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Abstract

Salient object detection aims to locate objects that capture human

attention within images. Previous approaches often pose this as a

problem of image contrast analysis. In this work, we model an im-

age as a hypergraph that utilizes a set of hyperedges to capture the

contextual properties of image pixels or regions. As a result, the

problem of salient object detection becomes one of finding salient

vertices and hyperedges in the hypergraph. The main advantage of

hypergraph modeling is that it takes into account each pixel’s (or re-

gion’s) affinity with its neighborhood as well as its separation from

image background. Furthermore, we propose an alternative approach

based on center-versus-surround contextual contrast analysis, which

performs salient object detection by optimizing a cost-sensitive sup-

port vector machine (SVM) objective function. Experimental results

on four challenging datasets demonstrate the effectiveness of the pro-

posed approaches against the state-of-the-art approaches to salient

object detection.

In addition to a novel method for salient object detection, we tackle

scene text detection, a challenging research problem in the both vi-

sion and document analysis community, from the saliency detection

prospective. Motivated by the need to consider the widely varying

forms of natural text, we propose a bottom-up approach to the prob-

lem which reflects the ‘characterness’ of an image region. In this

sense our approach mirrors the move from saliency detection methods

to measures of ‘objectness’. In order to measure the characterness

we develop three novel cues that are tailored for character detection,

and a Bayesian method for their integration. Because text is made up



of sets of characters, we then design a Markov random field (MRF)

model so as to exploit the inherent dependencies between characters.

We experimentally demonstrate the effectiveness of our characterness

cues as well as the advantage of Bayesian multi-cue integration. The

proposed text detector outperforms state-of-the-art methods on a few

benchmark scene text detection datasets. We also show that our mea-

surement of ‘characterness’ is superior than state-of-the-art saliency

detection models when applied to the same task.
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