zero. Note that after this transfer the set P is now reduced

to a set P − S1 (note the set subtraction). From S1, a set called First Pareto Front F1,

is determined through,

Fk =
{
ok,i | ok,i = f

(
sk,i
)
, sk,i ∈ Sk

}
(2.10)

with k set to unity, and where f is defined in Equation 2.5. To indicate that si corresponds

to an objective vector belonging to the kth Pareto Front it is denoted as sk,i. For similar

reasons, ok,i ≡ oi. As an example of Equation 2.10, the first Pareto Front in Figure 2.13

is, F1 = {o1,o2, . . . ,o7}. The process of determining the second, third and higher-order

Pareto Fronts is discussed next.

A dominated set of sk,i is denoted as Dk,i. For example, s1,2 = s2 has the dominated

set D1,2 = D2 expressed above. Now, to indicate that a decision vector qm is an element

of Dk,i it is expressed as qk,i,m. The algorithm for determining the first and succeeding
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Pareto Fronts is expressed as pseudo-code which utilises the symbols just defined in Figure

2.14. The determination of the second Pareto-Front starts by decrementing by one the

domination count of each element q1,i,m ∈ D1,i dominated by the decision vector s1,i ∈

S1. Note that an element of population P could be a member of more than one dominated

set. For example, let q have a domination count of two and belongs to both D1,2 and

D1,3 which are dominated sets, respectively, of s1,2 and s1,3; both in turn are elements of

S1. The domination count of q becomes one after the domination count of each element

in D1,2 is decremented and then becomes zero after the domination count of those in D1,3

are decremented next. If after all the deductions the resulting domination count of a

decision vector q1,i,m is reduced to zero, then q1,i,m is transferred from the set P − S1 to

S2 which starts empty. This process is applied to all elements of dominated sets D1,i of

all s1,i ∈ S1 to form S2. Note that after all elements of P − S1 whose domination counts

reduced to zero are transferred to S2, the set P − S1 is now reduced to P − S1 − S2. By

Equation 2.10 with k = 2, the second Pareto Front F2 is determined from S2. As can be

inferred from Figure 2.13, the second Pareto Front F2 = {o8,o9, . . . ,o12}.

The steps of decrementing and storing above are repeated until each decision vector

of P is associated with a Pareto Front. Figure 2.13 showed three Pareto Fronts labelled:

F1, F2 and F3 whose elements are differentiated by the type of shape. The order of Pareto

Front is called rank.

2.5.3.3 Crowding Distance

NSGA-II also provides diversification of individuals in a population as it evolves them.

The diversification can facilitate quicker (fewer evolutionary cycles in NSGA-II) deter-

mination of optima being a solution to a MOO problem [55]. NSGA-II diversifies a

population P by first determining the crowding distance Ck,i of each decision vector

sk,i ≡ si ∈ P . The next diversification step is discussed in the next section. To determine

Ck,i, the objective vectors ok,i (equal to f (sk,i)) are sorted based on their mth components,
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Procedure Fast Non-Dominated Sorting
Begin

Set the first Pareto Front as empty: F1 = ∅
Set S1 = ∅
For each s1,i ∈ P

Set domination count of s1,i to zero: n1,i = 0
Set dominated set of s1,i as empty: D1,i = ∅
For each q1,i,m ∈ P

If s1,i � q1,i,m

Include q1,i,m to D1,i

Else if q1,i,m � s1,i then
Increment domination count of s1,i: n1,i = n1,i + 1

End
If the domination count n1,i = 0

Set Pareto Rank of s1,i to unity
Include s1,i to S1

Include f
(
s1,i
)

to the first Pareto Front F1

End
End

End
Remove S1 from P
Set Pareto Rank k = 1
Set Sk+1 = ∅ and Fk+1 = ∅
While P 6= ∅

For each element of sk,i ∈ Sk
For each qk,i,m of dominated set Dk,i of sk,i

Decrement domination count of qk,i,m: nk,i,m = nk,i,m − 1
If nk,i,m = 0

Set rank of qk,i,m to k + 1
Include qk,i,m to Sk+1

Include f
(
qk,i,m

)
to the (k + 1)th Pareto Front Fk+1

End
End

End
Remove Sk+1 from P
Move to the next Pareto Front: k = k + 1

End
End

Figure 2.14: Fast Non-Dominated Sorting (FNDS)
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thereby obtaining an ordered set of values,

Gk,m =
〈
omk,rm(1),o

m
k,rm(2), . . . ,o

m
k,rm(Lk)

〉
(2.11)

where omk,rm(l) is the mth component of the objective vector ok,rm(l); l is a sequential order

of a value omk,rm(l) in Gk,m; Lk is the number of elements in the kth Pareto Front Fk; and

rm is a sorting function. To exemplify this equation, consider the objective vectors, in

the first (k = 1) Pareto Front F1 in Figure 2.15, sorted based on their first component

(i.e. m = 1 that corresponds to the axis labelled “objective value 1” in the figure) from

the least to the largest in order to obtain the ordered set of values,

G1,1 =
〈
o1
3,o

1
2,o

1
7,o

1
5,o

1
1,o

1
6,o

1
4

〉
(2.12)

The sorting function r1 for this example maps sequential orders 1 to 7 to subscripts 3, 2,

7, 5, 1, 6 and 4 of elements in G1,1 respectively (e.g. r1(3) = 7).
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Figure 2.15: First Pareto Front with Cuboid

The crowding distances of the decision vectors (e.g. s3 ≡ s1,r1(1) and s4 ≡ s1,r1(7)) that

respectively correspond to the two objective vectors (e.g. o1
3 and o1

4 in Figure 2.15) at

the edges of the F1 Pareto Front are set to infinity. Except for these decision vectors, the
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crowding distances of decision vectors sk,i that correspond to objective vectors in the first

Pareto Front (i.e. k = 1) are,

Ck,i =
M∑
m=1

∣∣∣om
k,rm(r−1

m (i)−1) − om
k,rm(r−1

m (i)+1)

∣∣∣∣∣∣omk,rm(Lk)
− omk,rm(1)

∣∣∣ (2.13)

where M is the number of objectives. This process is repeated for all decision vectors

that correspond to objective vectors in Pareto Fronts other than F1.

Let us discuss the implication of Equation 2.13. Consider the objective vector o5 (that

corresponds to i = 5 in Equation 2.13) in the first Pareto Front (k = 1) illustrated in the

two-dimensional (M = 2) Figure 2.15. With the number L1 of objective vectors in the

first Pareto Front in this figure equal to 7, the crowding distance of s5 ≡ s1,5 is,

C1,5 =

∣∣∣o1
1,r1(r

−1
1 (5)−1) − o1

1,r1(r
−1
1 (5)+1)

∣∣∣∣∣∣o1
1,r1(7)

− o1
1,r1(1)

∣∣∣ +

∣∣∣o2
1,r2(r

−1
2 (5)−1) − o2

1,r2(r
−1
2 (5)+1)

∣∣∣∣∣∣o2
1,r2(7)

− o2
1,r2(1)

∣∣∣ (2.14)

Using the definition of rm, the coordinates of the objective vectors in the figure, and the

convention, ok,i ≡ oi, we obtain,

C1,5 =
|o1

7 − o1
1|

|o1
4 − o1

3|
+
|o2

1 − o2
7|

|o2
3 − o2

4|
(2.15)

The numerator of the first fraction in Equation 2.15 amounts to the length of the horizontal

side of the cuboid (square with dash-lined perimeter) in Figure 2.15. And, the numerator

of the second fraction amounts to the length of the vertical side of the cuboid. As can

be inferred from the figure, the denominators’ expressions in Equation 2.15 imply an

assurance that all fractions in this equation are normalised, i.e. have values between

zero and one. Now, from this equation, if the objective vectors o7, o5 and o1 are crowded

relative to the span of the first Pareto Front then the two lengths are small. Consequently,

the crowding distance C1,5 of s1,5 ≡ s5 is small. By generalising this conclusion to any

decision vector, Equation 2.13 implies that if an objective vector oi is in a crowded region

of a Pareto Front where it belongs then its corresponding decision vector si has a small
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crowding distance, except if it is located at either edge of the Pareto Front. Crowding

distance could be monotonically increasing with the distance (e.g. Euclidean distance)

between two decision vectors. Thus, si that has small crowding distance could be near to

its neighbouring decision vectors and hence could be situated in a crowded region of its

associated search space [55].

Now, if all decision vectors in a sub-population have large crowding distances they

could be far from each other in their search space. Hence, this sub-population could be

diverse. NSGA-II implements diversification by giving a selection preference to decision

vectors with large crowding distances to persist to the next generation of its evolutionary

cycles. This selection is explained next.

2.5.3.4 Selection

Being a type of EA, NSGA-II has a mechanism to select the next generation population.

In this mechanism, the selection of an individual is based on its crowding distance and on

the rank of the Pareto Front (a set discussed in Section 2.5.3.2) in which its corresponding

objective vector belongs.

The selection process starts by applying FNDS (discussed in Section 2.5.3.2) to a given

population P of size Np to yield a set of Pareto Fronts, {F1, F2, . . . , Fj, . . . , FJ} where J

is the number of Pareto Fronts. Let Nsel ≤ Np be the number of individuals that will

persist into the next generation in NSGA-II’s evolutionary process. Starting from S1, each

Sj (corresponding to Fj in Equation 2.10) is included in ascending rank j in a population

Psel – which starts from empty. This inclusion will stop before including Sq which will

yield |Psel | > Nsel . If at the moment of stopping |Psel | < Nsel then decision vectors in

Sq will be sorted in descending order of their crowding distances, and thereby Sq becomes

an ordered set Srtq. Next, the set Sfirst of first Nsel − |Psel | elements of Srt q, will be

included in Psel . Thus, at the end of this step Psel will have exactly Nsel elements. As

exemplified in Figure 2.16, if S3 will be included in Psel , |Psel | > Nsel , such that only its

subset Sfirst is included in Psel . Now, if at the moment of stopping |Psel | = Nsel , there
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is no need to include any element of Sq.

Figure 2.16: NSGA-II selection

Considering that the sorting of elements in Sq is in descending order of crowding

distance, elements of Sfirst have larger crowding distances than those of Slast = Srt q −

Sfirst . From the last paragraph of Section 2.5.3.3, it can be seen that individuals (decision

vectors) in Sfirst can be more diverse than those of Slast . Thus, NSGA-II’s selection

process just described gives preference to diverse individuals.

As explained in Section 2.5.3.1, NSGA-II applies FNDS to the combined offspring and

parent populations at its current evolutionary cycle. This is followed by the application

of its selection process to the combined populations to form the next generation parent

population. The preference of the selection process to diverse individuals in the combined

populations can enable NSGA-II to produce a diverse next-generation population.

2.6 Estimation Distribution Algorithm

The Estimation Distribution Algorithm (EDA) is a class of evolutionary heuristics which,

instead of using evolutionary operators, makes use of sampling and estimation of Prob-

ability Density Functions (PDFs) to create its next-generation population [119]. It has
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the ability to detect and preserve good quality building blocks of chromosomes [183], an

ability that could be important in some applications [119].

Before discussing a particular member of EDA, let us describe Figure 2.17. Suppose

genes in genotypes, which correspond to individuals in a given population, are task IDs.

Each coloured rectangle in this figure signifies the percentage of the genotypes, which have

task IDs in the vertical axis at the gene index in the horizontal axis, over all genotypes

in the population. The matrix of percentage depicted in the figure is referred to as the

probability matrix.

Figure 2.18 presents a particular EDA algorithm: beginning at its first evolutionary

cycle i = 0, this algorithm creates a probability matrix Pi with equal entries. This

probability matrix is then sampled to form a set of genotypes Gi, sized N . Genotypes

in Gi are then selected to form another set Gsubi of genotypes, sized dρNe, where d•e

is a round-up operator and ρ is a constant where, 0 < ρ ≤ 1. Their selection is based

on the fitness of their corresponding phenotypes. A new probability matrix Pi+1 is then

estimated from Gsubi. The cycle of sampling, selection and estimation is repeated until

a stopping condition is met.

2.6.1 Characteristics of EDA

In Figure 2.17, consideration is given to the visually detected high (of blue hue) probability

block of genes indexed 15 to 17 with task IDs 5, 15 and 17 respectively. During the

sampling of the probability matrix depicted in the figure, task IDs that correspond to

these high probability blocks are more likely to appear at gene indices of the offspring

genotypes that correspond to the block, thereby preserving this block [183].

In EDA, if a prospective high quality (e.g., fitness value) genotype has less probability

of persisting to the next generation, it is less likely to be in the next generation. Note

that, based on elementary statistics, the probability of a genotype in Gi (defined above),

for some i, to be in the next generation (i ← i + 1) after sampling Pi (defined above) is
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Procedure EDA
Begin

(1) Set entries of the probability matrix Pi, i = 0, to equal probability
While stopping condition not meet

(2) Create N genotypes by sampling Pi to form a set Gi of genotypes
(3) Select ρN genotypes from Gi using a fitness measure
(4) i← i+ 1
(5) Estimate Pi from the ρN of genotypes

End
End

Figure 2.18: Estimation of Distribution Algorithm

derivable from Pi. The EDA drawback was remedied in [178]. Another drawback of EDA

is that after several evolutionary cycles (large i), the diversity of genotypes in Gi will be

lost, a drawback remedied in [130].

2.6.2 EDA in Scheduling

In [65, 209], EDA was applied to solve an RCPS problem in a static environment with

tasks on various execution modes. The authors utilised a probability matrix,

Pi =
[
λij,k
]
, (2.16)

where j is the task index, k is the gene index of genotype used in EDA, and i is the

evolutionary cycle count which is equivalent to that in Figure 2.18. Before the start of

the first evolutionary cycle (i = 0) of the applied EDA, all entries of P0 were set to 1/N

where, N is the number of tasks in the environment and also the genotype length. This

implies that all of the tasks have equal probability of being placed into any gene location

in any genotype formed during the sampling of P0 at the first evolutionary cycle.

A copy Ci of Pi was used to generate a genotype as follows: the kth column of Ci, i.e.

Ck
i ≡

{
λij,k | 1 ≤ j ≤ N

}
is sampled to obtain a task that can be assigned to the gene

indexed k of the genotype. However, it could happen that not all tasks with non-zero

corresponding probability in Ck
i are eligible for the assignment due to the task precedence
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constraint in the RCPS problem. To remedy this, let Ei
k be a set of indices of eligible

tasks with non-zero corresponding probability in Ck
i . The corresponding probabilities of

these eligible tasks are provisionally revised to,

λ̂ij,k =
λij,k∑

j∈Eik

λij,k
, (2.17)

where j ∈ Ei
k. The provisional probability vector {λ̂ij,k | j ∈ Ei

k} is then sampled to obtain

a task that will be assigned to the gene indexed k. After this assignment, all entries of

row j of Ci are set to zero to avoid reassigning the obtained task thereafter. Further, each

column of Ci is renormalised. The steps just described enable the assignment of a task to

one gene only. They are repeated for each gene, from first (k = 1) to last (k = N) gene

consecutively, thereby creating one genotype in the next generation genotype set Gi+1

(step 2 of Figure 2.18).

The steps described in the last paragraph are repeated, but starting with a fresh copy

Ci of Pi for every production of the other genotypes in Gi+1. The remaining steps in

Figure 2.18 are executed to complete one cycle.

2.7 Measure of Risk

As shown in Section 1.2, some environmental changes can cause schedules to become

infeasible. Consider, for example, the on-going tasks in a given single-mode (defined in

Section 2.3) RCPS schedule still being executed even after their expected completion

times due to some environmental changes. Suppose further that the items of a certain

resource type they utilised are unavailable to their respective immediate succeeding tasks

scheduled to commence immediately after their expected completion times. Thus, if no

other items of similar resource type are available, the immediate succeeding tasks could no

longer be executed immediately after the expected completion times. Hence, the schedule

can no longer be fully implemented and needs to be revised. This revision could entail
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penalty costs, e.g. a contract infringement penalty with material and labour suppliers.

Thus, it is sensible to reduce the risk of failing to fully implement a schedule.

In the scheduling literature, risk is measured in various ways. In some financial appli-

cations, risk is measured as a monetary value lost after a given time bound [167]. In a

fleet scheduling application, risk is the probability that a fleet would be unable to accom-

modate the load or passengers [214]. A measure of risk was axiomatically defined in [16].

Risk in a RCPS problem is measured as the probability that a given schedule will violate

the resource constraint when the duration of tasks in this schedule is varied, given that

task starting times are fixed [41]. The authors in this work defined this probability Pf

through MCS:

Pf =
1

Ns

Ns∑
j=1

xj (2.18)

where j is the simulation index; Ns is the number of simulations; and xj represents

whether a schedule violates resource constraints or not and is determined as follows:

xj =

 1 if Pl violates the constraints

0 otherwise
(2.19)

where Pl is the plan.

2.8 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) is a class of techniques for developing adequate em-

pirical models of phenomena (e.g. McBAR solving problems from P2) through statistical

means [141]. Before proceeding to explore RSM, let us first introduce some definitions.

Experiment is defined as a procedure undertaken to determine quantity/quantities. For

example, the procedure undertaken to determine the performance of an algorithm is an

experiment. The independent variables in an experiment are called factors, e.g. task du-

ration in an RCPS problem. The value or type of a factor is called level, e.g. crossover rate

of 0.7 of an EA technique. For equally-spaced levels, the absolute difference between any
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pair of adjacent levels is called resolution. The absolute difference between the minimum

and the maximum levels is called range. Treatment is a vector (ordered set) of levels, one

for each factor. For example,

p = 〈χ, µ, σ〉 = 〈0.8, 0.05, 0.5〉 , (2.20)

where the factors χ, µ and σ are crossover, mutation, and selection rates of an EA

technique respectively. Experiment instance is an experiment endowed with a treatment,

i.e. an experiment whose parameters and/or categories are set to their respective values

and/or types found in and comprising a treatment. A sample experiment instance is the

application of McBAR to determine the solutions to a problem from P2 (defined in Section

1.2.5) where McBAR utilises the EA parametric values in Equation 2.20. Observation is

a particular run/execution of an experiment instance, e.g. a single run of McBAR in the

last example. The outcome of an observation is called data. For example, data can be a

hypervolume of the NDS (elaborated in Section 2.5) of solutions determined by McBAR

in the last example. In view of this, data is considered as the response of a system to a

treatment.

The independent variables in any RSM model correspond to factors and are also called

by the same name. Consider a sample model expressed as,

ŷ = α̂ +

Nf∑
i=1

β̂ixi +

Nf−1∑
i=1

Nf∑
j>i

γ̂i,jxixj +

Nf∑
i=1

ω̂ix
2
i , (2.21)

where Nf is the number of factors assumed as being greater than two from here onwards;

ŷ is the estimated response to a treatment composed of factors xi; and the Greek letters

are estimated constant coefficients. Note that the models in RSM are only estimates

of the actual characteristics of phenomena [144]. This explains the use of estimates in

the equation. Let us now relate these models to some characteristics of phenomena. In

an experiment, the main effect is present when the system’s response due to one of the

factors is not influenced by another factor. The factor that causes the main effect is called
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the main factor. For example, consider a model of McBAR’s performance for solving a

problem from P2. If the rate of change of this performance with respect to the change in

the number of tasks is not influenced by the level of anything in the environment where

the problem is set other than the change, then the change is a main factor. A linear

term in a polynomial model only contains, aside from a constant coefficient, a single

unity-exponent factor, e.g. the term β̂1x1 in a summation-expanded Equation 2.21. This

factor corresponds to a main factor. An Interaction effect is present in an experiment

when the influence of a factor on experimental responses is dependent on the levels of

other factors. An interaction term in a polynomial model only contains, aside from a

constant coefficient, a product of two unity-exponent factors, e.g. the term γ̂1,2x1x2 in a

summation-expanded Equation 2.21. The interaction term corresponds to the interaction

effect. A quadratic term in a polynomial model only contains, aside from a constant

coefficient, a single exponent-two factor, e.g. ω̂1x
2
1 in a summation-expanded Equation

2.21. Aliasing exists when it is impossible to determine which factors make a significant

system response. It has to be avoided [165].

RSM can be used to model computational characteristics of the algorithms (e.g. EA)

which possess stochasticity and yield approximate outcomes. It is relevant for the de-

velopment of the models for such algorithms due to the following reasons: each of these

algorithms could produce different data on different observations of an identical experi-

ment instance; and its stochasticity and approximation could diminish the confidence on

the models created from its outputs [165,166].

2.8.1 Design of Experiment (DOE)

In RSM, empirical models are built using data observed from experiments endowed with

the designed treatments. The Design of Experiment (DOE) is a class of techniques for

designing treatments. Note that some applications of DOE are not used for developing

empirical models [141].

Let us now explore various techniques in DOE. A Full Factorial Design (FFD) is a
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type of DOE that utilises all points (others are repeatedly used) in a bounded discretised

parametric and/or categorical space as treatments [141]. Suppose, for example, we want

to model the performance of McBAR for solving a problem from P2 with changes only

in task duration. Further, the amount of task duration change is either one or two time

units only. Thus, for 30 tasks, FFD forms at least 230 = 1, 073, 741, 824 unique treatments

(combinations) of task duration changes. The number of experiments endowed with these

treatments could be impractical to conduct. When a design judiciously chooses a proper

subset of these treatments, it is called a Fractional Factorial Design (FrFD) [141]. The

popular FrFDs applied in the EA domain are the Central Composite Design (CCD) [144]

and the Box-Behnken Design (BBD) [33,67]. They are suitable for developing models with

interaction terms. In these models, aliasing due to the terms of degrees (equal to the sum

of all factor exponents) of two or less can safely be ignored but not otherwise [165]. BBD

is more commonly applied than CCD to design treatments for RSM that builds models

with required quadratic terms. A popular type of DOE called the Taguchi method is

generally harnessed to analyse systems that do not have significant interaction effects [169].

However, this method is less effective than RSM as a tool to optimise a system which has

a large number of factors [216].

An important use of an RSM-built model is for predicting the outcomes of experi-

ments endowed with given treatments. A set of DOE-designed treatments is described

as rotatable if its elements, when utilised in RSM model building, yield a model which

has equal prediction variance at any two of its elements that are equidistant to the centre

of all of its elements. A type of CCD called a circumscribed CCD yields a rotatable set

of treatments but is generally not suitable for designing with integral-valued factors. On

the other hand, a type of CCD called center-faced CCD does not yield a rotatable set

of treatments but is suitable for designing with integral-valued factors. BBD yields a

nearly rotatable set of treatments and is suitable for designing experiments with integral

three-levelled factors [141]. Each factor of the models considered for the thesis has nearly

three levels. Hence, we choose BBD to design experiments for creating these models.
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2.8.2 Model Significance and Adequacy

After designing treatments through DOE, the data gathered from executing experiments

endowed with the designed treatments are utilised to determine the coefficients of a model

through statistical regression. Next, tests must be performed to measure the significance

and verify the adequacy of the coefficient-determined model. Let us first discuss the

significance tests. One of these tests is called an Analysis of Variance (ANOVA). In the

ANOVA of a polynomial model, an F-test is undertaken under the null hypothesis that

the model has an all zero-valued coefficient, except the constant term in this model. A

p-value obtained from the F-test less than 0.05 is popularly accepted in the literature to

indicate that the null hypothesis must be rejected. This rejection implies that at least one

term does not have a zero coefficient and hence this term is relevant to the model. Thus,

this model is considered as significant. Any RSM-built model found as being significant

is regarded to fit the data used to create it. Note that there are other ANOVA results on

which model’s significance are based, e.g. goodness of fit. For ANOVA results to be valid,

the residues (model predictions minus observed responses from a system being modelled

at similar treatments) from the model must be normally distributed with a zero mean.

This rule is met if, among many plots, the normal plot of residuals is approximately or

exactly linear [141].

It is also necessary to verify the adequacy of a model for approximating the system

being modelled. The following are some model adequacy criteria:

1. The linear plot of the model residues against observation numbers has no trend.

2. The linear plot of the model residues against the model predicted values is random.

3. The linear plot of the model predicted values against the data used to build the

model is nearly or exactly a 45o line.

4. Most of the data are located between the ±2 levels in the Difference in Fits (DF-

FITS) plot.
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5. Most of the data are located below the level,

4

Ndata − Nvars − 1
(2.22)

in the Cooks distance plot, where Ndata is the number of data and Nvars is the

number of factors in the model.

6. Most of the data are located inside ±3 levels in the residue plot.

7. Most of the data are located below 2rank(X)
Ndata

in the leverage plot, where X is the data

matrix and “rank” extracts the rank of its matrix argument.

The data located by some magnitudes outside the bounds in Items 4 to 7 are called

outliers. Note that some additional adequacy criteria are found in the literature.

The fitness (significance) of a model could be improved by applying the Box-Cox

transformation to the data used to determine the model coefficients and then using the

transformed data to determine these coefficients again. This transformation is useful when

the data range is fairly large. It is expressed in,

BC(ρ) =
1

λ

[
(ρ+ ζ)λ − 1

]
, (2.23)

where ρ is the data; ζ is a constant to make the sum ρ+ζ always positive; and λ is another

constant that could reduce the data’s non-normal distribution. The model fitness could

also be improved by judiciously eliminating some outliers from the data then reapplying

a regression on the remaining data to determine the new model coefficients [141].

2.8.3 Screening of Factors

Let us now explain a methodology applied to enhance model fitness, referred to as screen-

ing of factors which is a process of eliminating insignificant experimental factors from

being considered either for the design of treatments or as the components of an empirical
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model. This process could be performed through some approaches, e.g. by preliminary

experimentations without the use of a model or by analysis of a model with known coeffi-

cients. The first approach is called a Model-Free approach and is applied to possibly reduce

the number of factors to be considered in a final treatment design (say, through CCD).

Note that the number of treatments produced by a DOE is generally an increasing func-

tion of the number of factors. Thus, the Model-Free approach could reduce the number

of required treatments to develop an empirical model. One way to identify insignificant

factors under this approach is by designing treatments with two-level factors. A T-test

is then applied on data observed in executing experiments endowed with the treatments.

Factors with p-values determined in this t-test greater than 0.05 are usually considered

as insignificant [19, 216]. In the second approach, called a Model-Based approach, model

terms with p-values determined on t-test greater than 0.05 are considered as insignificant

and could be eliminated. Any model term elimination must be pursued judiciously, using

the practitioner’s knowledge and experiences [141].

2.8.4 Model Building

All the topics discussed so far in this section are useful to explain the model building

process through RSM. This process involves the search for the highest ordered polynomial

model that fits (defined in Section 2.8.2) a given data. A particular RSM model building

procedure is as follows:

1. The Model-Free approach is performed to possibly reduce the number of factors to

be considered in a DOE.

2. Based on the factors remaining after their possible reduction, treatments are de-

signed through the DOE.

3. Experiments endowed with the designed treatments are executed to obtain data.

4. Fit the data to a first order polynomial model as follows:
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(a) Apply regression analysis to determine the model coefficients using the data.

(b) Check the fitness and adequacy of the resulting model as related in Section

2.8.2.

(c) Improve the fitness of the model as explained in Section 2.8.2.

(d) Eliminate the insignificant model terms through the Model-Based approach

described in Section 2.8.3.

5. Repeat step 4 with models of increasing polynomial order until either the fitness

(based on p-value in F-test explained in Section 2.8.2) of the current un-aliased

model decreases or saturates from the last un-aliased model. In either of the events,

the last un-aliased model is considered as the best to describe the system being

modelled and referred to as the final model [141].

2.8.5 Model Prediction

It is important to determine the accuracy of the recently-defined final model for predicting

system responses to treatments. One way to determine this prediction accuracy is to

randomly generate treatments (not used in step 2 of Section 2.8.4) that have factor levels

which lie within the factor ranges established by a practitioner. The experiments endowed

with these treatments (i.e. experiment instance) are then executed. If the observed

data/responses from these experiment instances are mostly within 95% (the exact number

depends on the practitioner) of a prediction interval then the final model is considered

as accurate. The prediction interval is a range of values whereby the observed responses

gathered from executing the experiment instances have 0.95 probability of being within

this range.

Figure 2.19 depicts predictions from a model where: the middle curve is the sorted

data predicted by the final model at randomly-generated treatments; the horizontal axis

indicates the labels of the treatments; the lowest and highest curves bound the 95% pre-

diction interval; and the dots are the observed responses from executing the experiments
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Figure 2.19: Sample confidence interval

endowed with the treatments. The figure shows that most of the observed responses are

within the prediction interval. This outcome confirms that the final model is accurate in

predicting responses.

2.8.6 Optimal Treatment

After building a final model through RSM and proving it to be accurate in prediction as

just explained, it can now be used to investigate the system being modelled. One of its

usages is for determining treatments at which the system is optimal [141]. For example,

the parametric values (e.g. 0.7 crossover and 0.03 mutation rates) of some evolutionary

operators that yield optimal McBAR’s performance can be determined through RSM.

The Method of Steepest Ascent (MSA) is a technique that applies RSM and is popularly

utilised to determine the response-optimising treatments of some systems. Its modified

version which is suitable for system optimisation that involves several important (highly

influential on system’s response) system factors have the following algorithm [31]:

1. Viewing treatments as points in factor space, design a set of treatments located

around and at a centre. This centre is referred to as base point Bp and supplied by

the RSM practitioner.
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2. Execute the experiments endowed with the designed treatments to obtain responses

from a system being optimised.

3. Fit a linear model to the responses following step 4 in Section 2.8.4.

Let this model be expressed as,

ŷ = â+
Nw∑
i=1

b̂iwi +
Nx∑
j=1

ĉjxj, (2.24)

where ŷ is the estimate of system response; â, b̂i and ĉj are constants determined through

the regression analysis applied in step 4a in Section 2.8.4; wi and xj are factors that form

the sets W = {wi} and X = {xj} respectively; W ∩X = ∅; wl ∈ W and xk ∈ X are

the only important factors; Nw = |W |; Nx = |X|; and Nf = Nw + Nx is the number of

factors.

4. Beginning with index m = 1, perform the following for a chosen number of cycles:

(a) Beginning with index n = 1, perform the following inner cycle:

i. Displace the base point to become the treatment,

Tm,n = Bp +mµb + nλc, (2.25)

where b =
∑Nw

i=1 b̂iŵi; ŵi is a unit vector that corresponds to factor wi and

has coefficient b̂i in Equation 2.24; the set of ŵis is orthonormal; µ = Bl/b̂l;

Bl is a practitioner-selected constant; c =
∑Nx

i=1 ĉix̂i; x̂i is a unit vector that

corresponds to factor xi which has coefficient ĉi in Equation 2.24; the set

of x̂is is orthonormal; λ = Ck/ĉk; and Ck is another practitioner-selected

constant.

Based on Equation 2.25, if n is held fixed, the base point Bp will be displaced

by µb at every increment of m. This displacement has a magnitude of Bl

along the unit vector ŵl which corresponds to a system-important factor wl.

Mapping of Task IDs for CBAR Page 72 of 318



2 Background Knowledge 2.9 Lagrange Optimisation

Further, if m is held fixed, the base point Bp will be displaced by λc at every

increment of n. This displacement has a magnitude of Ck along the unit vector

x̂k which corresponds to another system-important factor xk.

ii. Execute the experiment endowed with treatment Tm,n.

iii. Increment n→ n+ 1.

This inner cycle is to be repeated for a chosen number whereby a peak in system

response to treatments Tm,n must be observed. The base point Bp should be

selected to obtain a likely progressive increase in response to treatments Tm,n

at the first few inner cycles; thus, the name MSA.

(b) Increment m→ m+ 1.

5. The treatment Tm,n that yields the maximum response can be considered as the

system optimising treatment being sought or as a new base point for further analysis.

2.9 Lagrange Optimisation

The EA is versatile in searching solutions to many optimisation problems and belongs to a

class of stochastic algorithms. By its stochasticity, however, it does not consistently yield

a similar solution every time it solves the same optimisation problem [166]. Lagrange

Optimisation, on the other hand, is one of the popular optimisation methods that over-

comes this limitation for being a deterministic method [91]. Let us now discuss its basic

features through an example. Consider a problem of determining a vector x = {x1, x2}

which yields an optimal value of a function f(x) – whose selected contours are depicted

as thin curves in Figure 2.20 – under the constraint,

c (x) = b (2.26)

where b is a constant and c is a certain function. The values of x that satisfy the constraint

are points that comprise the thick curve in the figure. Any thin curve is composed of
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points y whereby f(y) = lvl with lvl being the number at this thin curve. As any

possible solution to the problem must satisfy the constraint, then it must either be the

intersection (e.g. point A in the figure) of a contour of f(x) and the thick curve or the

point (e.g. point T in the figure), called a touch point, at which a contour of f(x) is

tangential to that of the thick curve.
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Figure 2.20: Contour graphs

Now, starting from the lowest right point of the thick curve up to its leftmost point

f(x) changes to several values, such as 1.2, 0.8, and 0.4, indicated in the figure. It is only

at a contour of f(x) which touches the thick curve when f(x) remains constant (zero

slope) over an infinitesimal range of points centred on the touch point and being parts of

the thick curve. Thus, the touch point corresponds to an optimum (zero slope) of f(x)

that satisfies the constraint (found at the thick curve) and therefore the solution to this

particular optimisation problem.

This touching happens when the tangent vector (represented as the right-directed

arrow in the figure) of a contour of f(x) is in anti-parallel to that (represented as left-

directed arrow in the figure) of the constraint. Thus,

∇f(x) = −λ∇c (x) (2.27)

where the constant λ will make the magnitudes of the two tangential vectors equal and
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is called the Lagragian Multiplier. This constant must not be equal to zero or complex-

valued. Otherwise, the two vectors may not be anti-parallel and yet could satisfy Equation

2.27 [91].

Let the touch point be denoted as x∗ = {x∗1, x∗2, . . . , x∗M} where M is the vector dimen-

sion. For any continuous f(x) and c (x), and constraint as in Equation 2.26, Lagragian

Optimisation could be performed as follows:

(1) Express x∗ in terms of λ∗ using Equation 2.27 with x ← x∗ to obtain,

x∗ = h (λ∗) (2.28)

where h (λ∗) is a vector function.

(2) Substitute x∗ from Equation 2.28 to the constraint in Equation 2.26 to obtain,

c (h (λ∗)) = b (2.29)

(3) Determine λ∗ from Equation 2.29.

(4) Substitute λ∗ to Equation 2.28 to obtain x∗.

Note that there could be several values of λ∗ that can satisfy Equation 2.29. Let λ#

be one of these values and which yields x# when substituted to Equation 2.28. If x#

satisfies both Equations 2.26 and 2.27, and λ# is real and non-zero then x# is a possible

solution to the optimisation problem [91]. If there are several possible solutions, the

possible solution p that yields the maximum/minimum value of f (p) is the solution to

the maximisation/minimisation (optimisation) problem.
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2.10 Measures of Intelligence

The intelligence of a machine, such as a computer, can be measured in several ways. One

machine intelligence measuring test is the Turing test where a human and a machine both

provide answers to a series of similar questions in a teletype conversation. If the quality of

answers given by the machine cannot be distinguished by human judges from that of the

human then the machine is considered as intelligent. Although practically impossible but

not illogical, the machine can be built with a database containing an infinite number of

question-answer pairs. This machine is therefore capable of answering any question and

will consistently be judged as intelligent, based on the Turing test, despite lacking other

facets of human intelligence such as creativity [121]. A popular measurement of human

intelligence is the psychometric test. However, a computer programmed to excel only in

psychometric tests will not be able to pass other tests, such as an exam on Riemannian

Manifolds [120] or Quantum Gravity [171]. Other machine intelligence measuring tests

are Compression, Linguistic Complexity, Multiple Cognitive Abilities (which was used in

IBM’s Joshua Blue project), and Smith’s, to name a few. The Turing and psychometric

tests are only suited to measure specific facets of human-quality intelligence. However, the

Universal Intelligence (UI) test is a general measure of human-quality intelligence [121].

It is based on the principle of Occams Razor and Reinforcement Learning (RL).

2.10.1 Reinforcement Learning (RL)

Let us briefly introduce Reinforcement Learning. Consider an ancient man in a forest.

When feeling hungry, for instance, he either performs a series of bodily actions to go up

a hill and then search for food there, or performs a different series of bodily actions to

go down a valley and then search for food there. Suppose that on several of his hunger-

catalysed experiences, he was able to find food on the hill more frequently than in the

valley. The next time he feels hungry after these experiences, he will likely choose the

series of actions to go to the hill and search for food there since this series is more likely to
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be rewarding (i.e. satisfies his hunger) than the other series of actions. The fundamental

principle of Reinforcement Learning is that, actions learned by an agent (a learning entity,

such as the ancient man) as having greater likelihood of being rewarded are likely to be

executed by this agent. A significant merit of an agent following this principle is the

ability to learn autonomously; experience is its only teacher [190].

 

Do nothing 

Hungry 

Go hill 

Go valley 

Full 

Hungry 

Full 

Figure 2.21: Sample Reinforcement Learning system

An RL system is composed of an environment and agents who dynamically interact

with this environment and among themselves [121]. For the purpose of introducing RL,

only one agent is considered in this subsection. The agent’s action can alter the envi-

ronment, e.g. digging an animal trap. As a consequence of this action, the environment

could give this agent an observation (e.g. an animal is trapped) and reward (e.g. food) or

punishment (e.g. starvation). Let the reward value quantify reward as a positive value,

including zero, while punishment is a negative value.

Consider a sample RL system, as illustrated in Figure 2.21, for the scenario above

involving an ancient man. Labels in circles and rectangles in this figure correspond,

respectively, to states and series of actions of this ancient man. Let the types of series of

actions be in the set A = {h, v, n} where h, v, and n denote, respectively, the series of

actions to go to the hill then search for food, go to the valley then search for food, and

do nothing. Further, let the types of state he can experience be in the set S = {H,F}

where H and F denote, respectively, hungry and full. The states on the left of the figure
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are the possible current states in S that the ancient man can experience while those on

the right are the possible next states also in S, distinguished from the current states by

an apostrophe.

Now, after the ancient man had gone through several experiences of being in a state

s ∈ S and then taking series of actions a ∈ A the probability P(s, a, s′) that he ends in

next state s′ ∈ S with an average reward value R(s, a, s′) received for executing a can

be determined. Both the probability and average reward are indicated in the figure for

different (current state)-(series of action)-(next state) triples. For instance, when hungry

H ∈ S, the reward (degree of stomach fullness F ∈ S) for going to the valley might

be 0.7, i.e. R(h, v, f) = 0.7. For a given current state s and series of actions a, the sum

of probabilities P(s, a, s′) over all next states s′ is unity.

The probability of being in a state s and then taking a series of actions a is called

a policy, denoted as π(s, a). After determining the probabilities P(s, a, s′) and average

reward values R(s, a, s′) the policy π∗(s, a) – referred to as the optimal policy – that yields

optimal reward value can be determined. Once known, the optimal policy can be utilised

to determine the series of actions (e.g. go to a hill and then search for food), given a state

(e.g. being hungry), that yields the greatest reward (e.g. bountiful food) [190].

2.10.2 Universal Intelligence (UI)

The concept behind RL is utilised in defining a measure of intelligence, referred to as

Universal Intelligence (UI). The UI of an agent/software α over a set of tasks Tsk is

expressed as [121],

Ψ(α) =
∑

τ ∈ Tsk

2−K(τ)Rα
τ (2.30)

where K(τ) is the Kolmogorov complexity which is the length of the program executed

by the agent that can accomplish a given task τ (e.g. playing chess) where the reward

value to the agent for this task is Rα
τ [121].

Accomplishing a task by an agent can manifest a facet of this agent’s intelligence. If
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the summation in Equation 2.30 is over all types of tasks then this equation accounts for

all facets of intelligence. To determine the agent’s intelligence, this equation only requires

the obtainable lengths of the programs of the agent to accomplish the tasks; and rewards

for executing the tasks. Thus, UI can determine the totality of an agent’s intelligence.

Based on the equation, Kasparov is still more intelligent than the Deep Blue machine

even if Deep Blue won over Kasparov in their chess games. This is because, other than

playing chess, Kasparov can accomplish almost infinitely many types of rewarding tasks,

which Deep Blue is not programmed to accomplish.

If the degree of simplicity of a program is taken as the program length K(τ), the

simplest program (i.e. smallest K(τ)) that can accomplish a task τ yields the largest

value of 2−K(τ). Thus, Equation 2.30 shows that the simpler the programs utilised by an

agent to accomplish most tasks, the more intelligent this agent is, i.e. the simpler the

better; an idea based on Occams Razor.

The inclusion of reward value Rα
τ to Equation 2.30 is inspired by the RL principle

[121]. It is a legitimate component of this equation since, accomplishing more rewarding

types of tasks, e.g. winning a Nobel Prize in Physics, can be regarded as requiring more

intelligence. Kolmogorov complexity, such as in Equation 2.30, is non-computable [126]

thus constituting a drawback to the UI measure. A different computable complexity

measure might be appropriate [121].
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Chapter 3

This chapter reviews current work in areas related to multi-objective dynamic RCPS

problems with time-varying number of tasks (i.e. problems from M), areas that were

investigated in Chapter 2 such as, Genetic Programming, RCPS, schedule optimisation in

dynamic environments and multi-objective schedule optimisation. This is followed by the

review of current techniques utilised to demonstrate in the thesis the relevance of McBAR,

techniques also explained in Chapter 2 such as, EDA, robust proactive and reactive-

predictive approaches to scheduling, RSM and Reinforcement Learning. This chapter

concludes with the provision of information on a current method in Artificial Intelligence.

This method, referred to as Multi-Agent System (MAS) is applied to scheduling but not

at all for McBAR.

3.1 Genetic Programming (GP)

Let us explore the various applications of GP. In priority scheduling, the priorities of

executing certain components of scheduling system are to be determined aside from the

schedule itself. The prioritisation scheme is referred to as dispatching rule, scheduling

rule, or heuristic. It is usually represented by a priority function which maps scheduling

system components to their priorities. It is produced by GP applied in various applica-

tions [20,43,102] to create schedules for dynamic job-shop environment with time-varying

number of tasks. From a GP-evolved heuristic in [147] the priority function was used as

basis for executing a job with current highest priority. The GP applied for the job-shop

scheduling problem in [102] utilised addition, subtraction, multiplication and protected
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(against zero divisor) division of real numbers as functions and utilised job processing

time, job due date, and slack time as terminals, to name a few. It was also applied

in [146] to determine dispatching rules for single objective job-shop scheduling problems.

GP was applied to solve multi-objective problem on edge detection in image in [234],

where the objectives are the minimisation of the depth of the GP-evolved tree and the

minimisation of the image component misclassification in applying the tree (executing

the program). GP evolved a heuristic for an exam timetabling problem instance in [20],

where measurement is made at every evolutionary cycle on the quality of the solution

found using the current heuristic. This approach is repeated until a high quality solution

is found. In a dynamic semiconductor manufacturing scheduling problem (a type of job-

shop scheduling problem) in [154], GP was applied to evolve job assignment rules, each

composed of rules extracted from fundamental job properties. It is assisted by EA to

allocate assignment rules to manufacturing work centers.

Let us now explore a GP-based algorithm, referred to as Diversified Multi-Objective

Cooperative Evolution (DMOCC), applied to solve multi-objective dynamic (with time-

varying number of tasks and dispatching rule, to name a few) job-shop scheduling problem

in [147]. The problem accounts dispatching rule (DR) and due-date assignment rule

(DDAR) of the jobs. The algorithm started with two initial populations, Pdr and Pddar ,

created using ramped-half-and-half technique [115] and composed of DRs and DDARs

respectively. Each element pdr ∈ Pdr was paired to a binary tournament (accounts the

quality and distribution of selected individuals) selected element pddar ∈ Pddar to form

a complete scheduling policy. This policy was evaluated at the simulation of the system

at which the problem was set to obtain the fitness values (e.g. makespan and tardiness of

schedule found through this policy) of pdr . This process of fitness evaluation was applied

to all elements of Pdr . The same pairing and evaluation processes were performed on

the elements of Pddar , except that the pairings are between elements of Pddar and the

binary tournament selected elements of Pdr . After these evaluations, an archive which

started from empty was updated using the populations Pdr and Pddar . Next, the

pareto rank and crowding distance (defined in Sections 2.5.3.2 and 2.5.3.3 respectively)
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of each element of the archive was computed. If the number of evolutionary cycles was

reached the algorithm was terminated, otherwise new Pdr and Pddar was formed from

the elements of the archive using mutation and crossover operators.

Let us focus on non-scheduling GP applications. In the domain of signal processing:

Esparcia and Sharman [63] applied GP to evolve the topology of and the transfer function

of each node in each Recurrent Neural Networks (RNN). However, the neuronal weights

were determined using Simulated Annealing. At each stage of the evolution, the developed

RNNs are individually applied to equalize nonlinear telecommunication channels with

additive white gaussian noise [45], an application where the network fitness is determined.

Howard, et al. [97], utilised GP to evolve detectors in algebraic form and applied these

detectors to identify information on ships in Synthetic Aperture Radar (SAR) images.

Detection of information on vehicles in infrared images was undertaken in [98] where the

performances of evolved detectors are compared between two sets of terminals utilised in

a GP evolution. The discrete Fourier transform set was found to evolve detectors with

the better performance under the considered images in [98]. GP was also applied to

profile tissues using the data from the vibrational spectroscopy of these tissues [80].

Genetic Programming was also applied to develop mathematical models in various

applications. Cai, et al. [44], utilised GP to evolve regression model of correlations

in considered heat transfer processes, where the fitness function was influenced by the

observed and model-predicted quantity of transferred heat. Lew, et al. [124], created

surrogate model of a highly complex structural dynamics using not the traditional multi-

nomial model through Response Surface Methodology (explored in Section 2.8) but a

model evolved through GP. The learning dynamics of each artificially intelligent player

was modelled in [49]. The model, called forecast rule, is being evolved through GP while

its associated agent/player is interacting to other agents. An interesting result in the

investigation in [49] is that the behaviour of the agents (influenced by each associated

model) in a game is closely related to that of human players on same game.

An explicit memory-based approach was applied in [147], where some GP-evolved non-
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dominated programs applied to solve past sub-problems (defined in Section 1.2.3) were

used to search for high-quality programs to solve for a current sub-problem. However,

intuitively, it is extremely challenging to define a meaningful representative of a non-

dominated set of programs for implicit memory-based approach (defined in Section 3.3.1).

Consider, for example, two GP trees with the same structures but with some different

nodes. It is extremely challenging to define the average of functions, say + and ×, at two

nodes of same locations in two GP trees whereby this average becomes a meaningful part

of a representative (also a tree) of a non-dominated set of programs/trees where the two

trees belong. In fact, no literature applied GP that incorporated implicit memory-based

approach for solving RCPS problems, such as problems found in [72, 149] to which GP

was applied. Considering the relevance of implicit memory-based approach (which could

utilise representative of non-dominated set of programs) as explained in Section 3.3.1 GP

was not utilised in this thesis.

3.2 Resource Constrained Project Scheduling

As noted in Chapter 1, many RCPS problems are NP-hard [123]. In general, they can

be modelled as mixed integer programming problems. Therefore, conventional linear

programming, such as the simplex method, is not really suitable, and many researchers

have developed a number of approaches over recent years. Broadly speaking, these ap-

proaches can be classified into two categories: exact and approximate methods. For

exact methods, the final solution will be the optimal one for the RCPS. Some typical

approaches of this category are branch and bound [56], Lagrangian relaxation [59], and

dynamic programming [46]. However, exact methods usually face an issue of execution

time with large scale problems (the number of RCPS tasks should not exceed 60, ac-

cording to [10]). Therefore, approximate methods are preferred, including a variety of

heuristic/meta-heuristic techniques, such as priority-based, truncated branch and bound,

sampling techniques, local search techniques, tabu search, simulated annealing, scatter

search, multi-agent systems and EAs [14,92,114,136].
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As elaborated in the previous chapters, RCPS inherently possesses a feature of multi-

objectivity. Surprisingly, the literature on RCPS is dominated by work considering only

single objectives [186, 206]. There exist a number of possible conflicting objectives of

RCPS such as the minimisation of schedule duration and implementation cost, resource

balancing and maximisation of schedule robustness. Note that for multi-objective opti-

misation, finding good (optimal) solutions is not the only consideration; addressing the

trade-off between objectives among obtained solutions is another consideration.

A common approach in dealing with multi-objective RCPS (also for machine schedul-

ing [145]) is the weighted-sum [1]. For this approach, objectives are summed according

to a predefined vector of weights. However, this approach systematically faces several

issues, such as objective scaling, and it is also not easy to address the matter of solu-

tion trade-off analysis. Alternatively, Pareto-based approaches are used to obtain a set

of trade-off solutions in a single run [25, 206]. Therefore, these approaches seem to be

more suitable for solving the multi-objective RCPS problem. One of these approaches is

NSGA-II described in Section 2.5.3.1 and is utilised in the thesis.

3.3 Dynamic Optimisation Problem (DOP)

Some current literature on DOP had already been explored in Section 2.4. Thus this

section only presents current work on memory-based approaches (explained in Section

2.4.2) to solve DOPs, and on techniques for solving scheduling problems with a time-

varying number of tasks, two areas which are fundamental to McBAR.

3.3.1 Explicit Memory-Based Approach

The explicit memory-based approach defines how the raw information produced by EA for

solving problems, and/or the raw information about environments where these problems

are set, are stored and retrieved [223]. In [223,224], a combination of competitive learning
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and explicit memory-based approaches was applied. The fundamental algorithm in these

studies is as follows. First, a probability vector P is initialised with all of its components

set to 0.5 and a memory is set as empty. Now a loop is entered that begins with P

being utilised to generate a population S of genotypes. Then, the memory is updated

at the random cycle number of this loop. During an update, if the memory is not full,

the pair of the best fit sample B from S and the current probability vector P is stored

in the memory. Otherwise, a sample Bm in the memory that is mathematically nearest

to B is considered. If the fitness of B is better than that of Bm, Bm and its probability

vector pair Pm are replaced in the memory by B and P respectively. After processing

the memory, if the environment where the problem is set and considered in the work

changes, the sample Bf with the best fit among all samples in the memory is determined.

If the fitness of Bf is better than that of B (best fit among genotypes of S) then P is

replaced by the probability vector Pf pair of Bf from the memory. However, if there is

no change in the environment, P is transformed through a competitive learning towards

a linear function of B. The probability vector, either the result of the replacement or

the transformation, is mutated to obtain a new current probability vector P. The loop is

then repeated until a termination condition is reached.

An explicit memory-based EA approach in [185] was based on the human immune

system and applied to solve a dynamic knapsack problem. The snapshot (defined in

Section 1.2.3) of the dynamic environment, where the problem is set, was considered as

an antigen (molecule foreign to the immune system). And, the solutions to the sub-

problem (defined in Section 1.2.4) set in the snapshot were considered as antibodies.

For each previous snapshot of the environment, the antigen that corresponds to this

snapshot and the set of solutions/antibodies that have good fitness among all solutions

to the sub-problem set in this snapshot are stored to a memory. Now, the antigen C

that corresponds to the snapshot taken right after the current change of the environment

is compared to those in the memory. The set of antibodies paired to the memorised

antigen nearest to C has its antibodies cloned and then these antibodies replace the less

fit antibodies/solutions to the sub-problem set in the last snapshot. The resulting set
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of solutions is then evolved to obtain the solutions to the sub-problem set in the current

snapshot.

The basic approach in [228] was to search for a solution to a sub-problem set in the

current snapshot of a dynamic environment where this solution has a higher likelihood

of still having an appreciable quality when implemented in one or more future snapshots

of the environment. The implementation of the solution in the future snapshots can be

considered as being an explicit memory use. A solution such as this is referred to as a

Robust Solution Over Time (RSOT) and the problem of determining it is referred to as

a Robust Optimisation Over Time (ROOT). In [73], some measures on the changes of

a dynamic environment were investigated, namely measures that can be used to decide

which approach is suitable to solve a ROOT problem.

The system in [161] continuously learned of the changes in an environment by dynam-

ically updating its knowledge base of pairs of environmental properties and solutions to a

problem set in the environment. A pair will be retrieved if it contains environmental prop-

erties that match, based on a mathematical measure, those of the current environmental

state. The solutions contained in the retrieved pair were then utilised to form an initial

population which was evolved through EA to search for optimal solutions to a problem

set in the current state of the environment. A system described in [131], closely related

to that discussed in [161], was applied to some dynamic resource allocation problems in a

command and control environment. This allocation problem considered risk and cost in

a project implementation, factors which were lumped into one objective function.

3.3.2 Implicit Memory-Based Approach

The implicit memory-based approach defines the way in which the results of processing

the raw information produced by EA for solving problems are stored and retrieved [223].

This information may or may not be paired in the memory with the raw or processed

information in the environment where the problems are set. In the EA approach of [22]

for solving a job-shop scheduling, at every fixed number of evolutionary generation and at
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every rescheduling moment (when the environment, to where the problem is set, changes),

each task in the best fit individual is categorised to obtain a prioritised list of categories

that is stored in a memory. A process is applied to store the list to a memory. At

every evolutionary generation, pending tasks are categorised. And, using the priority of

categories in a prioritised list in the memory a prioritised list of the tasks is obtained,

the list that constitutes an individual/schedule. This step is performed for each memory

element. The obtained individuals are inserted to the population being evolved.

Multi-stranded chromosomes (polyploidy) were utilised in [85,125,202] to store repre-

sentatives of solutions which correspond to past environmental changes. This utilisation

was shown to be useful in searching solutions, through the Genetic Algorithm, to some

dynamic problems. Chromosomes utilised in [52] have a multi-level genetic structure

which serves as a long-term memory of representatives of solutions and environmental

properties. They facilitate quick adaptation of a function optimiser to environmental

changes.

In the scheduling domain, performance of an implicit style is better than that of an

explicit style because, in a dynamic scenario, the schedule produced by an explicit style

will swiftly become irrelevant due to variation in the priority and precedence order of

schedule components [22].

3.3.3 Time-Varying Task Number

There have been several reactive-predictive (defined in Section 2.4.2) scheduling ap-

proaches applied to revise schedules to cope with the effects of the time-varying number of

tasks. For example, in the EA approach to the job-shop scheduling problem in [22], genes

which correspond to new/old jobs that arrived/finished were inserted/removed to/from

genotypes of phenotypes (schedules). The resulting population of gene-inserted genotypes

was then evolved further to search for new high-quality schedules. It is worth noting that

despite the genotype alteration, significant improvements in the search convergence of the

EA and in the quality of the obtained solutions/schedules were found [27, 28, 127, 164].

Mapping of Task IDs for CBAR Page 87 of 318



3 Literature Review 3.4 Multi-Objective Optimisation (MOO)

In [150], tasks in processors of a distributed computing system arrive randomly and were

put on queue. These tasks were then processed in batches, each has a varying number

of tasks. This processing followed a schedule created through the Genetic Algorithm to

obtain a minimal combined execution time of tasks in every batch. In [15], genes that

correspond to new tasks were also inserted into genotypes which were then processed by

an EA to obtain a new high-quality schedule for multi-resource scheduling with cumula-

tive constraints. In this EA process, the lateness of the new schedule with respect to a

given deadline was minimised and at the same time important properties of the original

schedule were preserved. EDA (presented in Section 2.6) was applied to solve a non-RCPS

problem whose dimension changed in time [78, 79]. However, the objective functions of

the problem were simple. More techniques in revising schedules to cope with the variation

of the number of tasks in the environments in which these schedules are set can be found

in [58].

3.4 Multi-Objective Optimisation (MOO)

As explained in Chapter 1, MOO can be useful for creating schedules or plans. Let

us now review prominent approaches in this domain. The MOEA techniques (a type

of MOO elaborated in Section 2.5) can be classified into two broad categories: those

with and those without elitism. In the elitism approach, a set is utilised to store high-

quality solutions determined at previous evolutionary generations. Its subset becomes

a part of a population of a current generation. In this manner, the best individuals

of some generations can be preserved, thereby helping to obtain solutions close to the

Pareto optimal front (defined in Section 2.5) for a given problem. Algorithms such

as SPEA2 [238], PDE [2] and NSGA2 [55] are examples of this category. In contrast,

the non-elitism approach has no concept of elitism when it selects individuals for a next

evolutionary generation from the population at a current generation [240]. Examples of

this category include VEGA [179] and NSGA [53].
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MOEA techniques can also be classified according to criteria other than elitism:

criterion selection bases the selection of next generation individuals on the objective values

of the individuals [179]; aggregation selection bases the selection on the weighted sum of

the objective values of each individuals [86]; and Pareto selection, the most popular,

concentrates the selection on finding a set of promising individuals [227]. Examples of

Pareto selection schemes are: Pareto ranking [71], niched Pareto GA [96], non-dominated

sorting GA (NSGA) [188], strength Pareto EA [237], Pareto archive evolutionary strategy

[112], and NSGA-II [55]. NSGA-II is one of the most popular methods in the MOEA

literature and was chosen in this thesis as a part of the solution-searching mechanism of

techniques from T (defined in Section 1.2.6).

MOO is utilised in Chapter 7 to solve some scheduling problems that have random

variables. Let us review some of the literature related to its use to solve this type of

problems. In Multiprotocol Label Switching [134], the random information transmission

blockages degrade the quality of service (QoS) to telecommunication customers. This

QoS was traded-off with the operational cost of a telecommunication company through

MOO. In [12], the probability of (random) pipe breakage was utilised to estimate the

pipe repair cost of a piping system. The repair cost was traded-off with the expected

volume of lost water due to the pipe breakage, a trade-off where both of these quantities

were minimised through MOO.

3.5 Estimation Distribution Algorithm (EDA)

The EDA was presented in Section 2.6 as a heuristic algorithm that significantly differs

from EA. Let us now look at current literature pertaining to this heuristic.

Mapping of Task IDs for CBAR Page 89 of 318



3 Literature Review 3.5 Estimation Distribution Algorithm (EDA)

3.5.1 EDA in Scheduling and Planning

The EDA was applied in [65, 209] to solve a RCPS problem set in a static environment

where tasks were executed in various modes (ways). It was also applied in [48, 178,

233] to solve job-shop scheduling problems. Some important guidelines for designing

implementations of the EDA were developed in [48] for solving a machine scheduling

problem. A type of Particle Swarm Optimisation technique combined with a version of

the EDA was applied in [129] to solve a flow shop problem.

The Bayesian Optimisation Algorithm (BOA) is a variety of the EDA and utilises

Bayesian networks (statistical inference networks) to estimate its probability matrix (de-

scribed in Section 2.6). However, it requires solving NP-complete problems to search for

the Bayesian networks which fit given criteria best [151]. The search is computationally

expensive. BOA was applied to determine task schedules for a multi-processor computing

system where its Bayesian network was established by learning the dependencies between

the tasks [222].

3.5.2 Multi-Objective EDA

The EDA was applied in [87] to improve the performance of a technique which utilises

Reinforcement Learning (investigated in Section 2.10.1), a performance for solving a multi-

objective problem. In the improvement process, its probability matrix was revised every

time the Reinforcement Learning system dynamically interacted with an environment.

The EDA was applied to classify tissues at molecular level in [66]. The selection (an

implementation of step 3 in Figure 2.18) of genotypes in this work is based on the Pareto

ranks and crowding distances (explained in Section 2.5.3) of their corresponding pheno-

types. This work is one of the bases upon which the thesis relies in its application of the

EDA.
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3.5.3 Dynamic EDA

The EDA was applied to determine the optimum of functions with time-varying dimen-

sions in [78,79]. In this application, the utilised probability matrix was a Mixed Gaussian

Model whose number of clusters was determined through Bayesian Information Crite-

ria [182]. The EDA was applied to some dynamic optimisation problems with fixed

dimensions [130, 152, 218]. In [152], some parameters of the current state of a dynamic

environment were used to retrieve, from a memory, parameters of a probability matrix

utilised before hand for solving a problem set in a previous state of the environment. These

retrieved parameters were utilised to form the probability matrix of an EDA process that

solved the problem set in the current state of the environment. Further, population di-

versity loss correction (discussed in Section 2.6.1) was applied in the EDA process. A

variant of EDA called Univariate Marginal Distribution Algorithm (UMDA) was applied

in [130] to combat population diversity loss. It was also applied in [218] with a multi-

modal probability model and multi-population to tract multiple peaks of the search space

associated with a problem.

3.6 Robust Proactive Approaches

Some unpredictable events in an environment, where a scheduling problem is set, can

cause uncertain changes in the parameters or data of this problem; examples of such

changes are events such as a road blockage caused by a landslide, a machine breakdown

in a manufacturing system [106], new activities appearing in the process of executing

a schedule [208, 241], or asset breakdown [227]. The parameters or data could be the

duration of activities during a schedule execution, the number of required or available

resources, sensor measurements, or transport and goods information on supply chains

[18]. The solution (schedule) to a scheduling problem is defined as being robust if it is

still suitable to be implemented, at a specified satisfaction level, despite minor uncertain

changes in the parameters and/or data of the problem [104, 106]. This section provides
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information on the approach, referred to as robust proactive, used to determine robust

solutions and also on some related topics.

3.6.1 Support for Schedule Robustness

By virtue of its robustness, the revision of a robust schedule can be unnecessary when

slight disturbances occur in the environment in which it is implemented [40]. On the

other hand, a non-robust schedule could require frequent revisions which could be detri-

mental in some applications. For instance, air flight schedules that need to be revised

every time minor but frequent flight disruptions occur could be detrimental for airline

businesses [241]. The search for robust schedules could entail anticipation or forecast.

It is advantageous to anticipate risks arising from executing schedules to avoid possible

unfavourable schedule implementation outcomes whether in finance, vacation, or other

fields of endeavour [23]. In building a robust supply chain schedule, the ability to fore-

cast could also help envisage the coordination of the activities to attain the goals agreed

upon by the constituting entities of the supply chain [23]. Uncertainty in transport

and goods information is common in logistics and supply chain applications due to their

opaqueness in the entire chain to all entities involved or due to the stochastic customer

demands [104,220].

The techniques for finding robust solutions have also been applied to solve problems

with stochastic variables [12,18,208,241]. One such problem was found in Multiprotocol

Label Switching (MPLS) where the information transmission blockage is stochastic [134].

In a supply chain of an electronic market, the costs of supplied goods are stochastic

[221]. The Markov Decision Process-based Q-learning [9] was applied to solve a project

scheduling problem that involved stochastic parameters. The following sub-sections will

present some robust proactive techniques.
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3.6.2 Distribution-Based

One way to obtain a solution to a problem that is robust against a noisy (stochastic)

parameter is to take the first or second order moment of the problem’s fitness function

with respect to the noisy parameter and then optimise the result. Consider a probability

density function φ (z) of a random variable z. The first order expectation of a fitness

function f (x, z), also called the effective fitness function [106], with respect to the random

variable is,

Ez [f (x, z)] =

∫ ∞
−∞

f (x, z)φ (z) dz ≡ g (x) (3.1)

and the second order expectation of the fitness function is,

σ2
z (f(x, z)) =

∫ ∞
−∞

f 2 (x, z)φ (z) dz − Ez [f (x, z)]2 (3.2)

where x is a vector of deterministic variables. The effective fitness function g (x) can

be different to and can have more local optima than those of its corresponding fitness

function f (x) [104]. Probability theory can be applied to the historical data of z to find

φ (z) [220].

The optimisation of Ez [f (x, z)] may not yield a sufficiently robust solution x. On the

other hand, optimisation of the variance σ2
z (f(x, z)) alone may not account for solution

quality [104, 106]. One remedy for this dilemma is to account for the expectation, the

variance, and the original fitness function [106]. For example, in [104], the mean and the

variance of a fitness function were optimised through MOO. In [106], a measure of the

robustness R of the solution to a problem is defined in terms of the standard deviation of

the fitness function and the standard deviation of the random variables of the problem,

R =
1

n

n∑
i=1

σf
σzi

(3.3)

where n is the number of random variables; σzi is the standard deviation of the statistically
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independent random variable zi; and

σ2
f =

n∑
i=1

(
∂f

∂zi

)2

σ2
zi

; (3.4)

This measure is a decreasing function of robustness.

3.6.3 Scenario-Based

Consider the average of a fitness function with several random variables z1, z2, . . . , zm,

Ez1,z2,...,zm
[f (x, z1, z2, . . . , zm)] =

∫∞
−∞

∫∞
−∞ · · ·

∫∞
−∞ f (x, z1, z2, . . . , zm)

φ (z1, z2, . . . , zm) dz1dz2 . . . dzm

(3.5)

where m is the number of random variables zi, 1 ≤ i ≤ m; φ is a multi-variate PDF; and

x is a vector of deterministic variables. If m is large the computation of the average could

be extremely expensive. One economising approach is to generate values of the random

variables, input these values to the fitness function and then average the output of this

function. This approach is a type of MCS that has the advantage of circumventing the

computational extravagances in solving problems with multi-variate PDFs [18]. For ex-

ample, in a Vehicle Routing Problem (VRP), various matrices which represent destination

and travel time were randomly generated and from this process various fitness values of

this problem were obtained. These values were then averaged to yield an effective fitness

value (defined above). The measure of schedule robustness was defined in this particular

problem as the average delay where delay is the amount of time in missing a given vehicle

arrival time window [180]. Notice that the random variables of this problem are statis-

tically dependent: a traffic jam on one road could influence traffic conditions on other

roads; and a delay-causing bad weather in one area could influence travel time in other

areas. Further, if the fitness function utilised in the MCS is convoluted, the randomly

generated input values in the MCS could possibly be utilised for simulating real-life sce-

narios before their respective scenario outcomes can be obtained, outcomes which are the
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output values of the fitness function [18].

3.6.4 EA on Robustness

Let us now review some literature that explores the application of EA to the search of

robust solutions. A numerical integration applied in either Equations 3.1, 3.2 or 3.5 could

be costly as this samples several points in an associated fitness landscape. Note that

even to determine the fitness value at a single sample could be costly, such as in some

aerodynamic design optimisation problems [105]. Considering that an optimisation which

applies a heuristic (e.g. EA) inherently possesses a population of solutions (which could

be viewed as samples in the search space), then the integral (e.g. Equations 3.1, 3.2 or

3.5) involved for determining a robust schedule could be estimated from this population,

an approach that could reduce the computational cost of the numerical integration [106].

In another approach, a PDF was approximated from an EA-produced population and

was shown in some tests to be sufficient for determining a robust solution [106]. Several

heuristic and statistical approaches to determine robust schedules can be found in [18,

104,106].

A non-statistical but purely EA approach was applied in [197] to search for robust

solutions. In this work, random perturbations on phenotypes were performed. If the

perturbation of a phenotype reduces its fitness then it (i.e., it could be a schedule) is not

considered as robust. If at each evolutionary cycle the offspring of non-robust phenotypes

are not selected to subsist to the next cycle then a robust phenotype could be obtained

at the end of the evolutionary cycles [106].

3.6.5 Multi-Objective Optimisation on Robustness

As explained above, the creation of a robust schedule – being a solution to a given schedul-

ing problem – could entail the anticipation of events. If these events will not occur, the

robust schedule could have a lower quality than that of a non-robust schedule as a solution
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to the same problem. As an example, consider a man who creates a robust travel sched-

ule. In this creation, he anticipates a severe weather condition by bringing equipment

which could help him overcome this condition and would not require him to revise the

schedule. In another case, he did not anticipate the condition and consequently did not

bring the equipment and created a non-robust schedule which needs to be revised when

the condition occurs, a revision which could incur travel delay. If in following the robust

schedule the condition indeed occurs, he could arrive at his destination sooner than when

he follows the non-robust schedule, i.e. the duration of the robust schedule could involve

minimal travel time. However, if the anticipated condition does not occur, he could arrive

at his destination later than by following the non-robust schedule, perhaps because of the

burden in carrying the equipment, i.e. the duration of the robust schedule could not be

minimal. Thus, it could be beneficial to trade-off the quality (shortness of travel time)

and robustness of the schedule. In [180], a trade-off between the robustness and quality

of a solution to a VRP Time-Windowed (VRPTW) problem was performed to determine

a detour whereby the robustness and the quality of the solution are simultaneously high.

In [18], the variance and expectation of the total cost (supplies, processing, transporta-

tion, shortage and capacity expansion) of a schedule were minimised to guard against the

effects (i.e. made robust) of the large random changes of the total cost on schedule quality.

The standard deviations of the random variables of a problem in [241] were minimised to

determine a robust and high quality production schedule. A heuristic called starting time

criticality was applied in a multi-objective project scheduling. It utilises the weights of

the activities in the project and the variance of each activity duration to insert time buffers

in front of critical activities, to cope with unexpected disruptions while implementing a

high quality schedule. The insertions preserve an established project deadline [208].

3.6.6 Robust Reactive-Predictive Approaches

As explained in Section 2.4.2, the robust reactive-predictive approach in scheduling is a

combination of the robust proactive and the reactive-predictive approaches. Let us now
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review some work related to this combination. In creating a robust baseline production

schedule, Bonfill, et al. [30], anticipate various types of uncertainties, from processing

time, equipment availability, to technology change and market parameters. Their results

showed that the benefit of considering robustness is heavily influenced by the parametric

values of the associated problem; and that schedule robustness becomes less crucial as the

need to revise the schedule intensifies during schedule execution. Lambrechts, et al. [117],

applied the robust reactive-predictive approach to an RCPS problem. The baseline solu-

tion to this problem is created by giving tasks time slack, defined as the amount of time

delay in commencing a task without the need to delay other tasks. Further, it is created

by giving tasks resource slack whereby tasks are constrained only to utilise a certain num-

ber smaller than the maximum available number of resources. The system in [11] assists

decision-makers to select, from several pro-actively created schedules, one that suites the

current state of a job-shop environment every time this environment changes. The robust

reactive-predictive approach was applied in [191] to create a schedule with minimised

Printed Circuit Board (PCB) production cost, which includes penalties on mailing PCBs

through express mail and penalties imposed by customers due to late delivery. The work

of Umang and Bierlaire [199] investigated the difference between the cost of executing

a berthing schedule of arriving ships that is created and revised through the reactive-

predictive method (described in Section 2.4.2) and the cost of executing a schedule for

the same environment created through the robust proactive method (explained in Sec-

tion 2.4.2). The approach of this investigation is utilised in the thesis to demonstrate

the significance of a robust reactive-predictive approach to solve the problems from L3

described in Section 1.2.

3.6.7 Anticipating Risk

As explained in Section 1.2, the search for solutions to any problem from L3 involves

anticipation of a type of risk. Let us now review current literature that pertains to risk

anticipation in schedule creation. The work of Bui et al. [41] investigated a robust proac-
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tive approach to solve a multi-objective RCPS static problem. The approach anticipates

the risk of being unable to execute the components of a schedule that immediately suc-

ceed just-finished duration-changed components. This risk is one of the few objectives to

minimise in creating the schedule. Bruni et al. [39] also examine the risk in an RCPS

with renewable resources and uncertain task duration modelled through a cumulative

probability distribution function. In [140], the search of a schedule – for a hydro-electric

operation – that used stochastic dual dynamic programming [153] considers protecting

contracts with electricity consumers. In this protection, several risk factors are antic-

ipated, e.g. price volatility. In the area of finance, Hochreiter [93] used a model of

future returns of budget-allocated assets. This model is called scenario tree and deter-

mined through EA to be as close to reality as possible given the uncertainties in asset

returns. Stochastic programming [173] is applied to this tree to determine the budget

allocation which will maximise expected return and minimise investment risk. Tometzki

and Engell [194] explored production planning problems that involve uncertain param-

eters, and applied stochastic models and MOEA to maximise profit and minimise risk

of high economic loss during plan execution. In the domain of control theory, Ouarda

and Labadie [148] solved a dynamic optimisation problem on a multi-reservoir system by

applying Lagrangian formalism which incorporated a stochastic approach in accounting

for risk of defying operational restrictions on water resources. Real-time optimisation ex-

plored in [225] utilised a transition matrix to model the dynamics of a chemical plant as

a Markov Decision Process (MDP). Some nodes in the MDP correspond to failed states,

e.g. broken machines, with transition probabilities to these states signifying risk. Direct

application of memory-based EA approaches (e.g. McBAR), to the best of our knowledge,

is absent in the domain of risk anticipation in dynamic environments.

3.7 DOE and RSM

As explored in Section 2.8, DOE is useful for configuring parametric values and/or cat-

egorical types of experiments to obtain mathematical models of a phenomenon under
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investigation or for other purposes. Let us review some literature that made use of

DOE. In the domain of scheduling and planning, DOE was applied for RCPS [65, 209],

staff scheduling [176], flowshop scheduling [62, 108, 176], sequence planning [195], vehicle

routing problem that applied Ant Colony Optimisation [165,166,196], and trading [217].

In conjunction with MOO, DOE was applied to solve problems in [219, 229]. All of

these applications are set in static environments. Under dynamic environments, DOE

was applied for solving problems in economic lot scheduling [162,163] which involves the

determination of production sequences, each implemented at similar production facility.

Also, it was applied in [230] for solving semiconductor wafer production problems whose

dimension varies in time. Note that the last problems are closely related to the problems

from M that are investigated in this thesis. However, due to the several significant dif-

ferences between the single-objective semiconductor wafer production problems and the

multi-objective RCPS problems from M, in this thesis the approaches in [230] were not

adopted.

3.7.1 Performance Comparison

One thesis’ goal involves the comparison of performance of techniques. Let us now ex-

plore the literature on the application of DOE to compare the performance of some EA

techniques that solved similar problems. This type of application was undertaken in [184]

through statistical hypothesis testing on performance. To measure performance, it utilised

in [99] statistical quantities, such as mean and standard deviation, and computational time

spent for determining solutions, and in [226] RSM-built models of computational time and

memory storage. Without using statistical techniques, it was applied in [13] to the perfor-

mance of techniques solving MOO problems, and in [50] with memory-based techniques.

Without applying DOE, an Artificial Neural Network was used in [26] to model the per-

formance of an EA-based technique. After training the network, computational cost was

significantly saved by not executing the technique but instead by using the network to

predict the technique’s performance.
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3.7.2 Search for Optimising Parameters

DOE and/or RSM were/was utilised to determine the performance optimising parametric

values and/or categorical types of some EA algorithms. In [47], the parametric values of a

Genetic Programming (GP) technique applied to solve a MOO problem were determined

whereby this technique produced high-quality solutions. The authors applied Fractional

Factorial Design (FrFD) to design treatments that contain the parametric values. The

responses to these treatments were used to form a polynomial empirical model that has

linear and interaction terms. First, the search for the parametric values separately applied

the methods of steepest descent and ascent (investigated in Section 2.8.6). Between these

two methods, the method of steepest descent was shown to be promising and consequently

used to determine a treatment that yielded an approximate best performance of the

GP technique. Next, BBD was applied with three-levelled factors and the treatment to

accurately determine the performance-optimising parameters of the GP technique. A

Central Composite Design (CCD) variant called Minimum Run Resolution V design was

used in [165] to build the performance models of an Ant Colony System (ACS) applied

to solve vehicle routing problems. The search for the performance-optimising parameters

of the ACS involved a MOO which used the performance models and did not involve the

method of steepest descent/ascent. CCD was also applied to optimise the physical and

production parameters of Integrated Circuit (IC) encapsulation in [111]. In [163], Full

Factorial Design (FFD) was applied to determine the efficiency enhancing parametric

values of a Tabu search algorithm used to solve an economic lot scheduling problem. FFD

was also applied to find the efficiency optimising parametric values of a Genetic Algorithm

(GA) used to solve a flow-shop scheduling problem in [62]. The factors considered in

[62] were population size, selection rate, crossover method (six levels/different methods),

crossover rate, mutation method (five levels/different methods), and mutation rate of the

GA. The uniformity and the value of the sensitivity distribution of an electrical sensor were

maximised using RSM and GA in [34]. The optimal parametric setting of an electrical

discharge machining process was determined in [198] through Artificial Neural Network
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(ANN), RSM and GA. The optimum cutting conditions were determined through RSM

and GA in [170] to obtain minimum surface roughness. The treatments designed through

the Taguchi method were utilised in the search for performance-optimising parametric

values of the following techniques: Shuffled frog-leaping algorithm applied to solve an

RCPS problem [65, 209]; Mixed-integer algorithm used to solve a non-linear stochastic

staff scheduling problem [176]; and Self-guided Ants algorithm applied to solve a sequence

planning problem [195]. DOE was applied to tune the weights of the multi-objective fuzzy

rule criteria for a semiconductor wafer production scheduling problem that has a time-

varying dimension [230].

3.7.3 Other Usages of RSM Models

The RSM models developed in [165] were utilised to predict the performance of an ACS

for solving a vehicle routing problem. Similar approach was undertaken in [143] to predict

the quality-improving size of a weld zone. CCD was utilised in building an RSM model

for predicting surface roughness at different cutting conditions considered in [103].

A simple but effective RSM model was developed in [210] as a surrogate to a com-

putationally expensive model and was utilised for MOEA. RSM was used to create a

model which is the reduced form of the complex model composed of differential and al-

gebraic equations for chemical distillation investigated in [177]. A versatile approach was

developed in [77] to reduce the experimental cost in building a RSM model with multi-

dimensional output, instead of the customary scalar output. This model is the surrogate

of a computationally expensive model of a dynamic temperature field defined by par-

tial differential equations. As far as our research goes, there seems a lack of dedicated

research to apply RSM to model the performance of memory-based EA techniques for

solving problems set in dynamic environments.
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3.8 Reinforcement Learning in Scheduling

Reinforcement Learning (RL), being one of the fundamental concepts of universal intel-

ligence (utilised in this thesis), was applied to solve scheduling, planning and allocation

problems. Let us now present literature related to this application. RL was applied in

electrical power allocation [211]. RL states (refer to Section 2.10.1 for terminology) in

this allocation were derived from the continuously varying electrical power input to an

electrical system; actions signify the allocation percentages of the power; and reward is

related to the difference between allocation result and targeted allocation value. A dy-

namic optimisation problem (DOP) was solved in this allocation without the use of EA.

Another DOP was solved in [235] through EA with phenotypes which represent sched-

ules of elevators; and through RL which learns the merits of scheduled tasks (as actions)

encoded in the genes together with the merits. RL was applied to solve multi-objective

DOP in [87,139].

EA and RL were combined to solve non-DOPs, such as, the travelling salesman prob-

lem in [128]. In this combination, locations correspond to states, location selections

correspond to actions, and distance travelled is one of the domains of a reward func-

tion. In [24], RL was applied to learn the best move in a Tabu Search [163] for solving

a lot scheduling problem. And in [68], it was applied to learn the best attributes of EA

operators, such as mutation rate and crossover point.

3.9 Multi-Agent System (MAS)

A software agent (referred to as an agent for brevity) is a computer program authorised

in a system to select and execute actions independently or on behalf of other entities

in the system [23]. MAS is a system that has one or more agents and environments.

One way to simulate a system is to model each system-constituting entity – the environ-

ments in this system may be exempted – as an agent, and then allow these agents to

interact among themselves and the environment. In the manufacturing system in [203],
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for example, machines, personnel, and raw materials are simulated as agents that mimic

their properties. These agents were put into action from which their manufacturing gain

optimising parametric values are determined. MAS is suitable for systems that could be

disassembled into components. This facilitates ease of adding new components/agents

or agent capabilities to a system. Thus, MAS could be scalable [23]. Let us now discuss

more properties of MAS.

3.9.1 Hierarchical Systems

The traditional scheme of managing a system is hierarchical where commands start from

the topmost level of the hierarchy and reached the bottom passing through intermediate

levels. However, studies showed that hierarchical systems have disadvantages not limited

to the following: 1) inadequate flexibility and slow response when new critical conditions

arise; and 2) the information flow across the hierarchies is impeded by some constraints

and rules of hierarchical components [135]. Examples of the inflexibility can be found

in hierarchical structures of some manufacturing plants where schedules developed and

imposed by higher levels of these structures could quickly become useless after executing

the first few components of these schedules [100,203].

3.9.2 Heterarchical Systems

The heterarchical system is the opposite of the hierarchical system. Each of its agents has

ample freedom to decide on the immediately necessary actions to be taken and is respon-

sible only to itself [189]. However, in several applications, heterarchical systems have no

central controller and no global coordinating information which precipitates to systemic

disadvantages such as: 1) poor performance; 2) behaviour predictions are challenging;

and 3) instability of performance that can result in chaos [192], instability that is due to

lack of coordination of agents [227].
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3.9.3 Holonic Systems

The hybrid of hierarchical and heterarchical systems is called a holarchical or holonic sys-

tem which in some cases can overcome the disadvantages of the two hybridising systems.

The agents of holonic structures are called holons [113] which can function as whole or

parts of a holonic system [227], i.e. holonic system is a type of MAS.

Being members of the partly heterarchical holonic system, holons are semi-autonomous.

For example, in the case of a transport breakdown, transport personnel (represented by

a holon) can utilise knowledge around the breakdown vicinity instead of executing sug-

gestions from a far flung decision maker that would only delay problem resolution [23].

Being members of the partly hierarchical holonic system, holons may receive instructions

from or be controlled by other holons of the system [227]. In a holonic system, an opti-

mal plan for the locality of the holon could be formed with this holon at any level. For

example, in a manufacturing application, holons were present at all levels. At the lowest

level, where real-time operations dominated, the holons were coupled to the operations of

the manufacturing control devices [38]. And on some higher levels, they are involved in

planning [70].

Holonic systems can offer several advantages [76, 81, 89]. For example, holons that

start from being disorganised could evolve autonomically and dynamically into a highly

complex system triggered by some driving stimuli from their milieu. This immense

plasticity can aid the development of systemic behaviours unknown to the holons [29,122],

as can be observed in the schools of fish, human society, or some system containing

interacting entities [138, 203]. Thus, a designer of holons need not plan the eventual

remarkable behaviours of these holons, a facet of a holonic system that could result in a

simplified design of this system [21]. Holonic systems are adaptive to the changes in the

environments in which their holons interact. Holonic systems that interact with market

environments were quick to adapt and flexible to market changes, abilities which are the

key components of business competitiveness [100,101,122].
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The evolution of a holonic system into an intricate system could be influenced by

the learning mechanism of each of its holons, a mechanism that helps these holons to

discover opportunities for systemic performance improvements. In a specific application,

the learning of holons had boosted the performance of a holonic system in [172] by 500%.

The learned knowledge of holons in [203] was use to forecast market demands.

Coordination of holons could be achieved in various ways. When holons leave traces

as they explore or interact with their environment, indirect coordination could emerge

that could help them to self-organise. This is akin to ants leaving pheromones as they

move around that can help other ants to search for food, i.e. an emergence of a systemic

intelligence that requires no control imposed on the ants [122]. The direct coordination

among holons could be facilitated by inter-holon communication or system-global broad-

cast of information [23]. And, a control among holons can foster coordination among

themselves [227].

The robust proactive approach defined in Section 2.4.2 entails anticipation. Being a

part of their anticipation, holons of the holonic system in [203] explored various systemic

states to guard the system against unexpected operational disruptions. The holons of

some holonic systems performed statistical analysis to make these systems proactive [101].

A holonic manufacturing system in [14] with proactive agents was shown to be resilient

to the failures of system components, to the changes in volume and variety of demands,

and to the changes in job priority.

There are several holonic architectures in the literature, such as ADACOR [122],

PROSA [204], MACSIMA [172], and Organisational Control Architecture (OCA) [227].

OCA in [227] is modelled from a command and control organisation, such as in the plan-

ning of a military mission. Note that this type of environment is similar to that utilised

in this thesis.
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3.9.4 MAS Applications

Traditionally, humans mediate between some components of most supply chains. With

the fast-paced business transactions nowadays, agents in a supply chain could bear me-

diator roles. In this supply chain, each agent could work on behalf of each supply chain

entity and cooperate with other agents through online inter-agent interactions to come

up with decisions in a humanly-like as possible a manner [23,94]. For example, suppose

a customer purchases a can of milk from a supermarket. This transaction information

could be transmitted online. Then, an agent representing the supermarket and another

agent representing a milk producer may interact to decide on the wholesale price and the

number of milk cans to be purchased by the supermarket from the producer to replenish

the milk cans purchased by the supermarket customers.

An approach that utilised MAS was applied to solve a multi-objective dynamic paper

production scheduling problem in [109]. Each agent in this application was dedicated to

work on each stage of the production. The agents interact to determine the best feasible

production schedule that satisfies several objectives. In a remarkable application, a

MAS was utilised for the autonomous navigation of the Viking mission robot, thereby

circumventing the need for an Earth-based control of the robot over the enormous Earth

to Mars distance [23].

MASs (e.g. holonic system) could be extremely versatile for solving DOPs as exem-

plified in some applications discussed above. They may also be useful for solving the

problems from M in this thesis. Their versatility could be enhanced by utilising learn-

ing or intelligent mechanisms for their individual holons [172, 203]. The chosen implicit

memory-based EA approach (McBAR) in the thesis to solve problems from M could be

useful in the future as one of the learning mechanisms. However, the scope of the thesis

excludes the use of MAS.
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Test Environments

Chapter 4

The selection of some RCPS-related problems from M as the test problems in the thesis is

based on the popularity of RCPS in the study of adaptation in dynamic environments [58].

Each of these problems is set in a military operation environment (MOE) such that it

is referred to as the Military Mission Scheduling (MMS) problem. Note that, based on

Equations 1.3, 1.5 and 1.6, there is a specific MOE for each of the problems. It is con-

sidered, however, that all sub-problems of the same problem are set in the same MOE.

Section 4.1 explores the planning stage of MMS that is referred to as Military Mission

Planning (MMP) and discusses the qualitative features of the MMS problems from M.

Sections 4.2 and 4.3 present concrete features of sub-problems (defined in Section 1.2.3)

of problems from L2 ∪ L3 and O2 (subsets of M and defined in Section 1.2.5) respec-

tively; problems taken into account by the limited and general methods, respectively, to

investigate some characteristics of techniques from T (defined in Equation 1.8). Section

4.4 elaborates on the procedure to computer simulate the problems whose mathematical

definitions are found in Appendix A.1.

4.1 Military Mission Planning (MMP)

Military mission planning is a decision making process and an important element in mil-

itary command and control aimed at providing a solution that implements the comman-

der’s intent, establishes activities, time or conditions for the operation, allocates resources,

assigns tasks and coordinates subordinates. This is a complicated process that involves

two aspects: (1) Science which deals with measurable factors such as capabilities, tech-
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niques and procedures, and which is closely related to the analytic decision making; and

(2) Art where the intuition of the commanders about the relationships between friendly

forces, enemies and environment as well as the effects of the operation on the soldiers, is

the focus and which can be considered as a kind of intuitive decision making. Mission

planning is usually done as a matter of urgency or within a short time frame of a planning

horizon [201].

It is quite common in military domains that each level in mission planning corresponds

to a level of conflict: strategic, operational, and tactical, although the borders between

these three is not always clear. The strategic level of a conflict involves determining

national or alliance security objectives and developing and using national resources to

accomplish those objectives. It establishes strategic military objectives, sequences the

objectives, defines limits and assesses risks for the use of military and other instruments

of power. It develops strategic plans to achieve the objectives, plans which are then

provided to armed forces and other capabilities. Meanwhile, the operational level is des-

ignated for campaigns and major operations in order to accomplish strategic objectives

within theatres or areas of operations. The linking of tactics and strategies is achieved by

establishing operational objectives needed to accomplish the strategic objectives, sequenc-

ing events to achieve the operational objectives, initiating actions and applying resources

to bring about and sustain those events. Lastly, the tactical level involves battles and

engagements; they are planned and executed to accomplish military objectives assigned

to tactical units. The focus of this level is on the ordered arrangement and manoeuvre of

combat elements in relation to each other and to the enemy in order to achieve combat

objectives established by the operational level commander. In other words, the context

of tactical operations is defined at the strategic and operational levels [32, 201].

In this section, we focus on the planning process at the operational level. Planners

at operational level need to follow the Operational Art (OA) of using military forces.

According to OA, the issues at this level include (1) identifying the military conditions

or end-state that constitute the strategic objectives; (2) deciding on the operational ob-
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jectives that must be achieved to reach the desired end-state; (3) ordering a sequence of

actions that lead to fulfilment of the operational objectives; and (4) applying the mili-

tary resources (capabilities) allocated to sustain the desired sequence of actions. From

this point onwards unless otherwise stated, we use the term mission planning to indicate

planning at the operational level.

There is no doubt that the planning process is based on a particular military doctrine.

However, the main steps are similar among militarised forces. We will take the JMAP

framework from Australian Defence Forces (ADF) [232] as an example:

1. Initialisation: Including obtaining mission information (basically called Intelligence

Preparation of the Battle-space - IPB)

2. Mission Analysis: Determining the objectives, available capabilities and other con-

straints for the mission. Also forming the commander’s planning guidance for the

next step.

3. Course Of Action (COA) Development: Developing the course of actions (ways to

achieve the objectives with regards to the constraints)

4. COA Analysis: Comparing and analysing COAs to obtain an optimal plan.

5. Decision & Execution: Deciding on the plan and executing it

Note that this is a repetitive process. Step 1 will be used to update information for

all other steps. Once updated, the steps will be restarted for further analysis. If the time

is available and the urgency is low, we will have a DEliberate Planning (DEP) process.

This is used to produce plans for contingencies and for later execution. When a plan is

needed for immediate action or within a very short time with a high urgency, there will

be a crisis action planning (or immediate planning) process (CAP). These two types of

planning are closely interrelated. DEP produces the plans, while CAP uses these plans

and adapts them to current situations. In other words, CAP provides situation awareness.
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For OA, it is also essential to define several key concepts. The concept of an end-state

can be considered as the final behaviour of the system when the system stops operat-

ing. For JMAP, the end-state is defined as the set of conditions which will achieve the

strategic objective. The national end-state is the set of desired conditions, incorporating

the elements of national power, that will achieve the national objectives. The military

end-state is the set of desired conditions beyond which the use of military forces is no

longer required to achieve the national objectives. The military end-state for a mission

planned at the operational level is defined by the command at the strategic level. This

needs to be done in Step 2.

Next is the concept of Centre Of Gravity (COG). For JMAP, COG is considered as the

key characteristic, capability, or locality from which a military force derives its freedom

of action, strength or will to fight. Another concept is critical vulnerability (CV). That is

a characteristic or key element of a force that if it is destroyed, captured, or neutralised

will significantly reduce the fighting capability of the force and its COG. Also the concept

of decisive point (DP) needs to be considered. JMAP defines a DP as a major event that

is a precondition to the successful disruption or negation of COG. A DP can be defined

either in a time or geographical space. A mission plan might have many DPs. The line of

DPs forms a path of attack or defeat to achieve the end-state. We also call it the line of

operations - (LOP). Determining LOP is the most important component of operational

level planning. The sequence of operations needs to be followed in order to achieve the

end-state. Each operation or (action or task) is defined to take care of one DP.

Determining COG, CV, and especially DPs is a challenge. It relies very much on

the experience and knowledge of the staff and commanders. Further, given that these

concepts are defined, finding LOPs is also a big issue. The scope of the problem means

that a large number of possible LOPs exist. The limitation of capabilities, synchronisation

of operations (the precedence relationship between operations) and time, make it very

difficult to arrange sequences of tasks to achieve all DPs. From a computational point

of view, it is valuable to quantify these concepts. Given the limitation of capabilities,
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precedence, and time, there is a need to schedule the tasks to obtain the optimal sequence.

The MMP problems can be transformed to MMS problems from M that has the following

qualitative features.

4.1.1 Inputs

In the context of MMP a task is defined as a tactical operation (or action) that a military

force must do for achieving a DP. From the previous analysis, we can see that modelling

tasks is a very important component. Quantitatively, a task usually has the following:

1. A set of pre-conditions : Defining operational conditions for a task that need to be

achieved before commencing it. It might be derived from the defined precedence

relationship between tasks.

2. A set of effects : It is usually defined by the DP.

3. Duration of execution: A task cannot be executed without a time limit in order to

synchronise with other tasks.

4. A set of required capabilities : This might be equipment, weapon, vehicles or troops.

5. An identification number.

6. A status : This can either be on-going, finished, or not yet executed. Cancelled

un-executed tasks are not considered in this thesis.

7. Starting time.

The input information to the sub-problems of problems from M is Items 1 to 5 of the

tasks in MOEs where the sub-problems are set. Feature values of the tasks in the MOEs

are found in Table 4.1, the MOEs to where the sub-problems of problems from L2 and

L3 (subsets of M) are set. The first and second columns of this table are task IDs (Item

5) and durations (Item 3) respectively. Tasks with IDs of 2, 5, 16, and 17 in the table are

exemplified in Section 1.2.1. They use the PNT illustrated in Figure 2.9.
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Table 4.1: Properties of tasks in MOEs to where the sub-problems of problems from L2

and L3 are set

  Task ID Duration R1 ≤ 16 R2 ≤ 17 R3 ≤ 5 R4 ≤ 16 

1 18 4 0 0 0

2 13 10 0 0 0

3 16 0 0 0 3

4 23 3 0 0 0

5 18 0 0 0 8

6 15 4 0 0 0

7 19 0 1 0 0

8 12 6 0 0 0

9 17 0 0 0 1

10 19 0 5 0 0

11 22 0 7 0 0

12 16 4 0 0 0

13 23 0 8 0 0

14 19 3 0 0 0

15 10 0 0 0 5

16 16 0 0 0 8

17 15 0 0 0 7

18 23 0 1 0 0

19 17 0 10 0 0

20 22 0 0 0 6

21 27 2 0 0 0

22 22 3 0 0 0

23 13 0 9 0 0

24 13 4 0 0 0

25 17 0 0 4 0

26 18 0 0 0 7

27 23 0 8 0 0

28 17 0 7 0 0

29 20 0 7 0 0

30 20 0 0 2 0

31 12 6 0 0 0

32 17 0 0 0 1

33 19 0 5 0 0

34 16 0 0 0 8

35 15 0 0 0 7

36 23 0 0 0 0

37 18 0 0 0 7

38 23 0 8 0 0

39 17 0 7 0 0

40 20 0 7 0 0

As explained in Chapter 1, each type of resource in RCPS has a limited number of

items, a number that is input information to the sub-problems of problems from M. The

third to the last columns of Table 4.1, respectively, are the resources R1 to R4 utilised by

the tasks with IDs in the first columns. For example, task 12 is to bomb enemies for 16

time units and to utilise at most four light mortar batteries (R1).

After one task is finished, each resource item it utilised is either transferred to another

task location or returned to a depot called central base. Another input to the sub-problems

of problems from M is the cost of moving each resource item from one task location to

the next. Task location is identified by the ID of the task. For example, location labelled

7 in a battlefield is the venue for the execution of task with ID 7, e.g. to care for refugees

by one infantry company. Central base has a location label of zero.
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The transfer status of resource item can either be moved or unmoved, and its availability-

to-task status can either be available, broken/dead, or occupied (utilised by a task). Ad-

ditional inputs to the sub-problems of problems from M are the transfer status and the

availability status of resource items, and the execution locations of tasks.

Let us prove that the total number of tasks can only be constant or increase. As

explained in Chapter 1, the total σ number of tasks is the sum of the number F of finished

tasks, number G of on-going tasks, and number X of to-be-executed tasks. Now, suppose

that at the moment of an environmental change there are X ′′ ≥ 0 to-be-executed new

tasks1, G′′ ≥ 0 just started new tasks, G′ of the previously on-going tasks that are finished,

and X ′ of the previously to-be-executed tasks that are started (considered as on-going).

Considering that, as given in this thesis, none of the on-going and to-be-executed tasks are

cancelled the number of finished, number of on-going and number of to-be-executed tasks

at the moment of change are F+G′, (G−G′)+X ′+G′′, andX−X ′+X ′′ respectively. Thus,

the total number of tasks at this moment is σ′ = (F+G′)+(G−G′)+X ′+G′′+(X−X ′+X ′′)

= F +G+E+G′′+X ′′ = σ+G′′+X ′′. Therefore, if there are no new tasks (i.e. G′′ = 0

and X ′′ = 0) then σ′ = σ, i.e. the total number of tasks remains. However, if there are

new tasks (i.e. G′′ +X ′′ > 0) then σ′ > σ, i.e. the total number of tasks increases.

4.1.2 Objective Functions

Minimisation of schedule cost and duration are the two objectives in sub-problems of

problems from L2 and O2 (subsets of M). As explained in Section 1.2 and elaborated in

Section 2.7, another scheduling objective considered in the thesis is the probability of a

schedule becoming infeasible due to resource constraint violations caused by changes in

task durations. In addition to the schedule cost and duration, sub-problems of problems

from L3 ⊂ M also have the probability of becoming infeasible as another objective to

minimise. All of these objectives are mathematically defined in Appendix A.1.

1These are tasks which do not exist before any change in a considered environment
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4.1.3 Constraints

The constraints imposed by a PNT and on resources are explained in Section 1.2.1. In

Table 4.1, Ri ≤ ni expresses the constraint on the total number of resource of type i

utilised by all on-going tasks; this is not to exceed ni.

4.1.4 Output

Let us now investigate the computational products in solving the sub-problems of prob-

lems from L2 ∪ L3 ∪ O2. Some of these products are genotypes, each expressed as an

ordered set,

I = 〈I1, I2, . . . , IN〉 , (4.1)

where Iis are the ID of tasks in a MOE and N is the genotype length. From here

onwards, any genotype has a form similar to that in Equation 4.1. The ordering of IDs

in the genotype is dependent on a given PNT. The ordering rule is:

Any task with ID Ik at index k in the genotype have successor tasks with IDs Ij which

must be at index j in the genotype, where j > k.

For example, the section 〈1, 14, 2, 7, 3, 9〉 of a genotype satisfies the ordering rule based

on the PNT depicted in Figure 2.9. Given a PNT, any genotype whose IDs satisfy the

ordering rule is characterised as task-precedence feasible. Genotypes are generated either

through SSGS (explained in Section 2.3) or by some other means, such as described in

Section 5.1.

The starting time of each task in the MOE is another computational product. It is

determined either through SSGS or by some other means, such as described in Section

5.1.4. Any solution to a sub-problem of problems from L2 ∪ L3 ∪ O2 is an ordered set of

determined starting times and referred to as a schedule,

S = 〈T1, T2, . . . , Tk, . . . , TN〉 , (4.2)
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Figure 4.1: Precedence network of tasks for TNIS T4

where the task with starting time Tk at index k in the schedule has ID Ik at index k in

the genotype in Equation 4.1. By the ordering rule of IDs in genotypes, any task with

starting time Tk in Equation 4.2 must have successors with starting time Tj where j > k.

Sample schedules are depicted in Figures 4.2 and 4.3 whose features are similar to

those of Figure 2.3 (described in Section 2.1.1). All tasks in the schedules obey the PNT

found in Figure 4.1. For example, in Figure 4.2 task 2 ends at 13 time units at which

task 7 starts. Hence, task 7 succeeds task 2, thereby abiding the PNT. More details of

Figures 4.2 and 4.3 will be given in the next section.
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4.1.5 Dynamic Factors of M

Dynamics and uncertainties are unavoidable factors for military missions. This is the

nature of wars where enemies as well as environmental aspects are highly unpredictable.

This is the reason for introducing the concept of crisis action planning in Section 4.1.

One important requirement from the US Army is that the planning process needs to be

continuous and adaptive to any changes. The presence of these factors, such as delay

in mission execution, failure of capabilities or uncertain intuition of commanders on the

relationship between operations of the mission, makes the task of mission planning more

complex [110,201,232] with a large number of what-if scenarios that usually goes beyond

the handling ability of human planners. Hence, there is a need for finding a robust and

responsive mechanism for the support and planning staff. These mechanisms could be

the techniques enumerated in Section 2.4.2 that are intended to solve dynamic problems

from L2 ∪ L3 ∪ O2.

Some factors in dynamic environments are already described in Chapter 1 and Section

2.4. Here, we formally identify dynamic factors in MOEs where the problems from L2 ∪

L3 ∪ O2 are set:

1. Execution time of tasks that varies according to Equation A.9

2. Availability of resources

3. Number of tasks

It should be noted that any changes to a military mission plan can cause an enormous

cost in terms of logistics and safety.

Let us exemplify the dynamics of a problem p3 from L3. The schedule depicted in

Figure 4.2 is one of the solutions to the sub-problem p35 of problem p3 set in the snapshot

of the MOE taken immediately after the fifth SOSA, the state alteration at 13 time units.

The schedule depicted in Figure 4.3 is one of the solutions to the sub-problem p36 of problem

p3 set in the snapshot taken immediately after the sixth SOSA of the MOE, the state
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alteration at 16 time units. Problem p3 has attributes from Table 4.1 and PNT in Figure

4.1. The duration of each task in the schedule depicted in Figure 4.3 is an alteration,

following Equation A.9, of the duration of similarly-IDed task in the schedule depicted in

Figure 4.2. The starting times of the similarly-IDed tasks are identical but their durations

may not be due to the dynamics of the MOE. This is true for all similarly-IDed tasks

depicted in the Figures 4.2 and 4.3. This illustrates the dynamics of task duration.

In Figures 4.2 and 4.3, the red rectangles correspond to a finished task, e.g. task 2; the

yellow rectangles to on-going tasks, e.g. tasks 1 and 7; and the other coloured rectangles

to tasks yet to be executed. Based on Table 4.1 and on the PNT of Figure 4.1, when the

MOE – to where p3 is set – changes at 13 time units (which corresponds to Figure 4.2),

tasks 1, 3 and 7 are still on-going, task 2 is finished, and the rest are yet to be executed.

Further, at the next SOSA of the MOE at 16 time units (which corresponds to Figure

4.3), tasks 1 and 7 are still on-going, tasks 2 and 3 are finished, and the rest are yet to

be executed. This illustrates the dynamics of task status.

4.2 Problems from L2 and L3

Section 4.1 provides an intuitive description of the general features of the problems from

L2 ∪ L3, while Appendix A.1 presents mathematical formulations of these features. This

section provides information on some parametric values and categorical types of the fea-

tures of the problems from L2 ∪ L3.

Each task in the MOEs, where the problems from L2 ∪ L3 are set, utilises only one

of the following four types of resources:

• Light Mortar Batteries (R1) ≤ 16

• Infantry Companies (R2) ≤ 17

• C130s (R3) ≤ 5

• Apache helicopters (R4) ≤ 16
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The maximum number of items of any listed resource that can be utilised by all on-

going tasks in the MOEs is indicated near the resource label Ri, 1 ≤ i ≤ 4. Note that

the availability status (defined in Section 4.1.1) of any of the resources can change from

available to occupied (e.g. mortars firing) or vice-versa (e.g. mortars returned from

combat to depot) in the course of executing a schedule, i.e. without the effects of a

dynamic MOE. As proposed in this thesis, the only effect of the MOE on the availability

status is to change this status from being available or occupied to broken (e.g. killed

infantry soldier).

As pointed out in Section 4.1.1, properties of tasks in the MOEs where the problems

from L2 ∪ L3 are set are found in Table 4.1. Any one of the MOEs has 30 original tasks

(which exist before this MOE changes) that abide by the PNT depicted in Figure 2.9.

A total of ten new tasks are added to the original tasks during the entire dynamics of

this MOE. New dN tasks, which occur in a particular SOSA of the MOE, have IDs I,

l < I ≤ l + dN , where l is the maximum ID of tasks which existed prior to this SOSA.

For example, if at the last SOSA the maximum task ID is 30 and there are four new tasks

at the current SOSA, then these new tasks are labelled with IDs of 31 to 34.

4.2.1 Labels

For convenience in the following discussion, we ascribe labels to some categorical types

of problems from L2 ∪ L3. The considered types of simultaneous changes in the MOEs

where the problems are set are listed in Table 4.2. The first column contains labels for

types of changes, and the second contains the parameters that change simultaneously.

For example, type 6 indicates simultaneous changes in any one of the MOEs on task

duration, total number of tasks, and resource availability. Change type 0 is referred to as

light change type and the other types as severe change type.

The types of changes are chained to form a sequence of changes. Each type of sequence

of changes (TSC) is presented as a column, labelled Si, in Table 4.3. The first and last

columns of this table contain, respectively, the SOSAs and times at which a specific type
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Table 4.2: Types of environmental changes

Type Parameter 

0 task duration

1 resource availability

2 total number of tasks

task duration

total number of tasks

task duration

resource availability

total number of tasks

resource availability

task duration

total number of tasks

resource availability

3

4

5

6

of changes occur. For example, sequence S3 of changes in one of the MOEs begins and

is followed by change in task duration only (type 0 in Table 4.2), then is succeeded by

simultaneous changes in task duration, total number of tasks, and resource availability

(type 6 in Table 4.2) at the third SOSA of the MOE. The number of moments at which

any one of the MOEs changes state is 12.

Table 4.3: Types of sequence of changes (TSC)

SOSA S1 S2 S3 Time

1 0 0 0 4

2 0 0 0 6

3 0 2 6 8

4 2 1 0 12

5 0 0 4 13

6 6 3 0 16

7 1 0 0 19

8 4 4 5 23

9 0 6 1 26

10 5 5 2 30

11 3 0 0 33

12 0 0 3 37

Some components of each TSC are types of changes that involve an increase in the

total number of tasks. For example, S3 has types of changes 6, 5, 2 and 3 that occur,

respectively, at third, eighth, tenth, and 12th SOSAs of one of the MOEs; and all of these

types involve an increase in the total number of tasks (based on Table 4.2). Task Number

Increase Sequence (TNIS), labelled as Tk in Table 4.4, is a sequence of numbers of new

tasks which appear at the SOSAs of the MOE with a given TSC. The order of the numbers

in TNIS found at the first column of Table 4.4 is the same as the order of the SOSAs.

Using the example above, if S3 has TNIS of T5, there will be five, three, one and one new

tasks which appear at the third, eighth, tenth, and 12th SOSAs of the MOE, respectively

(based on Tables 4.3 and 4.4). Note that even with similar TSC but with different TNIS,
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the number of new tasks in a given SOSA of the MOE could be different.

Table 4.4: Types of task number increase sequence (TNIS)

Order T3 T4 T5 T6 T7

1 3 4 5 6 7

2 2 4 3 2 1

3 2 1 1 1 1

4 3 1 1 1 1

Problems from L2 ∪ L3 with TNIS of T3, T5, T6, T7 or T4 abide with the PNTs

illustrated in Figures 4.4 to 4.7 or 4.1 respectively. The PNTs are formed by placing new

nodes (which correspond to new tasks) on the original PNT, illustrated in Figure 2.9, and

differ in their forms by the locations at which these new nodes are placed.
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Figure 4.4: Precedence network of tasks for TNIS T3

Some components of the sequences of changes in Table 4.3 involve change in task

duration that is modelled by Equation A.9 whose parameter δ has to be specified. To

recapitulate, a problem from L2 ∪ L3 is specified by a TSC (e.g. S3), a TNIS (e.g. T5)
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Figure 4.5: Precedence network of tasks for TNIS T5

in the TSC, and a value of δ in Equation A.9. Note that the actual amount of change in

task duration is not specified in the problem but instead the value of δ is provided. Thus,

to distinguish, we define a problem simulation as being a problem with its task duration

change fully specified. More will be said regarding problem simulation in Section 4.4.

The problems from L2 have labels l listed in Table 4.5 and denoted as l2. For example,

a problem from L2 with label 5 is denoted as 52. With the mid column (of TNIS types) in

Table 4.5 as the reference column, the problems from L2 with labels at the left and right

correspond to δ = 3.0 and δ = 6.0, respectively; problems with labels under Si have TSC

of Si; and problems with labels at the same row as Tk have TNIS of Tk. For example,

problem 25 has TSC of S1, TNIS of T7, and task duration changes modelled by Equation
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Figure 4.6: Precedence network of tasks for TNIS T6

A.9 with δ of 3.0.

All the problems from L3 have labels l of one to 30 and denoted as l3. Thus, a problem

from L3 can have an identical label to a problem in L2. These problems are differentiated

by a superscript, e.g. 52 ∈ L2 and 53 ∈ L2. A problem from L3 with a particular

label is defined by the objective to minimise the probability of its solution (schedule) to

become infeasible due to resource constraint violations (explained in Section 2.7) and by

all the features of the problem from L2 with a similar label found in Table 4.5. Note

that a sub-problem of a problem from L2 ∪ L3 may be denoted purely by numbers. For

example, the sub-problem 122
7 denotes a sub-problem of the problem labelled 12 from L2,

the sub-problem set in the seventh snapshot of the MOE where the problem is set.
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Figure 4.7: Precedence network of tasks for TNIS T7

4.2.2 Tables as Functions

Let us define some functions that yield values found in Tables 4.2 and 4.4. Given a problem

from L2 labelled l, a TSC Si of this problem can be obtained using Table 4.5. Given a

SOSA s of the MOE where problem l2 is set, a change type label c can be determined

using Si in Table 4.3. Thus, Tables 4.5 and 4.3 serve as a function Ct ,

c = Ct (l , s) . (4.3)

Using c in Table 4.2, the MOE attributes that change simultaneously can be determined.

For example, the problem labelled 3 has a TSC of S3, based on Table 4.5. From the S3
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Table 4.5: Problem labels

S1 S2 S3 S1 S2 S3

1 2 3 T3 4 5 6

7 8 9 T4 10 11 12

13 14 15 T5 16 17 18

19 20 21 T6 22 23 24

25 26 27 T7 28 29 30

δ = 3.0 δ = 6.0

column of Table 4.3, the change type at the eighth SOSA of a MOE is 5, i.e. Ct (3, 8) = 5.

Based on Table 4.2, type 5 of changes signifies simultaneous changes in resource availability

and the total number of tasks in the MOE. This result implies that the simultaneous

changes occur at the eighth SOSA of the MOE where problem labelled 3 is set.

Table 4.5 serves as a function Pt that maps a problem labelled l to type p of TNIS,

p = Pt (l) . (4.4)

For example, T3 = Pt (3), i.e. problem 3 has TNIS of T3 based on Table 4.5.

Note that, based on the S3 column of Table 4.3, the increase in the total number of

tasks for the third occasion is at the tenth SOSA of the MOE where the problem with

TSC of S3 is set. Further, the intersection of the third row (which is the third occasion)

and T3 column in Table 4.4 is two, the number of new tasks that appear at the tenth

SOSA of the MOE (the first and the second occasions are at the third and eighth SOSA

respectively). Thus, the set of Tables 4.2, 4.4 and 4.5 serves as a function Nt to determine

the number of new tasks,

w = Nt (l, s) . (4.5)

This function is applicable only when Ct (l, s) yields a type of change that is either 2, 3, 5

or 6 which, based on 4.2, all involve an increase in the total number of tasks. Otherwise,

there is no new task at a given sth SOSA of the MOE where the problem l is set.

Let the functions Nt , Pt and Ct be distributive to vector elements, i.e. if l =
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〈l1, l2, . . . , lm〉,

c = Ct (l, s)

= 〈Ct (l1, s) ,Ct (l2, s) , . . . ,Ct (lm, s)〉 ,
(4.6)

p = Nt (l, s)

= 〈Nt (l1, s) ,Nt (l2, s) , . . . ,Nt (lm, s)〉
(4.7)

and

w = Pt (l)

= 〈Pt (l1) ,Pt (l2) , . . . ,Pt (lm)〉 .
(4.8)

where li is a problem label; and m is the dimension of l. For example, for an or-

dered set of problem labels l = 〈1, 7, 13, 19, 25〉, Ct (l, 4) = 〈Ct (1, 4) ,Ct (7, 4) ,Ct (13, 4) ,

Ct (19, 4) ,Ct (25, 4)〉 = 〈2, 2, 2, 2, 2〉 which implies that all problems with labels in l has

change type 2 (change in the total number of tasks) at the fourth SOSA of the MOEs

where these problems are set.

4.3 Problems from O2

Some parametric values and/or the categorical types of the features of the problems from

O2 will now be explored. These problems are taken into account by the general method

(explored in Section 1.4.1) used to investigate the characteristics of the techniques from

T. Note that the MOEs considered in this section are where the problems are set. Any

one of the MOEs has six moments of state alterations which occur at 4, 8, 12, 16, 21, and

26 time units after the start of the baseline schedule (unrevised schedule) implementation

in this MOE.

4.3.1 Tasks

The properties of tasks in the MOEs are listed in Table 4.6, MOEs where the problems

from O2 are set. In this table, the first and fifth columns are task IDs, the second and
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sixth columns are task durations, the third and seventh columns are the numbers of items

of resource type R1 used by the tasks, and the fourth and eight columns are the numbers

of items of resource type R2 used by the tasks.�� ���� � ��	�
 �������� �� �� �����	�
 ���������� ���� ���	�
 � � ���� �� �� �� ���� �� ��  !"# $% &' ()*+,- ./01 23
Figure 4.8: Precedence network of tasks of problems from O2

Each of the MOEs has 30 original tasks before it changes. The maximum number of

tasks is 50. They obey the precedence relationship depicted in Figure 4.8. New tasks

may appear only from the third to the sixth SOSA, the range of SOSAs referred to as

significant range of orders (SRO). The maximum number of new tasks which appear at

any SOSA in the SRO in any of the MOEs does not exceed five.

In Figure 4.8, the circular nodes labelled “c1” to “cn” represent n new tasks that

appear at the third SOSA. An analogous representation scheme is applied for new tasks

which appear at the fourth to the sixth SOSA whereby letters “d” to “f” respectively are
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Table 4.6: Properties of tasks in the MOE where the problems from O2 are set

ID Duration R1 ≤ 28 R2 ≤ 28 ID Duration R1 ≤ 28 R2 ≤ 28

1 18 4 0 26 18 7 0

2 14 10 0 27 23 0 8

3 16 0 3 28 17 0 7

4 23 3 0 29 20 0 7

5 18 0 8 30 20 2 0

6 15 4 0 31 12 6 0

7 19 0 1 32 17 0 1

8 12 6 0 33 19 0 5

9 17 1 0 34 16 8 0

10 19 0 5 35 15 0 7

11 22 0 7 36 23 0 1

12 16 4 0 37 18 7 0

13 23 0 8 38 23 0 8

14 19 3 0 39 17 0 7

15 10 0 5 40 20 0 7

16 16 8 0 41 27 2 0

17 15 0 7 42 22 3 0

18 23 0 1 43 13 0 9

19 17 0 10 44 13 4 0

20 22 6 0 45 17 0 4

21 27 2 0 46 18 7 0

22 22 3 0 47 12 3 0

23 13 0 9 48 17 6 0

24 13 4 0 49 19 0 5

25 17 0 4 50 16 0 8

used instead of “c”. The number of new tasks ranges from zero to five. Thus, as there are

five circles in Figure 4.8 that contain similar letters then not all of them may be used to

represent new tasks, in which case non-representing circles/nodes are removed from the

figure leaving links.

Although the alpha-numeric node labels represent tasks, they are not IDs of the new

tasks. The ID of a new task about to be represented in the figure is equal to the current

total number of tasks (finished or otherwise) plus one. For example, suppose there are

3 new tasks that appear at the sixth SOSA and there is a total of 34 tasks that existed

prior to this SOSA. Based on the previously explained scheme, these new tasks will be

represented by the circles labelled “f1”, “f2” and “f3” and will have IDs of 35 = 34 +1, 36

= 35 +1, and 37 = 36 +1 respectively. Note that the letter “f” in the labels corresponds

to the sixth SOSA. Considering that the circles/nodes “f4” and “f5” do not represent any

task then they will be removed from Figure 4.8 and this will leave links (curved arrows)

between tasks 19 and 22, and between tasks 21 and 22 respectively.
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4.3.2 Resources

The types and the constraints on the number of resources in the MOEs are as follows:

• Light Mortar Batteries (R1 ≤ 28)

• Infantry Companies (R2 ≤ 28)

The number of newly broken resources of either R1 or R2 type does not exceed four. The

changes in resource availability from available or occupied to broken may occur only at

any SOSA in the SRO.

Note that the definition given in this sub-section of any problem from O2 is not com-

plete. At any SOSA in the SRO, the number of new tasks and the numbers of newly broken

resources of types R1 and R2 are undefined. The additional information to complete this

definition is presented in Section 8.3.1.

4.3.3 Slight and Extreme Changes

Suppose that at each SOSA in the SRO five new tasks appear and, simultaneously, four

items of each of R1 and R2 resource types are newly broken. This type of environmental

dynamics is referred to as extreme change; the problem x2 ∈ O2 set in this MOE is

referred to as the extreme problem; and the sub-problem x2i set in the ith snapshot of this

MOE, where i > 2, is referred to as the extreme sub-problem. A MOE is considered to

undergo a slight change when, at each SOSA in the SRO, the number of new tasks, the

number of newly broken resources of R1 type and the number of newly broken resources

of R2 type are not simultaneously five, four and four, respectively (but as indicated above,

range from zero to five, zero to four, and zero to four respectively). Tasks in the MOE,

where a problem from O2 is set, also have a change in duration that follows Equation A.9

with δ = 3.0; and occur from the first to the sixth SOSA of the MOE.
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4.4 Simulations

The MOE, in which a problem from L2 ∪L3 ∪X2 is set, is computer simulated for several

times, where X2 ⊂ O2 and is comprised of DOE-designed problems and X2 is defined in

Section 8.3.5. In each simulation, to reflect a real-life scenario:

1. Resources in the MOE may be moved from one task location to another (e.g. tanks

moved from base camp to a valley).

2. Status of tasks and resources (enumerated in Section 4.1.1) in the MOE may be

altered (e.g. soldiers killed).

3. Type of dynamics (e.g. TSC labelled S2) of the MOE is implemented.

4. The original (before any change in the MOE) duration of each unfinished task in the

MOE is added with a random sample of the model in Equation A.9 with δ dependent

on the type of problem. Consequently, an unfinished task in the ith snapshot (taken

immediately after the ith SOSA) of one MOE simulation could differ in the duration

of the same task in the ith snapshot of other MOE simulations. For example, if

task 43 in the fifth snapshot of the second MOE simulation has a duration of 16

time units its duration can be 25 time units in the fifth (same ordered) snapshot

of the ninth MOE simulation. The difference could be true between the same-IDed

unfinished tasks in the same-ordered snapshots of different MOE simulations, where

the snapshot is of any order from the first to the sixth.

5. Sub-problems of the problem are sequentially solved (e.g. from p20 to p26) indepen-

dently by techniques from T. Further, the MOE is simulated at its ith SOSA before

the techniques solve a sub-problem of the problem set in the ith snapshot of the

MOE, where 1 ≤ i ≤ 6. One ith snapshot is taken for each MOE simulation. By

the various simulations, a group of different sub-problems are set in the ith snap-

shots due to the application of Item 4. Despite the difference, techniques from T

independently solve the sub-problems from the same group. This approach reduces
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the number of variables to consider for comparing the techniques.

6. The random seed used by the evolutionary processes of techniques from T to solve

a sub-problem of the problem differs across snapshots and simulations of the MOE

(where the problem is set).

This simulation is performed for each problem from L2 ∪ L3 ∪ X2. Note that the task

duration change in the problem is specified, by the sampling, in Item 4 that makes the

problem a problem simulation referred to in Section 4.2.1.
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Techniques from T

Chapter 5

This chapter describes the principal technique in this thesis, i.e. McBAR, and the other

techniques utilised to manifest the characteristics of McBAR. It starts by explaining in

Section 5.1 the algorithm of a source technique upon which McBAR is derived. This

explanation is followed in Section 5.2 by the demonstration of the way in which the

source technique becomes inapplicable to solve the sub-problems (related in Equation

1.5) of problems from M. The adopted remedy for this inapplicability is explained in

Section 5.3. Section 5.4 demonstrates the performance degrading effect of this remedy on

the source technique. Section 5.5 explains and rationalises a possible strategy to nullify

the degradation. Section 5.6 describes the algorithm of McBAR that incorporates the

source technique, the inapplicability remedy and the degradation nullification. Section 5.7

explores a slightly different version of McBAR. Then, the adaptation of EDA (described

in Section 2.6) to solve the problems from M is presented in Section 5.8. Section 5.9

enumerates all techniques being compared in the thesis.

5.1 CBAR

McBAR is an extension of the memory-based EA technique referred to as Centroid-Based

Adaptation with Random Immigrant (CBAR). CBAR was applied in [40] to solve problems

from C2 defined in Section 1.2.5, i.e. bi-objective dynamic RCPS problems with a fixed

total number of tasks. In this section, the algorithm of CBAR is explained. Further, a

MOE where a problem d2 from C2 is set is simply referred to as the MOE.



5 Techniques from T 5.1 CBAR

Being an implicit memory-based technique (explained in Section 3.3.2), CBAR applies

representatives of sets of non-dominated solutions to past sub-problems d2n of problem d2

from C2 to compute the solutions to a current sub-problem d2c of d2, where to(c) ≤ n < c

and to(c) is dependent on c. Each representative is the centroid of genotypes of non-

dominated solutions (phenotypes) to sub-problem d2n. This centroid C(t) is defined as a

genotype whose kth gene is [40],

ck(t) =

 1

Nd

∑
xj(t)∈Gnds(t)

xjk(t)

 , (5.1)

where k = 1, . . . , N ; N is the total number of tasks in the tth snapshot (a static environ-

ment) where the sub-problem d2n is set; xj(t) is a genotype of a phenotype/schedule being

a solution to the sub-problem; xjk(t) is the kth gene/ID in the xj(t) genotype (defined in

Equation 4.1); Gnds(t) is a population of genotypes of all phenotypes/solutions in the

non-dominated set Pnds(t) of solutions to the sub-problem; and b•c is the operator to

round its real-valued argument to integer. Note in Equation 5.1 that the equally-weighted

average (mean) of IDs xjk(t) forms a centroid gene.

5.1.1 Centroid Repair

Centroid C formed through Equation 5.1 may not necessarily be task-precedence-feasible

(defined in Section 4.1.4). If this is so, it will be repaired. Before explaining the repair

process, a definition is presented. Given a genotype R, its complementary genotype Rc is

C less the elements of R. For example, let the genotype R = 〈2, 1〉 and the centroid,

C = 〈14, 1, 2, 7, 9, 3, 11, . . .〉 , (5.2)

where numbers to the right of 3 are fixed but not shown for brevity. Thus, Rc =

〈14, 7, 9, 3, 11, . . .〉. The repair of centroid C is undertaken by successively appending

(described below) IDs to a genotype R which starts from empty. The ID ρ from C will be
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appended to R if it satisfies the following appending rule: the appending of ID ρ should

result in a new R whose corresponding complementary genotype Rc has IDs of tasks that

are not predecessors of the task with ID ρ, and ρ should not be found in the former R.

However, if ρ does not satisfy the appending rule, a different ID ρ′ is randomly picked

from Rc and then appended to the former R, if it satisfies the appending rule. Note that

the complementary genotype used in checking the satisfiability of ρ′ to the appending rule

is different from Rc where ρ′ is picked.

At the start of the repair of centroid C, the first element of C is attempted to be

appended to an empty genotype R following the appending process described previously.

Note that based on the explanation above, the first element or a different element of C

may be appended to R. Next, the second element of C is attempted to be appended to

R (which has one element at this stage). This repair process is continued until the last

element of C is attempted to be appended to R. After this stage, R is the repaired version

of C. The following three paragraphs will provide examples of this repair process.

Consider the centroid C in Equation 5.2 whose repair will be based on the PNT

illustrated in Figure 2.9. The repair process starts by attempting to append the first

gene/ID 14 of C to an empty genotype R. So let the new R = 〈14〉 whose complementary

genotype Rc = 〈1, 2, 7, 9, 3, 11, . . .〉. However, ID 1 in Rc is the ID of the task that is

the predecessor of task with ID 14, based on the PNT. Thus, the appending rule is

violated. A random pick of ID, say 1, from Rc is then undertaken. If 1 is appended to

the former R (which is empty) the new R becomes 〈1〉 whose complementary genotype

Rc = 〈14, 2, 7, 9, 3, 11, . . .〉. Now, no task with ID in the new Rc is a predecessor (based

on the PNT) to the task with ID 1. Thus, the appending of 1 to R is allowed, thereby

obtaining R = 〈1〉. Notice that based on Section 4.1.4, the obtained R is task-precedence

feasible with respect to the PNT.

The next step in the repair process is to attempt to append the second gene/ID 1 of the

centroid C to R. Note that 1 is already present in R = 〈1〉 whose complementary genotype

Rc = 〈14, 2, 7, 9, 3, 11, . . .〉. Thus, based on the above appending rule, a randomly chosen
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ID, say 14, is randomly picked from Rc. It is then appended to R to obtain R = 〈1, 14〉

whose complementary genotype Rc = 〈2, 7, 9, 3, 11, . . .〉. Now, no task with ID in the last

Rc is a predecessor to the task with ID 14. Thus, the appending of ID 14 is allowed,

thereby obtaining R = 〈1, 14〉. Again, notice that this obtained R is task-precedence

feasible based on the PNT illustrated in Figure 2.9.

Consider this time the third gene/ID 2 of C. When appended to R = 〈1, 14〉 it yields

R = 〈1, 14, 2〉 whose complementary genotype is Rc = 〈7, 9, 3, 11, . . .〉. Now, no task with

ID in Rc is a predecessor to the task with ID 2. Thus, the appending of 2 is permitted.

Again, notice that the obtained R = 〈1, 14, 2〉 is task-precedence feasible based on the

PNT illustrated in Figure 2.9. The repair process is continued until the last gene of C

is attempted to be appended to R. This sample repair process supports the claim that

the resulting R, at each appending cycle, is task-precedence feasible based on the PNT.

It will be proven that after R is completely appended it will be task-precedence feasible.

Consider the expressions of the completely appended R(t) = 〈r1,t, r2,t, . . . , rN,t〉 and

the centroid C(t) = 〈c1,t, c2,t, . . . , cN,t〉, where N is the total number of tasks; and t is a

SOSA of the MOE. The element rj,t of R(t) could be regarded as the result of mapping

the element cj,t of C(t). Let this mapping be denoted as R and referred to as Random

Repairer. Formally stating the repair,

rj(t) =


cj(t) cj(t) satisfies append rule

R (cj(t)) otherwise,

(5.3)

where ci(t) is defined in Equation 5.1.

5.1.2 Initial Population

One sub-algorithm of CBAR is the creation of an initial population which CBAR evolves

to obtain solutions to a sub-problem d2t of problem d2 from C2, t ≥ 0, a problem set in the
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tth snapshot of the MOE. For t = 0, this initial population is a set of N SSGS-generated

(explained in Section 2.3) genotypes. For t > 0, it is expressed as,

G0(t) ≡ U(t) ∪ Rnd(t) ∪ Ichs(t− 1), (5.4)

where,

1. U(t) is a set of centroids,

U(t) =
t−1⋃

k=to(t)

Rk. (5.5)

2. Rk is the repaired centroid of the population Gnds(k) of genotypes of all the non-

dominated phenotypes/solutions to the sub-problem d2k of problem d2;

3. The subscript of the repaired centroid Rk starts at a value,

to(t) = max{t−Nc, 0}; (5.6)

4. Nc is a given maximum number of centroids in any initial population formed by

CBAR. Note that, based on the definition of to(t), the maximum number of centroids

in U(t) is restricted to Nc.

5. Rnd(t) is a set of SSGS-generated genotypes where, |Rnd(t)| = P − |U(t)| − 1.

Section 2.3 explains that SSGS randomly selects IDs of eligible tasks, in a given

RCPS environment, to form genotypes. Hence, these genotypes have a stochastic

facet. Thus, the SSGS-generated set Rnd(t) constitutes the random component of

the initial population G0(t).

6. P is a fixed size of the initial population;

7. Ichs(t − 1) is the chosen genotype from Gnds(t − 1) that will be investigated in

Section 5.1.6.
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5.1.3 Genetic Operators

Being an EA-based technique, CBAR possesses an evolutionary process. The crossover

and mutation operators in this process are designed to suit the computing system (defined

in Section 5.6.1) for this thesis. The designed crossover operator has the following algo-

rithm. Consider two parent genotypes G1 and G2 for crossover from whom two offspring

genotypes O1 and O2 are generated. Each of the parent genotypes is broken into three

parts (as exemplified in Section 2.1.4.1) at two randomly selected crossing points labelled

L and R. The crossing point L is between gene locations l and l+1 and the crossing point

R is between gene locations r and r + 1, where 1 < l < r < N and N is the individual

lengths of the parent and offspring genotypes. These crossing points are similar for both

parents. First, offspring O1 inherits the first part of parent G2. Second, it inherits the

genes of parent G1 and consecutively places these genes at its gene locations l + 1 to r.

Suppose the kth gene location of O1 is to be filled with a gene, where l < k ≤ r. The

genes of parent G1, located from one to r, are consecutively searched for a gene different

to all genes in O1 located before location k. Once found, the search is terminated and the

different gene is placed at location k of O1. Third, the second step is repeated with genes

of O1, located from r+ 1 to N , inheriting from G2 where the search process is applied to

all genes of parent G2. The three parts of O2 are inherited by consecutively using parents

G1, G2 and G1 in the first to the third steps respectively. The presented inheriting process

has similarities to the PMX crossover [137]. The mutation of a genotype swaps two of

its consecutive genes, at a randomly selected gene location with predefined probability,

provided the resulting genotype is task-precedence feasible.

An infeasible or low quality schedule (ordered set) will become feasible or high qual-

ity, respectively, by rearranging its sub-sequences. Intuitively, the more sub-sequences

are rearranged the better schedule improvement can be obtained. Rearranging three

sub-sequences was found in preliminary tests to be best for improvement with small com-

putational effort. Using the definitions of genotypes and schedules in Section 4.1.4, the

two-point crossover of two genotypes (of phenotypes/schedules) just presented can be re-
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garded as effectively rearranging three sub-sequences of each of the two schedules. Thus,

this type of crossover is utilised in the thesis. The schedule improvements will also be

attained by changing task order in the schedule. Based on the definitions, the mutation

method presented above can change the task order through the swapping of genes. Thus,

it is also utilised in the thesis.

5.1.4 Schedule Formation

Let us discuss a method, referred to as Schedule Formation, to determine a schedule from

a genotype. Given the genotype G = 〈g1, g2, . . . , gN〉 of length N (described in Section

4.1.4), each of its genes/IDs is used consecutively. At the stage of using the gene/ID gk

in G, the starting time t of task with this ID is set to the earliest time later than or equal

to the latest end time (starting time plus duration of a task) among its predecessors, i.e.,

t = max{0,max{st i + di|i ∈ Pred(gk)}}, (5.7)

where st i and di are the starting time and duration of task with ID i, respectively; and

Pred(gk) is a set of IDs of tasks preceding the task with ID gk. Further, the starting time is

such that there are enough resources for the task with ID gk to utilise until the completion

of this task. After the consecutive usage of genes, the starting times of all tasks with IDs

in the genotype are determined. As defined in Section 4.1.4, a schedule is an ordered

set of starting times of comprising tasks. Thus, after the usage, the schedule/phenotype

of the genotype is obtained. The cost to implement this schedule is determined through

Equation A.8 and the schedule makespan is the end time of the finish of the last task.

Hereafter, a genotype that corresponds to a schedule signifies that the genotype is used

in the Schedule Formation method to obtain the schedule.
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5.1.5 The Algorithm of CBAR

The static sub-problems d2i (set in the ith snapshot of the MOE) of a dynamic problem

d2 from C2 are solved by CBAR sequentially, i.e. from d20 to d2L where L is the number

of state alterations of the MOE. To determine the solutions to the sub-problem d20 (set

in the original state of the MOE) CBAR simply executes SSGS to generate an initial

population G0(0) of genotypes. It then evolves G0(0) to obtain the population G(0)

of evolved genotypes. Then by applying the Schedule Formation method (described in

Section 5.1.4) to the genotypes in G(0), the population P (0) of baseline schedules is

then determined. These schedules are the solutions to the d20 sub-problem. This and the

remaining algorithms of CBAR are expressed as pseudo-code in Figure 5.1.

The evolutionary process executed by CBAR is performed through NSGA-II. In each

cycle of this process, NSGA-II creates an offspring genotype population from a parent

genotype population. The genetic operators utilised by NSGA-II to create the offspring

are those described in Section 5.1.3. The offspring are then feed to the Schedule Forma-

tion method to obtain the cost and duration of the schedules that correspond to these

genotypes. The Pareto rank and crowding distance (elaborated in Section 2.5.3) of each of

these schedules are determined based on the cost and duration of each [55]. Following the

explanation in Section 2.5.3, NSGA-II uses the Pareto ranks and crowding distances of

the schedules in its selection process to obtain its next generation genotype and schedule

populations.

To determine the solutions to the sub-problem d2t , t > 0, CBAR starts by determining

the centroid C(t − 1) of genotypes which correspond to the non-dominated solutions

to the sub-problem d2t−1 (set in the last snapshot before the tth snapshot of the MOE)

through Equation 5.1; then it repairs this centroid using R (as explained in Section 5.1.1),

followed by forming an initial population G0(t) through Equation 5.4; and then it evolves

this initial population using NSGA-II as described above. The schedules that correspond

to the evolved genotypes are the solutions to the sub-problem d2t and form a population

P (t).
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Procedure CBAR
Begin

Apply SSGS to generate an initial population G0(0)
Evolve G0(0) using NSGA-II to obtain the set G(0) of genotypes
Apply Schedule Formation method to G(0) to obtain the set P (0)

of solutions to d20
For t = 1 to number of SOSAs

Determine centroid C(t− 1) of the set of genotypes of
non-dominated solutions in G(t− 1)

Repair centroid C(t− 1) using R

Form an initial population G0(t) based on Equation 5.4
Evolve G0(t) using NSGA-II to obtain the set G(t) of genotypes
Apply Schedule Formation method to G(t) to obtain the set P (t)

of solutions to d2t
End

End

Figure 5.1: Algorithm of Centroid-Based Adaptation with Random Immigrants (CBAR)

SSGS and NSGA-II are components of CBAR. Thus, from here onwards, CBAR is

regarded as that which generates the initial population G0(0) and the SSGS-generated

genotype population Rnd(t − 1) in Equation 5.4, at any t > 0, by having the SSGS

algorithm as the generator of the genotypes in these populations. Further, it is regarded

as that which evolves the initial populations described in this section by having NSGA-II

as its evolutionary engine.

5.1.6 Chosen Schedule

After CBAR has computed the population P (t) of solutions to the d2t sub-problem, a

schedule c is chosen from P (t). This chosen schedule is utilised in the simulations of the

MOE discussed in Section 4.4. At the (t+ 1)th SOSA of a simulation of the MOE, CBAR

evolves an initial population G0(t+ 1) to obtain the solutions to the sub-problem d2t+1 of

problem d2 (set in the MOE). This initial population contains, based on Equation 5.4,

the chosen genotype Ichs(t) that corresponds to the chosen schedule c ∈ P (t).

Consider the tasks in a schedule S(t) which corresponds to a genotype in G0(t + 1)

different to the chosen genotype Ichs(t), tasks whose IDs are similar to those of the tasks
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of the chosen schedule Schs(t) (corresponds to Ichs(t)) that are on-going or finished at

the instant of the (t+ 1)th SOSA of the MOE. The starting time of each of the tasks in

S(t) is set equal to the starting time of its counterpart (task of same ID) in the chosen

schedule Schs(t), i.e. copying them from the chosen schedule. This process is performed

on all schedules that correspond to genotypes in G0(t + 1) different to Ichs(t); and also

on schedules which correspond to offspring genotypes in every cycle of the evolutionary

process of CBAR. At the end of this evolutionary process, the schedules which correspond

to the evolved genotypes have copies of the on-going or finished tasks of the chosen

schedule. Note that these schedules, as solutions to the d2t+1 sub-problem (set in the

current state of the MOE), are revisions of the chosen schedule Schs(t) which is one of the

solutions to the d2t sub-problem (set in the last state of the MOE). Thus, the preservation

(copying) of the on-going and finished tasks in the revised schedules demonstrates CBAR

will abide with the schedule revision rule described in Section 2.4.2.

5.2 Inapplicability of CBAR

Let us now discuss how CBAR becomes inapplicable for solving the dynamic problems

from P2, each involving change in the total number of tasks. Suppose a static sub-problem

p20 of problem p2 from P2 is set in the original state of a MOE which has N total number

of tasks. For this sub-problem, a sample PNT is depicted in Figure 4.1 where original

tasks (the only tasks found in the original state of the MOE) and additional tasks are

represented by numbered rectangles and circles respectively.

Now, suppose that the total number of tasks is increased for the first time to Nτ =

N + dN at the τ th SOSA of a MOE to where the problem p2 is set; τ > 0. When dN

or more tasks are finished at the τ th SOSA of the MOE, IDs of new dN tasks can be

placed instead of the IDs of dN finished tasks in each genotype in the initial population

G0(τ) used to solve through CBAR the sub-problem p2τ of problem p2. Thereby, the need

to change genotype length may be avoided. However, in the case where there is no task

Mapping of Task IDs for CBAR Page 142 of 318



5 Techniques from T 5.3 Partial Remedy

finished at the τ th SOSA of the MOE, the genotype must have a sufficient number of

genes to accommodate IDs of N original and dN new tasks. Thus, this condition requires

the genotype to be implemented with Nτ number of genes. Therefore, the non-dominated

set of solutions (schedules) to the p2τ sub-problem must correspond to genotypes – that

form the set G(τ) – each of length Nτ .

Before continuing our discussion, let us take the notation,

G [t] =
t−1⋃

k=to(t)

G(k), (5.8)

to denote the combined genotype populations that correspond to the non-dominated sets

of solutions to static sub-problems p2to to p2t−1 of a problem p2 from P2, where to(t) is

defined in Equation 5.6. Based on the definition of to(t) and on Equation 5.8, the number

of genotype populations combined to form G [t] is limited at most to Nc, the maximum

number of centroids used in Equation 5.6.

Suppose there is no finished task prior to the τ th SOSA of a MOE where the dynamic

p2 problem is set, where 0 < τ < Nc. Thus, each genotype in the combined populations

G [τ ] has N number of genes. Based on Equation 5.4, repaired centroids and the chosen

genotype in the initial population G0(τ) are derived from G [τ ]. Thus, they each have

a length of N . Considering that CBAR does not increase the length of each of the

genotypes as it evolves them, it cannot determine G(τ) (whose genotypes must have the

length Nτ > N) by evolving G0(τ) (whose genotypes have length N). Thus, CBAR is

unsuitable to determine the solutions to p2τ that correspond to genotypes in G(τ).

5.3 Partial Remedy

Let us now consider how CBAR is revised to overcome its unsuitability to solve the

dynamic problems from P2. Further, let any MOE considered in the remaining portion of

this chapter be the one where the problems are set and referred to simply as the MOE.
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Now, suppose new tasks (not found in the original state of the MOE) appear for the first

time at the τ th SOSA of the MOE. Following [15], the partial remedy for the unsuitability

is to insert new genes, which correspond to the new tasks, to each genotype G in G [τ ]

defined in Equation 5.8.

The new gene that corresponds to a new task is inserted to the right of, and as near as

possible to, the gene currently in G that corresponds to the immediate predecessor of the

new task. If there is more than one immediate predecessor to the new task, the insertion

is to the right of and as near as possible to the gene of a randomly chosen immediate

predecessor. This gene insertion abides by the gene ordering rule (explained in Section

4.1.4). It is performed for each of the new tasks. Sample gene insertion is illustrated in

Figure 5.2 where genes are represented by boxed numbers. Genes/IDs 31 to 33 correspond

to the new tasks and the rest of IDs to those of the original tasks. The gene arrangement

in this figure abides by the gene ordering rule which uses the PNT illustrated Figure 4.1

with circles that represent tasks 34 to 40 replaced with links.

Figure 5.2: Sample gene insertion

The gene-insertion process performed for each population G(k) (defined in Equation

5.8) of G [τ ] is symbolised in Figure 5.3. In this figure, the horizontal line is the SOSA

of the MOE. And, the kth SOSA in this line corresponds to the sub-problem p2k of the

problem p2 from P2. Each SOSA that is downward-pointed by an arrow corresponds to

the sub-problem whose non-dominated solutions (phenotypes) correspond to genotypes

being inserted with the new genes; these genotypes are from the population G(k) in G [τ ].

Thus, the gene-inserted population G(k) corresponds to the downward arrow pointing to

the kth SOSA, for to(τ) ≤ k < τ . This explains the presence of the downward arrows

pointing toward the (to(τ))th to the (τ − 1)th SOSAs in the figure.

After the insertion of new genes into each genotype of each population G(k) ∈ G [τ ],

the initial population in Equation 5.4 is formed using the gene-inserted G(k)s and then
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Figure 5.3: The SOSAs of the MOE at which genes are inserted

evolved by CBAR. The evolved genotypes are inputted to the Schedule Formation scheme

(explored in Section 5.1.4) to obtain the solutions to sub-problem p2τ of problem p2. The

inclusion to CBAR of the just presented gene-insertion process, which is performed every

time new tasks appear in the MOE, yields a technique referred to as Gene-Inserting CBAR

(GIBAR).

5.4 Gene-Insertion Side-Effect

Let us now investigate the consequence of the above-explained gene-insertion process on

the performance of GIBAR. First, Section 5.4.1 presents a problem whereby the gene-

insertion is demonstrated to be the cause of the performance degradation of GIBAR

upon the appearance of new tasks. Then the effect of the gene-insertion on the genotypes

determined by GIBAR for solving the problem and on the centroid of these genotypes is

analytically and empirically investigated in Sections 5.4.2, 5.4.3 and 5.4.5. And using the

knowledge gained from these investigations, the performance degradation is intuitively

explained in Section 5.4.6. The figure format utilised in Section 5.4.5 is described in

Section 5.4.4.

5.4.1 Sample case

Consider the application of GIBAR to solve the problem labelled 7 from L2 (described

in Section 4.2.1) that has TSC of S1 based on Table 4.5. The effects of the environ-

mental changes expressed by S1 on the performance of GIBAR for solving the problem
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are illustrated in Figure 5.4. The vertical axis of this figure is the hypervolume of the

non-dominated set of solutions to sub-problem 72
i of problem 7, where i is the horizontal

axis and the SOSA of the MOE where the problem is set. The hypervolume in this figure

increases from the zeroth up to the third SOSA of the MOE and generally decreases there-

after. This decrease started exactly when the total number of tasks in the MOE increases

for the first time, an increase that occurs at the fourth SOSA based on Tables 4.2 and

4.3 and on S1. The general decrease in the hypervolume implies the general degradation

of the performance of GIBAR, based on Definition 1 in Section 2.5.1. Considering that

GIBAR performs gene-insertion when the total number of tasks in the MOE increases and

that the performance degradation starts at this increase then the gene-insertion could be

the cause of the performance degradation.
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Figure 5.4: Hypervolume of NDS determined by GIBAR

Note that based on Equation 4.5, the number of new tasks that appears at the fourth

SOSA is Nt(7, 4) = 4, where the function Nt is defined in Equation 4.5. Further, based

on the ID assignment rule in Section 4.2, the IDs of the new tasks are 31 to 34.
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5.4.2 Large ID Discontinuity

Let us now explore the effect of the above-described gene-insertion. It could happen in

practice that new tasks (absent in the original state of a MOE) in a MOE cannot be

anticipated. Assuming positive integral task IDs, it is then sensible to label original tasks

(present in the original state of a MOE) in the MOE with IDs from one to their number N

(e.g. 30). In this set-up, the new tasks that correspond to new genes must have IDs (e.g.

31 to 33 in Figure 5.2) greater than N . As exemplified in Figure 5.2, the labelling scheme

can bring about a large discontinuity of task ID values along a gene-inserted genotype.

5.4.3 Analytical Investigation

Let us analytically investigate the centroid of gene-inserted genotypes. Consider a dis-

crete space of genotypes, each being regarded as a point. For example, the genotype

〈5, 2, 31, 7, . . .〉 expresses that its first coordinate has a value (ID) of five. To simplify our

discussion, let us consider three-gened genotypes expressed as 〈δ1, δ2, δ3〉, where δs are

task IDs. Suppose that a set G0 of genotypes is formed with genes/IDs each allowed only

to take a value from the set L = {1, 2, 3}. All possible genotypes (e.g. 〈2, 3, 1〉) created

under this restriction comprise the cluster C0 in Figure 5.5 whose every coordinate axis

signifies the task ID at a gene index indicated by the number beside the word “Gene”

near the axis. Now, suppose another set S1 of genotypes is generated, genotypes whose

second gene is allowed to take a value only from the set H = {31, 32, 33} while the rest of

the genes are each only allowed to take a value from L. Note that the second gene has IDs

related to those of the new genes considered in Section 5.4.1. The set S1 constitute the

cluster C1 of genotypes in the figure. Along the genes in each genotype (e.g. in 〈1, 31, 2〉)

in the set S1 is a large discontinuity in IDs. The other sets S2 and S3 of genotypes that

constitute clusters C2 and C3 in the figure are configured through a scheme in an anal-

ogous manner to that of C1. It will be shown that the large discontinuity of IDs in the

genotypes from S1 to S3 is responsible for the existence of the clusters C1 to C3. Further,
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the union of clusters C0 to C3 has a centroid, indicated by the solid rectangle in the

figure, that is far from each of them. Note that if the clusters are absent, only cluster C0

is present and its centroid would be near to itself. Thus, the presence of the clusters C1

to C3 causes the existence of the far centroid. Considering that the presence of clusters

C1 to C3 is due to the large discontinuity, then the presence of the far centroid is due

to the large discontinuity. If the genes from H, which caused the large discontinuity, are

regarded as inserted genes then the existence of the far centroid is due to the inserted

genes.
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Figure 5.5: Clusters of genotypes, some with abrupt changes in IDs

5.4.4 Cluster Representation

To prepare for the discussion in the next sub-section, let us translate the presentation of

cluster C1 in Figure 5.5 to that in Figure 5.6(a) whose format is similar to that of Figure

2.17. Each of the gene indexes k at the horizontal axis of Figure 5.6(a) corresponds to

a dimension in the genotype space represented in Figure 5.5, the dimension labelled as

“Gene k”. Following the construction of Figure 2.17, the genotypes with ID i at gene

index k that comprised cluster C1 are counted. Then, the percentage of this count of
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Figure 5.6: Cluster representation in distribution format of cluster/s (a) C1 (b) C1 and
C3 (c) C0 to C3

the total number of genotypes utilised to form Figure 5.5 is represented by a colour of

the square located at (k,i) in Figure 5.6(a). The colour scale beside Figure 5.6(c) reveals

that the nearer the colour to blue the more popular an ID i is; the ID at gene index k of

the genotypes utilised to form Figure 5.5. Consider only one cluster in Figure 5.5 that is

represented in a figure X with the same format as that of Figure 5.6(a). The popularity

of this cluster is defined as the average percentage count (nearness to blue of the colour)

of all squares in figure X.

The clusters C1 and C3 illustrated in Figure 5.5 are translated in Figure 5.6(b) to

coloured squares that are discriminated by “+” and “o” marks respectively. In a figure

format such as Figures 5.6(a) to (c), the set of squares with the same mark is defined as
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a cluster. Notice that some squares have double marks, which denote that the percentage

count at each of these squares is the sum of percentage counts (in this case for Figure

5.6(b), half for cluster C1 and half for cluster C3) in one-to-one correspondence with the

clusters. Further, all clusters have equal popularities.

Let the ID coordinate of a symbol “*” in Figure 5.6(c) be the mean of IDs rounded to

the nearest integer, the IDs at gene index equal to the index coordinate of this symbol.

And, suppose that the ID coordinate of a “*” is copied to a location in a genotype at

index equal to the index coordinate of the “*”. If this process is performed on all “*”s, it

will be shown that the genotype formed is equivalent to the centroid (red rectangle) of all

the clusters in Figure 5.5. In a given figure with the same format found in Figures 5.6(a)

to (c), the set (genotype) of rounded means ordered according to their corresponding gene

indexes is defined as a centroid of the distribution illustrated in the given figure. We then

say that the set of “*”s correspond to a centroid in Figure 5.6(c). Notice that this centroid

is far from the cluster (C1) marked by “o”s in Figure 5.6(c).

5.4.5 Empirical Investigation

In Section 5.4.3, we concluded that the insertion of new genes caused the existence of the

far centroid. This analytically-derived conclusion is based on three-dimensional genotype

space. Let us now investigate, through empirically obtained genotypes, the distance of

the centroid of the clusters derived from these genotypes to these clusters set in a high-

dimensional genotype space. Considering that each gene index in Figure 5.7 corresponds

to a dimension (as in Figures 5.6(a) to (c)), Figure 5.7 illustrates a high-dimensional

distribution. This distribution D is that of IDs/genes in genotypes that correspond to

solutions (schedules) determined by GIBAR for solving the sub-problem 12
1 of problem 12

from L2 (notations are based from Section 4.2.1). Using Bayesian Information Criteria

[182], the distribution D can be shown to be composed of several clusters (akin to those

depicted in Figure 5.6(b)) with possibly different levels of popularity. Let one of these

clusters be labelled as H and be represented (through the scheme explained in Section
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5.4.4) by the set of “o”-marked squares (akin to that in Figure 5.6(b)) in Figure 5.7, each

having the highest percentage count among squares of the same gene index coordinate,

i.e. cluster H is highly popular. Note that in Figure 5.7, the centroid (corresponds to

the set of “+”s akin to “*”s in Figure 5.6(c)) of the distribution D is close to cluster H.

Further, the distribution D corresponds to the sub-problem 12
1 which, by using Tables 4.2,

4.3 and 4.5, can be shown to be set in a MOE that had not undergone an increase in the

total number of tasks at the first SOSA (denoted by the subscript in 12
1).

Consider now Figure 5.8 which has a similar format to that of Figure 5.7. It illustrates

the task ID distribution of genotypes that correspond to the solutions (schedules) obtained

through GIBAR for solving the sub-problem 12
11 of problem 12 from L2. Based on the

sub-problem notation and Tables 4.2, 4.3 and 4.5, this sub-problem is set in a MOE that

had undergone increases in the total number of tasks at the fourth, sixth, 10th and 11th

SOSAs. By these increases, several new genes are inserted by GIBAR into the genotypes

of a baseline solution to sub-problem 12
0 set in the original (zeroth) state of the MOE.

Among the squares at each gene index in Figure 5.8, the square (denoted by “o”) with

the highest percentage count is generally far from the rounded mean (denoted by “+”).

Thus, following the definition in Section 5.4.4, the centroid – corresponding to the set of

“+”s – is far from the highly popular cluster marked by the set of “o”s in the distribution.

Considering that the centroids illustrated in Figures 5.7 and 5.8 are, respectively, near

to and far from their respective highly popular clusters and that the figures correspond

to the non-insertion and insertion of new genes, respectively, then the far centroid in

Figure 5.8 will be due to the insertion of the new genes. Therefore, based on either the

empirically-based analysis in this section or on the analytically-based analysis of Section

5.4.3, the insertion of new genes by GIBAR to genotypes can cause the centroid of the

distribution of IDs from these genotypes to become far from the highly popular clusters

in this distribution.
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5.4.6 Intuitive Explanation

Let us intuitively explain, using a particular case, the performance degradation of GIBAR.

First, suppose that (a) there is no new task that appears from the first to the sixth SOSA

of a MOE; (b) the set S0 of genotypes which correspond to the non-dominated solutions

obtained by GIBAR for solving sub-problem q20 set in the original state (zeroth snapshot)

of the MOE are those depicted in Figure 5.9 as points (dots) on the contour of a fitness

landscape, points that are clustered around the label “0” whose location is also that of

the centroid of the genotypes; (c) similar depiction and centroid labelling schemes are

applied for the sets of genotypes that correspond to the NDSs of solutions obtained by

GIBAR for solving sub-problems q21 to q25 set in the first to the fifth snapshot of the MOE

respectively; (d) and the first and sixth snapshots of the MOE – where sub-problems q21

and q26 are set respectively – are nearly similar. Now, consider the expected set S6 of

genotypes that correspond to the non-dominated solutions which will be determined by

GIBAR if GIBAR will solve sub-problem q26 set in the sixth snapshot of the MOE. By

supposition (d), they can be clustered near to S1 ( the set of genotypes that correspond

to the solutions to sub-problem q21), such that, the centroids of these two clusters can be

near (the distance between S1 and S6 can be measured using Hausdorff distance [57,60]),

as exemplified in Figure 5.9.

Second, consider the event where new tasks appear for the first time at the sixth

snapshot of the recently considered MOE. Based on the investigations in Sections 5.4.2,

5.4.3 and 5.4.5, the set T6 of genotypes which correspond to the non-dominated solutions

to sub-problem q26 that are expected to be determined by GIBAR will be those depicted

in Figure 5.10, genotypes that form three clusters whose centroid is located at label “6”.

Considering that there is no new task that appears from the first to the fifth SOSA of

the MOE, the sets Sk, 0 ≤ k < 6, of genotypes that correspond to the non-dominated

solutions to sub-problems q20 to q25, each may form only one cluster.

Now, GIBAR inserts new genes, that correspond to the new tasks, to each genotype in

S [6] = ∪5
k=0Sk; supposing Nc = 10 in Equation 5.8. Using the result of the investigations
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Figure 5.9: Clusters of solutions to various sub-problems without new tasks
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Figure 5.10: Clusters of solutions to various sub-problems with one sub-problem set in
the sixth snapshot with new tasks
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Figure 5.11: Clusters of solutions to various sub-problems with gene-inserted correspond-
ing genotypes

in Sections 5.4.2, 5.4.3 and 5.4.5, a set T0 comprised of the gene-inserted genotypes from

S0 ∈ S [6] could form three clusters such as those depicted in Figure 5.11 where the

centroid of these clusters is far from any of them. A similar scenario can be observed in

the sets T1 to T5 comprised of gene-inserted genotypes from S1 to S5 respectively.

Based on Equations 5.4 and 5.5, GIBAR prepares an initial population which contains

the centroids, R0 to R5, of the sets T0 to T5 (defined above) of the gene-inserted genotypes

from the sets S0 to S5 respectively. This initial population is used by GIBAR and is

intended to determine the set T6 of genotypes that correspond to the NDS of high-quality

solutions to sub-problem q26 set in a snapshot with new tasks. Based on the investigations

in Sections 5.4.2, 5.4.3 and 5.4.5, the centroids R0 to R5 could be far from the centroid

of T6, as depicted in Figure 5.11.

Now, given a fixed number E of evolutionary cycles, GIBAR could be unable to evolve

the initial population to produce genotypes which are near to any genotype in T6 that

corresponds to an expected high-quality solution to sub-problem q26. Thus, GIBAR could
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only produce low-quality solutions when solving sub-problem q26 set in a snapshot with

new tasks. However, based on the investigations in Sections 5.4.2, 5.4.3 and 5.4.5, if there

is no new task that appears at and prior to the sixth SOSA of the MOE, the centroid of

genotypes from S1 could be near to that of S6, as exemplified in Figure 5.9. Consequently,

GIBAR with E number of evolutionary cycles could evolve the initial population with

this near (instead of the far) centroid to produce solutions near to S6, i.e. high-quality

solutions. Thus, the performance of GIBAR for solving a sub-problem set in a snapshot

in the MOE with new tasks will be lower than that of the snapshot without current and

previous new tasks.

In the researches of [27, 28, 127, 164], gene insertion was shown to be beneficial for

searching high quality solutions to some problems. However, an implicit memory-based

approach was not applied in these researches, such that the benefit does not necessarily

hold in the performance of GIBAR for solving problems from P2 that have time-varying

total number of tasks. The resolution to the performance degradation of GIBAR will be

explained in the next section.

5.5 Resolution of Effects

Before proceeding to discuss the approach that can possibly resolve the above-explained

gene insertion side-effect, let us define the precedence order of a task. This order is the

maximum number of directed links which connect a task to the start of a given PNT

following the reversed direction of the links. For example, task 16 in Figure 4.1 is of

seventh precedence order.

Consider a set of gene-inserted genotypes that correspond to GIBAR-determined non-

dominated solutions to the sub-problem that is set in a snapshot with new tasks. As

investigated in Section 5.4, the abrupt change of ID along each element of the set of

genotypes could be the cause of the performance degradation of GIBAR. Thus, the chosen

potentially-resolving approach for the degradation is to one-to-one map IDs of tasks – that
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belong to a similar precedence order – to values that are as near to each other as possible

and unique among mapped values of all IDs. Let the function F(Id) represents this ID-

mapping operation, where Id is the ID to be mapped. For example, second precedence

ordered tasks in Figure 4.1, such as 4, 6, 7, 8, 9, 10, 12, 14 and 38 are mapped to

themselves, except task 38 mapped to 15.

As will be explained in Section 5.6, the mapping operation F and GIBAR are com-

ponents of McBAR. To manifest a sample effect of F, McBAR is applied to solve the

sub-problem 12
11 of problem 12 from L2 (defined in Section 4.2). The distribution of IDs

in the elements of the set G of genotypes which correspond to non-dominated McBAR-

determined solutions to sub-problem 12
11 is illustrated in Figure 5.12, which is of similar

format as that of Figure 5.8 (described in Section 5.4). Figure 5.12 illustrates the rounded

mean – represented by the “+”-marked square – to be near to the highest percentage count

ID – represented by the “o”-marked square – at any gene index, in general. Thus, by the

definition in Section 5.4.5, the centroid of the distribution is near to the highly popular

cluster. In contrast, the rounded mean at any given gene index in Figure 5.8 is gener-

ally far from the high percentage count ID at the same index. Thus, the centroid of the

distribution illustrated in Figure 5.8 is far from the highly popular cluster. Note that

the distribution illustrated in Figure 5.8 is that of IDs in genotypes which correspond

to GIBAR-determined non-dominated solutions to the same sub-problem from where the

distribution in Figure 5.12 is derived. These empirical results show that the action of the

mapping F of IDs (which resulted in the distribution in Fig. 5.11) can move a centroid

closer to a highly popular cluster in the same distribution. This action is the reverse of

the gene-insertion side-effect (investigated in Section 5.4) which can degrade the perfor-

mance of GIBAR. Thus, it could be expected that McBAR can resolve this performance

degradation, an expectation that will be fulfilled in Chapter 6.

Note that although a task ID may be transformed by F, the task that it represents

remains the same. For example, the starting time of and the type of resource utilised by

a task are not affected by F, except the ID of the task utilised by the resource is also
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mapped by F. Further, the node IDs in the PNT are also mapped by F.

5.6 Algorithm of McBAR

This section elaborates on the algorithm of McBAR. First, the computing system utilised

by McBAR is described in Section 5.6.1. Then Section 5.6.2 explains the algorithm of

McBAR for determining solutions to a sub-problem set in a snapshot where new tasks

appear for the first time. Section 5.6.3 investigates the algorithm of McBAR for deter-

mining solutions to sub-problems set in snapshots with no new task but succeeding the

snapshot where new tasks appear for the first time. Section 5.6.4 describes the algorithm

of McBAR for determining solutions to sub-problems set in snapshots where new tasks

appear for the second or later times. Sections 5.6.5 and 5.6.6 describe other components

of McBAR. And then, the algorithm of McBAR is summarised in Section 5.6.7.

5.6.1 Computing System

Let S be the computing system used in the thesis to solve sub-problems of problems from

M. One attribute of any resource in the MOE considered in the thesis is the ID of task

which utilises it. Thus, in system S, task IDs are part of the information about (a) the

resources, (b) genotypes used in the evolutionary process of McBAR to solve the sub-

problems, and (c) each PNT in the snapshots where the sub-problems are set. Further,

the PNT in the last snapshot is simply copied to the current snapshot if no new task

appears at the current snapshot.

McBAR inherits from GIBAR. The insertion by McBAR of new genes into genotypes

is accompanied by the insertion of new nodes, with IDs of the new tasks, into the PNT

in the snapshot with new tasks. And, the mapping F of task IDs in each gene-inserted

genotype is accompanied by the mapping F of task IDs in the node-inserted PNT and

in the resources utilised by the tasks. When all IDs in system S are transformed by the
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mapping, system S is considered to be in mapped mode.

5.6.2 First Appearance of New Tasks

Suppose McBAR is utilised to solve the sub-problems p2ks of problem p2 from P2, for all

to(τ) ≤ k < τ ; the sub-problems are set in the snapshots taken prior to the τ th SOSA of a

MOE. Further, no new tasks appear prior to the τ th SOSA. In this case, McBAR simply

applies GIBAR to determine the non-dominated solutions to the sub-problems p2ks, for all

0 ≤ k < τ . Note that to(t) ≥ 0 based on Equation 5.6. Suppose the set G(k) of genotypes

correspond to the non-dominated solutions to the sub-problems p2ks. Thus, after solving

p2τ−1, G [τ ] (defined as a set of G(k)s in Equation 5.8) can be determined.

Now, when new tasks appear at the τ th SOSA of the MOE, new genes which correspond

to the new tasks are inserted by McBAR into each genotype from G [τ ] to obtain A [τ ] =

∪τ−1k=to(τ)
A(k) where A(k) is comprised of the gene-inserted genotypes derived from G(k),

for all to(τ) ≤ k < τ . New nodes which correspond to the new tasks are also inserted to

the PNT that exists prior to any change in the MOE. Next, the system S is set to mapped

mode, i.e. the mapping function F is applied to every task ID in all in-use resources in

the MOE, in all nodes of the gene-inserted PNT and in each gene-inserted genotype in

A [τ ], to obtain,

B [τ ] =
τ−1⋃

k=to(τ)

B(k). (5.9)

where B(k) contains ID-mapped gene-inserted genotypes derived from A(k) ⊂ A [τ ].

Then, the centroid of each B(k) ⊂ B [τ ] is computed and repaired. However, the centroid

repairer R inherited by McBAR from GIBAR is revised (described in Section 5.6.5),

intending to further increase the performance of McBAR. An initial population is then

formed (explained in Section 5.6.6), comprised of the repaired centroids (derived from

ID-mapped gene-inserted genotypes from B(k) ⊂ B [τ ], for all to(τ) ≤ k < τ), other

ID-mapped elements of B(τ − 1) (found in B [τ ]), and SSGS-generated genotypes. Based

on the SSGS algorithm explained in Section 2.3, the generated genotypes have mapped
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IDs due to SSGS using the node-inserted ID-mapped PNT in the (τ − 1)th snapshot of

the MOE. Note that all genotypes of the initial population have mapped IDs.

Under system S in mapped-mode, in each cycle of the evolutionary process of McBAR

the ID-mapped evolutionary operator-produced genotypes which originated from the ini-

tial population are inputted to the Schedule Formation method (described in Section

5.1.4). Further, the mapped tasks IDs in resources and the ID-mapped PNT in the

(τ − 1)th snapshot of the MOE, and the inputted ID-mapped genotypes are then utilised

by the method to obtain schedules with mapped IDs. Thus, at the end of the evolution-

ary process, the evolved genotypes and their corresponding phenotypes/schedules have

mapped IDs. Because of these mapped IDs, the schedules are not as yet the solutions to

sub-problem p2τ set in the snapshot with the new tasks.

Let B(τ) be a subset of the evolved ID-mapped genotypes which correspond to the

non-dominated schedules. Now, copies of the ID-mapped genotypes in B(τ) and the

ID-mapped PNT are made. Then, IDs in each of the copies are unmapped. The ID-

unmapped genotypes derived from B(τ) are processed in the Schedule Formation method

which utilises the ID-unmapped PNT copy. The processing yields the non-dominated

solutions to sub-problem p2τ set in the τ th snapshot where the first new tasks appear. The

series of actions of copying, unmapping and processing in Schedule Formation method is

referred to as Solution Production.

The Solution Production is only performed when required, for example, for a decision-

maker to view the solutions (schedules) to sub-problem p2τ . However, the evolved ID-

mapped genotypes in B(τ) are utilised for finding solutions to sub-problems set in the

snapshots taken after the τ th SOSA of the MOE.

5.6.3 No New Task in Succeeding Number of Snapshots

Suppose no new tasks appears from the (τ + 1)th to the (η − 1)th SOSA of the last-

mentioned MOE; and the second batch of new tasks occurs at the ηth SOSA of the MOE.
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As supported in Section 5.3, the gene-insertion is performed only due to the occurrence

of new tasks. Thus, there is no need to insert genes into each genotype in the populations

B(τ+1) to B(η−1) which correspond, respectively, to the non-dominated sets of solutions

to the p2τ+1 to p2η−1 sub-problems of problem p2 from P2 ⊂ M. The non-insertion of genes

is depicted in Figure 5.3 by the absence of downward-pointing arrows at the (τ + 1)th to

the (η − 1)th SOSAs of the MOE.

Now, although the genotypes in the population B(τ) of genotypes, which correspond

to the non-dominated solutions to sub-problem p2τ , are evolutionarily derived from the

initial population with individuals derived from the gene-inserted genotype populations

in Equation 5.9, they had not undergone the gene-insertion process. This non-insertion

is the consequence of the rule explained in Section 5.3 when no new task appears from

the (τ + 1)th to the (η − 1)th SOSAs. Thus, there is no downward-pointing arrow at τ th

SOSA in the figure.

To solve the sub-problem p2σ, where τ < σ < η, an initial population is formed using

the populations in,

B [σ] =
σ−1⋃

k=to(σ)

B(k), (5.10)

where to(σ) is defined in Equation 5.6; in accordance with Figure 5.3, B(k) is a population

of evolved ID-mapped gene-inserted genotypes – if to(σ) ≤ k < τ – or a population of

evolved ID-mapped un-inserted genotypes – if τ < k < σ; and B(k) is the population of

genotypes that correspond to non-dominated solutions (schedules) to the sub-problem p2k,

for all to(σ) ≤ k < σ. Note that B [σ] is a mix of populations of inserted and un-inserted

genotypes. Next, the initial population with elements derived from B [σ] is evolved by

McBAR to obtain a population E(σ) of evolved genotypes, where B(σ) ⊆ E(σ) is a set of

evolved genotypes which, when acted upon by the Solution Production, will yield all the

non-dominated solutions to the sub-problem p2σ. Note that system S is at mapped mode

during this evolutionary process.
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5.6.4 Other Batches of New Tasks

Let us now consider the ηth SOSA of the last-considered MOE when the second batch

of new tasks appears. Let B [η] be a set of populations B(k), where to(η) ≤ k < η, and

each contains either ID-mapped gene-inserted genotypes or ID-mapped gene un-inserted

genotypes, as was the case in Equation 5.10. Further, B(k) is a set of genotypes which

correspond to non-dominated solutions to sub-problem p2k. To solve sub-problem p2η set in

the ηth snapshot of the MOE, first, the ID-mapped genotypes in B [η] are unmapped to

obtain a collection D [η] of populations D(k), to(η) ≤ k < η, of ID-unmapped genotypes.

Note that, as implied in Section 5.3, there is no unmapping of IDs in genotypes of B [η]

during the search for solutions to sub-problems p2τ+1 to p2η−1, such that, the genotypes

in B [η] are mapped. The ID unmapping is also applied to task IDs in resources in the

MOE and in the PNT in the (η − 1)th snapshot of the MOE. Thus, system S is restored to

unmapped mode. Second, new genes that correspond to the second batch of new tasks are

inserted into the unmapped genotypes in D [η] to obtain a collection E [η] of populations

E(k), to(η) ≤ k < η, of ID-unmapped gene-inserted genotypes. This second batch of

gene insertion is depicted in Figure 5.3 as upward-pointing arrows. New nodes, which

correspond to the new tasks, are inserted into the ID-unmapped PNT. Third, a different

mapping function is applied to IDs in each genotype in E [η] to obtain,

F [η] =

η−1⋃
k=to(η)

F (k), (5.11)

which is a collection of populations F (k), to(η) ≤ k < η, of ID-remapped gene-inserted

genotypes. The different mapping function is still intended to minimise ID discontinuity

along involved genotypes. This mapping is also applied to the task IDs in the resources

and in the ID-unmapped node-inserted PNT. Thus, system S is restored to mapped mode

once again. Fourth, the collection F [η] of population of ID-remapped genotypes is used

to form an initial population of ID-mapped genotypes which are then evolved by McBAR

to obtain the population C(η) of evolved ID-mapped genotypes. Note again that system
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S is in mapped mode during the evolution of the initial population. Fifth, when required,

the evolved genotypes in C(η) are used in the Solution Production to obtain the non-

dominated solutions (schedules) to the p2η sub-problem. The successive processes of (a)

restoring system S to unmapped mode; (b) insertion of new genes which correspond to

new tasks; and (c) reverting S to mapped mode, are repeated every time a batch of new

tasks appear in the MOE after the first batch.

Based on the discussion until this point, system S is always in mapped mode when

McBAR evolves initial populations to determine solutions to sub-problems set at or after

the snapshot of the MOE taken immediately after the first batch of new tasks appeared.

In addition, the formation of the initial population uses the genotype populations that

correspond to sets of non-dominated solutions.

5.6.5 Centroid Repair

As briefly considered in Section 5.6.2, the centroid repairer R of GIBAR (inherited from

CBAR) is revised so as to enhance the performance of McBAR. Let us now explore the

revised repairer labelled N which perturbs any given centroid/genotype as little as possible

such that, intuitively, the essence of this genotype as a centroid is diminished the least.

First, let us recall the action of R explained in Section 5.1.1. An ID ρ of a centroid

C is allowed to be appended to a genotype R (which starts from empty) if it satisfies the

appending rule. Otherwise, the function R of CBAR randomly picks a different ID ρ′,

which satisfies the appending rule, from Rc = C − R and then appends this to R, where

Rc is the complementary genotype of R. Now, the function N of McBAR differs from R

as follows: instead of randomly picking an element of Rc, the element of Rc that is nearest

in value to ρ, and satisfies the appending rule, is the one appended to R. If two IDs from

Rc are equidistant to ρ, and satisfy the appending rule, one of these is randomly picked

for appending to R. The appending rule uses the node-inserted ID-mapped PNT in the

(t− 1)th snapshot of a MOE, if t is greater than or equal to τ which is the SOSA of the

MOE at which new tasks appear for the first time. If t < τ the appending rule uses the
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PNT in the original state of the MOE.

As an example, consider the centroid C = 〈14, 1, 2, 7, 9, 3, 11, . . .〉; its first gene/ID,

14; the current R = ∅; and Rc = C. As demonstrated in Section 5.1.1, ID 14 does not

satisfies the appending rule. Using the PNT illustrated in Figure 2.9, among those from

Rc that satisfies the appending rule; ID 3 is nearest to 14. Consequently, R = 〈3〉 and

Rc becomes 〈14, 1, 2, 7, 9, 11, . . .〉. ID 1 of C is considered next for appending to R. It

satisfies the appending rule such that R = 〈3, 1〉. ID 2 of C is considered next and also

satisfies the appending rule, such that R = 〈3, 1, 2〉.

Let the first three genes of C form the vector V = 〈14, 1, 2〉; and the last R be treated

as vector. The last R, produced through the N function, has a Euclidean distance of 11 to

V ; while R = 〈1, 14, 2〉, produced (as explained in Section 5.1.1) through the R function,

has a distance of 18.38 to V . This result supports the lesser perturbation effected by N

than by R on repairing centroids.

5.6.6 Initial Population for a Current Static Sub-Problem

As explained in Section 5.6.2, the sub-problem p2s of problem p2 from P2 set in the sth

snapshot of a MOE taken prior to the first appearance of new tasks is solved by McBAR

by applying GIBAR (inherited by McBAR) with the centroid repairer R replaced by N.

Now, suppose that new tasks first appear at the τ th SOSA of the MOE. And, B [t] (defined

through Equation 5.9) is a collection of genotype populations B(k), where to(t) ≤ k < t;

t ≥ τ ; and to(t) is defined in Equation 5.6. Considering the explanation in Section 5.6.4,

B(k) is a population of gene-inserted ID-mapped genotypes (e.g. B(k)s in Equation 5.9

and F (k)s in Equation 5.11) or a population of un-inserted ID-mapped genotypes (e.g.

B(k)s in Equation 5.10). Further, genotypes in B(k) correspond to the non-dominated

solutions to the sub-problem p2k. The collection B [t] is used to form an initial population,

M0(t) = C(t) ∪ Rnd(t) ∪ Mchs(t− 1), (5.12)
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where,

1. C(t) is a set of centroids,

C(t) =
t−1⋃

k=to(t)

R(k); (5.13)

2. R(k) is the N-repaired centroid of B(k) ⊆ B [t];

3. Rnd(t) is the set of genotypes generated through SSGS which utilises the ID-mapped

and node-inserted (nodes correspond to new tasks) PNT in the tth snapshot of the

MOE. |Rnd(t)| = P − |C(t)| − 1. Being produced through SSGS (which endows

stochasticity to its produced genotypes as explained in Section 5.1.2), the elements

of Rnd(t) are referred to as random components. As noted in Section 2.4.2, memory-

based EA approaches need to diversify the genotypes at stages of their evolutionary

cycles. In McBAR, this diversification is implemented through the random compo-

nents, thereby justifying the inclusion of Rnd(t) in Equation 5.12.

4. P is a fixed size of the initial population;

5. Mchs(t − 1) is the ID-mapped gene-inserted genotype derived from B(t − 1) that

corresponds to the chosen schedule from the population P (t− 1) of non-dominated

solutions to the sub-problem p2t−1.

Based on the enumerated definitions above, all genotypes in the initial population M0(t)

have mapped IDs. This initial population is then evolved (as explained in Section 5.1.5)

to determine an ID-mapped evolved population. When necessary, this evolved population

is fed to the Solution Production method to obtain a set P (t) of schedules as solutions to

the sub-problem p2t .

5.6.7 Summary of Algorithm

The summary of the algorithm of McBAR is depicted in Figure 5.13.. The sub-problem

p2t of problem p2 from P2 set in the tth snapshot of a MOE taken prior to the first
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appearance of new tasks is solved by McBAR by applying GIBAR with the centroid

repairer R replaced by N. At the first appearance of new tasks, at t = τ , new genes

are inserted then IDs are mapped to set the system S to mapped mode. Next, centroids

are computed and then repaired; initial population is formed using these centroids; and

NSGA-II evolves this population under system S in mapped mode. At SOSAs where

there is no new tasks and after the first increase, GIBAR is applied under system S in

mapped mode. Lastly, if it is desired to present schedules, say to a commanding officer,

current genotypes and precedence network of tasks are copied; IDs in these genotypes and

network are unmapped; Schedule Formation method is applied to form schedules for the

presentation.

The sub-algorithms of McBAR applied at or after the first appearance of new tasks

are the following:

1. Gene insertion

2. ID Mapping operation F

3. Compute unrepaired centroid using mean in Equation 5.1

4. Minimal repairer N of centroids

5. Initial population as defined in Equation 5.12

6. NSGA-II (explained in Section 5.1.5) used to evolve the initial population

7. Maintenance of system S at mapped mode

8. Preservation of ongoing and finished tasks in a chosen schedule (described in Section

5.1.6)

9. SSGS to form Rnd(t) in Equation 5.12

The algorithm of McBAR is similar to that of GIBAR derived from CBAR (described

in Section 5.1.5), except that Items 1 to 5 are applied to form an initial population; and

that system S is maintained at mapped mode, i.e., Item 7.
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Procedure McBAR
Begin

For t=0 to τ − 1
Apply GIBAR with the centroid repairer R replaced by N

End
For t=τ to number of SOSAs

If no increase in total number of tasks
Apply GIBAR with the centroid repairer R replaced by N

under system S in mapped mode
Else

If first increase in total task number
Insert new genes
Map IDs to put system S to mapped mode

Else
Unmap IDs to put system S to unmapped mode
Insert new genes
Restore system S to mapped mode

End
Compute and then repair centroids
Form initial population
Evolve using NSGA-II under system S in mapped mode

End
If presenting actual schedule

Copyevolved genotypes and current Precedence
Network of Tasks

Unmap IDs in copied evolved genotypes and
current Precedence Network of Tasks

Apply Schedule Formation method to form schedules
Output schedule

End
End

End

Figure 5.13: Algorithm of McBAR
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The core algorithm of McBAR is composed of the above algorithms except for the

use of the statistical mean to determine the unrepaired centroid (Item 3); the minimal

repairer N (Item 4); and the Rnd(t) in the initial population (Item 5) in Equation 5.12.

The exempted sub-algorithms in the algorithm of McBAR will be replaced with other sub-

algorithms to form McBA, MedianBAR and McBAS, which are elements from T noted in

Section 1.2.6.

5.7 MedianBAR

The centroid expressed in Equation 5.1 is a statistical mean of IDs. Note that mean is one

type of tendency in statistics. It is of interest to determine the performance of McBAR

when the centroid is a median of IDs, in which case the centroid is renamed as medoid and

McBAR as MedianBAR. The algorithm of MedianBAR is the core algorithm of McBAR

plus its utilised centroid as a median; centroid repairer as N; and initial population in

Equation 5.12.

The ith gene of a medoid M(t) is:

Mi(t) =


sK+1
i (t) P is odd

⌊
sKi (t)+sK+1

i (t)

2

⌋
P is even,

(5.14)

where ski is an element of the ordered set Si(t) =
〈
s1i (t), s

2
i (t), . . . , s

P
i (t)

〉
; Si(t) = sort(Xi(t));

Xi(t) =
{
x1i (t), x

2
i (t), . . . , x

P
i (t)

}
; sort is a sorting operation; xji (t) is the task ID in the

ith gene of the jth genotype in a population of size P ; K = bP/2c; and t is the order of

taking the snapshot where a sub-problem is set whose solutions/phenotypes correspond

to genotypes in P .

Mapping of Task IDs for CBAR Page 170 of 318



5 Techniques from T 5.8 EDA on P2 Problem

5.8 EDA on P2 Problem

The EDA algorithm described in Section 2.6 is innovated in order to solve problems from

M and consequently labelled as EDA/P2. EDA/P2 determines a set of solutions to sub-

problem p20 of problem p2 from P2 by undertaking the following steps, starting with EDA

cycle i = 0 and SOSA t = 0:

1. The probability matrix in Equation 2.16 is relabelled as Pi(t) to indicate the tth

SOSA of a MOE where the problem is set. It is initialised to have equal entries of

1/Nt , i.e. Pi(t) = [1/Nt ], where Nt is the total number of tasks at the tth snapshot

of the MOE. This step is the equivalent of EDA/P2 to step 1 in Figure 2.18.

2. The probability matrix Pi(t) is then sampled, following the sampling scheme in

Section 2.6, to form a population Gi(t) of P genotypes. This step is related to step

2 in Figure 2.18.

3. From Gi(t), a set Si(t) of schedules is formed through the Schedule Formation

scheme described in Section 5.1.4.

4. The cost and makespan of each schedule in Si(t) are utilised in NSGA-II’s fast

non-dominated sorting to obtain each schedule’s Pareto rank and crowding distance

(elaborated in Sections 2.5.3.2 and 2.5.3.3 respectively).

5. Psel = d ρP e genotypes are selected from Gi(t), where d•e is a round-up operator;

0 < ρ ≤ 1; and ρ is a predefined constant referred to as percent of population. This

selection is performed following the scheme described in Section 2.5.3.4 and based

on the Pareto rank and crowding distance of schedules in Si(t) that correspond to

the genotypes. This step is related to step 3 in Figure 2.18.

6. These Psel selected genotypes are included in P − Psel SSGS-generated genotypes

to form a new population Gi+1(t) of size P . Note that, as explained in Section

5.1.2, SSGS-generated genotypes add diversity to the population to which they are

Mapping of Task IDs for CBAR Page 171 of 318



5 Techniques from T 5.8 EDA on P2 Problem

included. This inclusion is intended to remedy the loss of diversity of the population

produced by EDA as the evolutionary cycle i of EDA progresses [130].

7. A probability matrix Qi+1(t) is estimated from the new population Gi+1(t). Follow-

ing [178], the probability matrix to be used in the next EDA cycle is,

Pi+1(t) = λQi+1(t) + (1− λ)Pi(t), (5.15)

where 0 < λ ≤ 1 is a chosen value and referred to as a learning rate. This equation

implies that the information, embedded in Pi(t), from the current EDA cycle i is

carried over (learned) to the next EDA cycle i+ 1. This step is related to step 5 in

Figure 2.18.

8. Steps 2 to 7 are repeated for a fixed number Ncyc of EDA cycles, except at the last

EDA cycle where only steps 2 and 3 are executed successively. The cycle index i is

incremented at every end of the cycle.

At the last generation, where i = Ncyc, the set SNcyc(t) of schedules produced in

step 3 is the set of solutions to the sub-problem p2t , the set relabelled as P (t).

Steps 6 and 1 are replaced to determine solutions to sub-problem p2t of problem p2

from P2 when t > 0. Step 6 is replaced as follows: The Psel selected genotypes are

included to P − Psel − 1 SSGS-generated genotypes and a chosen genotype to complete

a population Gi+1(t) of size P . The chosen genotype corresponds to the chosen schedule

randomly picked from the set Pnds(t − 1) of non-dominated solutions in P (t − 1), i.e.

the non-dominated solutions to sub-problem p2t−1. The finished and on-going tasks in

the chosen schedule are preserved (as explained in Section 5.1.6) in the evolved schedules

being solutions to the sub-problem p2t .
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When there is no increase in the total number of tasks at the tth SOSA of the MOE,

t > 0, step 1 is replaced as follows: Let,

G [t] =
t−1⋃

k=to(t)

Gnds(k), (5.16)

where to(t) is defined in Equation 5.6; and Gnds(k) is a set of genotypes that correspond to

all non-dominated solutions in the set P (k) of solutions to sub-problem p2k, to(t) ≤ k < t.

The probability matrix Pi(t) is estimated from G [t]. In this way, solutions (e.g. those

that correspond to Gnds(k)) to sub-problems set in past snapshots are utilised to search

for solutions to the sub-problem set in the current (tth) snapshot of the MOE.

If there is an increase in the total number of tasks, say at the τ th SOSA of the MOE,

τ > 0, step 1 is replaced as follows: New genes that correspond to new tasks which appear

at the τ th SOSA are inserted into all genotypes in G [τ ] of Equation 5.16 following the

scheme in Section 5.3. From the gene-inserted G [τ ], the Nt×Nt probability matrix Pi(τ)

is estimated, where Nt is the total number of tasks at the τ th SOSA.

The itemised algorithm of EDA/P2 above implies that any genotype it processed has

a fixed length during its EDA process, just like the evolutionary process of EA applied

by CBAR and GIBAR. Thus, following the explanation in Section 5.2, the gene-insertion

is a legitimate step.

5.9 Techniques

Let us now describe techniques in T other than GIBAR, McBAR, MedianBAR and

EDA/P2:

1. Centroid-Based Adaptation with Minimal Repair (CBAM ) differs from GIBAR only

in using N instead of R to repair centroids. Based on the descriptions in Sections

5.1.5, 5.3 and 5.6 of the sub-algorithms of CBAR, GIBAR and McBAR, respectively,

GIBAR differs from McBAR in using R, in the mapping F of task IDs in genotypes,
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and in the maintenance of system S at mapped mode. Considering that CBAM

differs from GIBAR by using N which is also used by McBAR, then it differs from

McBAR in the mapping F, and in the maintenance of system S at mapped mode.

Based on the implication drawn in the discussion in Section 5.6, the application

of the mapping F is the cause of the maintenance of the system at mapped mode.

Considering this catalysis, the fundamental difference between CBAM and McBAR

is only in regard to F.

2. Mapping of Task IDs for Centroid-Based Adaptation with Stochastic Repair (McBAS )

differs from McBAR only in using the random centroid repair R instead of the min-

imal centroid repair N.

3. Mapping of Task IDs for Centroid-Based Adaptation (McBA) differs from McBAR

in randomly selecting genotypes from the set Gnds(t − 1) of genotypes that corre-

spond to the non-dominated solutions to the last sub-problem p2t−1 of a problem p2

from P2. The set of randomly selected genotypes replaces the set Rnd(t) of SSGS-

generated genotypes in the initial population Equation 5.12, where t is the order of

the snapshot where the current sub-problem p2t is set.

4. NDS of Last Population (NDLPOP) differs from GIBAR in randomly selecting

genotypes, from the set of genotypes Gnds(t − 1), to form the C(t) component of

the initial population in Equation 5.4. Note that the resulting C(t) is no longer a

set of centroids but rather of genotypes of Gnds(t−1). Thus, NDLPOP differs from

McBAR in being an explicit memory-based approach.

5. Random Immigrants (RI ) creates an initial population composed of totally SSGS-

generated genotypes for NSGA-II to evolve. The length of each genotype in this

initial population is equal to the total number of tasks in the MOE that sets the

sub-problem being solved by RI. This technique differs from other techniques in T

in applying no rule in creating its initial population, except the rules followed by

SSGS.
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All techniques in T are in the same row as the label T in Table 5.1. In Chapters 8 and

9, several subsets of T will be analysed. Each symbol X in Table 5.1 denotes that the

technique whose label is located above it belongs to the subset whose label is located to

its left. For example, the subset U is comprised of CBAM, McBA, McBAR, McBAS and

MedianBAR. Techniques that apply the mapping function F, such as McBAS, McBA,

McBAR, and MedianBAR, are classified as variants (of McBAR) and the rest of the

techniques in T as non-variants.

Table 5.1: Sets of techniques

T RI NDLPOP EDA/P
2

GIBAR CBAM McBA McBAR McBAS MedianBAR

E � � � � � � � � �

K � � � � � � � � �

W � � � � � � � � �

U � � � � � � � � �

D � � � � � � � � �

VariantsNon-variants

In our preliminary investigations, the techniques from T other than EDA/P2 have

high performance with an evolutionary process which has a selection rate of 0.5. Further,

the performance of all techniques in T is found to stabilise before the 300th generation

of the evolutionary processes in these techniques. Thus, the evolutionary processes are

terminated at this value. The population size, crossover rate and mutation rate of each

technique in T other than EDA/P2 are determined in Section 8.2. Also determined in

the same section are the values of the learning rate λ and the percentage ρ (respectively

defined in Items 7 and 5 of the last enumeration in Section 5.8) at which the performance

of EDA/P2 is high.
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Effectiveness of McBAR

Chapter 6

This chapter presents the fulfilment of the first and second thesis’ goals through the

limited method briefly described in Section 1.4.1. It begins in Section 6.1 by defining

averages useful for investigating the relative performance of one technique over another

from T. These averages are taken over various environmental conditions but at fixed

given δ in Equation A.9 which influences the task duration changes in the conditions;

with fixed given type of environmental changes; and with fixed given sub-problem of a

given problem from Table 4.5. Section 6.2 provides information on the process of the

limited method aimed at determining the relative performance of the techniques with

respect to a parameter of the stochastic model for the change in duration of tasks in a

MOE. Based on this relative performance, the sub-algorithms of McBAR are legitimised

by the limited method in Section 6.3. In Section 6.4, the limited method reveals the

relative performance of the techniques with respect to the type of changes that occur

in the MOE. It manifests in Section 6.5 the dynamics of the relative performance with

respect to the SOSA of the MOE. The conclusions and suggested future work are discussed

in Section 6.6.

6.1 Averages

Let us discuss the averages utilised to analyse the performance of techniques from T. The

average Eδ
d [dSC(A,B)] differential set coverage of technique A over technique B is used

to compare the performance of the techniques for solving sub-problems of problems from

L2, a comparison with respect to the value d of δ. The parameter δ is found in Equation
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A.9 which models the change in duration of tasks in MOEs where the problems are set.

The average Eδ
d [dSC(A,B)] is defined as,

Eδ
d [dSC(A,B)] =

Ns∑
i=1

1

Ns

Nc∑
j=1

1

Nc

∑
k ∈In(t)

1

|In(t)|
dSC(A,B, i, j, k). (6.1)

where dSC(A,B, i, j, k) is the differential set coverage dSC(A,B) (defined in Equation

2.8) of technique A over technique B determined for sub-problem k2j (of the problem k2

from L2, i.e. the problem labelled k in Table 4.5); and at the ith simulation (explored

in Section 4.4) of this problem. Further, Ns is the number of simulations; and Nc is the

number of sub-problems in problem k2, including k20. Furthermore, In(t) is a set of labels

of problems in Table 4.5 that utilise a given value d of δ. For example, based on Table

4.5, In(3.0) = {1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21, 25, 26, 27}.

The average Eτ
t [dSC(A,B)] differential set coverage of technique A over technique

B is used to compare the performance of the techniques from T at different types t of

changes listed in Table 4.2. It is defined as,

Eτ
t [dSC(A,B)] =

Ns∑
i=1

1

Ns

Nn∑
k=1

1

Nn

∑
j∈Soc(k,τ)

dSC(A,B, i, j, k)

|Soc(j, τ)|
, (6.2)

where Nn = 30 is the number of all problems with labels found in Table 4.5; and Soc(k, t)

is a set of SOSAs of the MOE where the problem labelled k is set, the SOSAs at which

type t of changes occurs. To exemplify, consider problem labelled 1 which, based on Table

4.5, has a TSC S1. In this TSC, SOSAs with type t = 0 of changes (task duration change

only, based on Table 4.2) are in the set Soc(1, 0) = {1, 2, 3, 5, 9, 12}, based on Table 4.3.

Note that zeroth SOSA is excluded in the definition of the averages.

The average Eσ
j,k [dSC(A,B)] differential set coverage of technique A over technique

B is used to compare the performance of the techniques from T at different simulations

of sub-problem k2j . It is defined as,

Eσ
j,k [dSC(A,B)] =

∑Ns
i=1 dSC(A,B, i, j, k)

Ns
, (6.3)
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where all indices are already defined in this section.

Note that all of the averages are derived from differential set coverage which, as defined

in Section 2.5.2, is a measure of the performance of one technique over another. The

following definition is then taken: if any of the above-defined averages is greater than zero

then technique A performs better than technique B, in determining solutions to problems

from L2 (problems whose labels are listed in Table 4.5), over the domain (e.g. type t of

environmental change) at which this average is taken.

6.2 Relative Performance Under Task

Duration Change

The limited method applies each technique from T to solve each sub-problem of each

problem from L2. The obtained solutions are utilised by this method to determine the

average defined in Equation 6.1. And from this average, the limited method compares

the performance of the techniques with respect to the parameter δ in Equation A.9 which

models task duration changes in the MOE where the problems are set. The remaining

discussions in this section explain the results of the actions of the limited method. For

brevity, let the average Eδ
t [•] refer simply to performance in this and in the next section.

Table 6.1 (a) presents the performance Eδ
t [dSC(A,B)] of technique A over technique B

whose labels are found in the first column and first row of this table respectively. These

performances are derived from the solutions determined by the techniques for solving

each sub-problem of each problem from L2, problems that have task duration changes

modelled by Equation A.9 with δ = 3.0. Referring to the second row of this table,

Eδ
3.0 [dSC(GIBAR, T )] > 0 only when technique T is either NDLPOP, RI or EDA/P2.

Thus, the performance of GIBAR is better than those of NDLPOP, RI and EDA/P2.

Note that the degree of performance is based on the definition in Section 6.1. Succeeding

rows in this table demonstrate that: the performance of CBAM is inferior only to those
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of the variants (defined in Section 5.9); the performance of NDLPOP is superior only to

those of EDA/P2 and RI; the performance of RI is superior only to that of EDA/P2; the

performance of EDA/P2 is inferior to all other techniques; the performance of McBA is

inferior to those of other variants and superior to those of non-variants; the performance

of McBAR is inferior to that of MedianBAR only; the performance of McBAS is inferior to

those of McBAR and MedianBAR only; and the performance of MedianBAR is superior

to those of all other techniques. Note however that the degree of MedianBAR’s superiority

to McBAR is small, Eδ
3.0 [dSC(McBAR,MedianBAR)] = .01, i.e. near zero. Data in this

table showed the performance of the variants to be superior to those of the non-variants.

Table 6.1: Average differential set coverage E [dSCδ] with (a) δ = 3.0 (b) δ = 6.0

Techniques GIBAR CBAM NDLPOP RI EDA/P
2

McBA McBAR McBAS MedianBAR

GIBAR N/A -0.54 0.56 0.37 0.99 -0.64 -0.63 -0.61 -0.65

CBAM 0.54 N/A 0.01 0.23 0.99 -0.35 -0.36 -0.33 -0.38

NDLPOP -0.56 -0.01 N/A 0.24 1.00 -0.34 -0.36 -0.33 -0.37

RI -0.37 -0.23 -0.24 N/A 1.00 -0.47 -0.49 -0.45 -0.50

EDA/P
2

-0.99 -0.99 -1.00 -1.00 N/A -1.00 -1.00 -1.00 -1.00

McBA 0.64 0.35 0.34 0.47 1.00 N/A -0.07 -0.01 -0.09

McBAR 0.63 0.36 0.36 0.49 1.00 0.07 N/A 0.07 -0.01

McBAS 0.61 0.33 0.33 0.45 1.00 0.01 -0.07 N/A -0.08

MedianBAR 0.65 0.38 0.37 0.50 1.00 0.09 0.01 0.08 N/A

(a)

Technique GIBAR CBAM NDLPOP RI EDA/P
2

McBA McBAR McBAS MedianBAR

GIBAR N/A -0.58 0.56 0.37 0.99 -0.65 -0.66 -0.62 -0.67

CBAM 0.58 N/A 0.05 0.28 1.00 -0.34 -0.36 -0.31 -0.37

NDLPOP -0.56 -0.05 N/A 0.25 1.00 -0.37 -0.39 -0.35 -0.38

RI -0.37 -0.28 -0.25 N/A 1.00 -0.50 -0.51 -0.46 -0.51

EDA/P
2

-0.99 -1.00 -1.00 -1.00 N/A -1.00 -1.00 -1.00 -1.00

McBA 0.65 0.34 0.37 0.50 1.00 N/A -0.09 0.00 -0.08

McBAR 0.66 0.36 0.39 0.51 1.00 0.09 N/A 0.11 0.01

McBAS 0.62 0.31 0.35 0.46 1.00 0.00 -0.11 N/A -0.07

MedianBAR 0.67 0.37 0.38 0.51 1.00 0.08 -0.01 0.07 N/A

(b)

Table 6.1 (b) presents the performances of technique A over technique B whose la-

bels are found at the first column and first row of this table respectively. This average

is determined by the techniques from T for solving each sub-problem of each problem

from L2, the problems that have task duration changes modelled by Equation A.9 with

δ = 6.0. Table 6.1 (b) illustrates that the performance between the techniques from T

are generally similar to those expressed in Table 6.1 (a), except that the performance

of McBAR is superior to those of all other techniques, especially on MedianBAR. Fur-

ther, the performance of MedianBAR is inferior by a small degree to that of McBAR,
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Eδ
6.0 [dSC(MedianBAR,McBAR)] = −.01. In view of these findings and considering that

Tables 6.1 (a) and (b) correspond to δ = 3.0 and δ = 6.0, respectively, the performance

of techniques in both tables are generally not affected by the two values of δ.

Let the rank of superiority in performance of a technique over other techniques in T be

the number of other techniques on both tables to which it is superior. The techniques in

T arranged in descending rank of superiority are: McBAR, MedianBAR, McBAS, McBA,

CBAM, GIBAR, NDLPOP, RI and EDA/P2 whose performances are superior to 15, 15,

12, ten, eight, six, four, two and zero other techniques in the two tables respectively.

6.3 Legitimisation

The fourth thesis’ goal is to legitimise some sub-algorithms of McBAR. The legitimisation

undertaken in this section is by the limited method and is as follows. As discussed in

Section 1.4.4, this legitimisation is based on the principle that if technique A differs from

technique B in regard to some components, and if, in general, A performs better than

B in solving a given set of problems then the components of A as distinct from B are

legitimate for A to solve this set of problems. Consider a sample case of the legitimisation;

and note that McBAR uses EA operators while EDA/P2 uses distribution sampling to

produce offspring. If in solving most sub-problems of problems from L2, the performance

of McBAR is better than that of EDA/P2 then the EA operators utilised in McBAR are

legitimate components of McBAR to solve these sub-problems.

As implied in Sections 5.8 and 5.9, the sub-algorithmic differences of McBAR from

techniques in K = {RI,NDLPOP,EDA/P2,CBAM,McBA,McBAS,MedianBAR} (de-

fined through Table 5.1) are as follows:

1. McBAR fundamentally differs from CBAM only in using the mapping function F.

2. McBAR differs from McBAS only in using minimal centroid repair N elaborated in

Section 5.6.5.

Mapping of Task IDs for CBAR Page 180 of 318



6 Effectiveness of McBAR 6.3 Legitimisation

3. McBAR differs from McBA in generating genotypes through SSGS to form the

Rnd(t) component of its initial population (defined in Equation 5.12), where a

current sub-problem set in the tth SOSA of a given MOE.

4. McBAR differs from MedianBAR in using mean (defined in Equation 5.1) to com-

pute for the centroid R(k) in Equation 5.12.

5. McBAR differs from EDA/P2 in using mutation and crossover operators – to form

the next generation offspring in its evolutionary process – instead of sampling and

estimation of a probability matrix (described in Section 2.6). Further, it differs in

the use of centroid.

6. McBAR differs from NDLPOP in being an implicit memory-based approach.

7. McBAR differs from RI in using Equation 5.12 to generate an initial population for

NSGA-II to evolve instead of not using any rule except SSGS.

Let us now legitimise sub-algorithms of McBAR using the results in the last section

and the just enumerated differences of McBAR to other techniques in K. Based on the

legitimisation principle, the superiority in performance of McBAR to CBAM (Item 1)

legitimises its use of mapping F since it fundamentally differs from CBAM on this sub-

algorithm. Its superiority in performance to McBAS (Item 2) legitimises its use of the

minimum centroid repair N since it differs from McBAS on this sub-algorithm only. Its

superiority in performance to McBA (Item 3) legitimises its use of the random component

S(t) in Equation 5.12 since it differs from McBA by this component only. As noted in

Section 5.1.2, randomly generated individuals can diversify an initial population that

includes them. Thus, the superiority in performance of McBAR over McBA supports the

finding in [36] on the relevance of diversification of population in some EA evolutionary

processes. The approximately equal performance of McBAR to MedianBAR (Item 4)

does not legitimise its use of the mean to compute the centroid through Equation 5.1.

The superiority in performance of McBAR to NDLPOP (Item 6) legitimises its use of the

implicit memory-based approach since it differs from NDLPOP on this type of approach.
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6 Effectiveness of McBAR 6.3 Legitimisation

Its superiority in performance to EDA/P2 (Item 5) legitimises its combined use of EA

operators and centroids since it fundamentally differs from EDA/P2 on these components.

Table 6.2 lists the average number of CPU cycles, on identical computing machines,

required by techniques in T to determine solutions to sub-problems of problems from L2

(whose labels are listed in Table 4.5). This average is taken over a similar domain as in

the average Eδ
d [•] in Equation 6.1. Based on the column with the heading δ = 3.0, non-

variants require lesser CPU cycles to determine the solutions than variants. Among the

variants, MedianBAR requires the most number of CPU cycles to determine the solutions.

This last result is expected since the computation of the median in MedianBAR is more

algorithmically complex (mainly due to the sorting) than the computation of the mean in

McBAR based on Equations 5.14 and 5.1 respectively. The relationships of the numbers of

CPU cycles for the column heading δ = 3.0 are also true for the column heading δ = 6.0.

Thus, the relationships are not affected by the two values of δ.

Table 6.2: Average execution time

Technique δ = 3.0 δ = 6.0

RI 4.28 x 10
10

4.45 x 10
10

NDLPOP 4.64 x 10
10

4.71 x 10
10

EDA/P
2

4.82 x 10
10

4.92 x 10
10

GIBAR 5.01 x 10
10

5.08 x 10
10

CBAM 5.02 x 10
10

5.10 x 10
10

McBAS 5.05 x 10
10

5.12 x 10
10

McBA 5.28 x 10
10

5.32 x 10
10

McBAR 5.42 x 10
10

5.46 x 10
10

MedianBAR 6.60 x 10
10

6.72 x 10
10

McBAR requires less computational expense than MedianBAR to determine the solu-

tions to all sub-problems of problems from L2; its performance is superior (as illustrated

in Table 6.1(b)) to that of MedianBAR in solving problems from L2 whose task duration

changes are modelled by Equation A.9 with δ = 6.0; and its performance is superior (as

illustrated in both Tables 6.1 (a) and (b)) to those of all techniques in T, other than

itself and MedianBAR. Despite the inferior (as illustrated in Table 6.1(a)) performance
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6 Effectiveness of McBAR 6.4 Relative Performance Under Type of Changes

of McBAR to MedianBAR in solving problems from L2 whose task duration changes are

modelled by Equation A.9 with δ = 3.0, the results on the average execution time and

on the average Eδ
6.0 [•] show McBAR to be the most versatile technique among all the

techniques in T.

6.4 Relative Performance Under Type of Changes

The limited method investigates the influence of types of changes in MOEs on the relative

performance of techniques from T, over each other, for solving problems from L2 set in

the MOEs. This relative performance is measured in this section in terms of the average

Eτ
t [•] defined in Equation 6.2. The following presents the results of the investigation.

Tables 6.3 to 6.5 present the relative performance of techniques from T measured

through Eτ
t [dSC(A,B)] where A is the technique name under the column heading “Tech-

nique” and B is the technique name in other table heading. Further, the integer under

the column heading “Type” is the change type label t enumerated in Table 4.2. From

the first row of type 0 group of rows of Table 6.3, Eτ
0 [dSC(GIBAR,McBA)] = -0.59,

Eτ
0 [dSC(GIBAR,McBAR)] = -0.58, Eτ

0 [dSC(GIBAR,McBAS)] = -0.57, and Eτ
0 [dSC(

GIBAR,MedianBAR)] = -0.61. Thus, the performance of GIBAR is inferior to those of

all the variants when the MOEs change in task duration only (type 0 in Table 4.2), the

MOEs where problems from P2 are set. The performance of CBAM, NDLPOP, and RI

is inferior to those of the variants at change type 0 based, respectively, on the second to

the fourth rows of the type 0 group of rows.

The performance of the non-variants, in the type 5 group of rows in Table 6.4, is

inferior to those of the variants when the change in the MOEs is of type 5 (simultaneous

changes in task duration and number based on Table 4.2). The degree of inferiority is

approximately of similar degree as to that found when the change in the MOEs is of Type

0. The performance of non-variants, in type 1 group of rows in Table 6.3, is inferior to

that of variants when the change in the MOE is of type 1 (change in resource availability
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number based on Table 4.2). The last inferiority is of higher degree when the change in the

MOE is of type 0: for example, Eτ
0 [dSC(CBAM,McBAS)] < Eτ

1 [dSC(CBAM,McBAS)].

The type 2 group of rows in Table 6.3, type 3 group of rows in Table 6.4, and type

6 group of rows in Table 6.5 demonstrate that the performance of the non-variants is

inferior to that of the variants when the changes in the MOEs are of types 2, 3 and

6 respectively. This inferiority is greater when the change in the MOEs is of type 1.

Note that change types 2, 3 and 6 involve change in the total number of tasks (based on

Table 4.2). The above results manifest the superiority in performance of variants over

non-variants when the changes in the MOEs involve change in total number of tasks, i.e.

change type 2, 3, 5 and 6. However, the performance of the variants in the type 4 group

of rows in Table 6.3 is less than CBAM, NDLPOP and RI when the change in the MOEs

is of type 4 which, according to Table 4.2, denotes simultaneous changes in task duration

and resource availability, i.e. a type of changes that does not involve change in the total

number of tasks. Tables 6.3 to 6.5 illustrate the inferior performance of EDA/P2 to all

other techniques in T with any type of changes in the MOEs. Further, they manifest the

approximately similar relative performance of McBAR and MedianBAR over the other

techniques in T.

6.5 Dynamic Performance

The limited method also investigates the influence of the dynamics of MOEs on the

average Eσ
j,k [•] (defined in Equation 6.3) relative performance of techniques in T for

solving problems from L2 set in these MOEs. Before pursuing this investigation, first, let

us consider the following: (a) As demonstrated in Section 6.2, the average Eδ
t [•] relative

performance of EDA/P2 for solving the problems is inferior to those of all other techniques

in T. (b) The average Eδ
t [•] performance of McBAR and MedianBAR is approximately

similar. (c) Not shown, the dynamics of the average Eσ
j,k [•] performance of GIBAR

and CBAM relative to other techniques in T are not significantly different. Following
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Table 6.5: Average Eτ
t [•] performance under Change Type 6

Type Technique GIBAR CBAM NDLPOP RI EDA/P
2

GIBAR N/A -0.54 0.53 0.11 1.00

CBAM 0.54 N/A 0.03 0.19 1.00

NDLPOP -0.53 -0.03 N/A 0.18 1.00

RI -0.11 -0.19 -0.18 N/A 1.00

EDA/P
2

-1.00 -1.00 -1.00 -1.00 N/A

McBA 0.85 0.63 0.63 0.72 1.00

McBAR 0.84 0.65 0.65 0.73 1.00

McBAS 0.81 0.59 0.60 0.68 1.00

MedianBAR 0.85 0.64 0.65 0.73 1.00

6

Type Technique McBA McBAR McBAS MedianBAR

GIBAR -0.85 -0.84 -0.81 -0.85

CBAM -0.63 -0.65 -0.59 -0.64

NDLPOP -0.63 -0.65 -0.60 -0.65

RI -0.72 -0.73 -0.68 -0.73

EDA/P
2

-1.00 -1.00 -1.00 -1.00

McBA N/A -0.15 -0.02 -0.11

McBAR 0.15 N/A 0.14 0.07

McBAS 0.02 -0.14 N/A -0.07

MedianBAR 0.11 -0.07 0.07 N/A

6

these observations EDA/P2, GIBAR and MedianBAR are excluded from the succeeding

discussions. The techniques included in the succeeding discussions are members of the set

D = {RI,NDLPOP,CBAM,McBA,McBAR,McBAS} (defined through Table 5.1).

For brevity, let the average Eσ
j,k [dSC(A,B)] be referred to simply as the relative

performance of technique A over B in the remaining portion of this section. As the

second preparatory step for the investigation of the limited method in this section, let

us describe a certain figure format important in presenting the dynamics of the relative

performance of the techniques from D.

6.5.1 Figure Arrangement

The average Eσ
j,k [dSC(T, S)] relative performance of technique T over S is illustrated in

Figure 6.1 for some sub-problems k2j of problems k2 (ks are listed in Table 4.5) from L2,

where 0 ≤ j ≤ 12. In Figure 6.1(a), the heading of the block of white small squares

is the name of technique T , called the basis technique (e.g. McBAR). Further, each

heading over coloured blocks is the name of the technique denoted as S. For example,
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the blocks of squares in Figure 6.1(a) under the heading McBAS correspond to averages

Eσ
j,k [dSC(McBAR,McBAS)] for various combinations of indexes j and k. This technique-

heading correspondence applies to all other sub-figures of Figure 6.1.

In Figure 6.1(a), the row of blocks at a similar horizontal level as the label Si at the

left of this figure corresponds to TSC Si listed in Table 4.5, where 1 ≤ i ≤ 3. For example,

the vertically middle blocks correspond to S2. A coloured block in the figure is denoted

by the Si label which is of similar level as this block, and also by the heading under which

this block is found. For example, S2-RI block is the vertically middle block under the RI

column heading. Blocks at the same level as the Si label also correspond to an ordered

set N3.0
i of problems from L2 where,

N3.0
1 = 〈1, 7, 13, 19, 25〉 , (6.4)

N3.0
2 = 〈2, 8, 14, 20, 26〉 (6.5)

and

N3.0
3 = 〈3, 9, 15, 21, 27〉 . (6.6)

For example, the middle blocks correspond to N3.0
2 . Inside a block at the same level as

the Si label, the rows from bottom to top correspond to elements of N3.0
i respectively.

For example, the bottom to top rows of S2-RI block correspond to problems labelled 2,

8, 14, 20 and 26 respectively.

The horizontal coordinate of each small square in each block corresponds to the jth

SOSA of the MOEs where the problems with labels from N3.0
i are set. Continuing the

example above, the fourth small square from the left on the third row from the bottom

of the S2-RI block corresponds to the fourth SOSA of the MOE where problem 14 (the

third element of N3.0
2 ) is set, i.e. it corresponds to sub-problem 142

4 (refer to Section

4.2.1 for notation). The colorbar at the rightmost of the figure maps colours in the

squares to values. In the example, the colour of the small square that corresponds to
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6 Effectiveness of McBAR 6.5 Dynamic Performance

sub-problem 142
4 represents Eσ

4,14 [dSC(McBAR,RI)]. Considering that Eσ
j,k [dSC(T, S)]

denotes average relative performance and the horizontal coordinate denotes SOSA, each

row of small squares in a block expresses the dynamics of the average Eσ
j,k [dSC(T, S)]

relative performance of a basis technique T over another S.

In the S2-RI block of Figure 6.1(a), the bottom to top rows of the vertical strip of

small squares at the fourth SOSA correspond to sub-problems 22
4, 82

4, 142
4, 202

4 and 262
4

(based from N3.0
2 = 〈2, 8, 14, 20, 26〉). The types of changes in the MOEs, to where these

sub-problems are set, are the elements of the vector,

V = 〈Ct(2, 4),Ct(8, 4),Ct(14, 4),Ct(20, 4),Ct(26, 4)〉

= 〈2, 2, 2, 2, 2〉 ,
(6.7)

where Equation 4.3 is used to obtain the last line. This result implies that the rows in

the vertical strip all correspond to change type 2 which, based on Table 4.2, denotes an

increase in the total number of tasks in the MOEs. Now, using Equations 4.6 and 6.5, we

obtain a compact form,

V = Ct (〈2, 8, 14, 20, 26〉 , 4) = Ct
(
N3.0

2 , 4
)
, (6.8)

Following a similar approach and using Equation 4.7, Nt (N3.0
2 , 4) = 〈3, 4, 5, 6, 7〉. To

generalise, given a vertical strip at SOSA j in a block at Si level, the types of changes and

size of increase in the total number of tasks in the MOEs that correspond to the bottom

to top rows of this strip can be determined from Ct (N3.0
i , j) and Nt (N3.0

i , j) respectively.

Using Equation 4.8, Pt (N3.0
i ) = 〈T3, T4, T5, T6, T7〉 which implies that the bottom to top

rows correspond to the sub-problems constrained by the task-precedence networks T3 to

T7 respectively.

Figures 6.1(b) and (c) differ from Figure 6.1(a) only in their corresponding basis tech-

niques, which are McBA and McBAS respectively. For example, the fifth small square

from the left (corresponds to the fifth SOSA) on the second row of the S3-McBAR block in
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Figure 6.1(b) corresponds to Eσ
5,9 [dSC(McBA, McBAR)] where index 9 is the problem

label that corresponds to the second row, i.e. the second element of N3.0
3 . Note that,

based on Table 4.5, all of problems from L2 found in N3.0
1 , N3.0

2 and N3.0
3 correspond

to Equation A.9 with δ = 3.0, such that the representation format of Eσ
j,k [•] in Figures

6.1(a) to (c) is called the F3.0 format.

The representation format of Eσ
j,k [•] in Figures 6.2(a) to (c) only differs from that in

Figures 6.1(a) to (c) by using,

N6.0
1 = {4, 10, 16, 22, 28} , (6.9)

N6.0
2 = {5, 11, 17, 23, 29} (6.10)

and

N6.0
3 = {6, 12, 18, 24, 30} (6.11)

instead of N3.0
1 , N3.0

2 and N3.0
3 respectively. Note that the rows from the bottom to the

top in blocks of Figure 6.2(a) to (c) correspond to problems from L2 with labels in N6.0
1 to

N6.0
3 respectively. Based on Table 4.5, all of problems from L2 whose labels are found in

sets N6.0
1 to N6.0

3 correspond to Equation A.9 with δ = 6.0, such that the representation

format of Eσ
j,k [•] in Figures 6.2 (a) to (c) is called the F6.0 format.

6.5.2 S1-NDLPOP block

Let us now discuss the performance of techniques from D = {RI,NDLPOP,CBAM,

McBA,McBAR,McBAS} for solving problems set in dynamic MOEs. In Figure 6.1(a),

the first square from the left of the bottom row of S1-NDLPOP block corresponds to

sub-problem 12
1 of problem 12 from P2, based on the figure formatting explained above.

This sub-problem is set in the first (indicated by the subscript in 12
1) snapshot of a MOE.

Based on the colorbar at the right side of the figure, the colour at the square denotes
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6 Effectiveness of McBAR 6.5 Dynamic Performance

Eσ
j,k [dSC(McBAR,NDLPOP)] > 0, where j = 1 (indicates first snapshot) and k = 1

(indicates label of problem 12). Note that by Equation 4.3, Ct(k, j) = 0 denotes a type

of change that involves a change in task duration only, based on Table 4.2. The result

implies that the performance of McBAR is better (Eσ
j,k [•] > 0) than that of NDLPOP for

solving the sub-problem 12
1 of problem 12 set in the MOE whose first SOSA has a change

in task duration only.

The first to third vertical strips from the left of S1-NDLPOP block show that Eσ
S,Ns [

dSC(McBAR,NDLPOP)] > 0, for all SOSAs S, 1 ≤ S ≤ 3 and for all problems with

labels Ns ∈ N3.0
1 (labels which corresponds to squares that comprised one vertical strip

at the S1 blocks as explained in the last section). Considering that Ct(Ns , S) = 0,

∀ S, 1 ≤ S ≤ 3 and ∀ Ns ∈ N3.0
1 , then the result implies that McBAR performs better

than NDLPOP for solving each of the first to third sub-problems of problems with labels

in N3.0
1 ; problems that are set in the MOEs whose first to third SOSAs have change in

task duration only.

The fourth vertical strip of the S1-NDLPOP block expresses an abrupt increase in the

superiority of performance of McBAR over NDLPOP for solving the fourth sub-problems

of problems with labels Ns ∈ N3.0
1 . The problems are set in MOEs whose fourth SOSAs

have an increase in the total number of tasks only ( change type 2 = Ct(Ns , 4) based on

Table 4.2). The fifth to seventh vertical strips of the block show that the superiority of

McBAR over NDLPOP generally continues till the seventh sub-problems of the problems.

However, the first and third rows from the bottom of the eighth vertical strip of

the S1-NDLPOP block show that McBAR is inferior to NDLPOP for solving the eighth

sub-problems of problems labelled 1 and 13 (which correspond to first and third rows,

respectively, based on the figure formatting explained above). The problems are set in

MOEs whose eighth SOSAs have change type 4 = Ct(1, 8) = Ct(13, 8), i.e. simultaneous

changes in task duration and resource availabilities based on Table 4.2. The first and third

rows from the bottom of the ninth vertical strip of the block show that the inferiority

continues to the ninth sub-problems of the problems set in MOEs whose ninth SOSAs
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have change type 0 = Ct(1, 9) = Ct(13, 9), the change in task duration only.

As implied above, the performance of McBAR is superior to that of NDLPOP for

solving the first to third sub-problems of problems labelled 1 and 13 set in MOEs whose

first to third SOSAs have change in task duration only. Thus, McBAR cannot be expected

to be inferior to NDLPOP for solving the ninth sub-problems of problems labelled 1 and

13 set in the MOEs whose ninth SOSAs have similar types of changes, i.e. in task duration

only. However, despite the similarity in the type of changes, the inferiority continues from

the eighth (where the type of change is 4 = Ct(1, 8) = Ct(13, 8)) to the ninth (where the

type of change is 0 = Ct(1, 9) = Ct(13, 9)) SOSAs of the MOEs. This suggests inertia in

the performance of McBAR.

In contrast, the second, fourth and fifth rows from the bottom of the eighth and

ninth vertical strips of S1-NDLPOP block express the continuity of superiority in the

performance of McBAR against NDLPOP for solving the eighth to the ninth sub-problems

of problems labelled 7, 19 and 25 (which correspond to the rows respectively). These

problems are set in MOEs whose eighth SOSAs have simultaneous changes in resource

availability and task duration (change type 4 as explained above) and whose ninth SOSAs

have change in task duration only (change type 0 as explained above).

Based on the tenth to the 12th vertical strips of S1-NDLPOP block, McBAR is generally

superior in performance to NDLPOP for solving the tenth to the 12th sub-problems of

all problems with labels Ns ∈ N3.0
1 . These problems are set in MOEs whose tenth and

11th SOSAs have changes type 5 = Ct(Ns , 10) and 3 = Ct(Ns , 11) for all Ns ∈ N3.0
1 ,

the change types that involve an increase in the total number of tasks. Further, the 12th

SOSAs of the MOEs has change type 0 = Ct(Ns , 12) for all Ns ∈ N3.0
1 , i.e. a change in

task duration only.

Referring back to the fourth vertical strip of the S1-NDLPOP block, the squares from

bottom to top of this strip correspond to problems with labels 1, 7, 13, 19 and 25 (i.e.

problems from N3.0
1 ), respectively; problems that are set in MOEs whose fourth SOSAs

have increase in the total number of tasks by 3, 4, 5, 6 and 7 (obtained from Equation 4.5
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with Nt(N3.0
1 , 4)) respectively. Based on the colour of the squares in the strip and their

corresponding increase in the total number of tasks, the superiority in performance of

McBAR over NDLPOP for solving the fourth sub-problems (corresponding to the fourth

vertical strip) of the problems is not affected by the size of the increase in the total number

of tasks at the fourth SOSAs of the MOEs where the problems with labels in N3.0
1 are

set. Based on the discussions in Section 4.2.1, the sub-problems in problems with labels

1, 7, 13, 19 and 25 are constrained by PNTs illustrated in Figures 4.4, 4.1, 4.5 to 4.7

respectively. Thus, the superiority in performance of McBAR to NDLPOP is not affected

by the type of PNT that constrained the sub-problems. An analogous conclusion can be

drawn from the sixth vertical strip of the block, whose bottom to top rows correspond to

2, 4, 3, 2 and 1 (obtained from Nt(N3.0
1 , 6)) new tasks respectively; and from the tenth

vertical strip whose bottom to top rows correspond to 2, 1, 1, 1 and 1 (obtained from

Nt(N3.0
1 , 10)) new tasks respectively. Note, however, that the PNTs are related by being

derived from the original PNT (illustrated in Figure 2.9) as explained in Section 4.2.1.

6.5.3 S2-NDLPOP block

The first and second vertical strips of the S2-NDLPOP block illustrate that Eσ
S,Ns [dSC(

McBAR,NDLPOP)] > 0, ∀ S, 1 ≤ S ≤ 2 and ∀ Ns ∈ N3.0
2 = 〈2, 8, 14, 20, 26〉. This

implies that the performance of McBAR is better than that of NDLPOP for solving each

of the first and second sub-problems of problems with labels in N3.0
2 ; problems set in

MOEs whose first and second SOSAs have change type 0 = Ct(Ns , S), ∀ S, 1 ≤ S ≤ 2

and ∀ Ns ∈ N3.0
2 , i.e. the change in task duration only.

Unlike the case of the S1-NDLPOP block, the abrupt increase in the superiority in per-

formance of McBAR over NDLPOP occurs at the third SOSAṪhis abruptness is expressed

by the third vertical strip of the S2-NDLPOP block. The bottom to top rows of this strip

correspond (as explained in Section 6.5.1) to the problems with labels in N3.0
2 , respec-

tively, set in the MOEs whose third SOSAs have change type 〈2, 2, 2, 2, 2〉 = Ct(N3.0
2 , 3)

which is an increase in the total number of tasks based.
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Based on the rows of the eighth vertical strip of the S2-NDLPOP block, the perfor-

mance of McBAR is generally inferior to that of NDLPOP for solving the eighth sub-

problem of all problems with labels Ns ∈ N3.0
2 . The problems are set in the MOEs whose

eighth SOSAs have change type 4 = Ct(Ns , 8) which is a simultaneous changes in resource

availability and duration of tasks. Unlike the case of the S1-NDLPOP block, based on

the ninth vertical strip of S2-NDLPOP block, the inferiority is not continued to the next

(ninth) SOSA of the MOEs; each undergoes change type 6 = Ct(Ns , 9) that involves

an increase in the total number of tasks. Based on the ninth to 12th vertical strips, the

performance of McBAR remains superior to that of NDLPOP for solving sub-problems

set at the ninth to 12th snapshots of the MOEs.

In the third vertical strip of the S2-NDLPOP block, the squares from bottom to top

correspond respectively to the third sub-problem of problems with labels 2, 8, 14, 20 and

26 (labels from N3.0
2 ), problems set in MOEs whose third SOSAs have 3, 4, 5, 6 and 7

(derived from Nt(N3.0
2 , 6)) new tasks respectively. Based on the colour of the squares and

their corresponding increases in the total number of tasks, the superiority in performance

of McBAR over NDLPOP for solving the sub-problems is almost constant with respect

to the size of the increase in the total number of tasks. Following the explanation in the

last section, this superiority is also almost constant with respect to the types of PNT that

constrain the sub-problems. Analogous conclusions can be drawn from the sixth, ninth

and tenth vertical strips of the S2-NDLPOP block.

6.5.4 S3-NDLPOP block

The first two vertical strips of the S3-NDLPOP block express the dynamics, of the su-

periority in performance of McBAR over NDLPOP, being similar to that expressed by

the first two vertical strips of the S2-NDLPOP block. The third to fifth rows from the

bottom of the fifth vertical strip of the S3-NDLPOP block illustrate that the perfor-

mance of McBAR is inferior to that of NDLPOP for solving the fifth sub-problems of

problems labelled 15, 21 and 27 set in MOEs whose fifth SOSAs have change type 4
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(obtained from 〈4, 4, 4〉 = Ct(〈15, 21, 27〉 , 5)) which is a simultaneous change in task du-

ration and resource availabilities (based on Table 4.2). This inferiority continues to be

expressed at the third to the fifth rows from the bottom of the sixth and seventh vertical

strips of the S3-NDLPOP block. The problems that correspond to these rows are set

in MOEs whose sixth and seventh SOSAs have change type 0 which is obtained from

〈0, 0, 0〉 = Ct(〈15, 21, 27〉 , 6) and 〈0, 0, 0〉 = Ct(〈15, 21, 27〉 , 7), i.e. a change in task dura-

tion. Based on the explanation of the last sub-section, this result suggests inertia on the

relative performance of McBAR over NDLPOP.

The bottom row of the eighth vertical strip of the S3-NDLPOP block also shows

the inferiority in performance of McBAR over NDLPOP for solving the sub-problem of

problem labelled 3 set in the MOE whose eighth SOSA has a change type 5 = Ct(3, 8)

which is a simultaneous change in resource availability and the total number of tasks. The

bottom rows of the ninth to 11th vertical strips express the continuity of this inferiority

for solving the ninth to 11th sub-problems of problem labelled 3. All other unaccounted

squares in the S3-NDLPOP block show the superiority in performance of McBAR over

NDLPOP for solving sub-problems that correspond to these squares.

In the third vertical strip of the S3-NDLPOP block, the squares from bottom to top

correspond, respectively, to the third sub-problems of problems with labels 3, 9, 15, 21

and 27 ( labels from N3.0
3 ) respectively; problems set in MOEs whose third SOSAs have 3,

4, 5, 6 and 7 (obtained from Nt(N3.0
2 , 6)) new tasks respectively. Based on the colour of

the squares and their corresponding increases in the total number of tasks, the superiority

in performance of McBAR over NDLPOP for solving the sub-problems is almost constant

with respect to the size of the increase in the total number of tasks. Based on the

explanation in Section 6.5.2, this superiority is also almost constant with respect to the

type of PNT that constrains the sub-problems. Analogous conclusions can be drawn from

the 12th vertical strip of the S3-NDLPOP block.
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6.5.5 Other Blocks

Let us now consider the remaining coloured blocks in Figure 6.1(a). The S1, S2 and S3-RI

blocks are generally similar in colour variation (but not in magnitude) to those of the

S1, S2 and S3-NDLPOP blocks respectively. Likewise, the S1, S2 and S3-CBAM blocks

are generally similar in colour variations to those of the S1, S2 and S3-NDLPOP blocks

respectively. This implies that the variations in McBAR’s superiority over RI and over

CBMA are generally similar to the variation in McBAR’s superiority over NDLPOP.

The notable exceptions to the last conclusion are as follows. The squares from the

bottom to the top of the first and second vertical strips of the S2-CBAM, S3-CBAM, S2-

NDLPOP, S3-NDLPOP, S2-RI and S3-RI blocks show McBAR as equally, slightly, and

highly superior to CBAM, NDLPOP and RI, respectively. A similar exception can be seen

in the performance of McBAR over CBAM, NDLPOP and RI in the squares from the

bottom to the top of the first to the third vertical strips of the S1-CBAM, S1-NDLPOP

and S1-RI blocks respectively. Following similar reasoning as in Section 6.5.2, the types

of changes that correspond to the squares are only in task durations.

The squares from bottom to top in the first vertical strip of the S1-McBA block show

slight superiority in the performance of McBAR over McBA in solving the first sub-

problems of problems with labels found in N3.0
1 . The squares correspond to the labels

respectively, and the problems are set in MOEs whose first SOSAs have change in task

duration (a change type 0 which is obtained from 〈0, 0, 0, 0, 0〉 = Nt(N3.0
1 , 1)). Analogous

conclusions can be drawn from the second and third vertical strips of the S1-McBA block.

The fourth to the last vertical strips of the S1-McBA block generally express the supe-

riority in performance of McBAR over McBA for solving sub-problems that correspond to

the squares in these strips. Recall from Section 5.9 that McBAR differs from McBA in its

random component only. The superiority of McBAR to McBA suggests the effectiveness

of this component. Based on the colour variation of the S1-McBA block, generally similar

performance variation are expressed in the S2 and S3-McBA blocks. Further, the variation
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in McBAR’s performance over McBAS expressed in the S1, S2 and S3-McBAS blocks are

generally similar to the variation in McBAR’s performance over McBA expressed in the

S1, S2 and S3-McBA blocks. Note that, although the variations are generally similar, the

magnitude of McBAR’s performance over McBAS is greater than the magnitude of its

performance over McBA.

6.5.6 Other Figures

Let us now discuss the performance variation, expressed in Figures 6.1 (b) and (c), of the

techniques from D. Note first that the blank block in Figure 6.1(b) is under the heading

McBA. Thus, as explained in Section 6.5.1, McBA is the basis technique in this figure.

The colour variations between blocks under NDLPOP, RI, CBAM and McBAS headings in

Figure 6.1(a) and blocks under similar headings in Figure 6.1(b) are respectively generally

similar which implies that the variations in performance, expressed in these blocks, of

McBA (the basis technique) over NDLPOP, RI, CBAM and McBAS are generally similar

to those of McBAR.

The basis technique in Figure 6.1(c) is McBAS. The colour variation between blocks

under NDLPOP, RI and CBAM headings in Figure 6.1(a) and blocks under similar head-

ings in Figure 6.1(c) are respectively generally similar which implies that the variations

in performance, expressed in these blocks, of McBAS over NDLPOP, RI and CBAM are

generally similar to those of McBAR.

Note that as the differential set coverage dSC(A,B) in Equation 2.8 is anti-symmetric

with respect to its arguments A and B, so does the average Eσ
S,Ns [dSC(A,B)]. For

example, Eσ
S,Ns [dSC(McBAR,McBA)] = −Eσ

S,Ns [dSC(McBA,McBAR)]. The variations

in the performance of McBAR over McBA expressed in S1, S2 and S3-McBAR blocks

of Figure 6.1(a) are respectively opposite (due to the anti-symmetry of Eσ
S,Ns [•]) to the

variations in the performance of McBA over McBAR expressed in S1, S2 and S3-McBA

blocks of Figure 6.1(b). A similar relationship holds between McBAR and McBAS.
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The variations of performance expressed in blocks of Figure 6.1 are respectively gen-

erally similar to those expressed in blocks of Figure 6.2. Considering that problems

corresponding to rows in blocks of Figures 6.1 and 6.2 correspond respectively to δ = 3.0

and δ = 6.0, as discussed in Section 6.5.1, then the variations in the performance of the

techniques from D are generally similar on the two amounts of δ in Equation A.9 which

models change in duration of tasks associated with the figures.

6.6 Conclusions and Future Work

Under the limited method, the solutions to problems from L2 obtained by techniques from

T demonstrated the performance of McBAR to be superior to that of the other techniques

from T, a performance defined in terms of an average of differential set coverage. This

conclusion is true at any of the two values of δ used above as the parameter of Equation

A.9 which models changes in task durations in MOEs where the problems are set, at any

type (listed in Table 4.2) of simultaneous changes in the MOEs and at any form of PNT

utilised in this chapter. For each problem from L2, the performance of McBAR generally

becomes and remains superior, respectively, at and after the first occurrence of new tasks

in the MOEs.

By comparing the performance of McBAR for solving problems from L2 to those of

other techniques from T, each of its sub-algorithms was supported as being legitimate.

Based on the already-presented conclusions in this section, the first and fourth thesis’

goals are accomplished through the limited method.

Now, the above conclusions are only true on problems from L2, and each has two

conflicting objectives. The next chapter will investigate the performance of the extended

core algorithm of McBAR for solving problems from L3, where each problem has three

conflicting objectives.

As discussed in Section 1.4.1, the problems from L2, which have been considered in

this chapter, have small or large consecutive sub-problem attribute difference magnitude
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(CSADM) (explained in Section 1.4.1) and are few in number. The superiority of the

performance and the legitimacy of the sub-algorithms of McBAR will be investigated

in Chapter 8 on problems with small CSADM only, but in greater numbers than those

considered in this chapter.

There are two future research directions envisioned in relation to the topics investigated

in this chapter; they are to investigate the performance of McBAR (a) at other values

of the above-considered δ and (b) at forms of PNT other than those considered in this

chapter.
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Performance of McBAR on L3

Chapter 7

The last chapter demonstrated the superior performance of the reactive-predictive McBAR

for solving problems from L2 ⊂ P2, each of which has two conflicting objectives – the

minimisation of schedule makespan and cost. This present chapter investigates the per-

formance of the robust reactive-predictive McBAR-P (the extended core algorithm of

McBAR) for solving problems from L3 ⊂ P3, each of which has three conflicting objec-

tives – the two mentioned above and the probability of a schedule to become infeasible

(defined in Section 1.2). It begins by elaborating the algorithm of McBAR-P in Sec-

tion 7.1. Then the averages and models useful for investigating the characteristics of

McBAR-P and McBAR are described in Section 7.2. Using some of them, the perfor-

mance enhancing parameters of McBAR-P are determined in Section 7.3. McBAR-P and

McBAR are compared in Sections 7.4 to 7.6 with respect to the following aspects: (a)

the financial relevance of the solutions/schedules that McBAR and McBAR-P obtained

for solving the problems from L2 and L3 respectively; (b) the difference in the schedule

makespans; (c) and the difference in the schedule implementation costs. The variation in

the results of the comparisons due to the dynamics of the MOE, in which the problems

are set, is explored in Sections 7.5 and 7.6. The investigations are undertaken to manifest

the significant qualities of McBAR-P despite its being an extension, i.e. to achieve the

second thesis’ goal as defined in Section 1.3. Finally, Section 7.7 gathers the conclusions

and presents directions for the future research.
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7.1 McBAR-Proactive

As discussed in Section 2.4.2, a reactive-predictive approach creates a baseline schedule

which it revises every time change occurs in an environment in which this schedule is im-

plemented [40]. However, the revision could incur penalties in breaching contracts made to

material or labour suppliers aside from costs for material, fuel and labour for example and

in executing schedule’s remaining stages after this revision. A Robust proactive approach

in scheduling, on the other hand, anticipates future events to create schedules robust to

changes in the environment [104, 106, 117, 208]. However, when changes in the environ-

ment are extreme the created schedules could become infeasible [117]. Intuitively, the best

way of making schedules could be to combine the robust proactive and reactive-predictive

approaches to gain the benefits offered by both of these approaches. As noted in Section

2.4.2, the combination of these approaches is referred to as a robust reactive-predictive

approach; McBAR-P is of this type.

McBAR-P differs from McBAR primarily in being robust proactive. To create sched-

ules, it anticipates the implementation failures of these schedules due to the changes in

task duration that can trigger violation of resource constraints (as explained in Section

2.7). These schedules are solutions to the sub-problems of problems from L3. In terms

of the algorithm, McBAR-P differs from McBAR only in the following: if the current

change in a MOE, in which a problem from L3 is set, is only on duration of its tasks, if

the unused resources in the MOE are not required to be used by the tasks and if the con-

straints of the resources are not violated despite the current change, then McBAR-P will

not revise the schedule implemented on the last state of the MOE. Otherwise, McBAR-P

will revise the schedule, but still with anticipation of future resource constraint violations.

On the contrary McBAR will revise the schedules it created regardless of change type in

the MOE.

Mapping of Task IDs for CBAR Page 203 of 318



7 Performance of McBAR on L3 7.2 Models and Averages

7.2 Models and Averages

The following subsections discuss a model and averages useful to demonstrate the char-

acteristics of McBAR and McBAR-P for solving dynamic problems from L2 and L3,

respectively. The model is of the dynamic characteristics of the EA-based McBAR and

McBAR-P with respect to their evolutionary cycles. The averages are of the makespan

and cost of the non-dominated schedules/solutions to the problems, solutions found by

the McBAR and McBAR-P approaches.

7.2.1 Convergence Model

Suppose McBAR solves the static sub-problem p2j of problem p2 from L2. The evolutionary

process of McBAR begins with an initial population (as elaborated in Section 5.6.6)

whose NDS has elements that form a hypersurface of certain hypervolume. At each

new cycle of this process, McBARP obtains (through the Solution Production method

explained in Section 5.6) a new NDS whose elements could form a new hypersurface. As

this process continues, the instantaneous hypervolume of the NDS could vary with the

number t of evolutionary cycles, as exemplified in Figure 7.1 where the horizontal axis

is the evolutionary cycle. We then associate a hypervolume trajectory to a sub-problem.

This hypervolume trajectory is modelled as,

y (t) = DC − eP (t)

t+ 1
(7.1)

where DC is a constant and is the hypervolume averaged over tφ to tω evolutionary cycles;

while,

P (t) =

Dg∑
n=0

cnt
n (7.2)

is a polynomial whose coefficients are cn; and the polynomial degree Dg is chosen to avoid

under and over fitting of data d (t) of hypervolume of non-dominated solutions determined

by McBAR at the tth evolutionary cycle. The polynomial P (t) fits y (t) best to d (t) in
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the least square sense, i.e.,

min
cn
‖ln |(DC − d (t)) (t+ 1)| − P (t)‖2 (7.3)

The convergence rate of hypervolume is defined as the number of cycles τ at which hy-

pervolume is ξ percent close to its asymptotic value,

τ = y−1 (DC − ec0 [1− ξ]) (7.4)

where ξ is determined to be 0.95. The topics discussed in this section also apply to

McBAR-P that solves sub-problem p3j of problem p3 from L3. Note that the labels of

problems p2 and p3 being solved by McBAR and McBAR-P, respectively, refer to the

letter “p” which takes values from Table 4.5. Further, problem p3 only differs from p2 by

having the additional minimisation of the probability of a schedule to become infeasible.
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Figure 7.1: Sample evolution dynamics of hypervolume

7.2.2 Difference in Average Makespan and Cost

Let us now define averages related to the schedule cost of implementation and duration/

makespan. The makespans of schedules as solutions to static sub-problems x2e and x3e

are denoted as τ r(x, e) and τ p(x, e) respectively; these sub-problems are set in the eth
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snapshot of a MOE. Let Ed [•] be an averaging operator over non-dominated solutions to

the problem related to its argument. For example, Ed [τ p(x, e)] is the average makespan

of non-dominated solutions to x3e. The average Ed [•] is in turn averaged Es [•] over MOE

simulations where we define a compound average operator, Ed,s [•] = Es [Ed [•]]. Let us

consider the difference,

dMs(x, e) = Ed,s [τ r(x, e)]− Ed,s [τ p(x, e)] (7.5)

A positive value of this difference implies that, on average over the non-dominated solu-

tions and MOE simulations, the makespans of schedules as non-dominated solutions to

x2e determined by McBAR is longer than the makespans of non-dominated solutions to x3e

determined by McBAR-P.

The total cost fcs of moving resources between locations of tasks in a MOE is defined

in Equation A.8. Let γr(x, e) and γp(x, e) be the total costs of moving tasks in order to

implement schedules as solutions to static sub-problems x2e and x3e. Let us consider the

difference,

dCs(x, e) = Ed,s [γr(x, e)]− Ed,s [γp(x, e)] (7.6)

A positive value of this difference implies that, on average over non-dominated solutions

and MOE simulations, the costs of schedules as non-dominated solutions to x2e determined

by McBAR is higher than the costs of non-dominated solutions to x3e determined by

McBAR-P.

The difference dCs(x, e) compares costs, a comparison that resembles what had been

done in [199] where the difference in cost of executing a ship berthing schedule created

under a robust proactive approach is compared to that of a reactive-predictive approach.

This type of comparison is relevant to demonstrate the significance of McBAR-P.
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7.3 Optimal Parameters

The crossover and mutation rates of the evolutionary process of McBAR-P are determined

as follows: Consider the Cartesian product,

C = χ ⊗ µ ≡ {χi, µj} (7.7)

where i and j are the row and column indices of C respectively; χ = [.1, .2, . . . , .9] and

µ = [0.01, 0.0588, 0.1075, 0.1563, 0.2050, 0.2538, 0.3025, 0.3513, 0.4000, 0.45, 0.5, 0.55,

0.6, 0.65, 0.7, 0.75, 0.8, 0.850]. For a given element (χi, µj) ∈ C, the evolutionary

process of McBAR-P is endowed with a crossover rate of χi and a mutation rate of µj to

determine the population P28(e, s, χi, µj) of non-dominated solutions to sub-problem 283
e

(refer to notation in Section 1.2) set in the sth MOE simulation. Then the hypervolume

H {P28(e, s, χi, µj)} of the population P28(e, s, χi, µj) is determined using the method

explained in Section 2.5.1. The hypervolume H {P28(e, s, χi, µj)} is determined for each

of the 30 MOE simulations; and for each of the snapshots taken at the zeroth to the

12th SOSA of the MOE. The determined hypervolumes are then averaged Ee,s [•] over the

snapshots and the MOE simulations to obtain the average hypervolume,

H28 {χi, µj} = Ee,s [H {P28(e, s, χi, µj)}] (7.8)

This average is computed for every element of C. The element (χmax, µmax) that corre-

sponds to the maximum average hypervolume,

(χmax, µmax) = max
(χ,µ) ∈ Cp

H28 {χi, µj} (7.9)

has its crossover χmax and mutation µmax rates used in the evolutionary process of

McBAR-P to determine solutions to all sub-problems of all problems from L3, solutions

considered in the remaining portion of the thesis.

The problem labelled 28 in Table 4.5 is from L3 and is the chosen problem to determine
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the hypervolume-optimising rates due to its (a) the sequence of changes labelled S1 that

has the earliest successive changes (from the sixth to the eighth SOSA as can be inferred

from Table 4.3) in resource availability and in the total number of tasks among all of the

TSCs in Table 4.3; (b) TNIS of T7 that has the most number of new tasks among all of the

types of TNIS in Table 4.4; and (c) the use of δ equal to 6.0 for the task duration change

model in Equation A.9, an amount of δ that is largest among considered values of δ. All

these extreme environmental changes will intuitively give McBAR-P the most difficulty

in searching for the NDS of solutions that has a large average hypervolume. Considering

that these hypervolume-optimising rates are derived from the performance of McBAR-P

for solving problem 28 set in extreme environmental changes, it is legitimate to assume

that if the evolutionary process of McBAR-P uses the hypervolume-optimising rates then

McBAR-P will also determine an optimal average hypervolumed NDS of solutions to any

sub-problem of any problem from L3 set in MOEs with less extreme changes than that

of problem 28. This assumption is considered to justify problem 28 as the basis of the

search of the hypervolume-optimising rates.

The average hypervolume H28 {χi, µj} in Equation 7.8 is a function of crossover χi

and mutation µj rates, where (χi, µj) ∈ Cp (refer to Equation 7.7) indexed i and j. This

function is plotted in Figure 7.2(a) where χ and µ are the vertical and horizontal axis

respectively. From the figure, H28 {χi, µj} is maximum at crossover rate χmax of .7 and

mutation rate µmax of .3025. These parametric values are used by McBAR-P to obtain

the solutions to sub-problems of problems from L3 considered in the remaining portion of

the thesis. Further, the figure shows high average hypervolume H28 {χi, µj} at .2 < µ < .7

and at a wide range of χ. This result implies a need of a high mutation rate for McBAR-P

to have a high performance (in terms of hypervolume) for solving the sub-problem 283
e,

where 0 ≤ e ≤ 12. The figure also shows a less influential crossover rate for McBAR-P to

determine large average hypervolumed non-dominated solutions to the sub-problems.

Aside from the average hypervolume, an average convergence rate is also analysed at

each element of C in Equation 7.7. For a given element (χi, µj) ∈ C of Equation 7.7,
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Figure 7.2: Crossover and mutation rate as a function of (a) hypervolume (b) convergence
rate

the evolutionary process of McBAR-P is endowed with crossover and mutation rates of χi

and µj, respectively, to determine the solutions to sub-problem 283
e (refer to notation in

Section 1.2) set in the sth MOE simulation. In the process of determining the solutions,

the convergence rate τ28 (e, s, χi, µj) is also determined following the approach explained

in Section 7.2.1. This convergence rate is determined for each of the 30 MOE simulations
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described in Section 4.4; and for each of the snapshots taken at the zeroth to the 12th

SOSA of the MOE. The determined convergence rates are then averaged Ee,s [•] over the

snapshots and over the MOE simulations to obtain the average convergence rate,

C28 {χi, µj} = Ee,s [τ28 (e, s, χi, µj)] (7.10)

This average convergence rate is a function of crossover χi and mutation µj rates of

McBAR-P. This function is illustrated in Figure 7.2(b) which shows a small average

convergence rate as the mutation rate increases. Based on the definition of convergence

rate in Section 7.2.1, this result implies that as the mutation rate utilised by McBAR-P

increases the number of evolutionary generations in McBAR-P decreases, i.e., the number

required for the average hypervolume to reach a determined asymptote. This hypervolume

is of the non-dominated solutions to sub-problems 283
e determined by McBAR-P. And, it

is averaged over the snapshot e, where 0 ≤ e ≤ 12, and over 30 MOE simulations. The

figure shows the crossover rate to be less significant on the convergence rate of the average

hypervolume.

7.4 Relevance of Proactiveness

To be able to determine the dominance of a solution to a sub-problem of a problem

from L2 over a solution to a sub-problem of a problem from L3, the definition in Section

2.5 of the dominance operator � (used to determine set coverage) requires that these

two sub-problems have a similar number of objectives. However, for any given problem

labelled p in Table 4.5 and any snapshot e, the number of objectives of sub-problem p2e is

different to that of p3e. On the other hand, based on the algorithm explained in Section

2.5.1, the computation of a hypervolume requires a common reference point (e.g. “�” in

Figure 2.12(f)) which cannot be established for the solutions to the sub-problems p2e and

p3e due to the different number of objectives in these problems. Thus, the performances

of McBAR and McBAR-P for solving the sub-problems p2e and p3e, respectively, cannot
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be compared using set coverage or hypervolume. Consequently, McBAR and McBAR-

P are compared with respect to the following aspects: (a) the financial relevance of

the solutions/schedules that McBAR and McBAR-P obtained in this section; (b) the

difference in the makespans of the solutions/schedules considered in Section 7.5; (c) and

the difference in the implementation cost of the solutions/schedules explored in Section

7.6.

Let us now explore the relevance of the robust reactive-predictive McBAR-P approach.

Consider a schedule as the solution to sub-problem 123
5 (fifth sub-problem of problem 12

from L3) depicted in Figure 4.2, and determined through the McBAR-P approach. Based

on Table 4.5, problem 12 of L3 has S3 TSC which, based on Table 4.3, has type 4 of

changes (simultaneous changes in task duration and resource availability based on Table

4.2) at the fifth snapshot (taken at 13 time units) in which sub-problem 123
5 is set. Now,

at the next (sixth) SOSA of the MOE, based on Table 4.3, there is a change in task

duration only (type 0 based on Table 4.2). A schedule as solution to sub-problem 123
6 (set

in the sixth snapshot of the MOE) is depicted in Figure 4.3. As is evident from Figure

4.2, task 17 does not overlap in time with task 16 while in Figure 4.3 it does, due to the

task duration change. A similar relationship holds between pairs of tasks 32 and 15. In

Figure 4.3, tasks in any of these pairs simultaneously utilise a similar type of resource

at the period they overlap. However, there is no violation of any resource constraint

(listed in Section 4.2), and no unused resource in the fifth snapshot is utilised in the sixth

snapshot despite the overlap. Thus, based on the algorithm of McBAR-P explained in

Section 7.1, the schedule for the fifth snapshot is retained for the sixth snapshot of the

MOE. As pointed out above, the revision of the schedule can incur high cost, e.g. the

penalty due to contract infringement with material and labour suppliers [191], such that

the retention of the schedule despite environmental changes could be cost-saving. Thus,

the demonstrated retention of the schedule supports the financial relevance of McBAR-P.

The correspondence between TSCs and problems from L3 is found in Table 4.5. For a

given TSC, the number of moments (labelled in Table 4.3 by SOSA) at which the MOE
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undergoes changes of type zero (i.e., change only on task duration, based on Table 4.2) is

counted, the MOE in which the problem that corresponds to the TSC is set. The sum of

this count, over all TSCs that correspond to all problems from L3, is 180. Now, each MOE

is simulated (described in Section 4.4) 30 times. On the average over these simulations,

there are only 2.4 moments – among the 180 moments, i.e. 1.33% – whose corresponding

schedules are retained. These schedules are non-dominated solutions to sub-problems set

in snapshots taken at the counted moments of changes. If the above-stated cost penalty

per schedule revision is extremely high, the McBAR-P approach could still be relevant

despite its rare schedule retention rate; this supports the relevance of McBAR-P.

7.5 Difference in Makespan

As explained in Section 7.2.2, dMs(x, e) is the difference between the average makespans

of non-dominated solutions/schedules determined by McBAR and the average makespans

of non-dominated solutions/schedules determined by McBAR-P for solving x2e and x3e

sub-problems, respectively, where xKe (refer to Section 1.2 for notation) is set in the eth

snapshot of a MOE and is a sub-problem of problem xK from LK , K = 2, 3. The F6.0

formatted (explained in Section 6.5.1) Figure 7.3(a) is a plot of dMs(x, e) at all pairs of

problems x and SOSAs e, where problem x is in Table 4.5 and has task duration variation

that follows Equation A.9 with δ = 6.0; and 0 ≤ e ≤ 12. It shows that at 92.8% of the

pairs dMs(x, e) is negative. Based on Equation 7.5, at 92.8% of the pairs, the average

Ed,s [•] makespans of schedules obtained through McBAR is less than that of schedules

obtained through McBAR-P. The difference dMs(x, e) is more negative after the sixth

SOSA of the MOE than otherwise, regardless of problems in the pairs. After the sixth

SOSA, based on Table 4.3 in conjunction with Table 4.2, severe (defined in Section 4.2.1)

types of changes that occur in the MOE are prevalent. The F3.0 formatted Figure 7.3(b)

shows an approximately similar dMs(x, e) plot to that of F6.0 formatted Figure 7.3(a). It

shows that at 95.6% of its corresponding pairs dMs(x, e) is negative. Note that problems

which correspond to rows in Figures 7.3(a) and (b) used δ in Equation A.9 equal to 3.0
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(a) (c)

(b) (d)

Figure 7.3: Dynamics of average difference in (a) makespan with δ = 6.0 (b) makespan
with δ = 3.0 (c) cost with δ = 6.0 (d) cost with δ = 3.0

and 6.0 respectively. Thus, regardless of the δs, TSCs and TNISs used to characterise

the sub-problems x2e and x3e, the average Ed,s [•] makespans of schedules obtained through

McBAR is generally shorter than those of schedules obtained through McBAR-P.

Let us intuitively explain the recent results. In the schedule depicted in Figure 7.4(a),

each horizontal strip represents a task; the subscript of the strip label Tj is the task ID;

the horizontal location of the strip’s left edge signifies starting time of the task; and the
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Figure 7.4: Schedule with tasks’ starting time (a) near (b)

length of the white portion of the strip represents task duration prior to a change in

a MOE, while the length of the other portion represents the amount of increase in the

task duration during the change in this MOE. Further, tasks represented by all the strips

utilise similar resource types. Now, suppose the starting times of the tasks are close to

each other. Based on the figure, when duration of the tasks change, more of these tasks

could overlap in time (around dTn in the figure). With this overlap, tasks simultaneously

utilise resources of similar type, a simultaneity that could violate the constraint on these

resources. One way to avoid this violation is to set the starting time of the tasks far

from each other, such as those depicted in Figure 7.4(b). This figure depicts that when

durations of the tasks change, few of these tasks could overlap in time (around dTf in the

figure). Considering that the McBAR-P approach anticipates avoiding resource constraint

violation, the schedule it determines could be akin to that in Figure 7.4(b) where task

starting times are far from each other. On the other hand, a schedule determined through

McBAR, which is determined without the anticipation intended to avoid the violation,

need not separate task starting times far from one another, such as those in Figure 7.4(a).

The schedule in Figure 7.4(b) has a longer makespan than the schedule in Figure 7.4(a).

Thus, schedules determined through McBAR-P can be expected to have longer makespans

than those determined through McBAR.

7.6 Difference in Cost

As discussed in Section 7.2.2, dCs(x, e) is the difference between the average implementa-

tion costs of non-dominated solutions/schedules determined by McBAR and the average
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implementation costs of non-dominated solutions/schedules determined by McBAR-P in

solving x2e and x3e sub-problems respectively. The F6.0 formatted Figure 7.3(c) is a plot

of dCs(x, e) at all pairs of problems x and SOSAs e where the problems label are from

Table 4.5 and the problems have task duration variations that follow Equation A.9 with

δ = 6.0; and 0 ≤ e ≤ 12. It shows that at 88.8% of the pairs dCs(x, e) is positive. Based

on Equation 7.6, at 88.8% of the pairs, the average Ed,s [•] implementation cost of sched-

ules obtained through McBAR is more costly than that of schedules obtained through

McBAR-P. The difference dCs(x, e) is more positive after the fifth SOSA of the MOEs

than otherwise, regardless of problems in the pairs. These MOEs are where the problems

are set.

After the fifth SOSA, based on Table 4.3 in conjunction with Table 4.2, severe types

of changes that occur in the above MOE are prevalent. The F3.0 formatted Figure 7.3(d)

shows an approximately similar dCs(x, e) plot to that of Figure 7.3(c). It shows that at

90% of its corresponding problem-SOSA pairs dCs(x, e) is positive. Note that problems

that correspond to rows in Figures 7.3(c) and (d) used δ in Equation A.9 that are equal to

3.0 and 6.0 respectively. Thus, regardless of the δs, TSCs and TNISs used to characterise

the sub-problems x2e and x3e, the average Ed,s [•] implementation costs of schedules ob-

tained through McBAR is more costly than that of schedules obtained through McBAR-P.

7.7 Conclusions and Future Work

The research presented in this chapter showed that McBAR-P determines some schedules

with enough robustness whereby these schedules can be retained, without violating any

constraint and still with high quality, at some changes in the MOE in which these schedules

are implemented. If there is a high penalty for revising schedules, the manifested ability

of McBAR-P is financially relevant.

The problems from L2 and L3 with the same label (e.g. 52 and 53 respectively) listed

in Table 4.5 differ only in their number of objectives and being solved by McBAR and
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McBAR-P, respectively, in this chapter. In addition to the last-considered characteristic,

McBAR-P creates schedules with less implementation cost, but with longer durations,

than those created by McBAR for solving any sub-problem of any problem with the same

label found in Table 4.5.

As in the last chapter, the conclusions presented are true at any of the two values of

δ used as the parameter of Equation A.9 which models changes in task durations of the

problems with labels listed in Table 4.5; true at any type of simultaneous changes in

the MOEs in which the problems are set; and true at any form of PNT utilised in this

chapter. Based on the conclusions presented in this section, the second goal of the thesis

is accomplished.

There are two suggested future directions to follow up the research undertaken in this

chapter: the investigation of the performance of McBAR at other values of the above-

considered δ, and at forms of PNT other than those considered in this chapter.

Mapping of Task IDs for CBAR Page 216 of 318



NOTE:  Statements of authorship appear in the print copy of the thesis held in 
the University of Adelaide Library.



Response Surface Methodology (RSM)

Chapter 8

The investigations undertaken in Chapters 6 and 7 focused on the problems from the sets

L2 and L3 sets that have few elements. The conclusions on the characteristics of some

techniques from T drawn from these investigations are only valid for these few elements.

To obtain widely valid conclusions ( to be proven in Section 8.3.7) on the characteristics,

the general method is utilised and explored in this chapter, which is organised as fol-

lows. Section 8.1 explains a method that utilises the modified Method of Steepest Ascent

(MSA) (explained in Section 2.8.6). This method is applied in Section 8.2 to determine

the performance-enhancing EA parametric values of EA-based techniques from T. Some

performance-enhancing parameters of EDA/P2 are also determined and explained in Sec-

tion 8.2. The techniques are then endowed with their respective performance-enhancing

parametric values. Then, they are applied by the general method to solve problems from

Q2 ⊂ M where the generated solutions are used to build composite models, a building

process explained in Section 8.3. These models are accurate to predict characteristics

of the techniques at more problems than in each of the sets L2 and L3. The results of

this model building are elaborated in Section 8.4. Making use of the models, the general

method legitimises some algorithmic components of McBAR in Section 8.5. Further,

it investigates in Section 8.6 the dynamic performance of the some techniques from T.

Thus, the first and fourth goals of the thesis are achieved in this chapter through the

general method. Note that these same goals were also achieved in Chapter 6 through the

limited method. A conclusion on the results given in this chapter is presented in Section

8.7.



8 Response Surface Methodology (RSM) 8.1 Technique Performance Optimisation

8.1 Technique Performance Optimisation

This section provides information on the method referred to as Technique Performance

Optimisation (TPO). This method is applied to determine the EA parametric values

of each technique from E = {RI, NDLPOP, GIBAR, CBAM, McBA, McBAR, McBAS,

MedianBAR} whereby this technique performs best for solving the extreme problem in-

stance X2 (described in Section 4.3.3). These EA parametric values are referred to as

optimising parameters. Further, any performance referred to in this section is measured

in hypervolume.

TPO utilises Method of Steepest Ascent (MSA) (described in Section 2.8.6) which in-

volves RSM models. The first step in TPO is to decide which EA parameters of the

techniques from E will be included as factors in the RSM models. As explained in Sec-

tion 5.9, after a number of trials, the performances of these techniques were observed to

stabilise before the 300th generation of their evolutionary processes. Further, the perfor-

mances were found to be best with the evolutionary processes each having a selection rate

of 0.5. These two parameters are excluded as factors in the RSM models; however, their

values are utilised by the techniques.

In [62], various selection, crossover, and mutation methods were considered in the ef-

ficiency optimisation of a GA method. In this thesis, however, only the crossover and the

mutation methods explained in Section 5.1.3 are considered for the performance optimi-

sation of the techniques from E. The factors included in the RSM models are: population

size P , crossover rate ζ and mutation rate µ. The values that can be taken by these

factors are restricted to,

40 ≤ P ≤ 112,

0.1 ≤ ζ ≤ 1,

0.03 ≤ µ ≤ 1.

(8.1)

The population size takes values from the set,

Psz = {40, 52, 64, 76, 88, 100, 112} ≡ {Pi} . (8.2)
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Suppose that the parameters P , ζ and µ change by a similar percentage of their

respective ranges in Expression 8.1. After a number of trials, the performance of any

technique from E was observed to change more when its population size and mutation

rate independently vary than when its crossover rate varies by the same percentage.

Thus, in the context of modified MSA (described in Section 2.8.6), the population size

and mutation rate are regarded as important factors [31].

Using the terminologies in Sections 2.5.1, 4.3.3 and 4.4, let H(τ) denote a hypervolume

of the NDS of solutions to an extreme sub-problem X2
i set in a simulation of the ith

snapshot of a MOE, where the solutions are determined by a technique τ ∈ E; and

0 ≤ i ≤ 6. The average Es [H(τ)] of the hypervolume H(τ) is taken over 30 simulations

of the ith snapshot. Thus, there is an average hypervolume Es [H(τ)] that corresponds

to each extreme sub-problems X2
3 to X2

6 . The average of Es [H(τ)] over these extreme

sub-problems is denoted by E3:6
s [H(τ)]. A technique τ using the above-defined optimising

parameters is expected to yield a high performance measured in terms of E3:6
s [H(τ)]. The

averaged hypervolume E3:6
s [H(τ)] could vary with different sets of values of the population

size, crossover rate and mutation rate used by the technique τ . Thus, it is also expressed

as E3:6
s [H(τ, P, ζ, µ)].

Using the modified MSA described in Section 2.8.6 as a guide, the second step in TPO

is to determine the Greek letter coefficients in the model,

E3:6
s [H(τ, Pi, ζ, µ)] = α̂i,τ + β̂i,τζ + γ̂i,τµ, (8.3)

where Pi ∈ Psz is defined in Equation 8.2. To search for the coefficients, Full Factorial

Design (FFD) (described in Section 2.8.1) is used to form the treatment,

Tj,k
i,τ = Bpi + jc + km ≡ 〈Pi, ζj,τ , µk,τ 〉 , (8.4)

where any vector considered in this section is an ordered set of population size, crossover

rate and mutation rate, e.g. x = 〈P, ζ, µ〉; integers j and k take values from the set
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{−1, 0, 1}; c = 〈0, 0.2, 0〉; m = 〈0, 0, 0.1〉; and

Bpi = 〈Pi, 0.7, 0.2〉 . (8.5)

Consider a plane in the space of crossover and mutation rates. Let this plane corre-

spond to a given population size Pi and to technique τ . When the treatments Tj,k
i,τ , that

correspond to various values of j and k, are projected onto the plane, they become the

corners, edge midpoints, and centre (Bpi) of a rectangle in this plane. The base point

Bpi in Equation 8.5 was determined from trial investigations to yield a large value of the

averaged hypervolume E3:6
s [H(τ, Pi, ζ0,τ , µ0,τ )] of non-dominated solutions determined by

the technique τ that uses a population size Pi. Note that j and k are set to zero in ζj,τ

and µk,τ for E3:6
s [H(τ, Pi, ζ0,τ , µ0,τ )].

The extreme sub-problem X2
i is solved by the technique τ using the values in the treat-

ment 〈Pi, ζj,τ , µk,τ 〉 defined in Equation 8.4. Next, the average hypervolume E3:6
s [H(τ, Pi,

ζj,τ , µk,τ )] of the obtained non-dominated solutions are determined. This procedure is re-

peated for each Pi ∈ Psz, j, k ∈ {−1, 0, 1} and τ ∈ E. The various values of

E3:6
s [H(τ, Pi, ζj,τ , µk,τ )] obtained from the repetitions are used to determine the coeffi-

cients in Equation 8.3 following the linear model building method explained in Section

2.8.4.

The third step in TPO is to determine the optimising parameters. MSA (described in

Section 2.8.6) is applied to form the treatments,

Tl
i,τ ≡ 〈Pi, ζl,τ , µl,τ 〉 = Bpi + lai,τ , (8.6)

where,

0 ≤ l ≤ 0.7; l is a multiple of 0.1; (8.7)

ai,τ =
〈

0, β̂i,τ/γ̂i,τ , 1
〉

; (8.8)
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and β̂i,τ and γ̂i,τ are the coefficients in Equation 8.3 that are already determined at this

stage of the TOP. Based on Equations 8.5 to 8.8, the crossover rate ζl,τ is related to the

mutation rate µl,τ as,

ζl,τ = (µl,τ − 0.2)
β̂i,τ
γ̂i,τ

+ 0.7, (8.9)

and

µl,τ = 0.2 + l. (8.10)

Notice that the crossover rate obtained from this equation could be outside the range of

zero to one. The treatment obtained from Equation 8.6 that has a crossover rate outside

the range is called an invalid treatment ; otherwise, it is called a valid treatment.

The extreme sub-problem X2
i is again solved by the technique τ , this time using

the values in the treatment 〈Pi, ζl,τ , µl,τ 〉 in Equation 8.6. The average hypervolume

E3:6
s [H(τ, Pi, ζl,τ , µl,τ )] of the obtained non-dominated solutions is determined. This pro-

cedure is repeated for every l, Pi and τ . The values of l and i are determined at which,

for a given technique τ , the averaged hypervolume E3:6
s [H(τ, Pi, ζl,τ , µl,τ )] is maximum,

〈lτmax, iτmax〉 = max
l,i

E3:6
s [H(τ, Pi, ζl,τ , µl,τ )] . (8.11)

Finally, using Equations 8.5 to 8.8, the optimising population size P τ
max, crossover rate

ζτmax and mutation rate µτmax of the technique τ are determined from,

〈P τ
max, ζ

τ
max, µ

τ
max〉 =

〈
Piτmax , 0.7 + lτmaxβ̂iτmax,τ/γ̂iτmax,τ , 0.2 + lτmax

〉
. (8.12)

From the above discussions, the optimising parameters of the technique τ are deter-

mined by applying τ to solve the extreme problem X2. If the performance of technique τ ,

endowed with its optimising parameters, is optimal for solving the extreme problem set in

a MOE that undergoes an extreme change then, based on the definitions in Section 4.3.3,

it is legitimate to assume that τ would still perform best for solving the slight problem set

in a MOE that undergoes a slight change. Thus, the optimising parameters in Equation

Mapping of Task IDs for CBAR Page 221 of 318



8 Response Surface Methodology (RSM) 8.2 Optimising Parameters

8.12 are used by the technique τ ∈ E for solving any problem (extreme or otherwise) from

O2 ⊂ Q2 ⊂ M after they are determined.

8.2 Optimising Parameters

The TPO method explained recently will now be applied to obtain the performance-

enhancing EA parametric values of techniques from E. Through this method the coef-

ficients of the models expressed in Equation 8.3 are determined. These coefficients are

presented in Table 8.1. For each row in this table, the entries under the third to the fifth

columns are the coefficients of a model which corresponds to the pair of technique and

population size under the first two columns respectively; and the entry under the last col-

umn is the ratio β̂i,τ/γ̂i,τ in Equation 8.8. Consider the row in the table that corresponds

to the pair of technique RI and population size of 100. This row has entries which when

substituted to Equation 8.3 yields the model,

E3:6
s [H(RI, 100, ζ, µ)] = 952393 + 1650ζ + 3579µ. (8.13)

Based on Equation 8.2, i = 6 for Pi ∈ Psz to be 100. Thus, based on the considered

row and the last column, the ratio β̂i,τ/γ̂i,τ that corresponds to this model is 0.461 =

β̂6,RI/γ̂6,RI.

The last result is used to explain the next step in TPO. The model in Equation 8.13

is utilised in Equations 8.5 to 8.9 to create the set
{
Tl

6,RI

}
of treatments,

T0
6,RI = 〈100, 0.7, 0.2〉 ; T0.1

6,RI = 〈100, 0.7461, 0.3〉 ;

T0.2
6,RI = 〈100, 0.7922, 0.4〉 ; T0.3

6,RI = 〈100, 0.8383, 0.5〉 ;

T0.4
6,RI = 〈100, 0.8844, 0.6〉 ; T0.5

6,RI = 〈100, 0.9305, 0.7〉 ;

T0.6
6,RI = 〈100, 0.9766, 0.8〉 ; T0.7

6,RI = 〈100, 1.0227, 0.9〉 .

(8.14)

The superscripts of these treatments are the values of l in expression 8.7. The subscript
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Table 8.1: Coefficients of models determined through TPO

τ P
i

40 948,362          458.96 10224.67 0.045

52 949,172          1154.23 7721.87 0.149

64 955,435          -10.79 -155.45 0.069

76 952,949          -225.59 6621.90 -0.034

88 956,450          3.45 40.63 0.085

100 950,604          965.26 7645.44 0.126

112 959,491          -1710.33 -4387.08 0.390

40 946,420          348.01 1214.73 0.286

52 949,804          142.21 731.07 0.195

64 948,191          204.98 1108.31 0.185

76 948,621          166.08 754.63 0.220

88 945,025          364.77 1059.74 0.344

100 941,371          -238.39 -1748.94 0.136

112 952,866          -275.25 -793.73 0.347

40 948,913          31.55 10994.86 0.003

52 952,887          -719.79 6428.90 -0.112

64 954,912          84.75 1242.14 0.068

76 953,783          289.33 851.29 0.340

88 950,631          -540.11 9071.17 -0.060

100 952,393          1650.13 3579.05 0.461

112 951,268          -4833.48 9400.17 -0.514

40 943,123          282.16 2084.07 0.135

52 952,414          -800.61 -2969.69 0.270

64 948,823          2092.03 -2474.00 -0.846

76 937,414          477.11 3882.09 0.123

88 944,527          391.48 7170.53 0.055

100 939,307          1145.28 2463.04 0.465

112 939,367          -4355.96 6245.47 -0.697

40 983,507          -1489.10 6750.11 -0.221

52 983,179          -582.22 7999.91 -0.073

64 986,091          -11.29 -177.01 0.064

76 983,886          -954.70 5170.02 -0.185

88 981,627          296.36 7692.67 0.039

100 981,225          450.46 9064.52 0.050

112 976,364          1281.64 14185.01 0.090

40 988,216          525.93 3442.37 0.153

52 988,370          664.80 5770.80 0.115

64 990,826          216.13 806.72 0.268

76 990,699          403.96 3469.25 0.116

88 991,232          2006.17 4707.68 0.426

100 988,875          1761.69 4508.63 0.391

112 985,221          3620.10 7907.97 0.458

40 982,760          106.64 12428.00 0.009

52 990,287          -232.62 4066.40 -0.057

64 981,362          4769.27 10076.62 0.473

76 995,489          -925.60 -2882.70 0.321

88 989,760          336.03 4963.11 0.068

100 991,014          754.78 3912.23 0.193

112 986,468          3345.16 7122.86 0.470

40 978,547          2833.02 6648.57 0.426

52 977,807          347.52 11153.03 0.031

64 981,529          111.43 5157.92 0.022

76 979,056          137.44 11660.12 0.012

88 981,014          -309.82 8006.33 -0.039

100 978,264          739.29 13037.04 0.057

112 985,351          -506.60 1850.71 -0.274

McBAS 

CBAM 

RI 

McBA 

McBAR 

MedianBAR 

NDLPOP

GIBAR

���,� ���,	 
��,	 ���,	 
��,	�
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6 of the treatments is the index in P6 = 100. Notice that the last treatment T0.7
6,RI

expresses that RI is supposed to use a population size of 100, a crossover rate of 1.0227

and a mutation rate of 0.9. Thus, as defined in Section 8.1, this treatment is an invalid

one. Consequently, RI that has these parametric settings was not applied to solve the

extreme problem X2, an application intended to determine the average hypervolume

E3:6
s [H(RI, 100, 1.0227, .9)] (notation based on Equation 8.13).

The set of treatments in Equation 8.14 corresponds to only one model (Equation 8.13)

whose coefficients are found in the row of Table 8.1 that was noted above. For each row in

this table, a set of treatments is determined by the same process as in the last paragraph.

The components (e.g. in 〈100, 0.9305, 0.7〉) of each valid treatment (defined in Section

8.1, e.g. T0.5
6,RI in Equation 8.14) in this set are used by the technique (e.g. RI) that corre-

sponds to this set. This technique is then applied to solve the extreme problem X2. The

solutions obtained are used to compute the average hypervolume E3:6
s [H(τ, Pi, ζl,τ , µl,τ )]

that corresponds to a valid treatment Tl
i,τ in the set. Note that the elements of this set

correspond to l defined in expression 8.7.

Each of the Figures 8.2 to 8.8 plots the average hypervolume E3:6
s [H(τ, Pi, ζl,τ , µl,τ )] at

each value of population size Pi ∈ Psz and parameter l in expression 8.7, where its vertical

and horizontal axes are the population size and mutation rate respectively. These figures

correspond to RI, CBAM, McBA, McBAR, MedianBAR, McBAS, NDLPOP and GIBAR

respectively. For example, Figure 8.1 corresponds to RI. Now, the row labelled 100 in

this figure corresponds to the set
{
Tl

6,RI

}
of treatments expressed in Equation 8.14 and

its furthest left to furthest right rectangles correspond to parameter l which has values of

zero to 0.7, respectively, with 0.1 intervals. By using the values of l for Equation 8.10, the

rectangles in the row also correspond to mutation rates of 0.2 to 0.9, respectively, with 0.1

increments. By using these mutation rates for Equation 8.9 with β̂6,RI/γ̂6,RI = 0.461 (this

equality is explained above), the rectangles in the row labelled 100 correspond to crossover

rates of 0.7, 0.7461, 0.7922, 0.8383, 0.8844, 0.9305, 0.9766 and 1.0227 respectively. Thus,

the first rectangle (corresponds to l = 0) from the left of row labelled 100 in Figure 8.1 is
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the colour hue-represented average hypervolume E3:6
s [H(RI, 100, ζ6,RI, µ6,RI)] determined

through RI that uses a population size of 100, a crossover rate of 0.7 and a mutation rate

of 0.2 for solving the extreme problem X2.
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Figure 8.1: Observed hypervolume of solutions determined by RI under TPO

Note that the colour representation in Figures 8.2 to 8.8 depends on the scale expressed

by the colour bar to the right and beside each of these figures. Thus, similarly coloured

rectangles in different figures could represent different average hypervolumes. As declared

above, the average hypervolume that corresponds to the invalid treatment T0.7
6,RI was not

determined. All undetermined average hypervolumes are indicated in all of the figures

as unfilled rectangles. This scheme explains the presence of the unfilled rectangle at

population size 100 and mutation rate 0.9, a coordinate in Figure 8.1 that corresponds to

the invalid treatment T0.7
6,RI considered above.

Let us now characterise Figures 8.2 to 8.8. Generally, in each row of each of these

figures, the average hypervolume first increases with mutation rate then decreases at

some point. Consider for example row 88 of Figure 8.3 which corresponds to McBA that
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Figure 8.2: Observed hypervolume of solutions determined by CBAM under TPO
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Figure 8.3: Observed hypervolume of solutions determined by McBA under TPO
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Figure 8.4: Observed hypervolume of solutions determined by McBAR under TPO

in this case uses a population size of 88. In this row, the average hypervolume is higher

when the mutation rate used by McBA is within 0.7 and 0.9 inclusive than otherwise.

Based on the definitions of hypervolume and average hypervolume E3:6
s [H(τ, Pi, ζl,τ , µl,τ )]

in Sections 2.5.1 and 8.1, respectively, the quality of solutions can be measured in terms

of the average hypervolume, where these solutions are obtained by the technique τ from

E for solving the extreme problem X2. Thus, row 88 of Figure 8.3 demonstrates that

the quality of solutions obtained by McBA for solving X2 is higher when McBA uses a

mutation rate of 0.7, 0.8 or 0.9. Note that McBA also uses a population size of 88 and the

crossover rate that can be obtained through the process explained above. The average

hypervolume dynamics (pattern of changes and not values) across row 88 is basically

similar to that of the other rows in Figures 8.2 to 8.8. Therefore, the quality of solutions

obtained by any technique from E for solving X2 is generally higher when this technique

uses a mutation rate of 0.7, 0.8 or 0.9.

Consider Figure 8.2 which corresponds to CBAM. The maximum average hypervolume
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Figure 8.5: Observed hypervolume of solutions determined by MedianBar under TPO
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Figure 8.6: Observed hypervolume of solutions determined by McBAS under TPO
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depicted in this figure is at a population size of 76 (equal to P4 base on Equation 8.2)

and a mutation rate of 0.8. The ratio β̂i,τ/γ̂i,τ = β̂4,CBAM/γ̂4,CBAM = -0.034 is obtained

by using the population size and the technique named CBAM for Table 8.1. Then, a

crossover rate of 0.6786 is obtained by using the ratio and the mutation rate for Equation

8.9. The maximum average hypervolume implies that CBAM performs best for solving

the extreme problem X2 when using a population size of 76, a mutation rate of 0.8 and

a crossover rate of 0.6786. Based on Sections 8.1 and 4.3.3, although this implication

is valid only for solving X2, it is legitimate to assume that CBAM would also perform

optimally for solving any problem from O2.
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Figure 8.7: Observed hypervolume of solutions determined by NDLPOP under TPO

All the performance-optimising EA-parametric values of each technique in E are ob-

tained through the process just explained and are presented in the upper part of Table

8.2. Based on this table portion and on Section 4.3.3, all techniques in E performed opti-

mally for solving any problem from O2 when using a population size in Psz greater than

75, a crossover rate greater than 0.6 and a mutation rate greater than 0.6. Note that,
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Figure 8.8: Observed hypervolume of solutions determined by GIBAR under TPO

based on Section 8.1, these techniques also use a selection rate of 0.5 and terminate their

respective evolutionary processes after 300 generations. The last column of the upper part

of Table 8.2 corresponds to the maximum average hypervolume in each of Figures 8.2 to

8.8. The techniques arranged in descending order of maximum average hypervolume are:

McBAR, MedianBAR, McBA, McBAS, GIBAR, CBAM, NDLPOP and RI. Hence, the

performance of McBAR is the best of all the techniques in E for solving the extreme prob-

lem X2. Based on Sections 8.1 and 4.3.3, this conclusion translates as McBAR possibly

having the best performance among all the techniques for solving any problem from O2.

Using the definitions in Section 6.3, Table 8.2 illustrates that the optimal performances of

the techniques (from E) which apply the mapping function F (e.g. McBAR, MedianBAR,

McBA and McBAS) are better than those of the techniques that do not (e.g. CBAM and

RI). Further, the optimal performance of RI is the worst of all techniques in E. Note that

RI does not follow any rule, except SSGS, for creating any initial population.

The set E of techniques does not include EDA/P2. To present all the performance-
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Table 8.2: Optimal parameters

Technique Population Size Crossover Rate Mutation Rate Hypervolume

RI 100 0.9295 0.7 959,650          

NDLPOP 88 0.7328 0.8 959,678          

GIBAR 76 0.8541 0.9 963,025          

CBAM 76 0.6786 0.8 959,700          

McBA 100 0.7295 0.8 991,160          

McBAR 76 0.7558 0.7 999,740          

McBAS 100 0.7282 0.7 990,030          

MedianBAR 112 0.9775 0.8 997,310          

Technique Learning Rate Percentage Population Hypervolume

EDA/P
2

0.8 0.8 927,480          

optimising parameters of techniques from T, the process of determining the EDA/P2-

performance boosting values of learning rate λ and percentage ρ (respectively defined in

Items 7 and 5 of the last enumeration in Section 5.8) are presented here despite this process

being not RSM-related. The process is as follows. The parameters λ and ρ are restricted

to take values in the range 0.1 to 0.9 with a 0.1 interval. For each pair of permissible λ

and ρ values, EDA/P2 solves the extreme problem X2 (described in Section 4.3.3) from

O2. Then the performance defined in terms of the average E3:6
s [H(EDA/P2, λ, ρ)] (i.e.

the hypervolume is a function of the technique EDA/P2, λ and ρ) is determined from the

solutions obtained by EDA/P2. The performances that correspond to all of the pairs are

plotted in Figure 8.9. This figure illustrates that the performances are generally high at

λ greater than 0.6 and ρ greater than 0.4. Among the pairs, EDA/P2 performs best at λ

and ρ each being 0.8 which is presented in the lower part of Table 8.2. Note in this lower

portion that EDA/P2 has the worst performance – measured in hypervolume – among all

the techniques from T.

8.3 Voxel Models

As emphasised in Chapter 1, the general method is applied to build empirical models

through RSM. Each of these models describes the dynamics of the relative performances of

two different techniques from W = {RI,CBAM,McBA,McBAR,McBAS, MedianBAR}

(defined in Table 5.1). These performances are for solving the problems from O2 ⊂ Q2 ⊂
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Figure 8.9: Performance of EDA/P2 at various values of its parameters

M and are measured in terms of the set coverage explained in Section 2.5.2. From here

onwards, each of the models will be referred to as dynamical model. Let us now provide

information on how the general method develops the dynamical models.

8.3.1 Factors

First, let us look into the factors that constitute the dynamical models. Consider a set of

task duration changes sampled from the model in Equation A.9 with δ = 3.0 and another

set of task duration changes sampled from the same model with δ = 6.0. The performances

of techniques in W were demonstrated in Section 6.2 to be generally independent of the

task duration changes in both sets, where these changes occur in a MOE in which a

problem from L2 is set. Based on this result, all task duration changes in the MOE are

screened-out (as defined in Section 2.8.3) as factors in the dynamical models.

The factors included in the dynamical models are the number of new tasks and the

numbers of newly broken resources of types R1 and R2 at every SOSA c in the significant

range of orders (SRO). As noted in Section 4.3.1, SRO range from the third to the sixth
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SOSA of any MOE. These factors are denoted as,

x3c−8 ⇒ number of new tasks,

x3c−7 ⇒ number of newly broken resources of type dR1,

x3c−6 ⇒ number of newly broken resources of type dR2,

(8.15)

where the symbol ⇒ denote correspondence. Based on the SRO, there are 12 factors

in each of the dynamical models; three factors correspond to each SOSA in the SRO.

For example, factors x7, x8 and x9 respectively denote the number of new tasks and the

numbers of newly broken resources of types R1 and R2 at the fifth SOSA of a MOE.

There are various combinations of the values of the 12 factors. Using the terminology

in Section 2.8, each of the combinations is considered as a treatment to a computing

experiment that simulates a MOE whose changes are codified in the combination. The

general expression of treatment for the dynamical models is,

x = 〈x1, x2, . . . , x12〉 . (8.16)

A particular treatment could be,

x = 〈1, 2, 0, 3, 4, 1, 4, 3, 0, 0, 1, 4〉 . (8.17)

This treatment expresses that at the third SOSA of the MOE there are: one new task,

two newly broken resources of type R1, and no newly broken resources of type R2; at the

fourth SOSA there are: three new tasks, four newly broken resources of type R1, and one

newly broken resource of type R2; and so on.

As noted in Section 4.3.2, the definition of any problem from O2 is incomplete; at the

third to the sixth SOSA of a MOE in which any problem from O2 is set, the number of

new tasks, the number of newly broken resources of type R1 and the number of newly

broken resources of type R2 are undefined. These numbers are all defined in the treat-

ment expressed in Equation 8.16. Thus, the partial definition in Sections 4.3.1 and 4.3.2
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of any problem from O2 including all the information encoded in the treatment, which

corresponds to this problem, completes the definition of this problem.

8.3.2 Resolutions, Levels and Ranges

At each SOSA in the SRO, the number of new tasks and the numbers of newly broken

resources of both R1 and R2 types are integers, such that, the resolutions (defined in

Section 2.8) of their corresponding factors is unity. Factors that represent the number

x3c−8 of new tasks, the number x3c−7 of newly broken resources of type R1 and the number

x3c−6 of newly broken resources of type R2 at the cth SOSA have ranges expressed in,

0 ≤ x3c−8 ≤ 5,

0 ≤ x3c−7 ≤ 4,

0 ≤ x3c−6 ≤ 4,

(8.18)

where 3 ≤ c ≤ 6; and these factors have six, five and five levels respectively.

Based on expression 8.18, the number x3c−8 of new tasks can be zero at each SOSA c

in the SRO, i.e. 3 ≤ c ≤ 6. Further, based on Section 4.3.1, there is no new task at the

first (c = 1) and at the second SOSA (c = 2) of a MOE in which any problem from O2 is

set. Thus, it is possible that no new task can appear in the entire dynamics of the MOE,

i.e. ∀ c in the range 0 ≤ c ≤ 6. Let an irrelevant problem be a problem from M set in a

MOE whereby no new task appears. Further, let an irrelevant treatment be a treatment

that corresponds to an irrelevant problem. For example,

i = 〈0, 2, 1, 0, 4, 1, 0, 3, 2, 0, 1, 4〉 . (8.19)

is an irrelevant treatment. Now, implicit in Section 5.9, the performance of McBAR for

solving a problem from M is expected to be similar to that of CBAM when this problem is

set in a dynamic MOE with no new task. Thus, to possibly differentiate the performances

of McBAR and CBAM, the problem from O2 ⊂ Q2 ⊂ M that has at least one new task
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is the type of problem considered in the thesis. Let the set {R2}, referred to as relevant

problems, be composed of all problems from O2, each set in a dynamic MOE that has at

least one new task. Using the notations in Equations 8.16 and 8.15, all problems from

{R2} correspond to treatments with each having at least one component/factor, which

represents a number of new tasks, greater than zero. Let the set {t} of all of these

treatments be referred to as relevant treatments. It is assumed from here onwards that

every problem from O2 and every treatment are elements of {R2} and {t} respectively.

8.3.3 Multiple Models

Let us now explain why a single polynomial model is not practically suitable to model the

dynamic performance of any technique from W = {RI, CBAM, McBA, McBAR, McBAS,

MedianBAR } (also defined in Table 5.1) for solving problems from O2. After several tests,

the polynomial models of order less than five were observed as statistically inadequate to

model the dynamic performance.

Let us now consider the case of building a fifth or higher order polynomial model of

the dynamic performance. As elaborated in Section 4.4, each of the seven (zeroth to

sixth) sub-problems of a considered problem from O2 is sequentially simulated and then

solved for 30 times. The results of these simulations are used to determine a value that

corresponds to the problem. The values that correspond to various problems from O2, as

will be explained below, are used to determine the coefficients of a considered model. The

number Nc of coefficients of a fifth or higher order polynomial model with 12 factors is

equal to or greater than 6,188 based on,

Nc = 1 +

Np∑
n=1

1

n!
Nf (Nf + 1) · · · (Nf + n− 1). (8.20)

where Np is the polynomial order; and Nf is the number of factors in this polynomial.

Considering that the number of unknown coefficients in a polynomial model must be lesser

than the number of the experimentally-derived values necessary to determine these coef-
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ficients [141], then the number of simulated sub-problems from O2 necessary to produce

the required set of values to build a polynomial model of order higher than four must

be more than 1,299,480 = 6,188 experimentally-derived values × 30 simulations × seven

sub-problems. Thus as it takes a few minutes for our computing system to solve each of

the simulated sub-problem, the polynomial model is impractical to build.

To summarise, polynomial models of order less than five with the 12 factors are sta-

tistically inadequate as models of the dynamic performance of the techniques in W, and

polynomial models of order greater than four with the 12 factors are impractical to build.

Consequently, the model building process of the general method cannot practically be

realised by using a single polynomial model. A model composed of several polynomials

is therefore used to characterise the dynamic performance. It should be noted that, in

the space with 12 factors as dimensions, the regions of applicability of these constituting

polynomials are designed not to overlap. From here onwards, the composite model will

be referred to as the composite dynamical model and will be described in Section 8.3.7.

8.3.4 Voxels

Let us now investigate the regions of applicability of the polynomials that comprise the

composite dynamical model. Let X = X1 ⊗ X2 ⊗ · · · ⊗ X12 be a discrete space where

Xi is a set (e.g. {0, 1, . . . , 5}) of unique values that factor xi is allowed to take based on

the ranges in expression 8.18, where 1 ≤ i ≤ 12. Note that all treatments/points in X

correspond to all problems from O2. Let the set X3c−8, which corresponds to the number

x3c−8 of new tasks, be broken into two parts,

Xw
3c−8 = {0, 1, 2} ,

Xh
3c−8 = {3, 4, 5} ,

(8.21)

referred to as low and high ranges respectively. Further, let the factors xw3c−8 and xh3c−8

take values from the sets Xw
3c−8 and Xh

3c−8 respectively. Note that both of these factors
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have three levels. Now, let the space X be subdivided as,

X =
⋃

i,j,k,l={w,h}

Xk,l
i,j , (8.22)

where each of i, j, k and l is either w or h; and,

Xk,l
i,j = X i

1 ⊗X2 ⊗X3 ⊗Xj
4 ⊗X5 ⊗X6 ⊗Xk

7 ⊗X8 ⊗X9 ⊗X l
10 ⊗X11 ⊗X12 (8.23)

is a subset of X referred to as voxel. Note that the subdivision of space X is made along

the factors x3c−8 which represent the numbers of new tasks. Based on this subdivision,

there are 16 voxels in X. Their labels are presented in Table 8.3 where “Low” and “High”

(ranges) correspond to w and h in Equation 8.22 respectively; and the column headings

– third to the sixth SOSA of a MOE – correspond to i, j, k and l in Equation 8.23

respectively. For example, voxel 12 is a set of points/treatments,

Xh,h
h,w = Xh

3×3−8 ⊗X2 ⊗X3 ⊗Xw
3×4−8 ⊗X5 ⊗X6⊗

Xh
3×5−8 ⊗X8 ⊗X9 ⊗Xh

3×6−8 ⊗X11 ⊗X12.
(8.24)

For each of the 16 voxels, a second order polynomial model that accurately predicts the

responses (defined in Section 2.8) to all the treatments inside this voxel is built and is

considered to correspond to this voxel. The composite dynamical model considered in

Section 8.3.3 is constituted of models which correspond to all the 16 voxels. From here

onwards, the constituting model is referred to as dynamical sub-model.

Let us now substantiate the division of the range of the number x3c−8 of new tasks

into the two sub-ranges, “High” and “Low”, in Equation 8.21. As explained in Section

8.3.3, our preliminary tests showed that the polynomial models of order less than five

were statistically inadequate to model the dynamic performance of any technique from

W (defined above and in Table 5.1) for solving some problems from O2. This inadequacy

may be due to the highly non-linear performances of the techniques from W. This type

of performances was observed in Section 6.5 when the techniques solved the problems set
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Table 8.3: Range types for various voxels and SOSAs���������� 	�
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in a MOE that undergoes increase in the number of tasks. The degree of non-linearity

may be reduced if the range of the number of new tasks is reduced as was done in the last

paragraph through Equation 8.21. With the reduction in non-linearity, a second order

model could possibly adequately model the performance of any technique from W over the

reduced range. The range reduction approach is akin to cutting a highly non-linear tenth

order polynomial curve to obtain less non-linear sub-curves which could be approximated

by second order polynomials. The domains of these sub-curves are analogous to the voxels.

8.3.5 Problems from X2

Let us now explore the design of the treatments (defined in Equation 8.16) whose corre-

sponding responses are used to build the second order polynomial dynamical sub-models

described in the last sub-section. Based on Section 2.8.1, the design must be rotatable

in order for the dynamical sub-model obtained through it has even prediction accuracy

across the voxel that corresponds to this sub-model. As the factors described in Section

8.3.2 take integral values, there is a choice between centre-faced CCD and BBD to design

the treatments. Based on Section 2.8.1, centre-faced CCD is not rotatable. Hence, the

nearly rotatable [141] BBD was chosen as the treatment design method for building the

second order polynomial dynamical sub-models.
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BBD produces treatments with factor coded values in the set,

XBBD = {−1, 0, 1} . (8.25)

The actual/natural values of the factors in expression 8.15 for the treatments described

in Equation 8.16 are determined through,

x3c−7 = 2(xBBD + 1) (8.26)

and

x3c−6 = 2(xBBD + 1), (8.27)

where xBBD ∈ XBBD and 3 ≤ c ≤ 6. The factor values at the “Low” and “High” ranges

are determined through,

xw3c−8 = xBBD + 1 (8.28)

and

xh3c−8 = xBBD + 4 (8.29)

respectively.

For each voxel in Table 8.3, and considering the 12 factors in Equation 8.16, the

BBD design produces 204 treatments which are all elements of the voxel; none of these

treatments is an irrelevant treatment (defined in Section 8.3.2); and these treatments are

used to build a dynamical sub-model for the voxel following the procedure described in

Section 2.8.4. At most 30 treatments are formed randomly; are different from the 204

treatments; are elements of the voxel; are not irrelevant treatments; and are used to verify

the prediction accuracy (explored in Section 2.8.5) of the dynamical sub-model. Thus,

with 16 dynamical sub-models needed to build one dynamical composite model, there are

at most 3,744 ( = {204 BBDed treatments + 30 prediction accuracy testing treatments}

× 16 voxels) treatments. These treatments have one-to-one correspondence with the

problems that constitute X2 ⊂ O2 ⊂M. Thus, X2 has at most 3,744 problems, to be solved
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by each technique from W. Note that each problem from X2 is a relevant problem and

since X2 ⊂ O2 then X2 ⊂ {R2}. Each of the treatments is simulated 30 times (explained

in Section 4.4). Thus, the maximum total number of problem simulations is 112,320 =

3,744 problems × 30 simulations; a practically computable size, thereby supporting the

relevance of the voxelation (space subdivision) approach in Section 8.3.4.

8.3.6 Form of the Dynamical Sub-Model

Before describing the form of the dynamical sub-model, let us define a relative average

performance of a pair of techniques Ta, Tb ∈ W (defined in Table 5.1). Suppose technique

Ta determines a set A of solutions to a sub-problem p23 (see Section 4.2.1 for notation) set

in a simulation of the third snapshot of a dynamic MOE. Further, technique Tb determines

a set B of solutions to the same sub-problem. From the sets A and B, the differential

set coverage dSC (Ta, Tb) can be obtained using Equations 2.6 to 2.8. The differential

set coverages, that correspond to sub-problems p24 to p26, can be determined in the same

manner. The average of differential set coverages over p23 to p26 sub-problems is denoted as

E3:6 [dSC (Ta, Tb)] and referred to as the Averaged Relative Performance over Sub-problems

(ARPoSb). Note that this average corresponds to a single simulation of a dynamical MOE

in which the sub-problem is set. The average of E3:6 [dSC (Ta, Tb)] over 30 simulations

of the MOE is denoted as E3:6
s [dSC (Ta, Tb)] and referred to as the Averaged Relative

Performance over Sub-problems and Simulations (ARPoSbSi). To indicate the influence

of treatment xm on the ARPoSbSi and the voxel – labeled m – to which this treatment

belongs, ARPoSbSi is relabelled as E3:6
s [dSCm (Ta, Tb,xm)].

The dynamical sub-model Mm (Ta, Tb) that models ARPoSbSi is expressed as a second

order polynomial,

E3:6
s [dSCm (Ta, Tb,xm)] = α̂a,b,m +

∑Nf
i=1 β̂

a,b,m
i yi,m

+
∑Nf−1

i=1 yi,m
∑Nf

j>i γ̂
a,b,m
i,j yj,m +

∑Nf
i=1 ω̂

a,b,m
i y2i,m,

(8.30)

Mapping of Task IDs for CBAR Page 240 of 318



8 Response Surface Methodology (RSM) 8.3 Voxel Models

where,

xm = 〈y1,m, y2,m, . . . , y12,m〉 ; (8.31)

for 3 ≤ c ≤ 6 (i.e. the significant range of orders),

y3c−8,m = x
r(m)
3c−8,

y3c−7,m = x3c−7,

y3c−6,m = x3c−6,

(8.32)

r(m) is either w or h depending on which voxel, labelled m in Table 8.3, the treatment

xm belongs; Nf = 12 is the number of factors; the pair of techniques Ta and Tb are both

from W; and the Greek letters are the constant coefficients of the model. Note that this

dynamical sub-model is only valid at and corresponds to voxel m defined in Equation 8.22.

Given a treatment xm, the prediction of this sub-model is denoted as Mm (Ta, Tb,xm).

8.3.7 Composite Model

A composite dynamical model ( described in Section 8.3.3) C (Ta, Tb) is created for each

pair of different techniques Ta and Tb in W. It is composed of 16 dynamical sub-models;

each corresponds to a unique voxel whose label is found in Table 8.3. Given a treatment

xm, the prediction of the composite model is denoted as C (Ta, Tb,xm).

For any given treatment xm ∈ X (defined in Equation 8.22), a voxel m is determined

to which this treatment belongs. Then, using Equation 8.30, E3:6
s [dSCm (Ta, Tb,xm)] can

be obtained. This process could be viewed as though the composite dynamical model is

the one used to predict E3:6
s [dSCm (Ta, Tb,xm)] given the treatment. To emphasise this

concept, the index m is sometimes dropped from E3:6
s [dSCm (Ta, Tb,xm)] in the forego-

ing to obtain E3:6
s [dSC (Ta, Tb,x)]. As x can be any element of X then the composite

dynamical model can be used to predict E3:6
s [dSC (Ta, Tb,x)] at any treatment in X.

Based on the factor ranges in expression 8.18, the factors representing the number

x3c−8 of new tasks, the number x3c−7 of newly broken resources of type R1 and the
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number x3c−6 of newly broken resources of type R2 have six, five and five levels, re-

spectively, for each c in the range 3 ≤ c ≤ 6 (i.e. four SOSAs). Thus, the domain

X (defined in Equation 8.22) of the composite model C (McBAR, Tb) has 506, 250, 000 =

(6 levels × 5 levels × 5 levels)4 SOSAs points/treatments. Because of the one-to-one cor-

respondence between treatments and problems from O2, this number of points is the same

number of problems whose solution attributes (e.g. ARPoSbSi) can accurately be pre-

dicted by the composite model (built through the general method). Thus, the conclusions

derived from this model could be accurate at number of problems much higher than the

number (only 30) of problems considered in the limited method.

8.4 Dynamical Model Development

Let us now explore the results obtained by the general method on the development of

dynamical sub-models that have the form expressed in Equation 8.30. This development

follows the procedures discussed in Section 2.8.4. Each of the dynamical sub-models

expresses ARPoSbSi (defined in Section 8.3.6) of a pair of techniques from W (defined in

Table 5.1). Table 8.4 lists the selected pairs of techniques whose ARPoSbSis are being

modelled. In the foregoing, it is assumed that all of the listed techniques in Table 8.4

utilise their respective performance-optimising EA-parametric values in Table 8.2. Thus,

based on the explanations in Section 8.1, each of the two paired techniques could perform

at its best for solving any problem from O2.

Table 8.4: Pairs of techniques from T whose ARPoSbSis are being modelled

Ta Tb

CBAM RI

CBAM McBAR

RI McBA

RI McBAR

RI McBAS

RI MedianBAR

McBA McBAR

McBAR McBAS

McBAR MedianBAR
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8.4.1 Model Building

For a given pair of techniques Ta and Tb in Table 8.4 and a given voxel labelled m, a

linear preliminary dynamical sub-model (defined in Equation 8.30) is fitted, following the

procedure outlined in Section 2.8.4, to ARPoSbSis determined from the solutions obtained

by each of the techniques for independently solving some relevant problems from X2 ⊂

{R2}. As explained in Section 8.3.5, these relevant problems correspond to the 204 BBDed

treatments contained in voxel m (voxel labels are listed in Table 8.3). The insignificant

terms according to the t-test considered in Section 2.8.3 are screened-out from the prelim-

inary dynamical sub-model. Following the same fitting and screening processes, a second

preliminary dynamical sub-model, which has linear and interaction terms, is fitted to

similar ARPoSbSis and then screened. Then, a third preliminary dynamical sub-model,

which has linear, interaction and quadratic terms, is fitted and then screened in a similar

manner as in the last preliminary dynamical sub-model. The Box-Behnken design yields

unaliased models of up to quadratic orders [165]. Thus, the three preliminary dynamical

sub-models are unaliased. Among these preliminary dynamical sub-models, the F-test

statistically significant and highest ordered dynamical sub-model is selected as the final

dynamical sub-model used to predict ARPoSbSis at treatments in and made to corre-

spond with voxel m. Based on Section 8.3.6, this final dynamical sub-model is denoted as

Mm (Ta, Tb). The accuracy of Mm (Ta, Tb) is verified by comparing its prediction to the

observed ARPoSbSis (E3:6
s [dSCm (Ta, Tb,xm)]) determined from the solutions obtained by

the pair of techniques for independently solving some relevant problems from X2 ⊂ {R2}.

These relevant problems correspond to the 30 prediction-accuracy testing treatments (e.g.

xm) described in Section 8.3.5 and contained in voxel m.

The model building process just presented is applied to obtain the 16 final dynam-

ical sub-models that correspond to all voxels described in Section 8.3.2. Thereby, one

composite dynamical model C (Ta, Tb) (see Section 8.3.7 for notation) is obtained that

corresponds to the pair of techniques Ta and Tb. The process of obtaining a compos-

ite model is applied to build the nine composite dynamical models that correspond to
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the nine pairs of techniques in Table 8.4. Thus 144 (= 16 sub-models × 9 pairs) final

dynamical sub-models are built.

The Analysis of Variance (ANOVA) results of building the 144 final dynamical sub-

models are found in http://cs.adelaide.edu.au/~optlog/research/RSM/voxelsANOVA.

pdf. Due to space limitation, only the ANOVA results of building the final dynamical

sub-model M7 (McBAR MedianBAR) are presented here and are found in Table 8.5.

In this table, the model types are linear, linear plus interaction, and quadratic polyno-

mials. The screened linear, linear plus interaction, and quadratic preliminary forms of

M7 (McBAR,MedianBAR) have F-test p-values of 0.216263 > 0.05, 0.009535 < 0.05 and

0.009587 < 0.05 respectively. Thus, based on the model selection guideline explained

in Section 2.8.2, the quadratic preliminary dynamical sub-model is selected as the final

M7 (McBAR,MedianBAR) dynamical sub-model. Shaded model types in Table 8.5 and in

the tables in http://cs.adelaide.edu.au/~optlog/research/RSM/voxelsANOVA.pdf

are the model types of the 144 final dynamical sub-models elaborated in the last para-

graph. All of the final dynamical sub-models have F-test p-values less than 0.05 and hence

are all significant.

Table 8.5: ANOVA of final M7 (McBAR,MedianBAR) sub-model

Ta Tb Model Type dfr SSr MSSr dfe SSe MSSe F-value p-value

 Linear 12 0.144408 0.012034 181 1.663385 0.00919 1.309466 0.216263

 Interaction 55 0.719574 0.013083 138 1.088219 0.007886 1.659111 0.009535

 Quadratic 78 0.945001 0.012115 115 0.862792 0.007503 1.614839 0.009587

 McBAR  MedianBAR

8.4.2 Data Diagnostics

Each of the final dynamical sub-models described in the last sub-section is diagnosed for

adequacy (defined in Section 2.8.2). Due to space limitation, all of the adequacy test

results on each of the final dynamical sub-models are found in http://cs.adelaide.

edu.au/~optlog/research/RSM/DOEfigures.pdf. Further, only the adequacy test re-

sults on the final dynamical sub-model M7 (McBAR,MedianBAR) (described in the last

sub-section) are shown here and are illustrated in Figures 8.10 to 8.15. The leverages
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of the members of a data set illustrated in Figure 8.10 are below twice its average. The

members of this data set are ARPoSbSis used to build the final dynamical sub-model

M7 (McBAR,MedianBAR). Figure 8.11 shows the Cook’s distances of the members as

being mostly below 0.026 (derived from Equation 2.22). Three outliers (defined in Sec-

tion 2.8.2), or 1.47% of the members, whose Cook’s distances are above 0.06, are removed

from the data set. Almost all of the members have Difference in Fits (DFFITS) between

±2, as depicted in Figure 8.12. Using DFFITS as a basis, no outlier in the data set is

removed. Figure 8.13 exhibits a nearly linear normal plot of the studentised residuals

derived from the data set and M7 (McBAR,MedianBAR). Each member of the data set

which corresponds to a treatment is plotted in Figure 8.14 against the value predicted by

M7 (McBAR,MedianBAR) at the same treatment. The plotted points are around the 45o

line in this figure. The plot of the predicted values and their corresponding previously-

considered studentised residuals is exhibited as being random in Figure 8.15. Thus, Fig-

ures 8.10 to 8.15 prove that the final dynamical sub-model M7 (McBAR,MedianBAR)

passes all the diagnostic tests enumerated in Section 2.8.2. From each of the data sets

used to build the 144 final dynamical sub-models deliberated in Section 8.4.1, 1.5% or

less of its members are removed based only on Cook’s distance. Each of the 144 final

dynamical sub-models passed all of the diagnostic tests.

8.4.3 Model Predictions

After providing information in the last two sub-sections on the general adequacy and

significance of the final dynamical sub-models, let us now explore the general predictive

accuracy of these dynamical sub-models. Due to space limitation, only the predictive

accuracy of the final dynamical sub-model M7 (McBAR,MedianBAR) is presented here.

As declared in Section 8.3.5, at most 30 relevant treatments from X2 (defined in Section

8.3.5) are randomly generated – all contained in voxel 7 at which the dynamical sub-model

is valid – and are used to verify the prediction accuracy of the dynamical sub-model. Let

the set of these treatments be denoted as T =
{
tj7
}

where, the subscript 7 indicates to
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Figure 8.10: Leverage for the final M7 (McBAR,MedianBAR) sub-model
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Figure 8.11: Cooks Distance for the final M7 (McBAR,MedianBAR) sub-model
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which voxel these treatments belong; and the superscript j has the range 1 ≤ j ≤ |T |. The

final dynamical sub-model M7 (McBAR,MedianBAR) (has a form expressed in Equation

8.30) is used to predict ARPoSbSi at each treatment tj7 ∈ T . The predicted ARPoSbSis

are plotted as the middle curve in Figure 8.16. The upper and lower curves in this figure

bound the 95% prediction interval (defined in Section 2.8.5) of the predicted ARPoSbSis.

The horizontal axis is the index j of a relevant problem from X2 (defined in Section 8.3.5)

denoted as N2(j,7) that corresponds to the relevant treatment tj7.
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Figure 8.12: DFFITS for the final M7 (McBAR,MedianBAR) sub-model

Based on Section 4.4, every relevant problem N2(j,7), 1 ≤ j ≤ |T |, is simulated 30

times. Let Cj
7 denotes the group of ARPoSbs (defined in Section 8.3.6) derived from the

solutions obtained by McBAR and MedianBAR for independently solving all simulations

of the relevant problem N2(j,7). The standard deviation of all ARPoSbs in Cj
7 is indicated

by the length of the vertical strip straight above problem/instance index j in Figure 8.16.

The average of all ARPoSbs in Cj
7 is the vertical coordinate of the centre of the vertical

strip. Note that this average is equivalent to ARPoSbSi based on the definitions in Section
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Figure 8.13: Normal plot of Studentized Residue for the final M7 (McBAR,MedianBAR)
sub-model

8.3.6. Further, both ARPoSbSi and the standard deviation of ARPoSbs are derived from

differential set coverage as explained in Section 8.3.6. Thus, the vertical axis is labelled

as differential set coverage.

As evident in Figure 8.16, 90% (≈ 26×100%/29) of the simulation-obtained ARPoSbSis

(represented by the centres of the vertical strips) declared in the last paragraph are within

the 95% prediction interval. Therefore, this result supports the accuracy of the final dy-

namical sub-model M7 (McBAR,MedianBAR) for predicting ARPoSbSis. Plots of the

same format as Figure 8.16 that correspond to all the final dynamical sub-models de-

scribed in Section 8.3.5 are found in http://cs.adelaide.edu.au/~optlog/research/

RSM/DOEfigures.pdf. Each of these plots has characteristics that also support the pre-

diction accuracy of its corresponding final dynamical sub-model for predicting ARPoSbSis

at the prediction-accuracy testing treatments located in the voxel that corresponds to this

final dynamical sub-model.
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Figure 8.14: Predicted versus actual for the final M7 (McBAR,MedianBAR) sub-model

All the final dynamical sub-models described in Section 8.3.5 have now been demon-

strated as being adequate, significant and prediction-accurate. Thus they can now be

used for the other processes of the general method that are discussed in the succeeding

sections. Before using them, let us discuss the following.

Consider the relevant problem N2(1,7) whose corresponding vertical strip is straight

above index 1 in Figure 8.16. As implied above, this problem corresponds to treatment

t17 ∈ T and is simulated 30 times, thereby obtaining the set C1
7 of ARPoSbs. These

ARPoSbs are plotted in Figure 8.17 against simulation indices. The distance between

the standard deviation lines (lowest and highest solid horizontal lines) in this figure is

the standard deviation of the elements of C1
7 . The levels of the lowest and highest solid

horizontal lines are equal, respectively, to those of the top and bottom of the vertical strip

indexed 1 in Figure 8.16. The level of the middle horizontal solid line in Figure 8.17 is the

average of elements in C1
7 and is equal to the level of the centre of the strip. Figure 8.17

depicts the elements of C1
7 as having a large standard deviation relative to their range
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Figure 8.15: Residue versus predicted for the final M7 (McBAR,MedianBAR) sub-model

of values, -1 to 1 based on Equation 2.9. This magnitude is also demonstrated by the

length of the vertical strip indexed 1. The vertical strips not indexed by 1 in Figure 8.16

generally depict large standard deviation of their respective sets of ARPoSbs. All plots

in http://cs.adelaide.edu.au/~optlog/research/RSM/DOEfigures.pdf of the same

format as Figure 8.16 also manifest profiles of the standard deviation of ARPoSbs to be

generally similar to that of Figure 8.16.

Let us now investigate this last result. As noted in Section 4.4, the duration of any

unfinished task in one simulation of a relevant problem from {R2} could differ from that

of a similarly-IDed unfinished task in other simulations of the same relevant problem.

Thus, different simulations of this problem could involve different dynamic scheduling

problems. The solutions to these different scheduling problems could yield largely different

ARPoSbs across the simulations, thereby obtaining a large standard deviation of these

ARPoSbs. Note, however, that the standard deviation of the quantities, derived from the

solutions obtained by an EA-based algorithm solving a similar problem at different runs
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(simulations), could still be large as that reported in [165].
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Figure 8.17: ARPoSbs from the simulations of the problem instance indexed 1

8.5 Legitimising the Components of McBAR

Let us now deliberate on the procedure undertaken by the general method (i.e. us-

ing RSM-built models) to legitimise the algorithmic components of McBAR. In Section

6.3, the legitimisation of the components involves the comparison of the performance of

McBAR, for solving the relevant problems from {R2}, to those of techniques from K ⊂

T. In this section, the other subset W = {RI, CBAM, McBA, McBAR, McBAS, Median-

BAR} (also defined in Table 5.1) of T is utilised for the legitimisation instead of K. As the

dynamical composite model can be utilised to compare the performance of McBAR and

to that of any of the other techniques, it is utilised for the legitimisation by the general

method.

The first step in the legitimisation of the components of McBAR is the application of

MCS, where 10,000 relevant treatments are randomly selected from {t} (defined in Section
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8.3.2). The composite model C (McBAR, Tb) is then used to predict ARPoSbSis at these

selected treatments where, Tb ∈W. These ARPoSbSis are then averaged where the result

is denoted as E3:6
s,t [dSC (McBAR, Tb)] and referred to as Average Relative Performance

over Treatments (ARPoT).

Referring to Section 8.3.7, the domain of any composite model has 506,2500,000 treat-

ments. Thus, using the composite model to predict ARPoSbSis at all of these treatments

to determine E3:6
s,t [dSC (McBAR, Tb)] is computationally expensive. Thus, MCS is applied

instead. The ARPoTs that correspond to all pairs of McBAR and the other techniques

in W are presented in Table 8.6. Before discussing this table, however, let us investigate

several aspects.

Based on Section 2.5.2, the performance of McBAR is better than that of another

technique Tb for solving a given problem if dSC(McBAR, Tb) > 0. Applying the average

E3:6
s,t [•] operator on the expression dSC(McBAR, Tb) > 0 yields E3:6

s,t [dSC (McBAR, Tb)] >

0. Thus, we define the performance of McBAR as better than that of Tb for solving the

relevant problems from {R2} if E3:6
s,t [dSC (McBAR, Tb)] > 0. Based on the same section,

dSC(McBAR, Tb) = −dSC(Tb,McBAR). Applying the average E3:6
s,t [•] operator to the

last equation yields, E3:6
s,t [dSC (McBAR, Tb)] = −E3:6

s,t [dSC (Tb,McBAR)].

Table 8.6: ARPoTs between McBAR and other techniques in T

T
a

T
b E s,t

3:6
 [dSC (T

a
,T

b
)] ± σs,t

3:6
 [dSC (T

a
,T

b
)]

CBAM McBAR -0.8216 ± 0.1140

RI McBAR -0.8275 ± 0.1016

McBA McBAR -0.0853 ± 0.1541

McBAR MedianBAR 0.0341 ± 0.1180

McBAR McBAS 0.1907 ± 0.1740

The first and second columns of Table 8.6 comprise the pair of techniques from W

used in the E3:6
s,t [•] operator. In the third column, the value to the left of the ± sign

is E3:6
s,t [dSC (Ta, Tb)] which relates to the techniques in the first and the second columns

that are techniques Ta and Tb respectively. Further, the value to the right of the ± sign is

the standard deviation σ3:6
s,t dSC (Ta, Tb) of ARPoSbSis predicted by the composite model

C (Ta, Tb) as part of the MCS noted in this sub-section.
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Let us now discuss the results presented in Table 8.6. From this table, E3:6
s,t [dSC (

CBAM,McBAR)] = -.8216 which implies that E3:6
s,t [dSC (McBAR,CBAM)] = 0.8216 > 0

based on the above explanations. Thus, based on the definition in the second to the last

paragraph, the performance of McBAR is better than that of CBAM for solving the

problems from {R2}. In addition, E3:6
s,t [dSC (McBAR,McBAS)] = .1907 > 0 which im-

plies that the performance of McBAR is better than that of McBAS for solving sim-

ilar problems. Note that E3:6
s,t [dSC (McBAR,MedianBAR)] is just above zero. Fur-

ther, the standard deviation σ3:6
s,t dSC (Ta, Tb) = 0.118 is large relative to the average

E3:6
s,t [dSC (McBAR,MedainBAR)] = 0.0341. This demonstrates that the performance of

McBAR is not significantly better than that of MedianBAR for solving the problems.

Based on the legitimisation concept presented in Section 4.4 and based on Table 8.6,

the superior performance of McBAR over that of CBAM, RI, McBA, MedianBar and

McBAS legitimises the following components of McBAR respectively: the mapping oper-

ation F explained in Section 5.5; the memory-based approach; the random component of

the initial population defined in Section 5.6.6; the use of mean to compute for centroid in

Equation 5.1; and the minimal centroid repair method N investigated in Section 5.6.5.

8.6 Dynamics of Average Performance

Let us now explore how the general method manifests the dynamical performance of

McBAR, relative to those of the other techniques in W (defined in Table 5.1) for solving

the relevant problems from {R2}. This performance is measured in terms of ARPoT

defined in Section 8.5 and is relabelled as E3:6
s,t [dSC (McBAR, Tb, β, n, c)], where Tb ∈ W

to indicate its dependency on some variables and on a factor name. The factor β is the

dynamical factor of interest that could be the number of new tasks, the number of newly

broken resources of type R1, or the number of newly broken resources of type R2 where β

is substituted in E3:6
s,t [dSC (McBAR, Tb, β, n, c)] as either τ , ρ1 or ρ2 respectively. Further,

the variables are the SOSA c of a MOE in which a problem from {R2} is set; and the

value n of factor β at a given c. Based on Sections 4.3.1 and 4.3.2, the value of n is zero
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at the zeroth to the second SOSA of the MOE. The SOSA c considered for the analysis

in this sub-section is in the range 3 ≤ c ≤ 6, i.e. in the significant range of orders defined

in Section 4.3.1.

The process of determining E3:6
s,t [dSC (McBAR, Tb, β, n, c)] is explained next through

an example. Let the relevant treatment x in {t} (defined in Section 8.3.2) be expressed

as,

x = 〈x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12〉 . (8.33)

Further, let the dynamical factor of interest be the number of new tasks (i.e. β = τ). To

determine E3:6
s,t [dSC (McBAR, Tb, τ, n, c)]s at all pairs of n and c, where 1 ≤ n ≤ 5 and

3 ≤ c ≤ 6:

1. Set n = 1 and c = 3.

2. Set the factor x1 in Equation 8.33 to n while set the factors x4, x7 and x10 to zero.

Notice that, based on expression 8.15, the factors x1, x4, x7 and x10 represent the

numbers of new tasks appearing, respectively, from the third to the sixth SOSA of

the MOE in which the problem from {R2} that corresponds to treatment x is set.

3. Set all the other factors in treatment x to random integral values that satisfy the

ranges in expression 8.18. This step completes the specification of the treatment.

4. Predict an ARPoSbSi given the treatment x using the composite model C (McBAR,

Tb,x) as explained in Section 8.3.7.

5. Repeat 1,000 times the steps 2 to 4 to obtain 1,000 treatments in {t}, then use

these treatments to predict 1,000 ARPoSbSis through the composite model.

6. Take the average of these ARPoSbSis to obtain E3:6
s,t [dSC (McBAR, Tb, τ, n, 3)].

7. Repeat the steps 2 to 6 with c set to four, five and then six to obtain E3:6
s,t [dSC (

McBAR, Tb, τ, n, 4)], E3:6
s,t [dSC (McBAR, Tb, τ, n, 5)] and E3:6

s,t [dSC (McBAR, Tb, τ,

n, 6)] respectively. However, at step 2 of each repetition, the factors x1, x4 until
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x3c−8 (refer to expression 8.18 for notation) are each set to n while the factors

x3(c+1)−8, x3(c+2)−8 until x10 are each set to zero if c is not equal to six.

8. Repeat step 7 with n = 2, n = 3, n = 4 and then n = 5.

Let us legitimise steps 5 and 6. As implied in step 3, the values of the factors x2, x3, x5,

x6, x8, x9, x11 and x12 in Equation 8.33 are randomly chosen, effectively generating pseudo-

random treatments. Based on expression 8.18, each of these factors has five levels. As the

values of the factors x1, x4, x7 and x10 are fixed in the last enumerated procedure, there

is a pool of 390,625 (= (5× 5)4) treatments from which the pseudo-random generation

is applied. Enormous computational cost could be spent if, in step 4 of the enumerated

procedure, ARPoSbSis are predicted through the composite model C (McBAR, Tb) at all

treatments in the pool. To reduce this cost, MCS is applied and is implemented as steps

5 and 6 of the enumerated procedure.

Before discussing the dynamical performance of McBAR, let us consider the follow-

ing points. As defined in Section 8.5, the performance of McBAR is better than that of

Tb for solving the relevant problems from {R2} if E3:6
s,t [dSC (McBAR, Tb)] > 0. Further,

E3:6
s,t [dSC (McBAR, Tb)] = −E3:6

s,t [dSC (Tb,McBAR)]. It could be shown that these points

hold when E3:6
s,t [dSC (McBAR, Tb)] is relabelled as E3:6

s,t [dSC (McBAR, Tb, β, n, c)]. Fur-

ther, applying the averaging operator E3:6
s,t [•] to the range −1 ≤ dSC(McBAR, Tb) ≤ 1

yields −1 ≤ E3:6
s,t [dSC (McBAR, Tb)] ≤ 1.

The dynamics of the average ARPoT relative performance over treatments of McBAR

to the other techniques in W (defined in Table 5.1) are illustrated in Figures 8.18 to

8.27. In each of these figures, the colour of each rectangle denotes a value of ARPoT

that is based on the colour bar located at the right and beside its corresponding figure.

Further, the horizontal axis is the value n of the dynamical factor β and the vertical axis is

the SOSA c. Figure 8.18 illustrates the dynamics of E3:6
s,t [dSC (McBAR,CBAM, τ, n, c)],

where the dynamical factor β of interest is τ , i.e. n denotes the number of new tasks. It

illustrates E3:6
s,t [dSC (McBAR,CBAM, τ, n, c)] as being positive at all number of new tasks

and SOSAs. Based on the last paragraph, this implies that the performance of McBAR
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is better than that of CBAM for solving problems from O2, that are taken into account

in determining the plotted ARPoTs. However, as will be demonstrated, this superiority

varies with SOSA and the number of new tasks.

The ARPoTs determined at step 7 of the enumerated procedure correspond to rectan-

gles at the leftmost column of Figure 8.18 which corresponds to n = 1. This column illus-

trates that the performance of McBAR becomes increasingly superior to that of CBAM

as SOSA c increases from the third to the sixth, where one new task appears from the

third to the cth SOSA and none after the cth SOSA based on the last enumeration in

this section. This dynamical performance is different from the case where the number of

new tasks is greater than one, as illustrated in the other columns. The bottom row of

rectangles (corresponds to the third SOSA) demonstrates the performance of McBAR as

being increasingly superior to that of CBAM as the number n of new tasks increases from

one to five at the third SOSA. This dynamical performance differs from those depicted

by the other rows which correspond to SOSA c > 3.
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Figure 8.18: Dynamics of E3:6
s,t [dSC (McBAR,CBAM, τ, n, c)] under the changes in the

number of tasks
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Figure 8.19: Dynamics of E3:6
s,t [dSC (McBAR,RI, τ, n, c)] under the changes in the number

of tasks

The generic performance dynamics illustrated in Figure 8.18 is also observed in: Figure

8.19 which depicts the performance dynamics of McBAR relative to that of RI; Figure

8.20 which shows the performance dynamics of McBAR relative to that of McBA; and

Figure 8.21 which illustrates the performance dynamics of McBAR relative to that of

McBAS. However, Figure 8.20 illustrates ARPoTs as being near zero while Figures 8.18,

8.19 and 8.21 generally show ARPoTs much greater than zero. This difference implies

that, although the performance of McBAR is generally superior to that of McBA, this

superiority is not as great as to that of CBAM, RI and McBAS.

The dynamics of ARPoT between McBAR and MedianBAR is illustrated in Figure

8.22. Note that in order to clearly distinguish the polarities (positive or negative) of

ARPoTs, the colour bar for this figure is different to those of the previously described

ARPoT-related figures. In Figure 8.22, the performance of McBAR becomes generally

superior to that of MedianBAR as the values of n and c increase. However, there are

pairs of n and c at which the performance of McBAR is inferior to that of MedianBAR.
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Figure 8.20: Dynamics of E3:6
s,t [dSC (McBAR,McBA, τ, n, c)] under the changes in the

number of tasks
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Figure 8.21: Dynamics of E3:6
s,t [dSC (McBAR,McBAS, τ, n, c)] under the changes in the

number of tasks
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Figure 8.22: Dynamics of E3:6
s,t [dSC (McBAR,MedianBAR, τ, n, c)] under the changes in

the number of tasks

Let us now explore, through an example, the procedure of how to determine E3:6
s,t [dSC (

McBAR, Tb, ρ1, n, c)], where Tb ∈ W (defined in Table 5.1). Note that this ARPoT is

based on the number of newly broken resources of type R1 as the dynamical factor of

interest, i.e. β = ρ1. This procedure differs from the last enumerated procedure which

is for determining E3:6
s,t [dSC (McBAR, Tb, τ, n, c)], where the number of new tasks is the

dynamical factor of interest. It differs from the last enumerated procedure on the following

step numbers:

1) Set n = 0 and c = 3.

2) Set the factor x2 in Equation 8.33 to n while the factors x5, x8 and x11 are set to

zero. Notice that, based on expression 8.15, the factors x2, x5, x8 and x11 represent

the numbers of newly broken resources of type R1 at the third to the sixth SOSA

respectively.

7) Repeat step 2 and the steps 3 to 6 of the last enumerated procedure with c set to four,
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five and then six to obtain E3:6
s,t [dSC (McBAR, Tb, ρ1, n, 4)], E3:6

s,t [dSC (McBAR, Tb,

ρ1, n, 5)] and E3:6
s,t [dSC (McBAR, Tb, ρ1, n, 6)] respectively. However, at step 2 of

each repetition, the factors x2, x5 until x3c−7 (refer to expression 8.18 for notation)

are each set to n while the factors x3(c+1)−7, x3(c+2)−7 until x11 are each set to zero

if c is not equal to six.

8) Repeat step 7 with n = 1, n = 2, n = 3 and then n = 4.
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Figure 8.23: Dynamics of E3:6
s,t [dSC (McBAR,CBAM, ρ1, n, c)] under the changes in re-

source type R1

Let us now investigate the dynamics of E3:6
s,t [dSC (McBAR, Tb, ρ1, n, c)] depicted in

Figure 8.23. All ARPoTs (represented by the colour of the rectangles) in this figure are

positive, which implies that the performance of McBAR is superior to that of CBAM at

the third to the sixth SOSA and at n = 0 to four, when the dynamical factor of interest is

the number of newly broken resources of type R1. Similar observations and implications

can be drawn from Figures 8.24, 8.25 and 8.26 that correspond to Tb equal to RI, McBA

and McBAS respectively. However, Figure 8.25 presents ARPoTs as being near zero while
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Figure 8.24: Dynamics of E3:6
s,t [dSC (McBAR,RI, ρ1, n, c)] under the changes in resource

type R1
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Figure 8.25: Dynamics of E3:6
s,t [dSC (McBAR,McBA, ρ1, n, c)] under the changes in re-

source type R1
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Figures 8.23, 8.24 and 8.26 depict ARPoTs much greater than zero. This difference implies

that, although the performance of McBAR is superior to that of McBA, this superiority is

not as great as to that of CBAM, RI and McBAS, when the dynamical factor of interest

is the number of newly broken resources of type R1, i.e. β = ρ1.
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Figure 8.26: Dynamics of E3:6
s,t [dSC (McBAR,McBAS, ρ1, n, c)] under the changes in re-

source type R1

In Figure 8.23, E3:6
s,t [dSC (McBAR,CBAM, ρ1, n, c)] peaks around fifth SOSA and at

n = 2. Similar dynamics can be observed in Figure 8.24 on E3:6
s,t [dSC (McBAR,RI, ρ1,

n, c)]. Figure 8.25 illustrates the dynamics of E3:6
s,t [dSC (McBAR,McBA, ρ1, n, c)] as

being generally increasing with SOSA c and n. Figure 8.26 depicts the dynamics of

E3:6
s,t [dSC (McBAR,McBAS, ρ1, n, c)] as being nearly similar to that of the last dynam-

ics. E3:6
s,t [dSC (McBAR,MedianBAR, ρ1, n, c)] depicted in Figure 8.27 varies in a nar-

row near-zero range. More points in this figure have positive values than negative.

The dynamics of E3:6
s,t [dSC (McBAR,MedianBAR, ρ1, n, c)] is generally similar to that

of E3:6
s,t [dSC (McBAR,MedianBAR, τ, n, c)] depicted in Figure 8.22. Notice that the for-

mer ARPoT is a function of the number of newly broken resources of type R1 while the
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Figure 8.27: Dynamics of E3:6
s,t [dSC (McBAR,MedianBAR, ρ1, n, c)] under the changes in

resource type R1

latter ARPoT is a function of the number of new tasks.

The dynamics of E3:6
s,t [dSC (McBAR, Tb, ρ2, n, c)]s are generally similar to those of

E3:6
s,t [dSC (McBAR, Tb, ρ1, n, c)]s, but are not shown for brevity. This similarity is true for

any Tb from W (defined in Table 5.1) different to McBAR. Note that E3:6
s,t [dSC (McBAR,

Tb, ρ2, n, c)] is ARPoT with the number of newly broken resources of type R2 (i.e. β = ρ2)

as the factor of interest.

8.7 Conclusions and Future Work

The research undertaken for this chapter showed that the composite models created

through RSM and characterising some considered techniques from T including McBAR,

are adequate, statistically significant, and have accurate prediction of the characteristics.

Further, through the general method which utilised the composite models, McBAR was
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proven to have the best performance among the considered techniques for solving problems

from O2. Note however, that the performance of the unconsidered techniques from T is

already proven in Chapter 6 to be inferior to that of McBAR through the limited method.

Thus, although the first thesis’ goal is partially fulfilled, it confidently be assumed to be

fully fulfilled through the general method.

The research also demonstrated that the components of McBAR are legitimate through

the general method, thereby achieving the fourth goal of the thesis. The performances

of some considered techniques from T, including McBAR, were also shown to vary with

changes in the factors of the composite models considered above (factors such as the

number of new tasks) that correspond to environmental-type parameters of the problems

from O2.

The considered composite models are accurate only at small values of the declared

environmental-type parameters. The future directions of the research in this chapter

are to investigate models accurate at large values of the parameters and for predicting

the characteristics of the techniques from T for solving problems with more than two

objectives.

Mapping of Task IDs for CBAR Page 265 of 318



NOTE:  Statements of authorship appear in the print copy of the thesis held in 
the University of Adelaide Library.



Other Facets of the Techniques

Chapter 9

This chapter investigates the limitation of McBAR measured in terms of resiliency (defined

in Section 1.4.3). Section 9.1 presents the investigative approach which utilises the RSM-

built models prepared in Chapter 8 to determine the resiliencies of techniques from U ⊂ T.

The results of the application of this approach are presented and analysed in Section 9.2.

Conclusion of and future work related to the results are discussed in Section 9.3.

This chapter also investigates the intelligence of each technique from T, an intelligence

that is an indirect measure of the efficiency of the technique for solving problems from

L2. The definition of intelligence in Section 2.10.2 is revised in Section 9.4 to suit the

system S (described in Section 5.6) used in the thesis. The revised definition is utilised

in Section 9.5 to manifest the individual influences of a parameter and a category on the

intelligence of each technique from T. Conclusions and future work related to the results

analysed in Section 9.5 are presented in Section 9.6.

9.1 Lagragian Optimisation

The performance of any technique Tx ∈ U (defined through Table 5.1 as the set {CBAM,

McBA, McBAR, McBAS, MedianBAR}) for solving the problems from O2 could be af-

fected by the changes of the MOE in which these problems are set. This section explores

the degree related to these changes at which the performance of Tx deteriorates to a level

above that of a benchmark EA technique solving the same problem. As stated in Section

1.4.3, this degree is referred to as resiliency. It is assumed in the definition of resiliency
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that some EA parameters of Tx are fine tuned for Tx to perform optimally under the en-

vironmental dynamics. Further, the benchmark EA technique follows no rules in creating

its initial population.

The Random Immigrants (RI) technique defined in Section 5.9 is chosen as the bench-

mark EA technique. Thus resiliency is determined for each technique from U which does

not contain RI. It is measured as,

R (xm) = xm · xm, (9.1)

where, referring to Equation 8.31 and to the definition of the factors in expression 8.15,

the treatment/vector xm contains factors which denote changes in the dynamic MOE

described in Section 4.2; and m is the label in Table 8.3 of the voxel (described in Section

8.3.4) in which xm belongs.

The definition of resiliency entails the comparison of performances between Ta ∈ U

and RI. The chosen comparator is ARPoSbSi expressed as E3:6
s [dSCm (Ta,RI,xm)] and

defined in Section 8.3.6 with dSC(Ta,RI) as the comparator between the performances of

Ta and RI. The definition of resiliency is mathematically expressed as,

E3:6
s [dSCm (Ta,RI,xm)] = ζ, (9.2)

where ζ > 0 is a constant value; and m is the label of the voxel over which this equation is

satisfied. Based on the definition of performance in Section 2.5.2, this equation expresses

the finding that, under the environmental changes encoded in xm, the performance of Ta

is better than that of RI by the degree ζ for solving the problem from O2 that corresponds

to the treatment xm, where this performance is measured as the ARPoSbSi.

The resiliency of Ta can be determined by finding the root xm of Equation 9.2. Let us
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begin the search for this root by applying Equation 9.2 to Equation 8.30 to obtain,

ζ = α̂a,b,m +

Nf∑
i=1

β̂a,b,mi yi,m +

Nf−1∑
i=1

yi,m

Nf∑
j>i

γ̂a,b,mi,j yj,m +

Nf∑
i=1

ω̂a,b,mi y2i,m, (9.3)

where, based on Equation 8.30, index b corresponds to the fixed technique Tb = RI. By the

fixed correspondence of index b, it will be dropped from the equation from here onwards.

Equation 9.3 may have several roots (i.e. several xms) in several voxels. The root with

the least magnitude squared is the one selected as input to Equation 9.1 to determine the

resiliency. As the components (yj,ms in Equation 8.31) of this root are factors that denote

environmental changes then the magnitude squared of this root corresponds to the least

amount of environmental change at which the performance of Ta is better than that of RI

by the degree ζ. Thus, the condition for the selection of the root is implemented as the

minimisation of R (xm),

min
xm

R (xm) . (9.4)

where R (xm) is the magnitude square of xm, based on Equation 9.1.

The popular method called Lagragian Optimization [91] is applied to obtain a def-

inite solution to the optimisation problem where R (xm) is the function to be opti-

mised/minimised; and,

g (xm) = ζ − E3:6
s [dSCm (Ta,RI,xm)] = 0 (9.5)

is the constraint. In Lagragian Optimisation, a constant called Lagragian Multiplier is

determined. It is denoted as λa,m and satisfies,

∇ (R (xm) + λa,mg (xm)) = 0, (9.6)

where 0 is a zero vector and,

∇ =

[
∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xNf

]
. (9.7)
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Using Equations 8.30, 9.1 and 9.5 we obtain the root,

x∗ (λa,m) = λa,m [2I − λa,mΓa,m]−1 βa,m, (9.8)

where I is the identity matrix,

Γa,m =



2ω̂a,m1 γ̂a,m1,2 . . . γ̂a,m1,k

γ̂a,m1,2 2ω̂a,m2 γ̂a,m2,3 . . . γ̂a,m2,k

...
...

...
...

...

γ̂a,m1,k . . . γ̂a,mk−1,k 2ω̂a,mk


(9.9)

and the column vector,

βa,m =
[
β̂a,m1 , β̂a,m2 , . . . , β̂a,mk

]
, (9.10)

where ω̂a,mi , γ̂a,mi,j , and β̂a,mi are equal to ω̂a,b,mi , γ̂a,b,mi,j , and β̂a,b,mi found in Equation 8.30

respectively; and 1 ≤ i, j ≤ Nf . Note that the root x∗ in Equation 9.8 is a function of

Lagragian Multiplier λa,m. Substituting Equation 9.8 to Equation 9.5 yields,

g (λa,m) = ζ − E3:6
s [dSCm(Ta, RI,x

∗ (λa,m))] = 0. (9.11)

Equation 9.11 may have several roots. Let,

Ra,m =
{
λa,m1 , λa,m2 , . . . , λa,mNa,m(m)

}
(9.12)

be a set comprised of the roots of Equation 9.11 numbering Na,m(m) which is a function

of voxel label m. For a given λa,mk ∈ Ra,m, the necessary conditions for its corresponding

root x∗ (λa,mk ) (in Equation 9.8) to be a possible solution to the optimisation problem are:

1. λa,mk > 0 [91]

2. x∗ (λa,mk ) must satisfy Equation 9.6 [91]

3. x∗ (λa,mk ) must be found inside the voxel m.
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4. Using the notations in Equation 8.16 and expression 8.15, the x3×3−8, x3×4−8, x3×5−8

and x3×6−8 components of the solution x∗ (λa,mk ) must not simultaneously be zero;

components that denote the number of new tasks at the third to the sixth SOSA.

This prohibition conforms to the restriction emphasised in Section 8.3.2 not to

consider irrelevant treatments.

Among all the solutions (that correspond to various λa,mk s) which satisfy the conditions,

the solution x∗
(
λa,mκ(m)

)
(dependent on voxel label m) which has the least magnitude is

the only solution considered for further analysis. Thus, each voxel can have at most

one considered solution. And among the considered solutions in all voxels, the solution

x∗
(
λa,µκ(m)

)
which has the least magnitude is considered as the solution to the optimisation

problem. Note that Equation 9.6 can have no root that satisfies the conditions for a given

ζ in Equation 9.5.

9.2 Resiliency

This section explores the results of applying the procedures laid out in the last section

to determine the resiliency of each technique from U (defined through Table 5.1). These

results are presented in Table 9.1. The first column of this table contains the techniques

from U. The threshold ζ in Equation 9.2 is at the second column. The components (factor

values) of the solutions/treatments (e.g. 〈1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉) to the optimisation

problems defined by the relationship 9.4 and Equation 9.5 are found under the column

heading xi, where 1 ≤ i ≤ 12. These xi-labelled columns are grouped according to the

SOSA – indicated at the topmost row – to which they correspond, based on expression

8.15. Using the solution to the optimisation problem, the resiliency (e.g. 2.0) of a given

technique (e.g. CBAM) is determined through Equation 9.1 and found under the column

heading R. Note that a given technique at the first column has several pairs of thresholds

at the second column and at the same row as this technique. The resiliency of this

technique is determined for each of these thresholds. The average of the determined
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resiliencies (e.g. 13.429) is found under the column heading E [R]. The set of information

in the same row as that of a technique name is referred to as data group. In each data

group, the value at the row labelled E [xi] (e.g. E [x1] = 1.6) and under the column xi is

the average of the ith component of the solutions in the data group. The value under the

column heading E [dT ] is the average (e.g. 0.964) of E [xi]s over the factors x1, x4, x7 and

x10, i.e. factors that represent the number of new tasks based on expression 8.15. The

value under the column heading E [dR1] (E [dR2]) is the average of E [xi]s over factors

that represent the number of newly broken resources of type R1 (R2).

Table 9.1: Resiliency of techniques at various thresholds

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Technique threshold ζ R E[R ] E[dT ] E[dR 1] E[dR 2]

0.175 3 1 2 1 3 1 1 1 1 2 3 2 45

0.25 1 2 0 2 0 0 0 0 2 3 1 1 24

0.3 3 0 0 1 0 0 1 0 1 0 0 0 12

0.325 2 0 0 1 0 0 1 0 0 0 0 0 6

0.375 0 0 1 1 0 0 1 0 0 0 0 0 3

0.4 1 0 0 0 0 0 0 0 0 1 0 0 2

0.425 1 1 0 0 0 0 0 0 0 0 0 0 2

E[x i] 1.6 0.6 0.4 0.9 0.4 0.1 0.6 0.1 0.6 0.9 0.6 0.4

0.775 3 1 2 0 2 1 3 2 0 1 3 3 51

0.825 0 1 0 1 0 2 0 1 1 0 0 0 8

E[x i] 1.5 1 1 0.5 1 1.5 1.5 1.5 0.5 0.5 1.5 1.5

0.775 2 1 3 0 4 3 2 2 4 2 0 3 76

0.825 3 1 1 0 1 4 0 0 1 1 1 2 35

E[x i] 2.5 1.0 2.0 0.0 2.5 3.5 1.0 1.0 2.5 1.5 0.5 2.5

0.775 2 0 1 2 0 0 2 0 0 0 1 0 14

0.825 3 0 0 0 0 1 0 0 0 1 1 1 13

E[x i] 2.5 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.0 0.5 1.0 0.5

0.775 3 0 0 0 0 0 0 0 1 1 0 0 11

0.825 1 0 1 2 0 0 0 1 1 1 0 1 10

E[x i] 2.0 0.0 0.5 1.0 0.0 0.0 0.0 0.5 1.0 1.0 0.0 0.5

CBAM

McBA

McBAR

MedianBAR

McBAS

0.25

0.13

1.25

55.5 1.25

SOSA

0.964

0.96

13.429

3 4

Factors

29.5

5 6

1.25

0.4

1.125

2.6

0.4

0.4

0.5

13.5 1.25

10.5 1.00

As pointed out in Section 9.1, for a given technique and a given threshold, the solution

to the optimisation problem defined by the relationships 9.4 and Equation 9.5 may not

exist. With CBAM as the given technique, solutions to the optimisation problem exist

at several thresholds. However, only the solutions at selected thresholds ζ in the range

0.175 ≤ ζ ≤ 0.425 are presented in Table 9.1. In any map-based technique (defined in
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Section 6.3 as McBA, McBAR, McBAS or MedianBAR), the solutions to the optimisation

problem are found to exist at two selected thresholds in a range that differs from that of

other map-based techniques. These two selected thresholds are 0.775 and 0.825 and are

common across the different ranges that correspond to all of the map-based techniques.

This commonality is devised to facilitate the comparison of resiliencies of the map-based

techniques. For each technique from U, no solution to the optimisation problem is found

to exist at several selected thresholds outside the range that corresponds to this technique.

Thus, the authors believe that solutions at the thresholds outside this range are unlikely

to exist.

Consider the data group in Table 9.1 at the same row as CBAM. The second to the

bottom row of this group presents a resiliency of 2.0 and a threshold of 0.425. Based on

the definition of resiliency, this data implies that changes in the MOE of at least 2.0 units

will cause a deterioration of the performance of CBAM to 0.425 above that of RI. This

MOE is the one in which the problem from O2 is set, the problem that corresponds to

the treatment (at the second to the bottom row of this data group) which encodes the

changes. Note that in the other rows in the data group, except for the bottom row, if the

degree of changes is greater than 2.0 units the performance of CBAM is still superior to

that of RI but this superiority is less than 0.425. The average of the resiliencies in the

data group is 13.429. Not tabulated, the average of the thresholds in the data group is

0.3214. The data group also demonstrates that a 0.964 average E [dT ] number of new

tasks, a 0.4 average E [R1] number of newly broken resources of type R1 and a 0.4 average

E [R2] number of newly broken resources of type R2 in the MOE cause the deterioration

of the average performance of CBAM to 0.3214 above that of RI; the average is over the

thresholds in the data group.

Based on Table 9.1 and among the map-based techniques, McBAR has the highest

average resiliency over the domain of selected thresholds, 0.775 and 0.825, which averages

to 0.8. In other words, on average over this domain, McBAR can withstand the largest

degree of changes in the MOE before its performance will deteriorate to 0.8 above that
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of RI. Further, McBAR can withstand the highest average E [dT ] increase in number of

tasks, the highest average E [R1] number of newly broken resources of type R1, and the

highest average E [R2] number of newly broken resources of type R2 before its average

performance will deteriorate to 0.8 above that of RI. The averages E [dT ], E [R1] and

E [R2] are over the domain of selected thresholds and are 1.25, 1.25 and 2.6 respectively.

MedianBAR can also withstand the highest average E [dT ] increase in the number

of tasks; and McBA can also withstand the highest average E [R1] number of newly

broken resources of type R1 before their performances will deteriorate in the manner just

described. The averages E [dT ] and E [R1] are both 1.25. The techniques arranged in

descending order of resiliency are: McBAR, McBA, MedianBAR and McBAS.

Each data group in Table 9.1 expresses the finding that the lesser the threshold in this

group, the larger the resiliency that corresponds to this threshold. In the data group in

the same row as McBAR, the threshold of 0.775 corresponds to the resiliency of 76. Based

on the expression, if the resiliency of McBAR is determined at each of the thresholds (all

less than 0.775) in the data group in the same row as CBAM it is expected to be greater

than 76. Thus the average of these expected resiliencies could be greater than the average

(13.429) of the resiliencies in the data group in the same row as CBAM. Therefore, on

the average, McBAR is expected to be more resilient than CBAM. This conclusion is

appropriate since the expected resiliencies correspond to the thresholds that are identical

to those in the data group in the same row as CBAM.

The expected resiliencies of McBAR correspond to the non-existent solutions to the

optimisation problems (defined by the relationship 9.4 and Equation 9.5) with thresholds

in the same row as CBAM. This could be explained as follows: based on the expression

considered in the last paragraph, a solution s to the optimisation problem with given

small threshold (e.g. 0.175) could yield a large resiliency (e.g. 731) of McBAR. Further,

based on Equation 9.1, s can have component factors of large values (e.g. x1 = 8). Thus,

based on Section 9.1, s can be determined using a final dynamical sub-model (described

in Section 8.3.6) valid in a voxel that contains this solution (treatment based on Section

Mapping of Task IDs for CBAR Page 273 of 318



9 Other Facets of the Techniques 9.3 Conclusions on Resiliency

8.3.6). However, all the voxels listed in Table 8.3 contain treatments with factors of small

values (e.g. x1 < 8) due to the restriction in expression 8.18. Thus there is no voxel

in the table that contains s. Therefore, the final dynamical sub-model does not exist.

Consequently, s cannot be found through the process presented in Section 9.1.

9.3 Conclusions on Resiliency

The research performed above proves McBAR to be the most resilient – among all the

techniques from U ⊂ T – under changes in the MOEs in which the problems from O2

are set. Further, the research showed McBAR and other mapped-based techniques (e.g.

McBA, McBAR, McBAS and MedianBAR) from U to be more resilient than CBAM.

Based on the results presented in Section 6.2, the performance of CBAM is manifested

through the limited method to be inferior to each of those of the mapped-based techniques

and superior to other non-mapped-based techniques from T. Thus we confidently claim

that all of the mapped-based techniques are more resilient than all the other techniques

from T. Considering that McBAR is more resilient than any other mapped-based tech-

niques, we claim that McBAR is the most resilient among all techniques from T. We

therefore achieved the third goal of the thesis in this chapter.

The composite models utilised to determine the resiliencies of the techniques from U

are accurate only – as presented in Section 8.3.2 – at small values of their factors which

are environmental-type parameters. A future direction of the above research would be

to investigate the resiliencies of the techniques using composite models accurate at large

values of their factors.

9.4 Intelligence of Techniques

Let us now investigate the intelligence of the techniques from T as defined in Section

Section 2.10.2. For this purpose:
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1. The Kolmogorov complexity K(ρ) in Equation 2.30 is redefined as the number of

CPU cycles in system S spent by a technique (viewed as an agent) τ from T to

solve a sub-problem ρ (e.g. p23) from a set Px of sub-problems. Note that, in

relation to Reinforcement Learning, the solution process is considered as a series of

actions/operations by τ , based on the terminology in Section 2.10.2.

2. The reward for the search of the obtained solution is measured as the hypervolume

of the solutions. The reference point (defined in Section 2.5.1) used to compute

the reward/hypervolume is the maximum objective vector of all solutions to all

simulations of all sub-problems of all problems from L2.

3. The summation in Equation 2.30 is made to take into account all sub-problems from

Px.

4. The Kolmogorov complexity and the reward are denoted as a function of the sim-

ulation index s to account for the simulations (explained in Section 4.4) of these

sub-problems.

5. The average Es [•] of the only summation term in Equation 2.30 is taken over the

simulations.

Consequently, the intelligence of the technique τ in solving all sub-problems from Px is

defined as,

Ψ(τ, x) =
1

|Px|
∑
ρ ∈ Px

Es

[
2−αK(τ,ρ,s)Rτ

ρ,s

]
(9.13)

where its variation is with respect to the parameters or categories x of the sub-problems

from Px; and α is a scaling factor of the Kolmogorov complexity and set equal to 10−10

to cope with numerical limitations of the computing machine in system S. The addi-

tional parameter τ in the Kolmogorov complexity K(τ, ρ, s) indicates which technique

corresponds to this complexity.

The subscript x of the set Px is dropped if it is composed of all sub-problems of all

problems from L2. Its subscript is δ = d when it is composed of all sub-problems ρ2i,s

Mapping of Task IDs for CBAR Page 275 of 318



9 Other Facets of the Techniques 9.5 Measured Intelligence

of some problems from L2, where i is the SOSA; and each of these problems has task

duration changes that abide by Equation A.9 with the given value d of δ. The set Pδ=d

is used to examine the intelligence variation of a technique from T under the different

values of δ. The subscript of Px is γ = c when it is composed of some sub-problems ρ2i,s

of all problems from L2, where each of these sub-problems is set in the ith snapshot taken

immediately after a change of type c in Table 4.2. The set Pγ=c is used to examine the

intelligence variation of a technique from T under the different change types c.

9.5 Measured Intelligence

The intelligence of each technique from T in solving all sub-problems from each of the

sets Pδ=3.0, Pδ=6.0 and P is found, respectively, in the second to the fourth row of Table

9.2. The fourth row reveals McBAR as being the most intelligent amongst all techniques

from T in solving any problem from L2. The second and third rows show that the last

result is true, independent of the two values of δ, 3.0 and 6.0. The techniques arranged in

descending order of intelligence listed in Table 9.2 are: McBAR, McBAS, MedianBAR,

McBA, CBAM, NDLPOP, GIBAR, RI and EDA/P2. This order is closely related to that

of the computing time illustrated in Figure 6.2 and to the performance of the techniques

described in Section 6.2. Table 9.2 shows McBAR and McBAS, which apply a statistical

mean to determine centroids as explained in Section 5.1, to be more intelligent than

MedianBAR which uses the statistical median instead of the mean. This is despite that,

based on Table 6.1, the performance of MedianBAR is as good as that of McBAR and

better than that of McBAS for solving sub-problems from L2. However, based on Equation

9.13, the longer time needed to compute the median rather than the mean could cause

MedianBAR to be inferiority in intelligence than either McBAR or McBAS. Based on

Equation 9.13, the chosen value of the scaling factor could also influence the inferiority of

the intelligence of MedianBAR.

The intelligence of each technique from T in solving sub-problems from Pγ=0, Pγ=1,
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Table 9.2: Average Universal Intelligence with respect to δ

δ McBAR McBAS MedianBAR McBA

3.0 20,210               17,904              16,649                        14,791           

6.0 19,817               17,919              16,505                        14,406           

Average 20,013           17,912           16,577                   14,599        

δ CBAM NDLPOP GIBAR RI EDA/P
2

3.0 12,284    11,844       10,624    10,476    9,101       

6.0 11,979    11,439       10,205    10,076    8,760       

Average 12,131   11,641     10,414   10,276   8,930     

. . ., Pγ=6 is found from the second to the eighth row of Table 9.3 respectively. All of

these rows show McBAR to be the most intelligent technique amongst all techniques

from T independent of the type γ of change – listed in Table 4.2 – that occurs in the

MOE in which the sub-problems are set. The techniques arranged in descending order of

intelligence listed in Table 9.3 are similar to those found in the last paragraph.

Table 9.3: Average Universal Intelligence with respect to change type

Change Type McBAR McBAS MedianBAR McBA

0 30,117           27,377           25,439                   22,693        

1 12,462           10,666           9,777                     8,448          

2 15,334           13,192           12,360                   9,762          

3 4,706             3,920             3,484                     2,931          

4 12,011           10,149           9,248                     8,076          

5 5,406             4,518             3,950                     3,778          

6 9,542             8,231             7,469                     6,032          

Change Type CBAM NDLPOP GIBAR RI EDA/P
2

0 19,262   18,477     16,423   16,198   14,354   

1 6,613     5,452       5,374     6,041     4,764     

2 7,564     7,179       6,326     7,637     5,672     

3 2,073     2,365       1,733     2,118     1,363     

4 6,394     6,848       5,304     5,735     4,318     

5 2,795     2,736       2,325     2,559     1,694     

6 4,561     4,253       3,714     3,696     3,227     

All of these results established McBAR to be the most intelligent technique amongst all

of the techniques from T despite utilising a simple mapping function F to fundamentally

alleviate the performance of GIBAR.
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9.6 Conclusions on Technique’s Intelligence

The research conducted for Sections 9.4 and 9.5 proves McBAR to be the most intelligent

among the techniques from T in solving the problems from L2. As explained in Section

1.4.5, this intelligence defines the efficiency of the techniques in solving the problems.

Thus, McBAR is the most efficient among the techniques. Thereby, the fifth goal of the

thesis is achieved in this chapter.

The last conclusion is true at any of the two values of δ used above as the parameter

of Equation A.9 that models changes in task durations of the problems from L2; at any

type of simultaneous changes in the MOEs in which the problems are set, types that are

listed in Table 4.2; and at any form of PNT that constrained the problems.

The problems from L2 are the ones utilised to determine the intelligence of the tech-

niques from T. A future direction for the research will be to investigate such intelligence

for solving problems from Q2 whereby this intelligence is being modelled in a manner

explained in Chapter 8.
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Chapter 10

The research exhibited in this thesis has tackled the demand for an effective and effi-

cient algorithm to solve many problems from M that is a set of multi-objective dynamic

resource-constrained project scheduling (RCPS) problems, each with time-varying num-

ber of tasks. The thesis concludes by recalling the hypothesis and the thesis goals in

Section 10.1; the processes used and the results revealed in attaining these goals in Section

10.2A; and the summary of the deficiencies of the processes and some future objectives

of the research in Section 10.3.

10.1 Recalled Hypothesis and Goals

As stated in the Chapter 1, it was hypothesised that “the evolutionary and memory-based

algorithm referred to as Mapping of Task IDs for Centroid-Based Adaptation with Ran-

dom Immigrant (McBAR) is an effective and efficient technique to solve several problems

from M”. This hypothesis was supported by the achievement of the five following thesis’

goals:

1. To demonstrate the effectiveness of McBAR for solving problems from L2 ∪ O2 ⊂

M, with each having two conflicting objectives to minimise – cost and duration of

schedules.

2. To legitimise the sub-algorithms of McBAR.

3. To manifest the core algorithm of McBAR as being significant even when applied
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to solve problems from L3 ⊂ M, with each having three objectives to minimise –

the last two problem objectives and the objective to minimise the probability of a

schedule to become infeasible due to the dynamics of the environment in which this

schedule is executed.

4. To exhibit the limitation of McBAR in solving some significant problems from O2 ⊂

M.

5. To present the efficiency of McBAR in solving problems from L2 ⊂ M.

10.2 Summary of Methodology and Results

A summary of the research procedures and results that led to the achievement of the

thesis’ goals is now presented. The first goal was achieved initially by undertaking

research on the deficiencies of the current techniques in the literature applied to solve

scheduling problems, such as the technique referred to as Centroid Based-Adaptation

with Random Immigrant (CBAR). CBAR was applied in our previous work [40] to solve

multi-objective dynamic RCPS problems with a fixed number of tasks. We found CBAR

to be inapplicable to solve any problem from M, i.e. a problem with time-varying number

of tasks. This inapplicability was remedied by innovating CBAR. However, despite the

remedy, the performance (solution searching ability) of the innovated CBAR for solving

problems from M started to degrade when new tasks appeared, tasks which were absent

before any change occurred in the environments in which the problems were set. This

degradation was neutralised by the several designed algorithms added to CBAR; thereby

CBAR was renamed McBAR.

The second step for achieving the first thesis’ goal was the creation of several dynamic

environments in which the performance of McBAR – for solving the dynamic problems

from L2 ∪ L3 ∪ O2 ⊂ M set in these environments – was manifested. Each of

the dynamic environments was regarded as a sequence of static environments, each being

a snapshot of the dynamic environment taken right after each change to this dynamic
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environment. Each of the dynamic problems was regarded as a sequence of sub-problems

set in the similarly ordered snapshots of the dynamic environment in which it was set.

The third step in achieving the first thesis’ goal was as follows. The effectiveness of

McBAR was demonstrated in two ways – the limited and the general methods. In the

limited method, each technique from T (a set of techniques investigated in the thesis)

was applied to solve sub-problems of dynamic problems from L2 ⊂ M, each dynamic

problem being set in a dynamic environment that had a small or large degree of change.

This application showed that, among all the techniques from T, McBAR has generally

the best performance for solving such sub-problems, i.e. it is effective. The performance

of McBAR was found to be best for solving the sub-problems set in snapshots taken right

after the first occurrence of new tasks in the dynamic environments.

In the general method, McBAR was applied to solve dynamic problems whose para-

metric values and/or categorical types were designed using Design of Experiment [141].

The obtained solutions were utilised to build an empirical model, following Response Sur-

face Methodology [141]. Such a model predicts the performance of McBAR when McBAR

solves the sub-problems of dynamic problems from O2 ⊂ M, where these dynamic prob-

lems are set in dynamic environments with a smaller degrees of changes than those in

the dynamic environments in which the dynamic problems from L2 are set. A similar

procedure was applied to build an empirical performance model of some techniques from

T other than McBAR. Through all these empirical models, McBAR was manifested to

perform best for solving dynamic problems from O2.

The second thesis’ goal was attained by extending the core algorithm of McBAR to

solve problems from L3 ⊂ M. The generated solutions/schedules proved, despite the

extension, the effectiveness of the core algorithm based on their properties such as financial

worth, execution costs and durations.

The third thesis’ goal was achieved firstly by the development of an equation that

models the resiliency of some techniques from T. Here resiliency is a measure of the

limitation of the techniques. It is defined as the degree of change in an environment
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whereby the performance of a technique from T will deteriorate to a given level above the

performance of a benchmark technique for solving the same problems. The performance

is for solving problems from O2 set in the environment. Secondly, Lagrange Optimisation

[91] was applied to the above-mentioned empirical models to determine the resiliency of

some techniques from T, whereby McBAR was found to be the most resilient.

The fourth thesis’ goal was attained by the independent application of the limited and

the general methods. In the application of the limited method, each technique from T was

applied to solve problems from L2. The generated solutions were utilised to support the

legitimacy of the sub-algorithms of McBAR. Indeed, several sub-algorithms of McBAR

were found to be legitimate. In the application of the general method, the above-declared

empirical models were successfully used to prove the legitimacy of the sub-algorithms over

the problems from O2.

The fifth thesis’ goal was realised firstly by defining the efficiency of each technique

from T through a researched measure of algorithm intelligence. Second, this measure

was applied to the solutions obtained by each technique for solving problems from L2.

The research had proven McBAR to be the most intelligent (i.e. most efficient) technique

among all the techniques from T.

A conclusion, covered in and related to the thesis but beyond the original objectives

above, points to the mapping function F as being the possible root cause of the superiority

of techniques considered in this thesis whose core algorithm includes this function, the

superiority for solving several dynamic and complex problems from M. As explained in

Section 5.5, this function maps an ID of a given task to a value close to already mapped

IDs of tasks with task precedence order (explained in Section 5.5) equal to that of the

given task, where task precedence order is the maximum number of task-representing

nodes traversed from a considered task to the start of a precedence network of tasks.

The function is an identity for the first ID it mapped. Further, the IDs in genes of a

genotype are sequentially mapped by the function from the ID in the first to the last gene

of the genotype. As explained in Section 5.4, the effect of this function is to transform
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the search space associated to a past problem from M in order to reduce the number

of clusters in this search space, clusters of the genotypes of non-dominated solutions to

the problem. The representative of the clusters, after being reduced in number, was

explained in Section 5.4 as possibly being beneficial in determining solutions to a current

problem from M that is closely related to the past problem. The characteristics of

this representative are influenced by the mapping function, such that this function can

possibly be the root cause of the referred superiority. Sections 6.3 and 8.5 prove that the

function as a legitimate sub-algorithm of McBAR and that the techniques which contain

this function perform (performance for solving several problems from M) better than

those considered in this thesis that did not.

In conclusion, our hypothesis was successfully supported, in that the effectiveness and

efficiency of McBAR for solving many problems from M was established.

10.3 Future Work

The future direction for research arising from this thesis is to extend the above-emphasised

superiority of McBAR in effectiveness (for solving problems from L2 and O2), efficiency

(for solving problems from L2) and resiliency (for solving problems from O2) over all

problems from M; over various EA approaches, such as Genetic Algorithm, Differen-

tial Evolution, and Augmented Simulated Annealing; and over diverse MOEAs such as,

SPEA2 [238], PDE [2], and VEGA [179]. McBAR needs to be proven as effective for

solving problems from M with four conflicting objectives – the three above-noted objec-

tives and the objective to minimise the difference between the starting times of the same

unfinished task in two schedules which are solutions to sub-problems set in the current

and last snapshots. The last objective is important in order to minimise rescheduling

tasks due to changes in the environment where the schedules are implemented. The

effectiveness (for solving problems from L3) of McBAR’s core algorithm and the legiti-

macy (manifested in solving problems from L2 and O2) of McBAR’s component need to
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be investigated over four or more conflicting objectives as well. It is hoped that future

researches will be directed toward the areas suggested.
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Appendix

A.1 Mathematical Formulation of the Static

Sub-Problems from Γi

The partially described sub-problems of problems from L2 ∪ L3 and O2 in Sections 4.2 and

4.3, respectively, will now formally be defined. Note that the sub-problems are elements

of Γi, where index i is the SOSA of MOEs in which the problems are set; and has the

range, 0 ≤ i ≤ L, with given L.

1. Inputs:

(a) A set T of non-pre-emptive tasks:

T = {T0, T1, T2, ..., TN , TN+1}, (A.1)

where T0 and TN+1 are not tasks but, respectively, central base and ending

locations; and N as the total number of executable tasks. In the foregoing

discussion, tasks refer to executable tasks only, except when explicitly stated.

Each task Ti will have:

i. A duration di.

ii. A vector R = {Ri} of required resources by Ti: Ri = {ri,j} with i =

1, ..., Nrt; Nrt is the number of resource types; j = 1, ..., Nit; Nit is the

number of items per type; and ri,j is the jth item of resource Ri.

(b) A PNT Ntw is expressed as,

Ntw = (T,Arc), (A.2)
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where Arc is a set of directed arcs. Pred(j) defines a set of direct predecessors,

while Succ(j) is the set of direct successors of the task j. Each task Ti ∈ T

has a vector Si = {si,j} where,

si,j =

 1 task j succeeds i

0 otherwise.
(A.3)

(c) A matrix of operational costs C = {ci,j,k} , i = 0, .., N ; j = 0, ..., N , and

k = 1, ..., Nrt. Here ci,j,k is the cost of moving resource type k from task i to

task j. ci,0,k = 0 ∀ i, k, i.e., no cost is imposed on the return of items to base

(the starting point T0)

(d) The current location of Ri’s j
th items at time t is denoted as lci,j,t. Their

collection is denoted by lci,t =
{
lci,j,t
}

, j = 0, . . . , Nit. j = 0 means the item is

at the central base (T0).

(e) The previous location of Ri’s j
th items at time t is denoted as lpi,j,t. Their

collection is denoted by lpi,t =
{
lpi,j,t
}

. j = 0 means the item was at the central

base (T0).

(f) The state of Ri’s j
th items being moved or not at time t is denoted as mv

i,j,t.

Their collection is denoted by mv
i,t =

{
mv
i,j,t

}
:

mv
i,j,t =

 1 lci,j,t 6= lpi,j,t

0 otherwise.
(A.4)

2. Constraints:

(a) Time constraint: If task i is a predecessor of task j, then it needs to be com-

pleted before starting task j,

sti + di ≤ stj, (A.5)

∀ j, and ∀ i ∈ Prec(j)
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(b) Resource constraint: the amount of being-used resources cannot exceed the

total amount,

ri,t ≤ Ri, (A.6)

∀ i and ∀ t, where ri,t is the total number of being-used items of resource type

Ri at time t.

3. Objective functions:

(a) Makespan (fms) is the time needed to execute an entire schedule, i.e., equal to

the end time of the last task to be accomplished,

fms = stl + dl, (A.7)

where stl and dl are the starting time and the duration of the last task respec-

tively.

(b) Cost of resource operations (fcs): cost of moving resources between locations

of tasks,

fcs =
∑

t=1→Tmax

∑
j=1→Nrt

∑
k=1→Nit

mv
jkt × clpjkt,lcjkt,j. (A.8)

(c) Probability of a schedule to fail due to resource constraint violation defined

in Equation 2.19. This probability is determined through a MCS that utilises

Equation 2.18. Note that this objective is only minimised to determine solu-

tions to sub-problems of problems from L3.

4. Outputs: The products in determining solutions to the sub-problem from M are:

(a) A vector of start time st = {sti}, with i = 1, ..., N and sti as the starting time

of task Ti

(b) The genotype of task IDs is defined in Equation 4.1.

(c) The solution to any of the sub-problems is a schedule defined in Equation 4.2.
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A.2 Mathematical Formulation of the Dynamic Prob-

lems from M

Changes in problem factors, due to environmental dynamics, occur at times denoted as

τ .

1. Duration: The dynamic duration of a task Ti is defined as,

d′i(τ) = Nm(di, δ) + δ, (A.9)

where di is the pre-defined duration of task with ID i; Nm is a normal distribution;

and δ is the standard deviation. Note that this equation is also used to generate

different task duration across simulations of any sub-problem of any problem from

M. Constraint expression A.5 is rewritten as follows,

sti + d′i(τ) ≤ stj. (A.10)

2. Availability of resources: The availability status of a resource is,

Ai,j,τ = Av(τ) ∗ lci,j,τ , (A.11)

where Av(τ) takes a value of one, zero, or negative one that correspond to resource

being available, broken or unavailable but at the location lci,j,τ .

3. Number of Tasks: Each problem from M only has an increase in the total number

of tasks as explained in Section 4.1.1. The function representing this increase is,

N c
tw = Γtask (T p, Aprc, N

p, N c) , (A.12)

where T s,p, Aprc, and Np are the sets of tasks and arcs, and the total number of tasks

from the previous change respectively. Further, N c
tw and N c are the new PNT and
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the current total number of tasks respectively.

4. Parameters after a change: Change is applied to the indices of tasks I =

〈I1, I2, ..., INc〉 after any type of change. However, change is applied to the PNT

N c
tw of Equation A.12 and the structures of lci,t, lpi,t and mv

i,t (defined in Items 1d to

1f respectively) only when there is a change in the total number of tasks.
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T. Bäck, editor, Seventh International Conference on Genetic Algorithms, pages

299–306. Morgan Kaufmann, 1997.

[143] N. Muhammad, Y. H. P. Manurung, R. Jaafar, S. K. Abas, G. Tham, and E. Haru-

man. Model development for quality features of resistance spot welding using multi-

Mapping of Task IDs for CBAR Page 306 of 318



objective taguchi method and response surface methodology. Journal Intelligent

Manufacturing, 24(6):1175–1183, 2013.

[144] R. H. Myers and D. C. Montgomery. Response Surface Methodology. Process and

Product Optimization Using Designed Experiments. John Wiley and Sons Inc., 1995.

[145] A. Nagar, J. Haddock, and S. Heragu. Multiple and bi-criteria scheduling: a liter-

ature survey. European Journal of Operational Research, 81(1):88104, 1995.

[146] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan. A computational study of

representations in genetic programming to evolve dispatching rules for the job shop

scheduling problem. IEEE Transactions on Evolutionary Computation, 17(5):621–

639, 2013.

[147] S. Nguyen, M. Zhang, M. Johnston, and K. C. Tan. Automatic design of scheduling

policies for dynamic multi-objective job shop scheduling via cooperative coevolution

genetic programming. IEEE Transactions on Evolutionary Computation, 18(2):193–

208, APRIL 2014.

[148] T.B.M.J. Ouarda and J.W. Labadie. Chance-constrained optimal control for mul-

tireservoir system optimization and risk analysis. Stochastic Environmental Re-

search and Risk Assessment, 15:185–204, 2001.

[149] R. Padman and S. Roehrig. A genetic programming approach for heuristic selection

in constrained project scheduling. In 5th INFORMS Computer Science Technical

Section Conference, Eds. RS Barr, RV Helgason, JL Kennington, pages 405–421,

1997.

[150] A. J. Page and T. J. Naughton. Dynamic task scheduling using genetic algorithms

for heterogeneous distributed computing. In Proceedings of the 19th IEEE/ACM

International Parallel and Distributed Processing Symposium, Denver, Colorado,

USA, April 2005. IEEE Computer Society.

Mapping of Task IDs for CBAR Page 307 of 318



[151] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. BOA: The bayesian optimization

algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO-99), 1999.

[152] X. Peng, X. Gao, and S. Yang. Environment identification-based memory scheme

for estimation of distribution algorithms in dynamic environments. Soft Computing,

15:311–326, 2011.

[153] M. V. F. Pereira. Optimal stochastic operations scheduling of large hydroelectric

systems. Electrical Power and Energy Systems, 11(3):161–169, 1989.

[154] C. W. Pickardt, T. Hildebrandt, J. Branke, J. Heger, and B. Scholz-Reiter. Evo-

lutionary generation of dispatching rule sets for complex dynamic scheduling prob-

lems. International Journal on Production Economics, 145:67–77, 2013.

[155] M. Pickett, D. Miner, and T. Oates. Essential phenomena of general intelligence. In

Proceedings of the First AGI Conference, eds. Wang, P., Goertzel, B., and Franklin,

S. IOS Press, Amsterdam, 2008.

[156] M. L. Pinedo. Scheduling: theory, algorithms, and systems 4th ed. New York :

Springer, 2012.

[157] A. Popov and H. Werner. Efficient design of low-order H∞ optimal controllers using

evolutionary algorithms and a bisection approach. In Proceedings of the joined IEEE

Conference on Computer Aided Control System Design, International Conference on

Control Applications and the IEEE International Symposium on Intelligent Control,

pages 760–765, Munich, Germany, 2006.

[158] Wikipedia Post. Watson (computer). http://en.wikipedia.org/wiki/Watson_

(computer).

[159] R. C. Purshouse and P. J. Fleming. Evolutionary multi-objective optimisation: An

exploratory analysis. In Proceedings of the 2003 Congress on Evolutionary Compu-

Mapping of Task IDs for CBAR Page 308 of 318



tation (CEC2003), Canberra, Australia, volume 3, pages 2066–2073. IEEE Press,

2003.

[160] J. C. Quinton, J. C. Buisson, and F. Perotto. Anticipative coordinated cognitive

processes for interactivist and piagetian theories. In Proceedings of the First AGI

Conference, eds. Wang, P., Goertzel, B., and Franklin, S. IOS Press, Amsterdam,

2008.

[161] C. L. Ramsey and J. J. Grefenstette. Case-based initialization of genetic algorithms.

In Proceedings of International Conference on Genetic Algorithms, S. Forrest, Ed.,

pages 84–91, 1993.

[162] A. S. Raza and A. Akgunduz. A comparative study of heuristic algorithms on

economic lot scheduling problem. Computers & Industrial Engineering, 55(1):94–

109, 2008.

[163] S. A. Raza, A. Akgunduz, and M. Y. Chen. A tabu search algorithm for solving

economic lot scheduling problem. Journal on Heuristics, 12(6):413–426, 2006.

[164] C. Reeves and H. Karatza. Dynamic sequencing of a multiprocessor system: A

genetic algorithm approach. Springer-Verlag, Berlin, Germany, 1993.

[165] E. Ridge and D. Kudenko. Analyzing heuristic performance with response surface

models: prediction, optimization and robustness. In Hod Lipson, editor, Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO-2007), pages

150–157. ACM, 2007.

[166] E. Ridge and D. Kudenko. Tuning the performance of the MMAS heuristic. In

Thomas Sttzle, Mauro Birattari, and Holger H. Hoos, editors, SLS, volume 4638 of

Lecture Notes in Computer Science, pages 46–60. Springer, 2007.

[167] B. Roorda. An algorithm for sequential tail value at risk for path-independent

payoffs in a binomial tree. Annals Operation Research, 181(1):463–483, 2010.

[168] M. R. Rose and G. V. Lauder. Adaptation. Academic Press, 1996.

Mapping of Task IDs for CBAR Page 309 of 318



[169] P.J. Ross. Taguchi techniques for quality engineering. McGraw-Hill, 1988.

[170] B.C. Routara, A.K. Sahoo, A.K. Parida, and P.C. Padhi. Response surface method-

ology and genetic algorithm use to optimize the cutting condition for surface rough-

ness parameters in CNC turning. In International Conference on Modeling, Op-

timization and Computing (ICMOC, 2012), volume 38, pages 1893–1904. Elsevier

Ltd., 2012.

[171] C. Rovelli. Quantum gravity. Cambridge, UK ; New York : Cambridge University

Press, 2004.

[172] C. Russ and A. Walz. MACSIMA: On the effects of adaptive negotiation behavior

in agent-based supply networks. In Lars Braubach, Wiebe van der Hoek, Paolo

Petta, and Alexander Pokahr, editors, MATES, volume 5774 of Lecture Notes in

Computer Science, pages 128–140. Springer, 2009.

[173] A. Ruszczynski and A. Shapiro. Stochastic programming. Handbooks in Operations

Research and Management Science, vol. 10. Elsevier Science B.V., Amsterdam,

2003.

[174] E. Ryan, R. M. A. Azad, and C. Ryan. On the performance of genetic operators and

the random key representation. In Maarten Keijzer, Una-May O’Reilly, Simon M.

Lucas, Ernesto Costa, and Terence Soule, editors, EuroGP, volume 3003 of Lecture

Notes in Computer Science, pages 162–173. Springer, 2004.

[175] I. Sabuncuoglu and S. Goren. Hedging production schedules against uncertainty

in manufacturing environment with a review of robustness and stability research.

International Journal on Computer Integrated Manufacturing, 22(2):138–157, 2009.

[176] S. J. Sadjadi, R. Soltani, M. Izadkhah, F. Saberian, and M. Darayi. A new nonlinear

stochastic staff scheduling model. Scientia Iranica, 18(3):699–710, 2011.

[177] M. Safea, S. M. Khazraeeb, P. Setoodeha, and A. H. Jahanmiria. Model reduction

and optimization of a reactive dividing wall batch distillation column inspired by re-

Mapping of Task IDs for CBAR Page 310 of 318



sponse surface methodology and differential evolution. Mathematical and Computer

Modelling of Dynamical Systems, 19(1):29–50, 2013.

[178] A. Salhi, J. A. V. Rodriguez, and Q. Zhang. An estimation of distribution algorithm

with guided mutation for a complex flow shop scheduling problem. In Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO-2007), volume

1–2, pages 570–576, 2007.

[179] J. D. Schaffer. Multiple objective optimization with vector evaluated genetic algo-

rithms. In Proceedings of the International Conference on Genetic Algorithms and

their Applications, volume 3, pages 93–100, 1985.

[180] R. Scheffermann, M. Bender, and A. Cardeneo. Robust solutions for vehicle routing

problems via evolutionary multiobjective optimization. In CEC’09: Proceedings of

the Eleventh conference on Congress on Evolutionary Computation, pages 1605–

1612, Piscataway, NJ, USA, 2009. IEEE Press.

[181] M. Schoenauer and Z. Michalewicz. Evolutionary computation: An introduction.

Control and Cybernetics, 26:307 338, 1997.

[182] G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461–

464, 1978.

[183] S. K. Shakya. Probabilistic model building genetic algorithm (PMBGA): A sur-

vey. Technical report, Computational Intelligence Group, School of computing, The

Robert Gordon University, Aberdeen, Scotland, UK, 2003.

[184] D. Shilane, J. Martikainen, and S. J. Ovaska. Time-dependent performance com-

parison of evolutionary algorithms. In Mikko Kolehmainen, Pekka J. Toivanen, and

Bartlomiej Beliczynski, editors, International Conference on Adaptive and Natural

Computing Algorithm, volume 5495 of Lecture Notes in Computer Science, pages

223–232. Springer, 2009.

Mapping of Task IDs for CBAR Page 311 of 318



[185] A. B. Simões and E. Costa. An immune system-based genetic algorithm to deal with

dynamic environments: Diversity and memory. In Proc. of the Sixth International

Conference on Neural Networks and Genetic Algorithms (ICANNGA’03), pages

168–174, April 2003.

[186] R. Slowinski. Advances in project Scheduling, chapter Multiobjective project

scheduling under multiple-category resource constraints. Elsevier, 1989.

[187] A. Sprecher and A. Drexl. Multi-mode resource-constrained project scheduling by a

simple, general and powerful sequencing algorithm. European Journal of Operational

Research, 107:431–450, 1998.

[188] N. Srinivas and K. Deb. Multiobjective optimization using nondominated sorting

in genetic algorithms. Journal of Evolutionary Computation, 2(3):221–248, 1994.

[189] D. Stark. Heterarchy: Distributing intelligence and organizing diversity. In The

Biology of Business: Decoding the Natural Laws of Enterprise, pages 153–179, San

Francisco, CA, 1999. Jossey-Bass.

[190] R. S. Sutton and A. G. Barto. Reinforcement learning : an introduction. MIT Press,

Cambridge, Mass., 1998.

[191] V. Tcheprasov, W. F. Punch, G. Ragatz, I. P. Norenkov, and E.D. Goodman. A

genetic algorithm to generate a predictive planner for assembly of printed circuit

boards. Review of Applied and Industrial Mathematics, 3(5):733–749, 1996.

[192] A. Thamarajah. A self-organizing model for scheduling distributed autonomous

manufacturing systems. Cybernetics Systems, 29(5):461–480, 1998.

[193] R. Tins and S. Yang. Use of the q-Gaussian mutation in evolutionary algorithms.

Soft Computing, 15(8):1523–1549, 2011.

[194] T. Tometzki and S. Engell. Risk management in production planning under uncer-

tainty by multi-objective hybrid evolutionary algorithms. In S. Pierucci and B.G.

Mapping of Task IDs for CBAR Page 312 of 318



Ferraris, editors, 20th European Symposium on Computer Aided Process Engineer-

ing, volume 28 of Computer-Aided Chemical Engineering, pages 151–156, 2010.

[195] M. Tripathi, S. Agrawal, and M. K. Pandey. Real world disassembly modeling and

sequencing problem: Optimization by algorithm of self-guided ants (asga). Robotics

And Computer-Integrated Manufacturing, 25(3):483–496, 2009.

[196] M. Tripathi, G. Kuriger, and H. da Wan. An ant based simulation optimization for

vehicle routing problem with stochastic demands. In Ann Dunkin, Ricki G. Ingalls,

Enver Ycesan, Manuel D. Rossetti, Ray Hill, and Bjrn Johansson, editors, Winter

Simulation Conference, pages 2476–2487. WSC, 2009.

[197] S. Tustsui and A. Ghosh. Genetic algorithms with a robust solution searching. IEEE

Transactions on Evolutionary Computation, 1(3):201–208, 1997.

[198] C. J. Tzeng and R. Y. Chen. Optimization of electric discharge machining process

using the response surface methodology and genetic algorithm approach. Interna-

tional Journal of Precision Engineering and Manufacturing, 14(5):709–717, 2013.

[199] N. Umang and M. Bierlaire. Real time recovery in berth allocation problem in bulk

ports, 2012.

[200] R.K. Ursem. Multinational GAs: Multimodal Optimization Techniques in Dynamic

Environments. In Proceedings of the Genetic and Evolutionary Computation Conf.

(GECCO-2000), pages 19–26. San Francisco, CA: Morgan Kaufmann, 2000.

[201] US Department of the Army. FM 5-0: Army Planning and Orders Production,

2005.

[202] A. S. Uyar and A. E. Harmanci. A new population based adaptive dominance

change mechanism for diploid genetic algorithms in dynamic environments. Soft

Computing, 9(11):803–815, 2005.

[203] P. Valckenaers and H. Van Brussel. Holonic manufacturing execution systems. CIRP

Annals - Manufacturing Technology, 54(1):427–432, 2005.

Mapping of Task IDs for CBAR Page 313 of 318



[204] H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. Reference

architecture for holonic manufacturing systems: PROSA. Computers & Industrial

Engineering, 37(3):255–274, 1998.

[205] S. Van de Vonder, E. Demeulemeester, and W. Herroelen. A classification of

predictive-reactive project scheduling procedures. Technical report, Katholieke Uni-

versiteit Leuven, 2007.

[206] A. Viana and J. P. de Sousa. Using metaheuristics in multiobjective resource con-

strained project scheduling. European Journal of Operational Research, 120(2):359–

374, 2000.

[207] A. E. P. Villa, W. Duch, P. Erdi, F. Masulli, and G. Palm, editors. Artificial

Neural Networks and Machine Learning, volume 7552 of Lecture Notes in Computer

Science. Springer, 2012.

[208] S. Vonder, E. Demeulemeester, and W. Herroelen. Proactive heuristic procedures

for robust project scheduling: An experimental analysis. European Journal of Op-

erational Research, 189(3):723–733, 2008.

[209] L. Wang and C. Fang. An effective estimation of distribution algorithm for the multi-

mode resource-constrained project scheduling problem. Computers & Operation

Research, 39(2):449–460, 2012.

[210] M. Wang, J. Dong, W. Wang, J. Zhou, Z. Dai, X. Zhuang, and X. Yao. Optimal

design of medium channels for water-assisted rapid thermal cycle mold using multi-

objective evolutionary algorithm and multi-attribute decision-making method. In-

ternational Journal of Advanced Manufacturing Technology, 68:2407–2417, 2013.

[211] Y. M. Wang, Q. J. Liu, and T. Yu. A reinforcement learning approach to dynamic

optimization of load allocation in AGC system. In 2009 IEEE Power and Energy

Society General Meeting, volume 1–8, pages 3704–3709, 2009.

Mapping of Task IDs for CBAR Page 314 of 318



[212] K. Weicker. An analysis of dynamic severity and population size. In M. Schoenauer,

K. Deb, G. Rudolph, X. Yao, E. Lutton, J. J. M. Guervs, and H.-P. Schwefel, editors,

PPSN, volume 1917 of Lecture Notes in Computer Science, pages 159–168. Springer,

2000.

[213] R. L. While, P. Hingston, L. Barone, and S. Huband. A faster algorithm for cal-

culating hypervolume. IEEE Transactions Evolutionary Computation, 10(1):29–38,

2006.

[214] K. Willick, S. Wesolkowski, and M. Mazurek. Multiobjective evolutionary algo-

rithm with risk minimization applied to a fleet mix problem. In IEEE Congress on

Evolutionary Computation, pages 1–7. IEEE, 2010.

[215] M. Wineberg and F. Oppacher. Enhancing the GAs ability to cope with dynamic

environments. In Proceedings of Genetic and Evolutionary Computation Conference

D.Whitley et al., Eds., pages 3–10, 2000.

[216] L. Wu, K.L. Yick, S.P. Ng, and J. Yip. Application of the Box-Behnken design

to the optimization of process parameters in foam cup molding. Expert Systems

Applications, 39(9):8059–8065, 2012.

[217] M. C. Wu and W. J. Chang. A multiple criteria decision for trading capacity between

two semiconductor fabs. Expert Systems Applications, 35(3):938–945, 2008.

[218] Y. Wu, Y. Wang, X. Liu, and J. Ye. Multi-population and diffusion UMDA for

dynamic multimodal problems. Journal of Systems Engineering and Electronics,

21(5):777–783, 2010.

[219] Y. H. Wu. Multi-objective optimization design of vehicle clutch diaphragm spring.

In 2nd Internationl Conference on Intelligent Computation Technology and Automa-

tion, volume 3, pages 194–197, 2009.

Mapping of Task IDs for CBAR Page 315 of 318



[220] H. Xu, W. Liu, and H. Chen. Multiple objectives optimization problems in sup-

ply chain management under dynamic and stochastic circumstance. Business and

Information Management, International Seminar on, 1:339–342, 2008.

[221] J. Xu, Y. Zhu, B. Jiang, and Z. Wang. Robust operation strategy design for an elec-

tronic market enabled supply chain with uncertain variable costs. In ICMECG ’09:

Proceedings of the 2009 International Conference on Management of e-Commerce

and e-Government, pages 359–362, Washington, DC, USA, 2009. IEEE Computer

Society.

[222] J. Yang, H. Xu, L. Pan, P. Jia, F. Long, and M. Jie. Task scheduling using bayesian

optimization algorithm for heterogeneous computing environments. Applied Soft

Computing, 11(4):3297–3310, 2011.

[223] S. Yang. Genetic algorithms with memory and elitism based immigrants in dynamic

environments. IEEE Transactions on Evolutionary Computation, 16(3):385–416,

2008.

[224] S. Yang and X. Yao. Population-based incremental learning with associative mem-

ory for dynamic environments. IEEE Transactions on Evolutionary Computation,

12(5):542–561, 2008.

[225] Y. Yang and J.M. Lee. Probabilistic modeling and dynamic optimization for per-

formance improvement and risk management of plant-wide operation. Computers

& Chemical Engineering, 34(4):567–579, 2010.

[226] E. Yeguas, R. Joan-Arinyo, and M. V. Luzn. Modeling the performance of evolu-

tionary algorithms on the root identification problem: A case study with PBIL and

chc algorithms. Evolutionary Computation, 19(1):107–135, 2011.

[227] F. Yu, F. Tu, and K. R. Pattipati. Integration of a holonic organizational control ar-

chitecture and multiobjective evolutionary algorithm for flexible distributed schedul-

ing. IEEE Transactions on Systems, Man, and Cybernetics, Part A, 38(5):1001–

1017, 2008.

Mapping of Task IDs for CBAR Page 316 of 318



[228] X. Yu, Y. Jin, K. Tang, and X. Yao. Robust optimization over time - a new

perspective on dynamic optimization problems. In IEEE Congress on Evolutionary

Computation, pages 1–6. IEEE, 2010.

[229] B. Zeng, J. Wei, and J. Zhang. Optimal deployment strategy of sensing platform

based on multi-objective genetic algorithm. IEEE International Conference on In-

formation and Automation, 1–4:35–40, 2008.

[230] H. Zhang, Z. Jiang, and H. Hu. Multi-criteria dynamic scheduling methodology

for controlling a semiconductor wafer fabrication system. In IEEE International

Conference on Automation Science and Engineering, volume 3, pages 79–84, 2007.

[231] L. Zhang, L. Falzon, M. Davies, and I. Fuss. On relationships between key concepts

of operational level planning. In In Proceedings of 5th International Command and

Control Research and Technology Symposium, 2000.

[232] L. Zhang, L. Falzon, M. Davies, and I. Fuss. On relationships between key concepts

of operational level planning. In Proceedings of 5th International Command and

Control Research and Technology Symposium, 2000.

[233] Y. Zhang and X. Li. Estimation of distribution algorithm for permutation flow shops

with total flowtime minimization. Computers & Industrial Engineering, 60(4):706–

718, 2011.

[234] Y. Zhang and P. Rockett. Evolving optimal feature extraction using multi-objective

genetic programming: a methodology and preliminary study on edge detection. In

Hans-Georg Beyer and Una-May O’Reilly, editors, GECCO, pages 795–802. ACM,

2005.

[235] J. Zhou, L. Yu, S. Mabu, K. Hirasawa, J. Hu, and S. Markon. Service area-based

elevator group supervisory control system using gnp with RL. In SICE-ICASE

International Joint Conference 2006, Bexco, Busan, Korea, volume 1–13, pages

3028–3033, 2006.

Mapping of Task IDs for CBAR Page 317 of 318



[236] G. Zhu, J. Bard, and G. Yu. Disruption management for resource-constrained

project scheduling. Journal of the Operational Research Society, 56:365–381, 2005.

[237] E. Zitzler. Evolutionary algorithms for multiobjective optimization: Methods

and applications. Ph.D. dissertation, Swiss Federal Inst. Technol. (ETH), Zurich,

Switzerland, 1999.

[238] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto

evolutionary algorithm for multiobjective optimization. In K. C. Giannakoglou,

D. T. Tsahalis, J. Periaux, K. D. Papailiou, and T. Fogarty, editors, Evolutionary

Methods for Design Optimization and Control with Applications to Industrial Prob-

lems, pages 95–100. Int. Center for Numerical Methods in Engineering (Cmine),

2001.

[239] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A comparative

case study and the strength pareto approach. IEEE Transactions on Evolutionary

Computation, 3(4):257 – 271, 1999.

[240] E. Zitzler, L. Thiele, and K. Deb. Comparision of multiobjective evolutionary algo-

rithms: Emprical results. Evolutionary Computation, 8(1):173–195, 2000.

[241] X. Zuo, H. Mo, and J. Wu. A robust scheduling method based on a multi-objective

immune algorithm. Information Science, 179(19):3359–3369, 2009.

Mapping of Task IDs for CBAR Page 318 of 318


	Application of Memory-Based Approach to Multi-Objective Optimisation on Dynamic Resource-Constrained Project Scheduling with Time-varying Number of Tasks
	Dedication
	Contents
	List of Reserved Symbols
	List of Tables
	List of Figures
	Abstract
	Copyright
	Acknowledgements

	Chapter 1 Introduction
	Chapter 2 Background Knowledge
	Chapter 3 Literature Review
	Chapter 4 Test Environments
	Chapter 5 Techniques from T
	Chapter 6 Effectiveness of McBAR
	Chapter 7 Performance of McBAR on L3
	Chapter 8 Response Surface Methodology (RSM)
	Chapter 9 Other Facets of the Techniques
	Chapter 10 Conclusions
	Appendix A.1 Mathematical Formulation of the Static Sub-Problems from Ti
	Appendix A.2 Mathematical Formulation of the Dynamic Problems from M
	Bibliography



