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Abstract

Population genetics is a discipline within the biological sciences that is concerned

with the change in frequency of types of individuals in a population due to natural

selection, mutation, genetic drift and gene flow. Genetic drift is the part of this

process explained by random sampling. Important to the process of genetic drift

is population structure and so we focus on the recovery of population sizes over

time, given a set of DNA sequences.

With recent advances in computational power and a growth in the amount of data

available, increasingly powerful techniques are being developed for the study of

sequence data. Key advances in the early 1980’s centred around ‘the coalescent’,

a continuous time approximation to the Wright-Fisher model of reproduction, and

these advances resulted in Skyline Plot methods for recovering population size

estimates over time. Skyline Plots suffer from large variances for the ‘coalescent’

event times, and sources of error common to DNA sequence sampling schemes.

Approximate Bayesian Computation (ABC) is a class of likelihood-free methods for

statistical inference. ABC techniques can trace their genesis back to the biological

sciences due to the complexity of the models for reproduction (and hence the

intractability of likelihood calculations). Unfortunately, like Skyline Plots, ABC

also suffers from many sources of error, not least of which occurs when we can not

use sufficient summary statistics.

To considerably reduce the effect of the error related with the use of insufficient

summary statistics, we explore a process of semi-automatic summary statistic cal-

vii



culation through the use of ‘training data’ (simulated under the coalescent model).

We obtain a training set of data, and fit a linear model (under a Box-Cox trans-

formation) for each parameter of interest, using common summary statistics for

DNA sequences as predictor variables. We call these linear combinations of (in-

sufficient) summary statistics the semi-automatic summary statistics, and using

a new set of simulations, we perform ABC where a simulation is retained if the

predicted parameter values are ‘close enough’ to the predicted parameters for the

observed data. We analyse three sets of coalescent simulated data from three pop-

ulation models; the Constant, Exponential and Migration Models, and compare

our findings with the corresponding Skyline Plot analyses performed in BEAST.

When we simulate data for training our linear model, we must specify a model of

population size dynamics, and we explore methods to select a population model,

given our data. A common means of model comparison used with ABC analyses

is called Bayes Factors. We show that Bayes Factors perform poorly for our data,

and highlight a fundamental bias inherent in any model comparison where the

probability of a model, given an observed summary statistic, is employed. As an

alternative to Bayes Factors, we apply multiple logistic regression (MLR) to classify

our observed data into one of a candidate set of possible models. In conjunction

with the MLR analysis, we use principal component analysis for visualisation, and

introduce a method for attempting to identify when the correct model is not in

the candidate model set, or when a classification seems reasonable. We show that

this method of classification performs well for the three observed data sets using

sensitivity analysis.

Due to the early stage of development of our work, we can not use real world data,

and so we use a different type of simulation since our method uses coalescent sim-

ulations to train the model. We obtain sequence data simulated under a ‘forward

simulation’ framework, a type of sequence simulation that looks forward in time.

We define a two-step process for analysis that begins with MLR classification, and



then, under a model chosen by the MLR classification, uses semi-automatic sum-

mary statistic calculation for parameter estimation via ABC. We correctly identify

this model of population dynamics, and perform parameter estimation on the data,

comparing our results with the corresponding BEAST Skyline Plot analysis.
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