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Abstract

Salient object detection aims to locate objects that capture human

attention within images. Previous approaches often pose this as a

problem of image contrast analysis. In this work, we model an im-

age as a hypergraph that utilizes a set of hyperedges to capture the

contextual properties of image pixels or regions. As a result, the

problem of salient object detection becomes one of finding salient

vertices and hyperedges in the hypergraph. The main advantage of

hypergraph modeling is that it takes into account each pixel’s (or re-

gion’s) affinity with its neighborhood as well as its separation from

image background. Furthermore, we propose an alternative approach

based on center-versus-surround contextual contrast analysis, which

performs salient object detection by optimizing a cost-sensitive sup-

port vector machine (SVM) objective function. Experimental results

on four challenging datasets demonstrate the effectiveness of the pro-

posed approaches against the state-of-the-art approaches to salient

object detection.

In addition to a novel method for salient object detection, we tackle

scene text detection, a challenging research problem in the both vi-

sion and document analysis community, from the saliency detection

prospective. Motivated by the need to consider the widely varying

forms of natural text, we propose a bottom-up approach to the prob-

lem which reflects the ‘characterness’ of an image region. In this

sense our approach mirrors the move from saliency detection methods

to measures of ‘objectness’. In order to measure the characterness

we develop three novel cues that are tailored for character detection,

and a Bayesian method for their integration. Because text is made up



of sets of characters, we then design a Markov random field (MRF)

model so as to exploit the inherent dependencies between characters.

We experimentally demonstrate the effectiveness of our characterness

cues as well as the advantage of Bayesian multi-cue integration. The

proposed text detector outperforms state-of-the-art methods on a few

benchmark scene text detection datasets. We also show that our mea-

surement of ‘characterness’ is superior than state-of-the-art saliency

detection models when applied to the same task.
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Chapter 1

Introduction

1.1 Saliency detection

Visual attention, or visual saliency, is fundamental to the human visual system,

and alleviates the need to process the otherwise vast amounts of incoming visual

data. As such it has been a well studied problem within multiple disciplines,

including cognitive psychology, neurobiology, and computer vision. In the vi-

sion community, image saliency detection aims to effectively identify important

and informative regions in images. Early approaches in this area focus mainly

on predicting where humans look, and thus work only on human eye fixation

data [3, 4, 5, 6, 7]. Recently, a large body of work concentrates on salient object

detection [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], whose goal is to dis-

cover the most salient and attention-grabbing object in an image. This has a wide

range of applications such as image retargeting [22, 1], image classification [23],

and image segmentation [24]. Because it is difficult to define saliency analytically,

the performance of salient object detection is evaluated on datasets containing

human-labeled bounding boxes or foreground masks. Salient object detection

is typically accomplished by image contrast computation, either on a local or a

global scale. In general, local salient object detection [21, 18, 14] estimates the

saliency degree of an image region by computing the contrast against its local

neighborhood. Various contrast measures have been proposed, including mu-

tual information [25], incremental coding length [26], and center-versus-surround
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Image SVM saliency Hypergraph saliency

Figure 1.1: Illustration of our approaches to salient object detection.

feature discrepancy [11, 13, 14, 15, 18, 19, 20].

Global salient object detection approaches [9, 10, 12, 16, 17] estimate the

saliency of a particular image region by measuring its uniqueness in the entire

image. These approaches model uniqueness by exploiting the global statistical

properties of the image, including frequency spectrum analysis [9], color-spatial

distribution modeling [12], high-dimensional Gaussian filtering [16], low-rank ma-

trix decomposition [17], and geodesic distance computation [10]. Therefore, the

definition of object saliency depends on the choice of context. Global saliency de-

fines the context as the entire image, whereas local saliency requires the definition

of a local context.

1.2 Scene text detection

Human beings find the identification of text in an image almost effortless, and

largely involuntarily. As a result, much important information is conveyed in this

form, including navigation instructions (exit signs, and route information, for

example), and warnings (danger signs etc.), amongst a host of others. Simulating

2



such an ability for machine vision system has been an active topic in the vision

and document analysis community. Scene text detection serves as an important

preprocessing step for end-to-end scene text recognition which has manifested

itself in various forms, including navigation, obstacle avoidance, and odometry

to name a few. Although some breakthrough have been made, the accuracy

of the state-of-the-art scene text detection algorithms still lag behind human

performance on the same task.

Our basic motivation is the fact that text attracts human attention, even when

amongst a cluttered background. This has been shown by a range of authors

including Judd et al. [7] and Cerf et al. [27] who verified that humans tend to

focus on text in natural scenes.

Previous work [28, 29, 30, 31] has also demonstrated that saliency detection

models can be used in early stages of scene text detection. In [28], for example,

a saliency map obtained from Itti et al. [3] was used to find regions of interest.

Uchida et al. [31] showed that using both SURF and saliency features achieved

superior character recognition performance over using SURF features alone. More

recently, Shahab et al. [29] compared the performance of four different saliency

detection models at scene text detection. Meng and Song [30] also adopted the

saliency framework of [13] for scene text detection.

While the aforementioned approaches have demonstrated that saliency detec-

tion models facilitate scene text detection, they share a common inherent lim-

itation, which is that they are distracted by other salient objects in the scene.

The approach we propose here differs from these existing methods in that we

propose a text-specific saliency detection model (i.e. a characterness model) and

demonstrate its robustness when applied to scene text detection.

Measures of ‘objectness’ [15] have built upon the saliency detection in order

to identify windows within an image that are likely to contain an object of inter-

est. Applying an objectness measure in a sliding-window approach thus allows

the identification of interesting objects, rather than regions. This approach has

been shown to be very useful as a pre-processing step for a wide range of prob-

lems including occlusion boundary detection [32], semantic segmentation [33],

and training object class detectors [34].

We propose here a similar approach to text detection, in that we seek to de-

3



velop a method which is capable of identifying individual, bounded units of text,

rather than areas with text-like characteristics. The unit in the case of text is

the character, and much like the ‘object’, it has a particular set of characteristics,

including a closed boundary. In contrast to the objects of [15], however, text is

made up of a set of inter-related characters. Therefore, effective text detection

should be able to compensate for, and exploit these dependencies between char-

acters. The object detection method of [15] is similar to that proposed here in

as much as it is based on a Bayesian framework combining a number of visual

cues, including one which represents the boundary of the object, and one which

measures the degree to which a putative object differs from the background.

In contrast to saliency detection algorithms which either attempt to identify

pixels or rectangular image windows that attract the eye, our focus here is instead

on identifying individual characters within non-rectangular regions. As characters

represent the basic units of text, this renders our method applicable in a wider va-

riety of circumstances than saliency-based paragraph detection, yet more specific.

When integrating the three new characterness cues developed, instead of simple

linear combination, we use a Bayesian approach to model the joint probability

that a candidate region represents a character. The probability distribution of

cues on both characters and non-characters are obtained from training samples.

In order to model and exploit the inter-dependencies between characters we use

the graph cuts [35] algorithm to carry out inference over an MRF designed for

the purpose. Promising experimental results on benchmark datasets demonstrate

that our characterness approach outperforms the state-of-the-art.

1.3 Overview of contributions

Our work involves two important topics in the vision community, i.e., saliency

detection and scene text detection.

Here, we propose two approaches to salient object detection based on hyper-

graph modeling and imbalanced max-margin learning. Our main contributions

to saliency detection are as follows.

1. We introduce hypergraph modeling into the process of image saliency de-

4



tection for the first time. A hypergraph is a rich, structured image represen-

tation modeling pixels (or superpixels) by their contexts rather than their

individual values. This additional structural information enables more ac-

curate saliency measurement. The problem of saliency detection is naturally

cast as that of detecting salient vertices and hyperedges in a hypergraph at

multiple scales.

2. We formulate the center-surround contrast approach to saliency as a cost-

sensitive max-margin classification problem. Consequently, the saliency

degree of an image region is measured by its associated normalized SVM

coding length.

We propose a novel scene text detection approach based saliency detection.

Although previous work [28, 29, 30, 31] has demonstrated that existing saliency

detection models can facilitate scene text detection, none of them has designed a

saliency detection model tailored for scene text detection. We argue that adopting

existing saliency detection models directly to scene text detection [28, 29, 30, 31]

is inappropriate, as general saliency detection models are likely to be distracted by

non-character objects in the scene that are also salient. In summary, contributions

of our work on scene text detection comprise the following.

1. We propose a text detection model which reflects the ‘characterness’ (i.e.

the probability of representing a character) of image regions. To our knowl-

edge, we are the first to present a saliency detection model which measures

the characterness of image regions. This characterness model is less likely

to be distracted by other objects which are usually considered as salient in

general saliency detection models.

2. We design an energy-minimization approach to character labeling, which

encodes both individual characterness and pairwise similarity in a unified

framework.

3. We evaluate ten state-of-the-art saliency detection models for the measure-

ment of ‘characterness’. To the best of our knowledge, we are the first to

evaluate state-of-the-art saliency detection models for reflecting ‘character-

ness’ in this large quantity.

5



1.4 Outline

This thesis will process as follow:

Chapter 2: Background. This chapter will cover some background knowl-

edge on both saliency detection and scene text detection. As most recent liter-

ature on saliency detection, we will categorize state-of-the-art saliency detection

approaches based on the the scope from which saliency is computed. We will

give outlines of some representative saliency detection approaches from the large

pool of literature. For scene text detection, we will divide existing scene text

detection approaches into two groups, including texture-based and region-based

approaches. When analysing the two different schemes, we review several algo-

rithms whose results will be compared in the experiment.

Chapter 3: Contextual hypergraph modeling for salient object de-

tection. In this chapter, we will first show that within a fixed context, a cost-

sensitive SVM can accurately measure saliency by capturing center-surround con-

trast information. We will show that the use of a hypergraph captures more com-

prehensive contextual information, and therefore enhances the accuracy of salient

object detection. In the experiment, we will show that the combination of the

two proposed approaches yields significantly better result than the-state-of-arts

using different evaluation criteria.

Chapter 4: Characterness: an indicator of text in the wild. In

this chapter, we will present a scene text detection approach based on saliency

detection. Specifically, we will first describe a characterness model, in which

perceptually homogeneous regions will be extracted by a modified MSER-based

region detector. Three novel characterness cues will be computed, each of which

independently models the probability of the region forming a character. These

cues will be fused in a Bayesian framework, where Naive Bayes is used to model

the joint probability.

In order to consolidate the characterness responses we will design a character

labeling method. An MRF, minimized by graph cuts [35], will be used to combine

evidence from multiple per-patch characterness estimates into evidence for a single

character or compact group of characters. Finally, verified characters will be

grouped to readable text lines via a clustering scheme.

6



Two phases of experiments will be conducted separately in order to evaluate

the characterness model and scene text detection approach as a whole. In the

first phase, we will compare the proposed characterness model with ten state-of-

the-art saliency detection algorithms on the characterness evaluation task, using

evaluation criteria typically adopted in saliency detection. In the second phase,

as in conventional scene text detection algorithms, we will use the bounding

boxes of detected text lines in order to compare against state-of-the-art scene

text detection approaches.

7



Chapter 2

Background

2.1 Saliency detection

The underlying hypothesis of existing saliency detection algorithms is the same:

the contrast between salient object and background is high. Contrast can be

computed via various features, such as intensity [14], edge density [15], orienta-

tion [14], and most commonly color [15, 21, 14, 13, 18, 11, 12, 20, 19, 16, 17, 10].

The measurement of contrast also varies, including discrete form of Kullback-

Leibler divergence [14], intersection distance [11], χ2 distance [15, 13, 20, 18],

Euclidean distance [19]. As no prior knowledge about the size of salient objects

is available, contrast is computed at multiple scales in some methods [19, 21, 18,

14, 13]. To make the final saliency map smoother, spatial information is also

commonly adopted in the computation of contrast [19, 12, 11, 18, 16].

High level prior, which refers to the prior knowledge about where human may

pay attention to when looking at an image, is often integrated in the saliency

detection algorithms. Commonly used high level prior include center prior [17, 36]

(objects near the image center are more attractive to people), face prior [17, 36]

(people pay more attention to objects such as faces) and color prior [17, 36] (the

warm colors such as red and yellow are more attractive to people). Based on the

the scope of which the contrast is computed, The large amount of literature on

saliency detection can be broadly classified into two classes, i.e., local and global

approaches.
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2.1.1 Local approaches

Center-surround difference is the core of local saliency detection methods [3,

21, 18, 14], as they estimate saliency value of an image patch according to its

contrast against its surrounding patches. The higher the difference of the center

patch against the surrounding ones, the higher saliency value of the center patch

is. As computing local contrast at one scale tends to only highlight boundaries

rather than the whole object, local methods are always performed in the multi-

scale manner. However, the computation of center-surround difference varies in

different methods.

As a pioneer, Itti et al. [3] derived visual saliency as the center-surround dif-

ference of three features, including color, intensity and orientation on different

scales. In their work, the center-surround difference was defined as the difference

of filter responses between two scales in the image pyramid of a given feature.

The final saliency map was constructed through the linearly combination of nor-

malized feature maps. In [21], a rectangle window was divided into a rectangular

inner window and the border, assuming that the inner window should be salient

whereas the border belongs to the background. Similar to [3], the feature fusion

idea was adopted in [14] where color, orientation and intensity features were used

to compute the three saliency maps. They introduced discrete Kullback-Leibler

Divergence from information theory as a measurement for center-surround differ-

ence. The work of [18] considered a superpixel was salient if it was distinguished

from its immediate context, thus the saliency of a superpixel was computed as

the sum of color contrast against all its spatial neighbors.

2.1.2 Global approaches

Global methods, e.g., [6, 9, 11, 12, 16, 17, 19, 10] take the entire image into account

when estimating saliency of a particular patch. They estimate the saliency of a

particular image region by measuring its uniqueness in the entire image. These

approaches model uniqueness by exploiting the global statistical properties of the

image, where globally rare features correspond to high saliency.

A typical global method was proposed by Cheng et al. [12]. They derived the

saliency of a pixel as the saliency of the color of the pixel which was estimated
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by the sum of weighted color distance against all colors in the image. As the

number of colors is huge (2563 in RGB space), to make the computation feasible,

they quantized the color into twelve bins in each channel. Furthermore, they

proposed a region-based approach which incorporated spatial coherence. Some

saliency detection methods reflect uniqueness from frequency domain [6, 9]. In

[6], Xou and Zhang extracted the spectral residual of an image in spectral do-

main by analyzing the log-spectrum of an input image, then constructed the

corresponding saliency map in the spatial domain. The work of Feng et al. [11]

defined the saliency of a sliding window as the cost of composing the window

using remaining parts of the image. An image was represented as a low-rank

matrix plus sparse noises in [17] where the non-salient regions could be explained

by the former while the latter component referred to salient regions. Perazzi et

al. [16] proposed two measurements of saliency, i.e., element uniqueness and dis-

tribution, which could be formulated within a single high-dimensional Gaussian

filtering framework. In contrast with commonly-used center prior, Wei et al. [10]

proposed boundary prior, assuming the image boundary is mostly background.

Based on this assumption, the saliency of an image patch was defined as the

length of its shortest patch to the image boundaries which was implemented by

geodesic distance transform.

2.2 Scene text detection

Existing scene text detection approaches generally fall into one of two categories,

namely, texture-based approaches and region-based approaches. While texture-

based approaches are based on a top-down scheme, region-based approaches can

be categorized into a bottom-up framework.

2.2.1 Texture-based approaches

Similar to many approaches in object detection, the main stages of texture-based

approaches [37, 38, 39, 40, 41, 42] includes feature extraction, window classifi-

cation and bounding box generation. In the feature extraction stage, as texture

of texts is different from that of the background, conventional texture-based ap-
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proaches extract some features from multi-scale sliding windows. Some widely-

used features include Histograms of Gradients (HOGs), Local Binary Patterns

(LBP), Gabor filters and wavelets. Rather than adopting above hand-engineered

features, some works [41, 42] focused on unsupervised feature learning and deep

learning. In the window classification stage, texture-based approaches depen-

dent on trained classifiers, such as boosting [37, 38] and support vector machine

(SVM) [41], to make the prediction of each sliding window. Finally, prediction

scores in multi-scales are merged in some ways on the original scale to generate

final bounding boxes in the bounding box generation stage.

In [38], the authors trained an adaboost classifier, which was a cascade with

4 strong classifiers containg 79 features. In [37], six types of features, including

variance and expectation of X-Y ferivatives [38], local energy of Gabor filter and

statistical texture measure of image histogram were employed to train a Modest

AdaBoost classifier, where Classification and Regression Tree (CART) was used

as the weak learner. As no prior knowledge of the size of text was available,

sequential search via 16 scales sliding window was performed to handle variations

in text size.

Instead of using hand-engineered features, recent years witnessed some texture-

based approaches based on unsupervised feature learning and deep learning. To

be more precise, to capture the texture properties of text on edges, Pan et al. [40]

learnt a dictionary on text’s edges via K-SVD and orthogonal matching pursuit

(OMP) method. Given a patch from a test image, whether it belongs to text

was measured by the sparsity of the feature vector learnt from the dictionary via

OMP. Later on, Zhao et al. [39] improved the work of [40] by learning two dis-

criminative dictionaries for text and background respectively. By comparing two

reconstruction errors from two dictionaries, a particular patch from the test im-

age was classified into the category with smaller reconstruction error. Similarly,

instead of using heavily hand-engineered features, a variant of K-means clustering

method was adopted in [41] to learn a dictionary from whitened 8-by-8 gray-scale

patches. Then, the feature representation from the dictionary was used to train

a linear SVM. More recently, Wang et al. [42] proposed an end-to-end scene text

recognition system based on multilayer neural networks.

The biggest advantage of texture-based approaches is that their robustness
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to noise. Yet, there is something profoundly unsatisfying about texture-based

approaches. The brute force nature of window classification is not particularly

appealing. In other words, its computational complexity is proportional to the

product of the number of scales.

2.2.2 Region-based approaches

In contrast with texture-based approaches which distinguish texts from back-

ground in sliding windows or image patches, a character segmentation step is

adopted in region-based approaches initially [43, 44, 45, 46, 47, 2, 48, 49, 50, 51].

The character segmentation step extracts characters along with many non-text

regions. After that, either simple geometric constraints [43, 44, 45, 46] or trained

classifiers [49, 50, 51] are used to reject non-text regions. As a final step, remain-

ing regions are clustered into lines through measuring the similarities between

them. Two character segmentation techniques, Stroke Width Transform (SWT)

[43] and Maximally Stable Extremal Region (MSER) [52], are commonly used in

the state-of-the-art region-based scene text detection approaches.

The local image operator SWT is first introduced by [43], which has been

successfully applied to later region-based approaches [49, 53]. The SWT method

first finds the edges by Canny edge operator, then assigns each pixel with the

most likely stroke width which is defined as the length of a line between two

mostly perpendicular edge pixels. Connected components (CCs) are formed by

grouping pixels with similar stroke width, followed by some simple heuristic rules

to remove non-character regions. In [49], potential characters were extracted by

the SWT initially. To reject non-characters two random forest classifiers were

trained using two groups of features (component and chain level) respectively.

In [2], the authors proposed an efficient way to extract stroke width of regions,

which was based on skeletonization and distance transform. However, as SWT is

largely dependent on the edge detection result, SWT cannot handle cases when

text edges cannot be detected successfully, especially in images with much noise

and low resolution.

As a character always has uniform color and some level of contrast against the

background, many region-based approaches [47, 2, 54, 48, 51] use MSER as the
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character segmentation technique. In the work of Koo and Kim [51], candidate

text regions were first extracted by MSER algorithm. Then, an Adaboost clas-

sifier was trained to determine the adjacency relationship and cluster regions by

using their pairwise relations. Finally, non-characters were rejected by a trained

multilayer perceptron classifier. The authors also found that using multichannel

information improved the detection result. The text detection system of [54] con-

sists of two stages: a hypothesis generation stage and a hypothesis verification

stage. For hypothesis generation, to better handle image blur, they adopt MSER

with a combination of judicious parameter selection and multi-scale analysis of

MSER regions. For hypothesis verification, rather than using sophisticated classi-

fiers or a large of number of features, they showed state-of-the-art result could be

achieved by using a simple Gaussian model with only two well-motivated features.

In contrast with most region-based approaches that compute features within ex-

tracted regions, Li et al. [48] introduced the concept of surrounding context after

MSER detection. Surround context, in their definition, referred to color infor-

mation in the surround background. Unary and pairwise surround context were

combined to design an energy function which was minimized by the graph cut

algorithm [35]. The optimal labels thus separated text and non-text regions.

In addition to SWT and MSER, some other character segmentation tech-

niques in recent literature include local binarization [55, 56, 45] and color cluster-

ing [46, 50]. In [56], a text region detector first searched over different layers of the

image pyramid. After projecting the text confidence and scale information back

to the original image, candidate text regions were generated by scale-adaptive lo-

cal binarization. Then, non-text regions were rejected in the Conditional Random

Field (CRF) framework which incorporated unary region properties and binary

contextual region relationships. Yi and Tian[50] introduced a boundary cluster-

ing technique for character segmentation, which was based on Gaussian mixture

model (GMM) and EM algorithm to group the boundary pixels with bigram color

uniformity on the border of text and attachment surface.

An advantage of region-based approach is that the result of character seg-

mentation step can be sent to Optical Character Recognition (OCR) software for

recognition directly, without the extra text extraction step. Another notable fact

is that region-based approach are usually more computational efficient than their
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region-based counterparts, as the character segmentation step is scale insensitive.

However, the biggest drawback is that state-of-the-art character segmentation

techniques are usually sensitive to noisy and low-resolution images, which makes

some texts missed in those images.

2.2.3 Scene text detection aided by saliency

In recent literature, some works [28, 31, 29, 30] verified that scene detection can

be by aided by state-of-the-art saliency detection algorithms.

To our knowledge, the first tempt to combine scene text detection and visual

attention model was made by Sun et al. [28]. In their work, candidate text

regions were extracted by edge detection and connect component analysis. In the

meantime, the classical visual attention model of Itti et al. [3] was adopted to

compute saliency map. Regions of interest (ROIs) were generated by binarizing

the saliency map, which were used as masks to filter out non-text regions.

Uchida et al. [31] proposed a keypoint-based approach towards scene text

detection. They used SURF descriptors at key points to train an adaboost clas-

sifier. Their experimental results showed that using the feature vector which was

a combination of SURF and saliency map outperformed using SURF alone.

More recently, Shahab et al. [29] evaluated the performance of four saliency

detection models when applied to scene text detection. Not surprisingly, some

models outperformed others on this task. Their conclusion was that saliency

detection models can be used in the scene text detection.

Meng and Song [30] adopted the saliency detection framework of [13] to scene

text detection. After obtaining the saliency map, they used Niblacks binarization

algorithm to generate text regions. Non-text regions were rejected by the SVM

classifier in the final step.
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Chapter 3

Contextual hypergraph modeling

for salient object detection

3.1 Cost-sensitive SVM saliency detection

As illustrated in [3, 21, 18, 14], saliency detection is typically posed as the problem

of center-versus-surround contextual contrast analysis. To address this problem,

we propose a saliency detection method based on imbalanced max-margin learn-

ing, which is capable of effectively discovering the local salient image regions that

significantly differ from their surrounding image regions. In this case, the image is

divided into overlapping rectangular windows which are tested for saliency. The

context for each window is the windows that overlap it.

Before describing the method, we first introduce some notation used here-

inafter. Let x1 denote the feature vector associated with a center image patch,

and {xℓ}ℓ=2...N denote the feature vectors associated with the spatial overlap-

ping surrounding patches of the center image patch. Using these patches, the

proposed method explores their inter-class separability in a max-margin classifi-

cation framework.

As shown in the top-right part of Fig. 3.1, the center image patch x1 is thought

of as a positive sample while the surrounding patches {xℓ}ℓ=2...N are used as

the negative samples. The saliency degree of x1 is determined by its inter-class

separability from {xℓ}ℓ=2...N . In other words, if x1 could be easily separated from
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where 1N ∈ RN is the all-one column vector, y = (y1, y2, . . . , yN)
⊤ is the label

vector, Ω = (Ωij)N×N is the kernel matrix Ωij = x⊤i xj, and VC is a diagonal matrix

such that VC = diag( 1
Cν1

, 1
Cν2

, . . . , 1
CνN

). Based on the solution (α∗, b∗) to the

linear system (3.2), we have the weighted LS-SVM classifier f(x) = (w∗)⊤x+ b∗

with w∗ = (x1,x2, . . . ,xN)α
∗.

Using the weighted LS-SVM classifier f(x), we define the saliency score as:

SSa(x1) =
1

N − 1

N∑

ℓ=2

1− sgn(f(xℓ))

2
, (3.3)

where sgn(·) is a sign function and the term
∑N

ℓ=2
1−sgn(f(xℓ))

2
counts the number

of correctly classified surrounding samples. Loosely speaking, the saliency score

SSa(x1) can be viewed as a normalized SVM coding length (i.e., training accu-

racy for the surrounding samples), which characterizes the inter-class separability

between x1 and its surroundings {xℓ}ℓ=2...N . As shown in the bottom-left part of

Fig. 3.1, the harder x1 is to separate from {xℓ}ℓ=2...N , the smaller SSa(x1) will be.

In other words, the center patch looks similar to its surroundings. Conversely,

the larger SSa(x1) indicates the lower similarity between x1 and {xℓ}ℓ=2...N , and

hence a higher saliency degree. Note that, here the cost-sensitive LS-SVM is not

the only choice. We can use other classifiers such as the exemplar SVM [58], where

the standard hinge-loss SVM is used. We have used LS-SVM for its simplicity (it

has a closed-form solution).

Example saliency maps derived from this measure are shown in Figs. 1.1

and 3.1. Although they accurately locate the salient object in each case, they

also suffer from “fuzziness” or lack of precision around object boundaries and

in locally homogeneous regions. This is mainly due to the center-surround local

context that they are based on. In the next section, we describe an alternative

approach based on segmentation based context that alleviates these problems.

3.2 Hypergraph modeling for saliency detection

To more effectively find salient object regions, we propose a hypergraph modeling

based saliency detection method that forms contexts of superpixels to capture
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A hyperedge can also be viewed as a high-order context that enforces the

contextual constraints on each superpixels in the hyperedge. As a result, the

saliency of each superpixel, as measured by the hyperedges it belongs to, is not

only determined by the superpixel itself but also influenced by its associated con-

texts. Due to such contextual constraints on each superpixel, we simply convert

the original saliency detection problem to that of detecting salient vertices and

hyperedges in the hypergraph G. Mathematically, the hypergraph G is associated

with a |V| × |E| incidence matrix H = (H(vi, ej))|V|×|E|:

H(vi, ej) =

{
1, if vi ∈ ej,

0, otherwise.
(3.4)

The saliency value of any vertex vi in G is defined as:

HSa(vi) =
∑

e∈E

Γ(e)H(vi, e), (3.5)

where Γ(e) encodes the saliency information on the hyperedge e. In essence, our

hypergraph saliency measure (3.5) is a generalization of the standard pairwise

saliency measure defined as:

PSa(vi) =
∑

vj∈Nvi

d(vi,vj) =
∑

e∈{(vi,vj)|j 6=i}

IedeH(vi, e), (3.6)

where Nvi stands for the neighborhood of vi, d(vi,vj) measures the saliency de-

gree of the pairwise edge (vi, vj), and Ie is the pairwise adjacency indicator (s.t.

Ie = 1 if vj ∈ Nvi ; otherwise, Ie = 0). Instead of using simple pairwise edges,

our hypergraph saliency measure takes advantage of the higher-order hyperedges

(i.e., superpixel cliques) to effectively capture the intrinsic structural properties

of the salient object, as shown in Fig. 3.3. To implement this approach, we need

to address the following two key issues: 1) how to adaptively construct the hy-

peredge set E; and 2) how to accurately measure the saliency degree Γ(e) of each

hyperedge.
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Image Hypergraph saliency Standard graph saliency

Figure 3.3: Illustration of salient object detection using two different types of
graphs (i.e., hypergraph and standard pairwise graph). Clearly, our hypergraph
saliency measure is able to accurately capture the intrinsic structural properties
of the salient object.

Figure 3.4: Illustration of the gradient magnitude information for hyperedge
saliency evaluation. The left subfigure shows the original image, and the middle
subfigure displays the gradient magnitude map I∗g obtained by binarizing Ig using
the adaptive threshold T, as illustrated in the right subfigure.

3.2.2 Adaptive hyperedge construction

A hyperedge in the hypergraph G is actually a superpixel clique whose elements

have some common visual properties. To capture the hierarchial visual saliency

information, we construct a set of hyperedges by adaptively grouping the super-

pixels according to their visual similarities at multiple scales. In theory, this can

be carried out in many ways using any number of established segmentation and

clustering techniques. We adopt one such technique: non-parametric (mean shift)

clustering.

Non-parametric clustering is typically associated with a kernel density esti-

mator:

f̂k(p) =
Ck

Q|Σ|
1

2

Q∑

i=1

k(M2(p,pi,Σ)), (3.7)

where pi is a feature vector associated with the i-th superpixel (generated from
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image oversegmentation), k(·) is a kernel profile (k(x) = exp(−x/2) in our case),

Σ is a symmetric positive definite bandwidth matrix (in the experiments, Σ = γ2I

with γ being a scaling factor and I being an identity matrix), M2(p,pi,Σ) = (p−

pi)
⊤Σ−1(p− pi) stands for the Mahalanobis distance, and Ck is a normalization

constant. Therefore, the superpixel cliques can be discovered by seeking the

modes of f̂k(p). Mathematically, the mode-seeking problem can be converted to

that of locating the zeros of the gradient ∇f̂k(p) = 0, which leads to the following

iterative procedure:

pt+1 =

∑Q

i=1 g(M
2(pt,pi,Σ))pi∑Q

i=1 g(M
2(pt,pi,Σ))

, (3.8)

where g(x) = −k′(x) and the superscript t indexes the iteration number. To

accelerate the optimization process (3.8), we adopt a fast agglomerative mean-

shift clustering method based on iterative query set compression [60].

Each mode is associated with a hyperedge, containing all the superpixels that

converge to it after running the iterative procedure (3.8). The bandwidth matrix

Σ = γ2I controls the scaling properties of the hyperedge. Consequently, using

different values of γ for nonparametric clustering can generate the hyperedges at

different scales, as shown in Fig. 3.2. By using different configurations of γ, we

obtain a set of multi-scale hyperedges {ei} with ei being the i-th hyperedge.

3.2.3 Hyperedge saliency evaluation

By construction, a hyperedge defines a group of pixels that is internally consis-

tent. In addition, a salient hyperedge should have the following two properties:

1) it should be enclosed by strong image edges; and 2) its intersection with the

image boundaries ought to be small [10, 18]. Therefore, we measure the saliency

degree of a scale-specific hyperedge e by summing up the corresponding gradient

magnitudes of the pixels (within a narrow band) along the boundary of the hy-

peredge. If the hyperedge touches the image boundaries, we decrease its saliency

degree by a penalty factor.

More specifically, edge detection (using the Sobel operator in our case) is

carried out for image I. Let Ix and Iy denote the x-axis and y-axis gradient
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Figure 3.5: Illustration of Mg and I∗g ◦ Mg for hyperedge saliency evaluation.
The top row shows the multi-scale hyperedges; the middle row displays the scale-
specific Mg that indicates the pixels (within a narrow band) along the boundary
of the scale-specific hyperedge; and the bottom row exhibits the filtered gradient
magnitude map I∗g ◦Mg.

magnitude maps, respectively. Thus, the final gradient magnitude map Ig has

the following entry: Ig(m,n) =
√

I2x(m,n) + I2y (m,n). To obtain a robust gra-

dient map, we introduce the following criterion: I∗g (m,n) = 1 if Ig(m,n) > T;

otherwise, I∗g (m,n) = 0, as shown in Fig. 3.4. Here, T is a threshold (picking out

the top 10% of the Ig’s elements in our case). As a result, the saliency value of

the hyperedge e is computed as:

Γ(e) = ωe

[
‖I∗g ◦Mg(e)‖1 − ρ(e)

]
. (3.9)

Here, ωe is a scale-specific hyperedge weight (a larger scale leads to a larger

weight), ‖ · ‖1 is the 1-norm, Mg(e) is a binary mask (illustrated in Fig. 3.5)

indicating the pixels (within a narrow band) along the boundary of the hyperedge

e, ◦ is the elementwise dot product operator, and ρ(e) is a penalty factor that

is equal to the number of the image boundary pixels shared by the hyperedge e.

Based on Equ. (3.5), we obtain the hypergraph saliency measure HSa(vi) for any

vertex vi in the hypergraph G.
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3.3 Saliency fusion

After both SVM and hypergraph saliency detection, we obtain two saliency maps

(i.e., SSa and HSa). Each element of these saliency maps is mapped into [0,

255] by linear normalization, leading to the normalized saliency maps (i.e., SSa∗

and HSa∗). Based on such normalized maps, we define a saliency map fusion

criterion as:

FSa = λSSa∗ + (1− λ)HSa∗, (3.10)

where λ is a trade-off control factor such that 0 ≤ λ ≤ 1. Finally, the fused

saliency map FSa is used for salient object detection.

3.4 Experiments

3.4.1 Experimental setup

Datasets As a subset of the MSRA dataset [13], MSRA-1000 [9] is a commonly

used benchmark dataset for salient object detection. SOD [61] is composed of

300 challenging images. SED-100 is a subset of the SED dataset [62, 63], and

consists of 100 images. Each image in SED-100 contains only one salient object.

Imgsal-50 is a subset of the Imgsal dataset [64], and comprises 50 images with

large salient objects for evaluation. Each image in the aforementioned datasets

contains a human-labelled foreground mask used as ground truth for salient object

detection.

Evaluation criterion For a given saliency map, we adopt four criteria to eval-

uate the quantitative performance of different approaches: precision-recall (PR)

curves, F-measures, receiver operating characteristic (ROC) curves, and VOC

overlap scores. Specifically, the PR curve is obtained by binarizing the saliency

map using a number of thresholds ranging from 0 to 255, as in [9, 12, 17, 16]. As

described in [9], F-measure is computed as F = ((β2+1)P ·R)/(β2P +R). Here,

P and R are the precision and recall rates obtained by binarizing the saliency

map using an adaptive threshold that is twice the overall mean saliency value [9].

β2 = 0.3 is the same as that in [9]. Identical to [62], the ROC curve is generated
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from true positive rates and false positive rates obtained during the calculation

of the corresponding PR curve. The VOC Overlap score [65] is defined as |S∩S′|
|S∪S′|

.

Here, S is the ground-truth foreground mask, and S ′ is the object segmentation

mask obtained by binarizing the saliency map using the same adaptive threshold

during the calculation of F-measure.

Implementation details In the experiments, cost-sensitive SVM saliency de-

tection on an image is performed at different scales, each of which corresponds to

a scale-specific image patch size for center-versus-surround contrast analysis. The

final SVM saliency map is obtained by averaging the multi-scale saliency detec-

tion results. For computational efficiency, we first choose a fixed-sized image 8×8

patch and then resize the image using different downsampling rates to simulate

the scale changes. In addition, each image patch is represented as a vectorized

RGB feature vector. During the optimization process (3.1), the weight ν1 for

the center image patch is chosen as 0.5 while the weights νk (s.t. k > 1) for the

surrounding image patches are set to 0.01, as suggested in [58]. Each superpixel

pi (referred to Equ. (3.8)) is first generated from image over-segmentation, and

then represented by an 8-dimensional feature vector, which is obtained by aver-

aging the corresponding color vectors of all the pixels in the superpixel. The color

vector for each pixel contains four normalized color components c = (l, a, b, h)

from the LAB and HSV color spaces, and thus has the form of (c | c
1

3 ) that is a

concatenation of c and c
1

3 (here c
1

3 is an elementwise power transform [66]).

The scale-specific hyperedge weight ωe (referred to in Equ. (3.9)) is determined

by the scaling factor γ (mentioned in Sec. 3.2 for adaptive hyperedge construc-

tion). As for the hyperedge e, ω(e) is set to 2γ/µ with µ being a normalization

constant such that µ =
∑

γ 2
γ. The control factor λ in Equ. (3.10) is set to 0.15.

We did not carefully tune the aforementioned parameters in the experiments. As

shown in the supplementary file, our saliency detection approach is not sensitive

to the choice of γ and λ. Note that the aforementioned parameters are fixed

throughout all the experiments.
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Figure 3.6: PR curves based on three different configurations: 1) using the SVM
saliency approach only; and 2) using the hypergraph saliency approach only; 3)
combining the SVM and hypergraph saliency approaches. Clearly, the saliency
detection performance of using the third configuration outperform that of using
the first and second configurations. From left to right: MSRA-1000, SOD, SED-
100, and Imgsal-50.

3.4.2 Evaluation of individual approaches

Here, we evaluate the saliency detection performance of the proposed approaches

based on three different configurations: 1) using the SVM saliency approach only;

2) using the hypergraph saliency approach only; and 3) combining the SVM

and hypergraph saliency approaches. Fig. 3.6 shows their quantitative results of

salient object detection in the aspect of PR curves. From Fig. 3.6, it is clearly seen

that the saliency detection performance of only using the SVM saliency approach

is significantly enhanced after combining the hypergraph saliency approach. The

reason is that the hypergraph saliency approach captures both the internal con-

sistency and strong boundary properties of salient objects. By incorporating the
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Figure 3.7: Illustration of our saliency detection approach based on different
parameter settings. (a) shows the PR curves of using different settings of λ; (b)
displays the PR curves with different configurations of the scale space (determined
by γ); and (c) exhibits the PR curves in different cases of scale numbers.

SVM saliency approach, the saliency detection results of only using the hyper-

graph saliency approach are further smoothed, leading to an improved saliency

detection accuracy. Therefore, we use the best configuration (i.e., combination

of SVM and hypergraph saliency) for performance evaluations in the following

experiments. Fig. 3.9 shows some saliency maps of our SVM and hypergraph

approaches from the four datasets.

3.4.3 Evaluation of different parameter settings

We evaluate the quantitative performance of our saliency detection approach

using different parameter settings. Specifically, the quantitative evaluation task

is carried out in the following three aspects: i) using different settings of the

trade-off control factor λ in saliency fusion (see Eq. (10) of the paper); ii) using

different configurations of the scale space for adaptive hyperedge construction

(mentioned in Sec. 3 of the paper) with the same number of scales; and iii) using

different numbers of scales during adaptive hyperedge construction.

1. As shown in Fig. 3.7 (a), we investigate the precision-recall (PR) per-

formance of our approach by choosing different values of λ from the set

{0.10, 0.15, 0.20, 0.30}. Note that λ = 0.15 is our default choice in the ex-

periments of the paper. Fig From Fig. 3.7 (a), we see that the performance

of our saliency detection approach is not sensitive to the choice of λ within

a relatively wide range.
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2. To demonstrate the quantitative performance difference using three differ-

ent configurations of the scale space, we display the PR curves in Fig. 3.7

(b). These three configurations of γ are given as follows:

• γ ∈ {0.10, 0.22, 0.30, 0.45, 0.52, 0.65, 0.78},

• γ ∈ {0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75},

• γ ∈ {0.12, 0.18, 0.31, 0.43, 0.51, 0.69, 0.79}.

Note that the second configuration is used by our approach in the experi-

ments. It is observed from Fig. 3.7 (b) that our saliency detection approach

is not sensitive to the configuration of γ after moderate perturbation.

3. Fig. 3.7 (c) shows the quantitative PR curves using different numbers (i.e.,

6, 7, and 8) of scales:

• γ ∈ {0.15, 0.27, 0.39, 0.51, 0.63, 0.75},

• γ ∈ {0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75},

• γ ∈ {0.15, 0.24, 0.33, 0.42, 0.51, 0.60, 0.69, 0.75}.

It is noted that our approach in the experiments takes the value of 7 by

default. It is clear that the performance of our approach keeps relatively

stable with respect to the choice of the scale number.

3.4.4 Evaluation of saliency fusion

In order to demonstrate the effectiveness of our saliency fusion (i.e., hyper-

graph+SVM), we evaluate the saliency detection performance of using the fol-

lowing two different configurations of saliency fusion: 1) varying the hypergraph

saliency approach while keeping the SVM saliency approach fixed; and 2) chang-

ing the SVM saliency approach while fixing the hypergraph saliency approach.

For 1), we compare our hypergraph+SVM and GS SP+SVM (that is a linear

combination of our SVM saliency approach and the second best approach GS SP

[5]) on the MSRA-1000 dataset, as shown in Fig. 3.8 (a). From Fig. 3.8 (a), we

see that both the hypergraph saliency and the GS SP approaches on their own

achieve a significantly higher performance than the SVM one. Meanwhile, the

hypergraph saliency approach has a slightly higher performance than the GS SP

approach. In addition, the performance gain from combining the SVM saliency
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Figure 3.8: Evaluation of two different saliency fusion configurations on the
MSRA-1000 dataset: 1) varying the hypergraph saliency approach while keeping
the SVM saliency approach fixed; and 2) changing the SVM saliency approach
while fixing the hypergraph saliency approach. (a) shows the PR curves of the
saliency detection approaches associated with the first configuration while (b)
displays the PR curves of the saliency detection approaches corresponding to the
second configuration.

approach with the hypergraph saliency approach is greater than that obtained

by combining the SVM saliency approach with the GS SP approach.

For 2), we compare our hypergraph+SVM with hypergraph+HC (that is a

linear combination of our hypergraph saliency approach and a contrast-based

saliency approach [7]), as displayed in Fig. 3.8 (b). From Fig. 3.8 (b), we observe

that again the hypergraph method outperforms both of the other standalone

methods. In addition, the performance gain from adding SVM saliency to form

hypergraph+SVM is greater than that from adding HC to form hypergraph+HC,

even though the standalone performance of HC is higher than SVM.

In summary, our hypergraph+SVM achieves better performance than the

other tested fusion configurations. Not only is the hypergraph method the best

performing standalone method, but also its combination with the SVM method

produces the most accurate overall result. Therefore, we conclude that our two

approaches (i.e., SVM saliency and hypergraph saliency) are strongly comple-

mentary to each other.

28



3.4.5 Comparison with other approaches

In the experiments, we qualitatively and quantitatively compare the proposed

approach with twelve state-of-the-art approaches, including GS SP [10], LR [17],

SF [16], CB [18], SVO [20], RC [12], HC [12], RA [21], FT [9], CA [19], ICL [26],

and IT [3]. These approaches are implemented using their either publicly available

source code or original saliency detection results from the authors.

Fig. 3.10 and Fig. 3.11 show the quantitative saliency detection performance

of the proposed approach against the twelve competing approaches in the PR

and ROC curves on the four datasets. From Fig. 3.10, we see that the proposed

approach achieves the highest precision rate in most cases when the recall rate is

fixed. Given a fixed false positive rate, the proposed approach obtains a higher

true positive rate than the other approaches in most cases, as shown in the

Fig. 3.11.

From Fig. 3.12, it is observed that the proposed approach achieves the best

F-measure performance on the two popular benchmark datasets, that is, MSRA-

1000 and SOD. On the SED-100 dataset, GS SP and the proposed approach

obtain the best results, and the F-measure of the proposed approach is slightly

lower than GS SP. On the Imgsal-50 dataset, the proposed approach is one of

the two best approaches, and achieves a slightly lower F-measure than CB. In

addition, Fig. 3.13 shows several salient object detection and segmentation (i.e.,

binarization using the adaptive threshold [9]) examples. It is seen from Fig. 3.13

that our approach obtain visually more feasible saliency detection results than the

other competing approaches. From Fig. 3.13, we also observe that the proposed

approach achieves the visually consistent segmentation results with ground truth.

Furthermore, Tab. 3.4.6 shows the corresponding VOC overlap scores of all the

thirteen approaches. It is seen from Tab. 3.4.6 that the proposed approach obtains

the highest VOC overlap score with a low variance in most cases.

3.4.6 Application to image retargeting

The goal of image retargeting is to reduce image size while preserving important

content. As shown in [1], saliency detection plays an important role in image

retargeting. Following the work of [1], we directly replace its saliency detection
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component with ours while keeping the other components fixed. Fig. 3.14 shows

some image retargeting examples of the two approaches (i.e., [1] and ours) on

the image retargeting dataset from [1]. Clearly, our approach obtains more vi-

sually feasible results. This indicates that our approach is capable of effectively

preserving the intrinsic structural information on salient objects during image

retargeting.

Table 3.1: Quantitative performance of all the thirteen approaches in VOC over-
lap scores on the four datasets.

MSRA-1000 SOD SED-100 Imgsal-50
Ours 0.77±0.20 0.40±0.22 0.52±0.25 0.69±0.18
GS SP [10] 0.75±0.22 0.38±0.20 0.56±0.27 0.65±0.21
LR [17] 0.63±0.25 0.29±0.19 0.41±0.27 0.64±0.18
SF [16] 0.67±0.24 0.27±0.20 0.47±0.27 0.59±0.22
CB [18] 0.72±0.24 0.31±0.25 0.52±0.32 0.64±0.19
SVO [20] 0.29±0.24 0.11±0.19 0.21±0.29 0.29±0.29
RC [12] 0.52±0.31 0.24±0.23 0.34±0.31 0.52±0.25
HC [12] 0.59±0.29 0.22±0.20 0.37±0.30 0.45±0.27
RA [21] 0.37±0.33 0.14±0.17 0.27±0.28 0.37±0.30
FT [9] 0.50±0.27 0.19±0.17 0.30±0.26 0.37±0.19
CA [19] 0.40±0.19 0.27±0.19 0.35±0.32 0.47±0.19
ICL [26] 0.33±0.19 0.22±0.17 0.34±0.22 0.30±0.21
IT [3] 0.17±0.12 0.14±0.11 0.16±0.14 0.19±0.10
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Figure 3.9: Saliency detection examples of our different approaches on the MSRA-
1000 dataset. Clearly, the SVM saliency approach is able to locate the salient
objects while the hypergraph saliency approach is capable of capturing the in-
trinsic structural information on the salient objects.
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Figure 3.10: Quantitative PR curves of all the thirteen approaches on the four
datasets. The rows from top to bottom correspond to MSRA-1000, SOD, SED-
100, and Imgsal-50, respectively. Clearly, our approach achieve a better PR
performance than the other competing approaches in most cases.

32



� �✁✂ �✁✄ �✁☎ �✁✆ �✁✝ �✁✞ �✁✟ �✁✠ �✁✡ ✂
�

�✁✂

�✁✄

�✁☎

�✁✆

�✁✝

�✁✞

�✁✟

�✁✠

�✁✡

✂

☛☞✌✍✎ ✏✑✍✒✓✒✔✎ ✕☞✓✎

✖
✗✘
✙
✚
✛
✜
✢✣
✢✤
✙
✗✥
✣✙

✦✧★✩

✪✫✬✫✭

✮✯

✰✱

✯✰

✲✰

✳✰✮

✴ ✴✵✶ ✴✵✷ ✴✵✸ ✴✵✹ ✴✵✺ ✴✵✻ ✴✵✼ ✴✵✽ ✴✵✾ ✶
✴

✴✵✶

✴✵✷

✴✵✸

✴✵✹

✴✵✺

✴✵✻

✴✵✼

✴✵✽

✴✵✾

✶

✿❀❁❂❃ ❄❅❂❆❇❆❈❃ ❉❀❇❃

❊
❋●
❍
■
❏
❑
▲▼
▲◆
❍
❋❖
▼❍

P◗❘❙

❚❯

❚❱P

❲❳

❯❨

❩❳

❬❨

❭ ❭❪❫ ❭❪❴ ❭❪❵ ❭❪❛ ❭❪❜ ❭❪❝ ❭❪❞ ❭❪❡ ❭❪❢ ❫
❭

❭❪❫

❭❪❴

❭❪❵

❭❪❛

❭❪❜

❭❪❝

❭❪❞

❭❪❡

❭❪❢

❫

❣❤✐❥❦ ❧♠❥♥♦♥♣❦ q❤♦❦

r
st
✉
✈
✇
①
②③
②④
✉
s⑤
③✉

⑥⑦⑧⑨

⑩❶❷❶❸

❹❺

❻❼

❺❻

❽❻

❾❻❹

❿ ❿➀➁ ❿➀➂ ❿➀➃ ❿➀➄ ❿➀➅ ❿➀➆ ❿➀➇ ❿➀➈ ❿➀➉ ➁
❿

❿➀➁

❿➀➂

❿➀➃

❿➀➄

❿➀➅

❿➀➆

❿➀➇

❿➀➈

❿➀➉

➁

➊➋➌➍➎ ➏➐➍➑➒➑➓➎ ➔➋➒➎

→
➣↔
↕
➙
➛
➜
➝➞
➝➟
↕
➣➠
➞↕

➡➢➤➥

➦➧

➦➨➡

➩➫

➧➭

➯➫

➲➭

➳ ➳➵➸ ➳➵➺ ➳➵➻ ➳➵➼ ➳➵➽ ➳➵➾ ➳➵➚ ➳➵➪ ➳➵➶ ➸
➳

➳➵➸

➳➵➺

➳➵➻

➳➵➼

➳➵➽

➳➵➾

➳➵➚

➳➵➪

➳➵➶

➸

➹➘➴➷➬ ➮➱➷✃❐✃❒➬ ❮➘❐➬

❰
ÏÐ
Ñ
Ò
Ó
Ô
ÕÖ
Õ×
Ñ
ÏØ
ÖÑ

ÙÚÛÜ

ÝÞßÞà

áâ

ãä

âã

åã

æãá

ç çèé çèê çèë çèì çèí çèî çèï çèð çèñ é
ç

çèé

çèê

çèë

çèì

çèí

çèî

çèï

çèð

çèñ

é

òóôõö ÷øõùúùûö üóúö

ý
þÿ
�
✁
✂
✄
☎✆
☎✝
�
þ✞
✆�

✟✠✡☛

☞✌

☞✍✟

✎✏

✌✑

✒✏

✓✑

✔ ✔✕✖ ✔✕✗ ✔✕✘ ✔✕✙ ✔✕✚ ✔✕✛ ✔✕✜ ✔✕✢ ✔✕✣ ✖
✔

✔✕✖

✔✕✗

✔✕✘

✔✕✙

✔✕✚

✔✕✛

✔✕✜

✔✕✢

✔✕✣

✖

✤✥✦✧★ ✩✪✧✫✬✫✭★ ✮✥✬★

✯
✰✱
✲
✳
✴
✵
✶✷
✶✸
✲
✰✹
✷✲

✺✻✼✽

✾✿❀✿❁

❂❃

❄❅

❃❄

❆❄

❇❄❂

❈ ❈❉❊ ❈❉❋ ❈❉● ❈❉❍ ❈❉■ ❈❉❏ ❈❉❑ ❈❉▲ ❈❉▼ ❊
❈

❈❉❊

❈❉❋

❈❉●

❈❉❍

❈❉■

❈❉❏

❈❉❑

❈❉▲

❈❉▼

❊

◆❖P◗❘ ❙❚◗❯❱❯❲❘ ❳❖❱❘

❨
❩❬
❭
❪
❫
❴
❵❛
❵❜
❭
❩❝
❛❭

❞❡❢❣

❤✐

❤❥❞

❦❧

✐♠

♥❧

♦♠

Figure 3.11: Quantitative ROC curves of all the thirteen approaches on the four
datasets. The rows from top to bottom correspond to MSRA-1000, SOD, SED-
100, and Imgsal-50, respectively. Clearly, our approach achieve a better ROC
performance than the other competing approaches in most cases.
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Figure 3.12: Quantitative F-measure performance of all the thirteen approaches
on the four datasets. The columns from left to right correspond to MSRA-1000,
SOD, SED-100, and Imgsal-50, respectively. Here, GS is a shorthand form of
GS SP. It is clear that our approach achieve a good F-measure performance on
the four datasets.
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Image Ours GS SP LR SF CB SVO RC

Figure 3.13: Salient object detection and segmentation examples on the MSRA-
1000 dataset. For each example, the top row shows the input image and its cor-
responding saliency maps obtained by different approaches, and the bottom row
displays the ground truth and the salient object segmentation results associated
with the saliency maps. It is clear that our approach obtains the visually more
consistent saliency detection and segmentation results than the other competing
approaches.
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Figure 3.14: Qualitative image retargeting performance comparison between [1]
and ours. From left to right: images, our results, results of [1]. Clearly, the
performance of our approach is better than that of [1].
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Chapter 4

Characterness: an indicator of

text in the wild

4.1 Characterness model

As the core component of the proposed scene text detection approach (the pipeline

is shown in Fig. 4.1), the characterness model comprises two phases, i.e., can-

didate region extraction and characterness evaluation. In the first phase, an

affine-invariant region detector (modified MSER in our case) is applied to locate

potential characters. In the second phase, three novel text-specific features are

proposed to model the probability the extracted regions belonging to true char-

acters jointly. Similar to objectness in [15], we name the evaluation process as

characterness evaluation. The details of each phase are as follows.

4.1.1 Candidate region extraction

MSER [52] is an effective region detector which has been applied in various vision

tasks, such as tracking [67], image matching [68], and scene text detection [69,

70, 47, 54, 51] amongst others. Roughly speaking, for a gray-scale image, MSERs

are those which have a boundary which remains relatively unchanged over a set of

different intensity thresholds. The MSER detector is thus particularly well suited

to identifying regions with almost uniform intensity surrounded by contrasting

background.
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Character labeling Text line formulation

Figure 4.1: Overview of our scene text detection approach. The characterness
model consists of the first two phases.

For the task of scene text detection, although the original MSER algorithm is

able to detect characters in most cases, there are some characters that are either

missed or incorrectly connected (Fig. 4.2 (b)). This tends to degrade the perfor-

mance of the following steps in the scene text detection algorithms. To address

this problem, Chen et al. [47] proposed to prune out MSER pixels which were

located outside the boundary detected by Canny edge detector. Tsai et al. [54]

performed judicious parameter selection and multi-scale analysis of MSERs. Neu-

mann and Matas extended MSER to MSER++ [70] and later Extremal Region

(ER) [71]. In this work, we use the edge-preserving MSER algorithm from our

earlier work [48] (c.f. Algorithm 1).

Motivation. As illustrated in some previous work [72, 68], the MSER de-

tector is sensitive to blur. We have observed through empirical testing that this

may be attributed to the large quantities of mixed pixels (pixels lie between dark

background and bright regions, and vice versa) present along character bound-

aries. We notice that these mixed pixels usually have larger gradient amplitude

than other pixels. We thus propose to incorporate the gradient amplitude so as

to produce edge-preserving MSERs (see Fig. 4.2(c)).
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(a) Original text (b) Original MSER (c) Our results

Figure 4.2: Cases that the original MSER fails to extract the characters while
the modified eMSER succeeds.

Algorithm 1: Edge-preserving MSER (eMSER)

Input: A color image, and required parameters
Output: Regions contain characters and non-characters

1 Convert the color image to an intensity image I.
2 Smooth I using a guided filter [73].
3 Compute the gradient amplitude map ∇I, then normalize it to [0, 255].
4 Get a new image I∗ = I + γ∇I (resp. I∗ = I − γ∇I).
5 Perform MSER algorithm on I∗ to extract dark regions on the bright
background (resp. bright regions on the dark background).

4.1.2 Characterness evaluation

4.1.2.1 Characterness cues

Characters attract human attention because their appearance differs from that

of their surroundings. Here, we propose three novel cues to measure the unique

properties of characters.

Stroke Width (SW). Stroke width has been a widely exploited feature for

text detection [43, 45, 49, 50]. In particular, SWT [43] computes the length of

a straight line between two edge pixels in the perpendicular direction, which is

used as a preprocessing step for later algorithms [49, 74, 53]. In [50], a stroke is

defined as a connected image region with uniform color and half-closed boundary.

Although this assumption is not supported by many uncommon typefaces, stroke
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(a) Detected regions (b) Skeleton (c) Distance transform

Figure 4.3: Efficient stroke width computation [2] (best viewed in color). Note
the color variation of non-characters and characters on (c). Larger color variation
indicates larger stroke width variance.

width remains a valuable cue.

Based on the efficient stroke width computation method we have developed

earlier [2] (c.f. Algorithm 2), the stroke width cue of region r is defined as:

SW(r) =
Var(l)

E(l)2
, (4.1)

where is E(l) and Var(l) are stroke width mean and variance (c.f. Algorithm

2). In Fig. 4.3 (c), we use color to visualize the stroke width of exemplar charac-

ters and non-characters, where larger color variation indicates larger stroke width

variance and vice versa.

Algorithm 2: Efficient computation of stroke width

Input: A region r
Output: Stroke width mean E(l) and variance Var(l)

1 Extract the skeleton S of the region.
2 For each pixel p ∈ S, find its shortest path to the region boundary via
distance transform. The corresponding length l of the path is defined as
the stroke width.

3 Compute the mean E(l) and variance Var(l).

Perceptual Divergence (PD). As stated in Sec. 2.1, color contrast is a widely

adopted measurement of saliency. For the task of scene text detection, we ob-

served that, in order to ensure reasonable readability of text to a human, the

color of text in natural scenes is typically distinct from that of the surrounding

area. Thus, we propose the PD cue to measure the perceptual divergence of a
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region r against its surroundings, which is defined as:

PD(r) =
∑

R,G,B

b∑

j=1

hj(r) log
hj(r)

hj(r∗)
, (4.2)

where the term
∫
x
p(x) log p(x)

q(x)
is the Kullback-Leibler divergence (KLD) measur-

ing the dissimilarity of two probability distributions in the information theory.

Here we take advantage of its discrete form [14], and replace the probability dis-

tributions p(x), q(x) by the color histograms of two regions h(r) and h(r∗) (r∗

denotes the region outside r but within its bounding box) in a sub-channel re-

spectively. {j}b1 is the index of histogram bins. Note that the more different the

two histograms are, the higher the PD is.

In [55], the authors quantified the perceptual divergence as the overlapping

areas between the normalized intensity histograms. However, using the intensity

channel only ignores valuable color information, which will lead to a reduction

in the measured perceptual divergence between distinct colors with the same

intensity. In contrast, all three sub-channels (i.e., R, G, B) are utilized in the

computation of perceptual divergence in our approach.

Histogram of Gradients at Edges (eHOG). The Histogram of Gradients

(HOGs) [75] is an effective feature descriptor which captures the distribution of

gradient magnitude and orientation. Inspired by [44], we propose a characterness

cue based on the gradient orientation at edges of a region, denoted by eHOG. This

cue aims to exploit the fact that the edge pixels of characters typically appear in

pairs with opposing gradient directions [44]1.

Firstly, edge pixels of a region r are extracted by the Canny edge detector.

Then, gradient orientations θ of those pixels are quantized into four types, i.e.,

Type 1: 0 < θ ≤ π/4 or 7π/4 < θ ≤ 2π, Type 2: π/4 < θ ≤ 3π/4, Type 3:

3π/4 < θ ≤ 5π/4, and Type 4: 5π/4 < θ ≤ 7π/4. An example demonstrating the

four types of edge pixels for text is shown in Fig. 4.4 (right), where four different

1Let us assume the gradient orientation of an edge pixel p is θp. If we follow the ray
along this direction or its inverse direction, we would possibly find another edge pixel q, whose
gradient orientation, denoted by θq, is approximately opposite to p, i.e., |θp − θq| ≈ π, as edges
of a character are typically closed.
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Figure 4.4: Sample text (left) and four types of edge points represented in four
different colors (right). Note that the number of edge points in blue is roughly
equal to that in orange, and so for green and crimson.

colors are used to depict the four types of edge pixels. As it shows, we can expect

that the number of edge pixels in Type 1 should be close to that in Type 3, and

so for Type 2 and Type 4.

Based on this observation, we define the eHOG cue as:

eHOG(r) =

√
(w1(r)− w3(r))

2 + (w2(r)− w4(r))
2

∑4
i=1 wi(r)

, (4.3)

where wi(r) denotes the number of edge pixels in Type i within region r, and the

denominator
∑4

i=1 wi(r) is for the sake of scale invariance.

4.1.2.2 Bayesian multi-cue integration

The aforementioned cues measure the characterness of a region r from different

perspectives. SW and eHOG distinguish characters from non-characters on the

basis of their differing intrinsic structures. PD exploits surrounding color infor-

mation. Since they are complementary and obtained independently of each other,

we argue that combining them in the same framework outperforms any of the cues

individually.

Following the Naive Bayes model, we assume that each cue is conditionally

independent. Therefore, according to Bayes’ theorem, the posterior probability

that a region is a character (its characterness score) can be computed as:

p(c|Ω) =
p(Ω|c)p(c)

p(Ω)

=
p(c)

∏
cue∈Ω p(cue|c)∑

k∈{c,b} p(k)
∏

cue∈Ω p(cue|k)
,
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where Ω = {SW,PD, eHOG}, and p(c) and p(b) denote the prior probability

of characters and background respectively, which we determine on the basis of

relative frequency. We model the observation likelihood p(cue|c) and p(cue|b) via

distribution of cues on positive and negative samples respectively, with details

provided as follows.

Learning the Distribution of Cues. In order to learn the distribution

of the proposed cues, we use the training set of text segmentation task in the

ICDAR 2013 robust reading competition (challenge 2). To our knowledge, this is

is the only benchmark dataset with pixel-level ground truth so far. This dataset

contains 229 images harvested from natural scenes. We randomly selected 119

images as the training set, while the rest 100 images were treated as the test set

for characterness evaluation in our experiment (Sec. 4.1.2).

• To learn the distribution of cues on positive samples, we directly compute

the three cues on characters, as pixel-level ground truth is provided.

• To learn the distribution of cues on negative samples, eMSER algorithm is

applied twice to each training image. After erasing ground truth characters,

the rest of the extracted regions are considered as negative samples on which

we compute the three cues.

Fig. 4.5 shows the distribution of the three cues via normalized histograms.

As it shows, for both SW and eHOG, compared with non-characters, characters

are more likely to have relatively smaller values (almost within the first 5 bins).

For the distribution of PD, it is clear that characters tend to have higher contrast

than that of non-characters.

4.2 Labeling and grouping

4.2.1 Character labeling

4.2.1.1 Labeling model overview

We cast the task of separating characters from non-characters as a binary labeling

problem. To be precise, we construct a standard graph G = (V,E), where V = {vi}
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is the vertex set corresponding to the candidate characters, and E = {ej} is

the edge set corresponding to the interaction between vertexes.1 Each vi ∈ V

should be labeled as either character, i.e., li = 1, or non-character, i.e., li = 0.

Therefore, a labeling set L = {li} represents the separation of characters from

non-characters. The optimal labeling L∗ can be found by minimizing an energy

function:

L∗ = argmin
L

E(L), (4.4)

where E(L) consists of the sum of two potentials:

E(L) = U(L) + V (L) (4.5)

U(L) =
∑

i

ui(li) (4.6)

V (L) =
∑

ij∈E

vij(li, lj), (4.7)

where ui(li) is the unary potential which determines the cost of assigning the

label li to vi. vij(li, lj) is the pairwise potential which reflects the cost of assigning

different labels to vi and vj. This model is widely adopted in image segmentation

algorithms [76, 77]. The optimal L∗ can be found efficiently using graph-cuts [35]

if the pairwise potential is submodular.

4.2.1.2 The design of unary potential

characterness score of extracted regions is encoded in the design of unary potential

directly:

ui(li) =




p(c|Ω) li = 0

1− p(c|Ω) li = 1.
(4.8)

4.2.1.3 The design of pairwise potential

As characters typically appear in homogeneous groups, the degree to which prop-

erties of a putative character (stroke width and color, for example) match those

1In our work, we consider the edge between two vertexes (regions) exists only if the En-
clidean distance between their centroids is smaller than the minimum of their characteristic
scales. Characteristic scale is defined as the sum of the length of major axis and minor axis [49].
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of its neighbors is an important indicator. This clue plays an important role

for human vision to distinguish characters from cluttered background and can

be exploited to design the pairwise potential. In this sense, similarity between

extracted regions is measured by the following two cues.

Stroke Width Divergence (SWD). To measure the stroke width diver-

gence between two extracted regions r1 and r2, we leverage on stroke width his-

togram. In contrast with Algorithm 2 where only pixels on the skeleton are taken

into account, distance transform is applied to all pixels within the region to find

length of shortest path. Therefore, the stroke width histogram is defined as the

histogram of shortest length. Then, SWD is measured as the discrete KLD (c.f.

Equ.4.2) of two stroke width histograms.

Color Divergence (CD). The color divergence of two regions is the distance

of their average color (in the LAB space) measured by L2 norm.

The aforementioned two cues measure divergence between two regions from

two distinct prospectives. Here, we combine them efficiently to produce the uni-

fied divergence (UD):

UD(r1, r2) = βSWD(r1, r2) + (1− β)CD(r1, r2), (4.9)

where the coefficient β specifies the relative weighting of the two divergence.

Without losing generality, in our experiments we set β = 0.5 so that the two

divergence are equally weighted. We make use of the unified divergence to define

the pairwise potential as:

vij(li, lj) = [li 6= lj](1− tanh(UD(ri, rj))), (4.10)

where [·] is the Iverson bracket. In other words, the more similar the color and

stroke width of the two vertexes are, the less likely they are assigned with different

labels.

4.2.2 Text line formulation

The goal of this step, given a set of characters identified in the previous step, is

to group them into readable lines of text. A comparable step is carried out in
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some existing text detection approaches [43, 49], but the fact that these methods

have many parameters which must be tuned to adapt to individual data means

that the adaptability of these methods to various data sets remains unclear. We

thus introduce a mean shift based clustering scheme for text line extraction.

Two features exploited in mean shift clustering are characteristic scale and

major orientation [49]. Note that both features are normalized. Clusters with at

least two elements are retained for further processing.

Within each cluster a bottom-up grouping method is performed, with the goal

that only characters within the same line of text will be assigned the same label.

In order to achieve this goal all regions are set as unlabeled initially. For an

unlabeled region, if another unlabeled region is nearby (less than the average of

their skeleton length), both are given the same label and the angle of the line

connecting their centroids is taken as the text line angle. On the other hand, for a

labeled region, if another unlabeled region is nearby and the angle between them

is similar to that of the text line (less than 30 degrees), the latter is assigned the

label of the former, and the angle of the text line is updated.

4.3 Evaluation of the characterness model

To demonstrate the effectiveness of the proposed characterness model, we follow

the evaluation of salient object detection algorithm in the last chapter. Our

characterness map is normalized to [0,1], thus treated as saliency map. Pixels

with high saliency value (i.e., intensity) are likely to belong to salient objects

(characters in our scenario) which catch human attention.

We qualitatively and quantitatively compare the proposed ‘characterness’ ap-

proach with ten existing saliency detection models: the classical Itti’s model

(IT) [3], the spectral residual approach (SR) [6], the frequency-tuned approach

(FT) [9], context-aware saliency (CA) [19], Zhai’s method (LC) [8], histogram-

based saliency (HC) [12], region-based saliency (RC) [12], Jiang’s method (CB) [18],

Rahtu’s method (RA) [21] and more recently low-rank matrix decomposition

(LR) [17]. Note that CB, RC and CA are considered as the best salient object

detection models in the benchmark work [63]. For SR and LC, we use the im-

plementation from [12]. For the rest approaches, we use the publicly available
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implementations from the original authors. To the best of our knowledge, we are

the first to evaluate the state-of-the-art saliency detection models for reflecting

characterness in this large quantity.

Unless otherwise specified, three parameters in Algorithm 1 were set as follows:

the delta value (∆) in the MSER was set to 10, and the local window radius in the

guided filter was set to 1, γ = 0.5. We empirically found that these parameters

work well for different datasets.

4.3.1 Experimental setup

Datasets For the sake of more precise evaluation of ‘characterness’, we need

pixel-level ground truth of characters.1 As mentioned in Sec. 4.1.2, to date, the

only benchmark dataset with pixel-level ground truth is the training set of text

segmentation task in the ICDAR 2013 robust reading competition (challenge 2)

which consists of 229 images. Therefore, we randomly selected 100 images of this

dataset here for evaluation (the other 119 images have been used for learning the

distribution of cues in the Bayesian framework).

Evaluation criteria For a given saliency map, three criteria are adopted to

evaluate the quantitative performance of different approaches: precision-recall

(PR) curve, F-measure and VOC overlap score. In all three cases we generate a

binary segmentation mask of the saliency map at a threshold T .

To obtain the PR curve, we first get 256 binary segmentation masks from the

saliency map using threshold T ranging from 0 to 255, as in [9, 12, 17, 16]. For

each segmentation mask, precision and recall rate are obtained by comparing it

with the ground truth mask. Therefore, in total 256 pairs of precision and recall

rates are utilized to plot the PR curve.

In contrast with the computation of the PR curve, to get F-measure [9], T is

fixed as the twice of the mean saliency value of the image to get precision rate P

and recall rate R. F-measure is computed as ((β2 + 1)P ·R)/(β2P +R). We set

β2 = 0.3 as that in [9].

1Dataset of pixel-level ground truth is also adopted in [29]. However, it is not publicly
available.
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The VOC overlap score [65] is defined as |S∩S′|
|S∪S′|

. Here, S is the ground truth

mask, and S ′ is the our segmentation mask obtained by binarizing the saliency

map using the same adaptive threshold T during the calculation of F-measure.

The resultant PR curve (resp. F-measure, VOC overlap score) of a dataset is

generated by averaging PR curves (resp. F-measure, VOC overlap score) of all

images in the dataset.

4.3.2 Comparison with other approaches

Table 4.1: Performance of all the eleven approaches in VOC overlap scores.
Ours LR CB RC HC RA CA LC SR FT IT

0.5143 0.2766 0.1667 0.2717 0.2032 0.1854 0.2179 0.2112 0.2242 0.1739 0.1556

As it shows in Fig. 4.6, in terms of the PR curve, all existing saliency detec-

tion models, including three best saliency detection models in [63] achieve low

precision rate (below 0.5) in most cases when the recall rate is fixed. However,

the proposed characterness model produces significantly better results, indicat-

ing that our model is more suitable for the measurement of characterness. The

straight line segment of our PR curve (when recall rates ranging from 0.67 to 1)

is attributed to the fact only foreground regions extracted by eMSER are consid-

ered as character candidates, thus background regions always have a zero saliency

value. It can also be observed from the PR curve that in our scenario, two best

existing saliency detection models are RC and LR.

Precision, recall and F-measure computed via adaptive threshold are illus-

trated in the Fig. 4.7. Our result significantly outperforms other saliency detec-

tion models in all three criteria, which indicates that our approach consistently

produces results closer to ground truth.

Table 4.1 illustrates the performance of all approaches measured by VOC

overlap score. As it shows, our result is almost twice that of the best saliency

detection model LR on this task.

Fig. 4.8 shows some saliency maps of all approaches. It is observed that our ap-

proach has obtained visually more feasible results than other approaches have: it

usually gives high saliency values to characters while suppressing non-characters,

whereas the state-of-the-art saliency detection models may be attracted by other
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objects in the natural scene (e.g., sign boards are also considered as salient objects

in CB).

In summary, both quantitative and qualitative evaluation demonstrate that

the proposed characterness model significantly outperforms saliency detection

approaches on this task.

4.4 Evaluation of the proposed scene text de-

tection approach

In this section, we evaluate our scene text detection approach as a whole. Same

as previous work on scene text detection, we use the detected bounding boxes to

evaluate performance and compare with state-of-the-art approaches. Compared

with Sec. 4.3 in which only 119 images are utilized to learn the distribution of

cues, all images with pixel-level ground truth (229 images) are adopted here, thus

the distribution is closer to the real scene.

From the large body of work on scene text detection, we compare our re-

sult with some state-of-the-art approaches, including TD method [49], Epshtein’s

method [43], Li’s method [2, 48], Yi’s method [46], Meng’s method [30], Neu-

mann’s method [69, 71], Zhang’s method [44] and some approaches presented in

the ICDAR competitions. Note that the bandwidth of mean shift clustering in

the text line formulation step was set to 2.2 in all experiments.

4.4.1 Experimental setup

Datasets We have conducted comprehensive experimental evaluation on three

publicly available datasets. Two of them are from the benchmark ICDAR robust

reading competition held in different years, namely ICDAR 2003 [78] and ICDAR

2011 [79]. ICDAR 2003 dataset contains 258 images for training and 251 images

for testing. This dataset was also adopted in the ICDAR 2005 [80] competition.

ICDAR 2011 dataset contains two folds of data, one for training with 229 images,

and the other one for testing with 255 images. To evaluate the effectiveness of

the proposed algorithm on text in arbitrary orientations, we also adopted the
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Oriented Scene Text Database (OSTD) [46] in our experiments. The dataset set

contains 89 images with text lies in in arbitrary orientations.

Evaluation criteria According to literature review, precision, recall and f-

measure are the most popularly adopted criteria used to evaluate scene text

detection approaches. In general, given the set of correct detection C, total

detection D and ground truth G, precision p is defined as the ratio between

the number of correct detection |C| and ground truth |D|, i.e., p = |C|/|D|.

Meanwhile, recall r is computed as the number of correct detection |C| divided

by the number of ground truth |G|, i.e., r = |C|/|G|. Obviously, algorithms that

overestimate the number of ground truth are punished with a low precision score,

whereas those underestimate the number of ground truth are punished with a low

recall score. The aim of f-measure f is adopted to combine precision and recall

in an uniform measurement, which is defined as: f = 1/(α/p+ (1−α)/r). α is a

weight controls the relative importance of p and r. α = 0.5 gives equal weight to

precision and recall. Though the definition of f-measure is always the same, the

computation of the precision and recall is slightly different across datasets.

In the ICDAR 2003 and 2005 competition, precision and recall are computed

based on a match function. Similar to overlap ratio, the match function between

two rectangle bounding boxes r and r‘ is defined as m(r, r‘) = |r∩r‘|
|r∪r‘|

. Hence, the

best match m(r, R) for a bounding box r in a set of bounding boxes R is defined

as: m(r, R) = maxm(r, r‘), ∀r‘ ∈ R. Therefore, precision and recall are computed

by finding the best match between detected bounding boxes and ground truth

bounding boxes:

r =

∑
r∈G m(r,D)

|G|
(4.11)

p =

∑
r∈D m(r,G)

|D|
. (4.12)

Clearly, in order to achieve high precision and recall rates in this definition, a

text detection system should generate accurate bounding boxes of each word,

i.e., one-to-one match. In this sense, algorithms which outputs detected text

lines composed of several words (i.e. many-to-one match) will be penalized sig-
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Table 4.2: Evaluation of Bayesian multi-cue integration on the ICDAR 2011
dataset.

Cues precision recall f-measure
Native Bayes model 0.80 0.62 0.70
SVM 0.71 0.42 0.53
SVM-MRF 0.54 0.62 0.58

nificantly. To overcome this drawback, ICDAR 2011 competition adopts the

DetEval software [81] which supports one-to-one matches, one-to-many matches

and many-to-one matches. For the OSTD dataset, we use the original definition

of precision and recall from the authors [46], which are based on computing the

size of overlapping areas between |D| and |G|. In all three datasets, f-measure is

always defined as the harmonic mean of precision and recall.

4.4.2 eMSER versus MSER

Since the proposed characterness cues are computed on regions, the extraction

of informative regions is a prerequisite for the robustness of our approach. To

demonstrate that the modified eMSER algorithm improves the performance, we

compare it with the original MSER algorithm on the ICDAR 2011 dataset. For

fair comparison, when learning the distribution of cues on negative samples, we

use MSER rather than eMSER to harvest negative samples and then compute

the three cues. Other parts of our approach remain fixed.

Using the MSER algorithm achieves a recall of 66%, a precision of 67% and an

f-measure of 66%. In comparison, when the eMSER is adopted, the precision rate

is boosted significantly (80%), leading to an improved f-measure (70%). This is

owing to that eMSER is capable of preserving shape of regions, whereas regions

extracted by MSER are more likely to be blurred which makes cues less effective.

4.4.3 Evaluation of Bayesian multi-cue integration

In Eq. 4.4, based on the assumption that the three proposed characterness cues

are conditional independent, we fuse them using the Native Bayes model. Here, to

show that the simple Native Bayes model is effective in our scenario, we compare
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Table 4.3: Evaluation of characterness cues on the ICDAR 2011 dataset.
Cues precision recall f-measure
SW 0.71 0.63 0.67
PD 0.64 0.63 0.63
eHOG 0.58 0.65 0.61
SW+PD 0.78 0.63 0.68
SW+eHOG 0.74 0.63 0.68
PD+eHOG 0.73 0.63 0.67
SW+PD+eHOG 0.80 0.62 0.70
Baseline 0.53 0.67 0.59

it with two other cue integration configurations:

• SVM. In this configuration, we simply concatenate the three cues to produce

a final three-dimensional feature vector for each potential text region. Then,

we train a linear SVM classifier after feature normalization. Text regions

which are classified as negative are directly removed which means we do

not use MRF for character labeling in this case.

• SVM-MRF. In this configuration, as the former one, we still train a linear

SVM classifier using concatenated cues. However, instead of using SVM

for classification directly, we use the decision value of the SVM output to

replace characterness score in the MRF model while the pairwise potential

is fixed.

We report the experimental results on the ICDAR 2011 dataset in Table. 4.2.

As it shows, whereas both the SVM and SVM-MRF configurations suffer low

recall and precision rate respectively, the simple Native Bayes model achieves

significantly superior performance than both.

4.4.4 Evaluation of characterness cues

The proposed characterness cues (i.e. SW, PD and eHOG) are critical to the

characternss model and the final text detection result. In order to show that they

are effective in distinguishing characters and non-characters, we evaluate different

combinations of the cues on the ICDAR 2011 dataset. Table 4.3 shows the eval-

uation via precision, recall and f-measure. Clearly, the table shows an upward
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trend in performance with increasing number of cues. Note that the baseline

method in Table 4.3 corresponds to the result obtained by directly preforming

text line formulation after candidate region extraction.

As it shows in Table 4.3, the performance of the proposed approach is gen-

erally poorer when only one cue is adopted. However, the f-measures are still

much higher than the baseline method, which indicates that individual cues are

effective. We also notice that the SW cue shows the best f-measure when indi-

vidual cue is considered. This indicates that characters and non-characters are

much easier to be separated by using the SW cue. From Table 4.3, we can easily

conclude that the order of discriminability of individual cues (from high to low)

is: SW, PD and eHOG.

The performance of the proposed approach is boosted by a large extent (about

5% in f-measure) when two cues are combined, which attributes to the significant

increase in precision.

As expected, the pest performance is achieved when all cues are combined.

Although there is a slightly drop in recall rate, precision rate (80%) is significantly

higher than all other combinations, thus the f-measure is the best.

4.4.5 Comparison with other approaches

Table 4.4 and Table 4.5 show the performance of our approach on two benchmark

datasets (i.e. ICDAR 2003 and 2011), along with the performance of other state-

of-the-art scene text detection algorithms. Note that methods without reference

correspond to those presented in each competition.

On the ICDAR 2003 dataset, our method achieves significantly better preci-

sion (79%) than all other approaches. Besides, our recall rate (64%) is above the

average, thus our f-measure (71%) is superior than others. Although supervised

learning (random forest) is adopted in TD-Mixture [49], its precision (69%) is

much lower than ours (79%), which indicates the strong discriminability of the

Bayesian classifier which is based on fusion of characterness cues.

On the ICDAR 2011 dataset, our method achieves a precision of 80%, a recall

of 62%, and an f-measure of 70%. In terms of precision, our rate (80%) is only

1% lower than that of Kim’s method [51] (81%) which is based on two times of
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Table 4.4: Results on ICDAR 2003 dataset.
method precision recall f-measure
Ours 0.79 0.64 0.71
Kim [51] 0.78 0.65 0.71
TD-Mixture [49] 0.69 0.66 0.67
Yi [50] 0.73 0.67 0.66
Epshtein [43] 0.73 0.60 0.66
Li [48] 0.62 0.65 0.63
Yi [46] 0.71 0.62 0.62
Becker [80] 0.62 0.67 0.62
Meng [30] 0.66 0.57 0.61
Li [2] 0.59 0.59 0.59
Chen [80] 0.60 0.60 0.58
Neumann [69] 0.59 0.55 0.57
Zhang [44] 0.67 0.46 0.55
Ashida 0.55 0.46 0.50

Table 4.5: Results on ICDAR 2011 dataset.
method precision recall f-measure
Kim [51] 0.81 0.69 0.75
Ours 0.80 0.62 0.70
Neumann [71] 0.73 0.65 0.69
Li [48] 0.63 0.68 0.65
Yi 0.67 0.58 0.62
TH-TextLoc 0.67 0.58 0.62
Li [2] 0.59 0.62 0.61
Neumann 0.69 0.53 0.60
TDM IACS 0.64 0.54 0.58
LIP6-Retin 0.63 0.50 0.56
KAIST AIPR 0.60 0.45 0.51
ECNU-CCG 0.35 0.38 0.37
Text Hunter 0.50 0.26 0.34
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supervised learning. Besides, we report the best performance amongst all region-

based approaches.

Our method achieves a precision of 72%, a recall of 60% and an f-measure

of 61% on the OSTD dataset [46] whcih outperforms Yi’s method [46], with an

improvement of 6% in f-measure.

Fig. 4.9 shows some sample outputs of our method with detected text bounded

by yellow rectangles. As it shows, our method can handle several text variations,

including color, orientation and size. The proposed method also works well in

a wide range of challenging conditions, such as strong light, cluttered scenes,

flexible surfaces and so forth.

In terms of failure cases (see Fig. 4.10), there are two culprits of false negatives.

Firstly, the candidate region extraction step misses some characters with very low

resolution. Furthermore, some characters in uncommon fonts are likely to have

low characterness score, thus likely to be labeled as non-characters in the character

labeling model. This problem may be solved by enlarging the training sets to get

more accurate distribution of characterness cues. On the other hand, most false

positives stem from non-characters whose distribution of cues is similar to that

of characters.
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Figure 4.5: Observation likelihood of characters (blue) and non-characters (red)
on three characterness cues i.e., SW (top row), PD (middle row), and eHOG
(bottom row). Clearly, for all three cues, observation likelihoods of characters
are quite different from those of non-characters, indicating that the proposed
cues are effective in distinguishing them. Notice that 50 bins are adopted.
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Figure 4.6: Quantitative precision-recall curves performance of all the eleven ap-
proaches. Clearly, our approach achieves significant improvement compared with
state-of-the-art saliency detection models for the measurement of ‘characterness’.
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Figure 4.7: Quantitative F-measure performance of all the eleven approaches.
Clearly, our approach achieves significant improvement compared with state-of-
the-art saliency detection models for the measurement of ‘characterness’.
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Image GT Ours LR CB RC

Figure 4.8: Visual comparison of saliency maps. Clearly, the proposed method
highlights characters as salient regions whereas state-of-the-art saliency detection
algorithms may be attracted by other stuff in the scene.
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Figure 4.9: Sample outputs of our method on the ICDAR datasets and OSTD
dataset. Detected text are in yellow rectangles.
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Figure 4.10: False negatives of our approach. Clearly, there are two kinds of
characters that our approach cannot handle, (i) characters in extremely blur and
low resolution (top row), (ii) characters in uncommon fonts (bottom row).
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Chapter 5

Conclusions

This thesis has presented a detailed study of two important topics in the vision

community, saliency detection and scene text detection. For computers, saliency

detection aims to locate objects catch human attention, which is a mechanism

embedded in the human vision system, while scene text detection aims to lo-

cate text in the natural scene. As most previous work study these two subjects

separately, this thesis is a pioneering work on studying saliency and scene text

detection jointly.

For saliency detection, we have proposed two salient object detection ap-

proaches based on hypergraph modeling and center-versus-surround max-margin

learning. Specifically, we have designed a hypergraph modeling approach that

captures the intrinsic contextual saliency information on image pixels/superpixels

by detecting salient vertices and hyperedges in a hypergraph. Furthermore, we

have developed a local salient object detection approach based on center-versus-

surround max-margin learning, which solves an imbalanced cost-sensitive SVM

optimization problem. Compared with the twelve state-of-the-art approaches, we

have empirically shown that the fusion of our approaches is able to achieve more

accurate and robust results of salient object detection.

From previous observation in a large body of literature which confirms text is

an important attribute of human attention, we investigated whether scene text

detection could be aided by saliency detection approaches. To achieve this goal,

we have proposed a scene text detection approach based on measuring ‘charac-

terness’. The proposed characterness model reflects the probability of extracted
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regions belonging to character, which is constructed via fusion of novel charac-

terness cues in the Bayesian framework. We have demonstrated that this model

significantly outperforms the state-of-the-art saliency detection approaches in the

task of measuring the ‘characterness’ of text. In the character labeling model, by

constructing a standard graph, not only characterness score of individual regions

is considered, similarity between regions is also adopted as the pairwise potential.

Compared with state-of-the-art scene text detection approaches, we have shown

that our method is able to achieve more accurate and robust results of scene text

detection.
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